]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
fad6cb1a | 18 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA |
54936004 | 19 | */ |
67b915a5 | 20 | #include "config.h" |
d5a8f07c | 21 | #ifdef _WIN32 |
4fddf62a | 22 | #define WIN32_LEAN_AND_MEAN |
d5a8f07c FB |
23 | #include <windows.h> |
24 | #else | |
a98d49b1 | 25 | #include <sys/types.h> |
d5a8f07c FB |
26 | #include <sys/mman.h> |
27 | #endif | |
54936004 FB |
28 | #include <stdlib.h> |
29 | #include <stdio.h> | |
30 | #include <stdarg.h> | |
31 | #include <string.h> | |
32 | #include <errno.h> | |
33 | #include <unistd.h> | |
34 | #include <inttypes.h> | |
35 | ||
6180a181 FB |
36 | #include "cpu.h" |
37 | #include "exec-all.h" | |
ca10f867 | 38 | #include "qemu-common.h" |
b67d9a52 | 39 | #include "tcg.h" |
b3c7724c | 40 | #include "hw/hw.h" |
74576198 | 41 | #include "osdep.h" |
7ba1e619 | 42 | #include "kvm.h" |
53a5960a PB |
43 | #if defined(CONFIG_USER_ONLY) |
44 | #include <qemu.h> | |
45 | #endif | |
54936004 | 46 | |
fd6ce8f6 | 47 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 48 | //#define DEBUG_FLUSH |
9fa3e853 | 49 | //#define DEBUG_TLB |
67d3b957 | 50 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
51 | |
52 | /* make various TB consistency checks */ | |
5fafdf24 TS |
53 | //#define DEBUG_TB_CHECK |
54 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 55 | |
1196be37 | 56 | //#define DEBUG_IOPORT |
db7b5426 | 57 | //#define DEBUG_SUBPAGE |
1196be37 | 58 | |
99773bd4 PB |
59 | #if !defined(CONFIG_USER_ONLY) |
60 | /* TB consistency checks only implemented for usermode emulation. */ | |
61 | #undef DEBUG_TB_CHECK | |
62 | #endif | |
63 | ||
9fa3e853 FB |
64 | #define SMC_BITMAP_USE_THRESHOLD 10 |
65 | ||
66 | #define MMAP_AREA_START 0x00000000 | |
67 | #define MMAP_AREA_END 0xa8000000 | |
fd6ce8f6 | 68 | |
108c49b8 FB |
69 | #if defined(TARGET_SPARC64) |
70 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
5dcb6b91 BS |
71 | #elif defined(TARGET_SPARC) |
72 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
bedb69ea JM |
73 | #elif defined(TARGET_ALPHA) |
74 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
75 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
108c49b8 FB |
76 | #elif defined(TARGET_PPC64) |
77 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
00f82b8a AJ |
78 | #elif defined(TARGET_X86_64) && !defined(USE_KQEMU) |
79 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
80 | #elif defined(TARGET_I386) && !defined(USE_KQEMU) | |
81 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
108c49b8 FB |
82 | #else |
83 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
84 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
85 | #endif | |
86 | ||
bdaf78e0 | 87 | static TranslationBlock *tbs; |
26a5f13b | 88 | int code_gen_max_blocks; |
9fa3e853 | 89 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
bdaf78e0 | 90 | static int nb_tbs; |
eb51d102 FB |
91 | /* any access to the tbs or the page table must use this lock */ |
92 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
fd6ce8f6 | 93 | |
141ac468 BS |
94 | #if defined(__arm__) || defined(__sparc_v9__) |
95 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
96 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
97 | section close to code segment. */ |
98 | #define code_gen_section \ | |
99 | __attribute__((__section__(".gen_code"))) \ | |
100 | __attribute__((aligned (32))) | |
101 | #else | |
102 | #define code_gen_section \ | |
103 | __attribute__((aligned (32))) | |
104 | #endif | |
105 | ||
106 | uint8_t code_gen_prologue[1024] code_gen_section; | |
bdaf78e0 BS |
107 | static uint8_t *code_gen_buffer; |
108 | static unsigned long code_gen_buffer_size; | |
26a5f13b | 109 | /* threshold to flush the translated code buffer */ |
bdaf78e0 | 110 | static unsigned long code_gen_buffer_max_size; |
fd6ce8f6 FB |
111 | uint8_t *code_gen_ptr; |
112 | ||
e2eef170 | 113 | #if !defined(CONFIG_USER_ONLY) |
00f82b8a | 114 | ram_addr_t phys_ram_size; |
9fa3e853 FB |
115 | int phys_ram_fd; |
116 | uint8_t *phys_ram_base; | |
1ccde1cb | 117 | uint8_t *phys_ram_dirty; |
74576198 | 118 | static int in_migration; |
e9a1ab19 | 119 | static ram_addr_t phys_ram_alloc_offset = 0; |
e2eef170 | 120 | #endif |
9fa3e853 | 121 | |
6a00d601 FB |
122 | CPUState *first_cpu; |
123 | /* current CPU in the current thread. It is only valid inside | |
124 | cpu_exec() */ | |
5fafdf24 | 125 | CPUState *cpu_single_env; |
2e70f6ef | 126 | /* 0 = Do not count executed instructions. |
bf20dc07 | 127 | 1 = Precise instruction counting. |
2e70f6ef PB |
128 | 2 = Adaptive rate instruction counting. */ |
129 | int use_icount = 0; | |
130 | /* Current instruction counter. While executing translated code this may | |
131 | include some instructions that have not yet been executed. */ | |
132 | int64_t qemu_icount; | |
6a00d601 | 133 | |
54936004 | 134 | typedef struct PageDesc { |
92e873b9 | 135 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 136 | TranslationBlock *first_tb; |
9fa3e853 FB |
137 | /* in order to optimize self modifying code, we count the number |
138 | of lookups we do to a given page to use a bitmap */ | |
139 | unsigned int code_write_count; | |
140 | uint8_t *code_bitmap; | |
141 | #if defined(CONFIG_USER_ONLY) | |
142 | unsigned long flags; | |
143 | #endif | |
54936004 FB |
144 | } PageDesc; |
145 | ||
92e873b9 | 146 | typedef struct PhysPageDesc { |
0f459d16 | 147 | /* offset in host memory of the page + io_index in the low bits */ |
00f82b8a | 148 | ram_addr_t phys_offset; |
8da3ff18 | 149 | ram_addr_t region_offset; |
92e873b9 FB |
150 | } PhysPageDesc; |
151 | ||
54936004 | 152 | #define L2_BITS 10 |
bedb69ea JM |
153 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
154 | /* XXX: this is a temporary hack for alpha target. | |
155 | * In the future, this is to be replaced by a multi-level table | |
156 | * to actually be able to handle the complete 64 bits address space. | |
157 | */ | |
158 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
159 | #else | |
03875444 | 160 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
bedb69ea | 161 | #endif |
54936004 FB |
162 | |
163 | #define L1_SIZE (1 << L1_BITS) | |
164 | #define L2_SIZE (1 << L2_BITS) | |
165 | ||
83fb7adf FB |
166 | unsigned long qemu_real_host_page_size; |
167 | unsigned long qemu_host_page_bits; | |
168 | unsigned long qemu_host_page_size; | |
169 | unsigned long qemu_host_page_mask; | |
54936004 | 170 | |
92e873b9 | 171 | /* XXX: for system emulation, it could just be an array */ |
54936004 | 172 | static PageDesc *l1_map[L1_SIZE]; |
bdaf78e0 | 173 | static PhysPageDesc **l1_phys_map; |
54936004 | 174 | |
e2eef170 PB |
175 | #if !defined(CONFIG_USER_ONLY) |
176 | static void io_mem_init(void); | |
177 | ||
33417e70 | 178 | /* io memory support */ |
33417e70 FB |
179 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
180 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
a4193c8a | 181 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
511d2b14 | 182 | static char io_mem_used[IO_MEM_NB_ENTRIES]; |
6658ffb8 PB |
183 | static int io_mem_watch; |
184 | #endif | |
33417e70 | 185 | |
34865134 | 186 | /* log support */ |
d9b630fd | 187 | static const char *logfilename = "/tmp/qemu.log"; |
34865134 FB |
188 | FILE *logfile; |
189 | int loglevel; | |
e735b91c | 190 | static int log_append = 0; |
34865134 | 191 | |
e3db7226 FB |
192 | /* statistics */ |
193 | static int tlb_flush_count; | |
194 | static int tb_flush_count; | |
195 | static int tb_phys_invalidate_count; | |
196 | ||
db7b5426 BS |
197 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
198 | typedef struct subpage_t { | |
199 | target_phys_addr_t base; | |
3ee89922 BS |
200 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
201 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
202 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
8da3ff18 | 203 | ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4]; |
db7b5426 BS |
204 | } subpage_t; |
205 | ||
7cb69cae FB |
206 | #ifdef _WIN32 |
207 | static void map_exec(void *addr, long size) | |
208 | { | |
209 | DWORD old_protect; | |
210 | VirtualProtect(addr, size, | |
211 | PAGE_EXECUTE_READWRITE, &old_protect); | |
212 | ||
213 | } | |
214 | #else | |
215 | static void map_exec(void *addr, long size) | |
216 | { | |
4369415f | 217 | unsigned long start, end, page_size; |
7cb69cae | 218 | |
4369415f | 219 | page_size = getpagesize(); |
7cb69cae | 220 | start = (unsigned long)addr; |
4369415f | 221 | start &= ~(page_size - 1); |
7cb69cae FB |
222 | |
223 | end = (unsigned long)addr + size; | |
4369415f FB |
224 | end += page_size - 1; |
225 | end &= ~(page_size - 1); | |
7cb69cae FB |
226 | |
227 | mprotect((void *)start, end - start, | |
228 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
229 | } | |
230 | #endif | |
231 | ||
b346ff46 | 232 | static void page_init(void) |
54936004 | 233 | { |
83fb7adf | 234 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 235 | TARGET_PAGE_SIZE */ |
c2b48b69 AL |
236 | #ifdef _WIN32 |
237 | { | |
238 | SYSTEM_INFO system_info; | |
239 | ||
240 | GetSystemInfo(&system_info); | |
241 | qemu_real_host_page_size = system_info.dwPageSize; | |
242 | } | |
243 | #else | |
244 | qemu_real_host_page_size = getpagesize(); | |
245 | #endif | |
83fb7adf FB |
246 | if (qemu_host_page_size == 0) |
247 | qemu_host_page_size = qemu_real_host_page_size; | |
248 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
249 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
250 | qemu_host_page_bits = 0; | |
251 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
252 | qemu_host_page_bits++; | |
253 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
108c49b8 FB |
254 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
255 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
50a9569b AZ |
256 | |
257 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
258 | { | |
259 | long long startaddr, endaddr; | |
260 | FILE *f; | |
261 | int n; | |
262 | ||
c8a706fe | 263 | mmap_lock(); |
0776590d | 264 | last_brk = (unsigned long)sbrk(0); |
50a9569b AZ |
265 | f = fopen("/proc/self/maps", "r"); |
266 | if (f) { | |
267 | do { | |
268 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
269 | if (n == 2) { | |
e0b8d65a BS |
270 | startaddr = MIN(startaddr, |
271 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
272 | endaddr = MIN(endaddr, | |
273 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
b5fc909e | 274 | page_set_flags(startaddr & TARGET_PAGE_MASK, |
50a9569b AZ |
275 | TARGET_PAGE_ALIGN(endaddr), |
276 | PAGE_RESERVED); | |
277 | } | |
278 | } while (!feof(f)); | |
279 | fclose(f); | |
280 | } | |
c8a706fe | 281 | mmap_unlock(); |
50a9569b AZ |
282 | } |
283 | #endif | |
54936004 FB |
284 | } |
285 | ||
434929bf | 286 | static inline PageDesc **page_l1_map(target_ulong index) |
54936004 | 287 | { |
17e2377a PB |
288 | #if TARGET_LONG_BITS > 32 |
289 | /* Host memory outside guest VM. For 32-bit targets we have already | |
290 | excluded high addresses. */ | |
d8173e0f | 291 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) |
17e2377a PB |
292 | return NULL; |
293 | #endif | |
434929bf AL |
294 | return &l1_map[index >> L2_BITS]; |
295 | } | |
296 | ||
297 | static inline PageDesc *page_find_alloc(target_ulong index) | |
298 | { | |
299 | PageDesc **lp, *p; | |
300 | lp = page_l1_map(index); | |
301 | if (!lp) | |
302 | return NULL; | |
303 | ||
54936004 FB |
304 | p = *lp; |
305 | if (!p) { | |
306 | /* allocate if not found */ | |
17e2377a | 307 | #if defined(CONFIG_USER_ONLY) |
17e2377a PB |
308 | size_t len = sizeof(PageDesc) * L2_SIZE; |
309 | /* Don't use qemu_malloc because it may recurse. */ | |
310 | p = mmap(0, len, PROT_READ | PROT_WRITE, | |
311 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
54936004 | 312 | *lp = p; |
fb1c2cd7 AJ |
313 | if (h2g_valid(p)) { |
314 | unsigned long addr = h2g(p); | |
17e2377a PB |
315 | page_set_flags(addr & TARGET_PAGE_MASK, |
316 | TARGET_PAGE_ALIGN(addr + len), | |
317 | PAGE_RESERVED); | |
318 | } | |
319 | #else | |
320 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
321 | *lp = p; | |
322 | #endif | |
54936004 FB |
323 | } |
324 | return p + (index & (L2_SIZE - 1)); | |
325 | } | |
326 | ||
00f82b8a | 327 | static inline PageDesc *page_find(target_ulong index) |
54936004 | 328 | { |
434929bf AL |
329 | PageDesc **lp, *p; |
330 | lp = page_l1_map(index); | |
331 | if (!lp) | |
332 | return NULL; | |
54936004 | 333 | |
434929bf | 334 | p = *lp; |
54936004 FB |
335 | if (!p) |
336 | return 0; | |
fd6ce8f6 FB |
337 | return p + (index & (L2_SIZE - 1)); |
338 | } | |
339 | ||
108c49b8 | 340 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
92e873b9 | 341 | { |
108c49b8 | 342 | void **lp, **p; |
e3f4e2a4 | 343 | PhysPageDesc *pd; |
92e873b9 | 344 | |
108c49b8 FB |
345 | p = (void **)l1_phys_map; |
346 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
347 | ||
348 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
349 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
350 | #endif | |
351 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
92e873b9 FB |
352 | p = *lp; |
353 | if (!p) { | |
354 | /* allocate if not found */ | |
108c49b8 FB |
355 | if (!alloc) |
356 | return NULL; | |
357 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
358 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
359 | *lp = p; | |
360 | } | |
361 | #endif | |
362 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
e3f4e2a4 PB |
363 | pd = *lp; |
364 | if (!pd) { | |
365 | int i; | |
108c49b8 FB |
366 | /* allocate if not found */ |
367 | if (!alloc) | |
368 | return NULL; | |
e3f4e2a4 PB |
369 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
370 | *lp = pd; | |
67c4d23c | 371 | for (i = 0; i < L2_SIZE; i++) { |
e3f4e2a4 | 372 | pd[i].phys_offset = IO_MEM_UNASSIGNED; |
67c4d23c PB |
373 | pd[i].region_offset = (index + i) << TARGET_PAGE_BITS; |
374 | } | |
92e873b9 | 375 | } |
e3f4e2a4 | 376 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
92e873b9 FB |
377 | } |
378 | ||
108c49b8 | 379 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
92e873b9 | 380 | { |
108c49b8 | 381 | return phys_page_find_alloc(index, 0); |
92e873b9 FB |
382 | } |
383 | ||
9fa3e853 | 384 | #if !defined(CONFIG_USER_ONLY) |
6a00d601 | 385 | static void tlb_protect_code(ram_addr_t ram_addr); |
5fafdf24 | 386 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 387 | target_ulong vaddr); |
c8a706fe PB |
388 | #define mmap_lock() do { } while(0) |
389 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 390 | #endif |
fd6ce8f6 | 391 | |
4369415f FB |
392 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
393 | ||
394 | #if defined(CONFIG_USER_ONLY) | |
395 | /* Currently it is not recommanded to allocate big chunks of data in | |
396 | user mode. It will change when a dedicated libc will be used */ | |
397 | #define USE_STATIC_CODE_GEN_BUFFER | |
398 | #endif | |
399 | ||
400 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
401 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
402 | #endif | |
403 | ||
8fcd3692 | 404 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 405 | { |
4369415f FB |
406 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
407 | code_gen_buffer = static_code_gen_buffer; | |
408 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
409 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
410 | #else | |
26a5f13b FB |
411 | code_gen_buffer_size = tb_size; |
412 | if (code_gen_buffer_size == 0) { | |
4369415f FB |
413 | #if defined(CONFIG_USER_ONLY) |
414 | /* in user mode, phys_ram_size is not meaningful */ | |
415 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
416 | #else | |
26a5f13b | 417 | /* XXX: needs ajustments */ |
174a9a1f | 418 | code_gen_buffer_size = (unsigned long)(phys_ram_size / 4); |
4369415f | 419 | #endif |
26a5f13b FB |
420 | } |
421 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
422 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
423 | /* The code gen buffer location may have constraints depending on | |
424 | the host cpu and OS */ | |
425 | #if defined(__linux__) | |
426 | { | |
427 | int flags; | |
141ac468 BS |
428 | void *start = NULL; |
429 | ||
26a5f13b FB |
430 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
431 | #if defined(__x86_64__) | |
432 | flags |= MAP_32BIT; | |
433 | /* Cannot map more than that */ | |
434 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
435 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
436 | #elif defined(__sparc_v9__) |
437 | // Map the buffer below 2G, so we can use direct calls and branches | |
438 | flags |= MAP_FIXED; | |
439 | start = (void *) 0x60000000UL; | |
440 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
441 | code_gen_buffer_size = (512 * 1024 * 1024); | |
1cb0661e | 442 | #elif defined(__arm__) |
63d41246 | 443 | /* Map the buffer below 32M, so we can use direct calls and branches */ |
1cb0661e AZ |
444 | flags |= MAP_FIXED; |
445 | start = (void *) 0x01000000UL; | |
446 | if (code_gen_buffer_size > 16 * 1024 * 1024) | |
447 | code_gen_buffer_size = 16 * 1024 * 1024; | |
26a5f13b | 448 | #endif |
141ac468 BS |
449 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
450 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
451 | flags, -1, 0); |
452 | if (code_gen_buffer == MAP_FAILED) { | |
453 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
454 | exit(1); | |
455 | } | |
456 | } | |
06e67a82 AL |
457 | #elif defined(__FreeBSD__) |
458 | { | |
459 | int flags; | |
460 | void *addr = NULL; | |
461 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
462 | #if defined(__x86_64__) | |
463 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
464 | * 0x40000000 is free */ | |
465 | flags |= MAP_FIXED; | |
466 | addr = (void *)0x40000000; | |
467 | /* Cannot map more than that */ | |
468 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
469 | code_gen_buffer_size = (800 * 1024 * 1024); | |
470 | #endif | |
471 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
472 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
473 | flags, -1, 0); | |
474 | if (code_gen_buffer == MAP_FAILED) { | |
475 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
476 | exit(1); | |
477 | } | |
478 | } | |
26a5f13b FB |
479 | #else |
480 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
26a5f13b FB |
481 | map_exec(code_gen_buffer, code_gen_buffer_size); |
482 | #endif | |
4369415f | 483 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b FB |
484 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
485 | code_gen_buffer_max_size = code_gen_buffer_size - | |
486 | code_gen_max_block_size(); | |
487 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
488 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
489 | } | |
490 | ||
491 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
492 | (in bytes) allocated to the translation buffer. Zero means default | |
493 | size. */ | |
494 | void cpu_exec_init_all(unsigned long tb_size) | |
495 | { | |
26a5f13b FB |
496 | cpu_gen_init(); |
497 | code_gen_alloc(tb_size); | |
498 | code_gen_ptr = code_gen_buffer; | |
4369415f | 499 | page_init(); |
e2eef170 | 500 | #if !defined(CONFIG_USER_ONLY) |
26a5f13b | 501 | io_mem_init(); |
e2eef170 | 502 | #endif |
26a5f13b FB |
503 | } |
504 | ||
9656f324 PB |
505 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
506 | ||
507 | #define CPU_COMMON_SAVE_VERSION 1 | |
508 | ||
509 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
510 | { | |
511 | CPUState *env = opaque; | |
512 | ||
513 | qemu_put_be32s(f, &env->halted); | |
514 | qemu_put_be32s(f, &env->interrupt_request); | |
515 | } | |
516 | ||
517 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
518 | { | |
519 | CPUState *env = opaque; | |
520 | ||
521 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
522 | return -EINVAL; | |
523 | ||
524 | qemu_get_be32s(f, &env->halted); | |
75f482ae | 525 | qemu_get_be32s(f, &env->interrupt_request); |
9656f324 PB |
526 | tlb_flush(env, 1); |
527 | ||
528 | return 0; | |
529 | } | |
530 | #endif | |
531 | ||
6a00d601 | 532 | void cpu_exec_init(CPUState *env) |
fd6ce8f6 | 533 | { |
6a00d601 FB |
534 | CPUState **penv; |
535 | int cpu_index; | |
536 | ||
c2764719 PB |
537 | #if defined(CONFIG_USER_ONLY) |
538 | cpu_list_lock(); | |
539 | #endif | |
6a00d601 FB |
540 | env->next_cpu = NULL; |
541 | penv = &first_cpu; | |
542 | cpu_index = 0; | |
543 | while (*penv != NULL) { | |
544 | penv = (CPUState **)&(*penv)->next_cpu; | |
545 | cpu_index++; | |
546 | } | |
547 | env->cpu_index = cpu_index; | |
c0ce998e AL |
548 | TAILQ_INIT(&env->breakpoints); |
549 | TAILQ_INIT(&env->watchpoints); | |
6a00d601 | 550 | *penv = env; |
c2764719 PB |
551 | #if defined(CONFIG_USER_ONLY) |
552 | cpu_list_unlock(); | |
553 | #endif | |
b3c7724c | 554 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
9656f324 PB |
555 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
556 | cpu_common_save, cpu_common_load, env); | |
b3c7724c PB |
557 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
558 | cpu_save, cpu_load, env); | |
559 | #endif | |
fd6ce8f6 FB |
560 | } |
561 | ||
9fa3e853 FB |
562 | static inline void invalidate_page_bitmap(PageDesc *p) |
563 | { | |
564 | if (p->code_bitmap) { | |
59817ccb | 565 | qemu_free(p->code_bitmap); |
9fa3e853 FB |
566 | p->code_bitmap = NULL; |
567 | } | |
568 | p->code_write_count = 0; | |
569 | } | |
570 | ||
fd6ce8f6 FB |
571 | /* set to NULL all the 'first_tb' fields in all PageDescs */ |
572 | static void page_flush_tb(void) | |
573 | { | |
574 | int i, j; | |
575 | PageDesc *p; | |
576 | ||
577 | for(i = 0; i < L1_SIZE; i++) { | |
578 | p = l1_map[i]; | |
579 | if (p) { | |
9fa3e853 FB |
580 | for(j = 0; j < L2_SIZE; j++) { |
581 | p->first_tb = NULL; | |
582 | invalidate_page_bitmap(p); | |
583 | p++; | |
584 | } | |
fd6ce8f6 FB |
585 | } |
586 | } | |
587 | } | |
588 | ||
589 | /* flush all the translation blocks */ | |
d4e8164f | 590 | /* XXX: tb_flush is currently not thread safe */ |
6a00d601 | 591 | void tb_flush(CPUState *env1) |
fd6ce8f6 | 592 | { |
6a00d601 | 593 | CPUState *env; |
0124311e | 594 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
595 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
596 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
597 | nb_tbs, nb_tbs > 0 ? | |
598 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 599 | #endif |
26a5f13b | 600 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
601 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
602 | ||
fd6ce8f6 | 603 | nb_tbs = 0; |
3b46e624 | 604 | |
6a00d601 FB |
605 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
606 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
607 | } | |
9fa3e853 | 608 | |
8a8a608f | 609 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 610 | page_flush_tb(); |
9fa3e853 | 611 | |
fd6ce8f6 | 612 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
613 | /* XXX: flush processor icache at this point if cache flush is |
614 | expensive */ | |
e3db7226 | 615 | tb_flush_count++; |
fd6ce8f6 FB |
616 | } |
617 | ||
618 | #ifdef DEBUG_TB_CHECK | |
619 | ||
bc98a7ef | 620 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
621 | { |
622 | TranslationBlock *tb; | |
623 | int i; | |
624 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
625 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
626 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
627 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
628 | address >= tb->pc + tb->size)) { | |
629 | printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n", | |
99773bd4 | 630 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
631 | } |
632 | } | |
633 | } | |
634 | } | |
635 | ||
636 | /* verify that all the pages have correct rights for code */ | |
637 | static void tb_page_check(void) | |
638 | { | |
639 | TranslationBlock *tb; | |
640 | int i, flags1, flags2; | |
3b46e624 | 641 | |
99773bd4 PB |
642 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
643 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
644 | flags1 = page_get_flags(tb->pc); |
645 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
646 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
647 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 648 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
649 | } |
650 | } | |
651 | } | |
652 | } | |
653 | ||
bdaf78e0 | 654 | static void tb_jmp_check(TranslationBlock *tb) |
d4e8164f FB |
655 | { |
656 | TranslationBlock *tb1; | |
657 | unsigned int n1; | |
658 | ||
659 | /* suppress any remaining jumps to this TB */ | |
660 | tb1 = tb->jmp_first; | |
661 | for(;;) { | |
662 | n1 = (long)tb1 & 3; | |
663 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
664 | if (n1 == 2) | |
665 | break; | |
666 | tb1 = tb1->jmp_next[n1]; | |
667 | } | |
668 | /* check end of list */ | |
669 | if (tb1 != tb) { | |
670 | printf("ERROR: jmp_list from 0x%08lx\n", (long)tb); | |
671 | } | |
672 | } | |
673 | ||
fd6ce8f6 FB |
674 | #endif |
675 | ||
676 | /* invalidate one TB */ | |
677 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
678 | int next_offset) | |
679 | { | |
680 | TranslationBlock *tb1; | |
681 | for(;;) { | |
682 | tb1 = *ptb; | |
683 | if (tb1 == tb) { | |
684 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
685 | break; | |
686 | } | |
687 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
688 | } | |
689 | } | |
690 | ||
9fa3e853 FB |
691 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
692 | { | |
693 | TranslationBlock *tb1; | |
694 | unsigned int n1; | |
695 | ||
696 | for(;;) { | |
697 | tb1 = *ptb; | |
698 | n1 = (long)tb1 & 3; | |
699 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
700 | if (tb1 == tb) { | |
701 | *ptb = tb1->page_next[n1]; | |
702 | break; | |
703 | } | |
704 | ptb = &tb1->page_next[n1]; | |
705 | } | |
706 | } | |
707 | ||
d4e8164f FB |
708 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
709 | { | |
710 | TranslationBlock *tb1, **ptb; | |
711 | unsigned int n1; | |
712 | ||
713 | ptb = &tb->jmp_next[n]; | |
714 | tb1 = *ptb; | |
715 | if (tb1) { | |
716 | /* find tb(n) in circular list */ | |
717 | for(;;) { | |
718 | tb1 = *ptb; | |
719 | n1 = (long)tb1 & 3; | |
720 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
721 | if (n1 == n && tb1 == tb) | |
722 | break; | |
723 | if (n1 == 2) { | |
724 | ptb = &tb1->jmp_first; | |
725 | } else { | |
726 | ptb = &tb1->jmp_next[n1]; | |
727 | } | |
728 | } | |
729 | /* now we can suppress tb(n) from the list */ | |
730 | *ptb = tb->jmp_next[n]; | |
731 | ||
732 | tb->jmp_next[n] = NULL; | |
733 | } | |
734 | } | |
735 | ||
736 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
737 | another TB */ | |
738 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
739 | { | |
740 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
741 | } | |
742 | ||
2e70f6ef | 743 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
fd6ce8f6 | 744 | { |
6a00d601 | 745 | CPUState *env; |
8a40a180 | 746 | PageDesc *p; |
d4e8164f | 747 | unsigned int h, n1; |
00f82b8a | 748 | target_phys_addr_t phys_pc; |
8a40a180 | 749 | TranslationBlock *tb1, *tb2; |
3b46e624 | 750 | |
8a40a180 FB |
751 | /* remove the TB from the hash list */ |
752 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
753 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 754 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
755 | offsetof(TranslationBlock, phys_hash_next)); |
756 | ||
757 | /* remove the TB from the page list */ | |
758 | if (tb->page_addr[0] != page_addr) { | |
759 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
760 | tb_page_remove(&p->first_tb, tb); | |
761 | invalidate_page_bitmap(p); | |
762 | } | |
763 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
764 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
765 | tb_page_remove(&p->first_tb, tb); | |
766 | invalidate_page_bitmap(p); | |
767 | } | |
768 | ||
36bdbe54 | 769 | tb_invalidated_flag = 1; |
59817ccb | 770 | |
fd6ce8f6 | 771 | /* remove the TB from the hash list */ |
8a40a180 | 772 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
773 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
774 | if (env->tb_jmp_cache[h] == tb) | |
775 | env->tb_jmp_cache[h] = NULL; | |
776 | } | |
d4e8164f FB |
777 | |
778 | /* suppress this TB from the two jump lists */ | |
779 | tb_jmp_remove(tb, 0); | |
780 | tb_jmp_remove(tb, 1); | |
781 | ||
782 | /* suppress any remaining jumps to this TB */ | |
783 | tb1 = tb->jmp_first; | |
784 | for(;;) { | |
785 | n1 = (long)tb1 & 3; | |
786 | if (n1 == 2) | |
787 | break; | |
788 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
789 | tb2 = tb1->jmp_next[n1]; | |
790 | tb_reset_jump(tb1, n1); | |
791 | tb1->jmp_next[n1] = NULL; | |
792 | tb1 = tb2; | |
793 | } | |
794 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 795 | |
e3db7226 | 796 | tb_phys_invalidate_count++; |
9fa3e853 FB |
797 | } |
798 | ||
799 | static inline void set_bits(uint8_t *tab, int start, int len) | |
800 | { | |
801 | int end, mask, end1; | |
802 | ||
803 | end = start + len; | |
804 | tab += start >> 3; | |
805 | mask = 0xff << (start & 7); | |
806 | if ((start & ~7) == (end & ~7)) { | |
807 | if (start < end) { | |
808 | mask &= ~(0xff << (end & 7)); | |
809 | *tab |= mask; | |
810 | } | |
811 | } else { | |
812 | *tab++ |= mask; | |
813 | start = (start + 8) & ~7; | |
814 | end1 = end & ~7; | |
815 | while (start < end1) { | |
816 | *tab++ = 0xff; | |
817 | start += 8; | |
818 | } | |
819 | if (start < end) { | |
820 | mask = ~(0xff << (end & 7)); | |
821 | *tab |= mask; | |
822 | } | |
823 | } | |
824 | } | |
825 | ||
826 | static void build_page_bitmap(PageDesc *p) | |
827 | { | |
828 | int n, tb_start, tb_end; | |
829 | TranslationBlock *tb; | |
3b46e624 | 830 | |
b2a7081a | 831 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
832 | |
833 | tb = p->first_tb; | |
834 | while (tb != NULL) { | |
835 | n = (long)tb & 3; | |
836 | tb = (TranslationBlock *)((long)tb & ~3); | |
837 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
838 | if (n == 0) { | |
839 | /* NOTE: tb_end may be after the end of the page, but | |
840 | it is not a problem */ | |
841 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
842 | tb_end = tb_start + tb->size; | |
843 | if (tb_end > TARGET_PAGE_SIZE) | |
844 | tb_end = TARGET_PAGE_SIZE; | |
845 | } else { | |
846 | tb_start = 0; | |
847 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
848 | } | |
849 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
850 | tb = tb->page_next[n]; | |
851 | } | |
852 | } | |
853 | ||
2e70f6ef PB |
854 | TranslationBlock *tb_gen_code(CPUState *env, |
855 | target_ulong pc, target_ulong cs_base, | |
856 | int flags, int cflags) | |
d720b93d FB |
857 | { |
858 | TranslationBlock *tb; | |
859 | uint8_t *tc_ptr; | |
860 | target_ulong phys_pc, phys_page2, virt_page2; | |
861 | int code_gen_size; | |
862 | ||
c27004ec FB |
863 | phys_pc = get_phys_addr_code(env, pc); |
864 | tb = tb_alloc(pc); | |
d720b93d FB |
865 | if (!tb) { |
866 | /* flush must be done */ | |
867 | tb_flush(env); | |
868 | /* cannot fail at this point */ | |
c27004ec | 869 | tb = tb_alloc(pc); |
2e70f6ef PB |
870 | /* Don't forget to invalidate previous TB info. */ |
871 | tb_invalidated_flag = 1; | |
d720b93d FB |
872 | } |
873 | tc_ptr = code_gen_ptr; | |
874 | tb->tc_ptr = tc_ptr; | |
875 | tb->cs_base = cs_base; | |
876 | tb->flags = flags; | |
877 | tb->cflags = cflags; | |
d07bde88 | 878 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 879 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 880 | |
d720b93d | 881 | /* check next page if needed */ |
c27004ec | 882 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 883 | phys_page2 = -1; |
c27004ec | 884 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
d720b93d FB |
885 | phys_page2 = get_phys_addr_code(env, virt_page2); |
886 | } | |
887 | tb_link_phys(tb, phys_pc, phys_page2); | |
2e70f6ef | 888 | return tb; |
d720b93d | 889 | } |
3b46e624 | 890 | |
9fa3e853 FB |
891 | /* invalidate all TBs which intersect with the target physical page |
892 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
893 | the same physical page. 'is_cpu_write_access' should be true if called |
894 | from a real cpu write access: the virtual CPU will exit the current | |
895 | TB if code is modified inside this TB. */ | |
00f82b8a | 896 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
d720b93d FB |
897 | int is_cpu_write_access) |
898 | { | |
6b917547 | 899 | TranslationBlock *tb, *tb_next, *saved_tb; |
d720b93d | 900 | CPUState *env = cpu_single_env; |
9fa3e853 | 901 | target_ulong tb_start, tb_end; |
6b917547 AL |
902 | PageDesc *p; |
903 | int n; | |
904 | #ifdef TARGET_HAS_PRECISE_SMC | |
905 | int current_tb_not_found = is_cpu_write_access; | |
906 | TranslationBlock *current_tb = NULL; | |
907 | int current_tb_modified = 0; | |
908 | target_ulong current_pc = 0; | |
909 | target_ulong current_cs_base = 0; | |
910 | int current_flags = 0; | |
911 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
912 | |
913 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 914 | if (!p) |
9fa3e853 | 915 | return; |
5fafdf24 | 916 | if (!p->code_bitmap && |
d720b93d FB |
917 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
918 | is_cpu_write_access) { | |
9fa3e853 FB |
919 | /* build code bitmap */ |
920 | build_page_bitmap(p); | |
921 | } | |
922 | ||
923 | /* we remove all the TBs in the range [start, end[ */ | |
924 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
925 | tb = p->first_tb; | |
926 | while (tb != NULL) { | |
927 | n = (long)tb & 3; | |
928 | tb = (TranslationBlock *)((long)tb & ~3); | |
929 | tb_next = tb->page_next[n]; | |
930 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
931 | if (n == 0) { | |
932 | /* NOTE: tb_end may be after the end of the page, but | |
933 | it is not a problem */ | |
934 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
935 | tb_end = tb_start + tb->size; | |
936 | } else { | |
937 | tb_start = tb->page_addr[1]; | |
938 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
939 | } | |
940 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
941 | #ifdef TARGET_HAS_PRECISE_SMC |
942 | if (current_tb_not_found) { | |
943 | current_tb_not_found = 0; | |
944 | current_tb = NULL; | |
2e70f6ef | 945 | if (env->mem_io_pc) { |
d720b93d | 946 | /* now we have a real cpu fault */ |
2e70f6ef | 947 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
948 | } |
949 | } | |
950 | if (current_tb == tb && | |
2e70f6ef | 951 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
952 | /* If we are modifying the current TB, we must stop |
953 | its execution. We could be more precise by checking | |
954 | that the modification is after the current PC, but it | |
955 | would require a specialized function to partially | |
956 | restore the CPU state */ | |
3b46e624 | 957 | |
d720b93d | 958 | current_tb_modified = 1; |
5fafdf24 | 959 | cpu_restore_state(current_tb, env, |
2e70f6ef | 960 | env->mem_io_pc, NULL); |
6b917547 AL |
961 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
962 | ¤t_flags); | |
d720b93d FB |
963 | } |
964 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
965 | /* we need to do that to handle the case where a signal |
966 | occurs while doing tb_phys_invalidate() */ | |
967 | saved_tb = NULL; | |
968 | if (env) { | |
969 | saved_tb = env->current_tb; | |
970 | env->current_tb = NULL; | |
971 | } | |
9fa3e853 | 972 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
973 | if (env) { |
974 | env->current_tb = saved_tb; | |
975 | if (env->interrupt_request && env->current_tb) | |
976 | cpu_interrupt(env, env->interrupt_request); | |
977 | } | |
9fa3e853 FB |
978 | } |
979 | tb = tb_next; | |
980 | } | |
981 | #if !defined(CONFIG_USER_ONLY) | |
982 | /* if no code remaining, no need to continue to use slow writes */ | |
983 | if (!p->first_tb) { | |
984 | invalidate_page_bitmap(p); | |
d720b93d | 985 | if (is_cpu_write_access) { |
2e70f6ef | 986 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
987 | } |
988 | } | |
989 | #endif | |
990 | #ifdef TARGET_HAS_PRECISE_SMC | |
991 | if (current_tb_modified) { | |
992 | /* we generate a block containing just the instruction | |
993 | modifying the memory. It will ensure that it cannot modify | |
994 | itself */ | |
ea1c1802 | 995 | env->current_tb = NULL; |
2e70f6ef | 996 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 997 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 998 | } |
fd6ce8f6 | 999 | #endif |
9fa3e853 | 1000 | } |
fd6ce8f6 | 1001 | |
9fa3e853 | 1002 | /* len must be <= 8 and start must be a multiple of len */ |
00f82b8a | 1003 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
9fa3e853 FB |
1004 | { |
1005 | PageDesc *p; | |
1006 | int offset, b; | |
59817ccb | 1007 | #if 0 |
a4193c8a | 1008 | if (1) { |
93fcfe39 AL |
1009 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
1010 | cpu_single_env->mem_io_vaddr, len, | |
1011 | cpu_single_env->eip, | |
1012 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); | |
59817ccb FB |
1013 | } |
1014 | #endif | |
9fa3e853 | 1015 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1016 | if (!p) |
9fa3e853 FB |
1017 | return; |
1018 | if (p->code_bitmap) { | |
1019 | offset = start & ~TARGET_PAGE_MASK; | |
1020 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1021 | if (b & ((1 << len) - 1)) | |
1022 | goto do_invalidate; | |
1023 | } else { | |
1024 | do_invalidate: | |
d720b93d | 1025 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1026 | } |
1027 | } | |
1028 | ||
9fa3e853 | 1029 | #if !defined(CONFIG_SOFTMMU) |
00f82b8a | 1030 | static void tb_invalidate_phys_page(target_phys_addr_t addr, |
d720b93d | 1031 | unsigned long pc, void *puc) |
9fa3e853 | 1032 | { |
6b917547 | 1033 | TranslationBlock *tb; |
9fa3e853 | 1034 | PageDesc *p; |
6b917547 | 1035 | int n; |
d720b93d | 1036 | #ifdef TARGET_HAS_PRECISE_SMC |
6b917547 | 1037 | TranslationBlock *current_tb = NULL; |
d720b93d | 1038 | CPUState *env = cpu_single_env; |
6b917547 AL |
1039 | int current_tb_modified = 0; |
1040 | target_ulong current_pc = 0; | |
1041 | target_ulong current_cs_base = 0; | |
1042 | int current_flags = 0; | |
d720b93d | 1043 | #endif |
9fa3e853 FB |
1044 | |
1045 | addr &= TARGET_PAGE_MASK; | |
1046 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1047 | if (!p) |
9fa3e853 FB |
1048 | return; |
1049 | tb = p->first_tb; | |
d720b93d FB |
1050 | #ifdef TARGET_HAS_PRECISE_SMC |
1051 | if (tb && pc != 0) { | |
1052 | current_tb = tb_find_pc(pc); | |
1053 | } | |
1054 | #endif | |
9fa3e853 FB |
1055 | while (tb != NULL) { |
1056 | n = (long)tb & 3; | |
1057 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1058 | #ifdef TARGET_HAS_PRECISE_SMC |
1059 | if (current_tb == tb && | |
2e70f6ef | 1060 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1061 | /* If we are modifying the current TB, we must stop |
1062 | its execution. We could be more precise by checking | |
1063 | that the modification is after the current PC, but it | |
1064 | would require a specialized function to partially | |
1065 | restore the CPU state */ | |
3b46e624 | 1066 | |
d720b93d FB |
1067 | current_tb_modified = 1; |
1068 | cpu_restore_state(current_tb, env, pc, puc); | |
6b917547 AL |
1069 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1070 | ¤t_flags); | |
d720b93d FB |
1071 | } |
1072 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1073 | tb_phys_invalidate(tb, addr); |
1074 | tb = tb->page_next[n]; | |
1075 | } | |
fd6ce8f6 | 1076 | p->first_tb = NULL; |
d720b93d FB |
1077 | #ifdef TARGET_HAS_PRECISE_SMC |
1078 | if (current_tb_modified) { | |
1079 | /* we generate a block containing just the instruction | |
1080 | modifying the memory. It will ensure that it cannot modify | |
1081 | itself */ | |
ea1c1802 | 1082 | env->current_tb = NULL; |
2e70f6ef | 1083 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1084 | cpu_resume_from_signal(env, puc); |
1085 | } | |
1086 | #endif | |
fd6ce8f6 | 1087 | } |
9fa3e853 | 1088 | #endif |
fd6ce8f6 FB |
1089 | |
1090 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1091 | static inline void tb_alloc_page(TranslationBlock *tb, |
53a5960a | 1092 | unsigned int n, target_ulong page_addr) |
fd6ce8f6 FB |
1093 | { |
1094 | PageDesc *p; | |
9fa3e853 FB |
1095 | TranslationBlock *last_first_tb; |
1096 | ||
1097 | tb->page_addr[n] = page_addr; | |
3a7d929e | 1098 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1099 | tb->page_next[n] = p->first_tb; |
1100 | last_first_tb = p->first_tb; | |
1101 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1102 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1103 | |
107db443 | 1104 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1105 | |
9fa3e853 | 1106 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1107 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1108 | target_ulong addr; |
1109 | PageDesc *p2; | |
9fa3e853 FB |
1110 | int prot; |
1111 | ||
fd6ce8f6 FB |
1112 | /* force the host page as non writable (writes will have a |
1113 | page fault + mprotect overhead) */ | |
53a5960a | 1114 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1115 | prot = 0; |
53a5960a PB |
1116 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1117 | addr += TARGET_PAGE_SIZE) { | |
1118 | ||
1119 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1120 | if (!p2) | |
1121 | continue; | |
1122 | prot |= p2->flags; | |
1123 | p2->flags &= ~PAGE_WRITE; | |
1124 | page_get_flags(addr); | |
1125 | } | |
5fafdf24 | 1126 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1127 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1128 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1129 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1130 | page_addr); |
fd6ce8f6 | 1131 | #endif |
fd6ce8f6 | 1132 | } |
9fa3e853 FB |
1133 | #else |
1134 | /* if some code is already present, then the pages are already | |
1135 | protected. So we handle the case where only the first TB is | |
1136 | allocated in a physical page */ | |
1137 | if (!last_first_tb) { | |
6a00d601 | 1138 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1139 | } |
1140 | #endif | |
d720b93d FB |
1141 | |
1142 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1143 | } |
1144 | ||
1145 | /* Allocate a new translation block. Flush the translation buffer if | |
1146 | too many translation blocks or too much generated code. */ | |
c27004ec | 1147 | TranslationBlock *tb_alloc(target_ulong pc) |
fd6ce8f6 FB |
1148 | { |
1149 | TranslationBlock *tb; | |
fd6ce8f6 | 1150 | |
26a5f13b FB |
1151 | if (nb_tbs >= code_gen_max_blocks || |
1152 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
d4e8164f | 1153 | return NULL; |
fd6ce8f6 FB |
1154 | tb = &tbs[nb_tbs++]; |
1155 | tb->pc = pc; | |
b448f2f3 | 1156 | tb->cflags = 0; |
d4e8164f FB |
1157 | return tb; |
1158 | } | |
1159 | ||
2e70f6ef PB |
1160 | void tb_free(TranslationBlock *tb) |
1161 | { | |
bf20dc07 | 1162 | /* In practice this is mostly used for single use temporary TB |
2e70f6ef PB |
1163 | Ignore the hard cases and just back up if this TB happens to |
1164 | be the last one generated. */ | |
1165 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1166 | code_gen_ptr = tb->tc_ptr; | |
1167 | nb_tbs--; | |
1168 | } | |
1169 | } | |
1170 | ||
9fa3e853 FB |
1171 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1172 | (-1) to indicate that only one page contains the TB. */ | |
5fafdf24 | 1173 | void tb_link_phys(TranslationBlock *tb, |
9fa3e853 | 1174 | target_ulong phys_pc, target_ulong phys_page2) |
d4e8164f | 1175 | { |
9fa3e853 FB |
1176 | unsigned int h; |
1177 | TranslationBlock **ptb; | |
1178 | ||
c8a706fe PB |
1179 | /* Grab the mmap lock to stop another thread invalidating this TB |
1180 | before we are done. */ | |
1181 | mmap_lock(); | |
9fa3e853 FB |
1182 | /* add in the physical hash table */ |
1183 | h = tb_phys_hash_func(phys_pc); | |
1184 | ptb = &tb_phys_hash[h]; | |
1185 | tb->phys_hash_next = *ptb; | |
1186 | *ptb = tb; | |
fd6ce8f6 FB |
1187 | |
1188 | /* add in the page list */ | |
9fa3e853 FB |
1189 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1190 | if (phys_page2 != -1) | |
1191 | tb_alloc_page(tb, 1, phys_page2); | |
1192 | else | |
1193 | tb->page_addr[1] = -1; | |
9fa3e853 | 1194 | |
d4e8164f FB |
1195 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1196 | tb->jmp_next[0] = NULL; | |
1197 | tb->jmp_next[1] = NULL; | |
1198 | ||
1199 | /* init original jump addresses */ | |
1200 | if (tb->tb_next_offset[0] != 0xffff) | |
1201 | tb_reset_jump(tb, 0); | |
1202 | if (tb->tb_next_offset[1] != 0xffff) | |
1203 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1204 | |
1205 | #ifdef DEBUG_TB_CHECK | |
1206 | tb_page_check(); | |
1207 | #endif | |
c8a706fe | 1208 | mmap_unlock(); |
fd6ce8f6 FB |
1209 | } |
1210 | ||
9fa3e853 FB |
1211 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1212 | tb[1].tc_ptr. Return NULL if not found */ | |
1213 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
fd6ce8f6 | 1214 | { |
9fa3e853 FB |
1215 | int m_min, m_max, m; |
1216 | unsigned long v; | |
1217 | TranslationBlock *tb; | |
a513fe19 FB |
1218 | |
1219 | if (nb_tbs <= 0) | |
1220 | return NULL; | |
1221 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1222 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1223 | return NULL; | |
1224 | /* binary search (cf Knuth) */ | |
1225 | m_min = 0; | |
1226 | m_max = nb_tbs - 1; | |
1227 | while (m_min <= m_max) { | |
1228 | m = (m_min + m_max) >> 1; | |
1229 | tb = &tbs[m]; | |
1230 | v = (unsigned long)tb->tc_ptr; | |
1231 | if (v == tc_ptr) | |
1232 | return tb; | |
1233 | else if (tc_ptr < v) { | |
1234 | m_max = m - 1; | |
1235 | } else { | |
1236 | m_min = m + 1; | |
1237 | } | |
5fafdf24 | 1238 | } |
a513fe19 FB |
1239 | return &tbs[m_max]; |
1240 | } | |
7501267e | 1241 | |
ea041c0e FB |
1242 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1243 | ||
1244 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1245 | { | |
1246 | TranslationBlock *tb1, *tb_next, **ptb; | |
1247 | unsigned int n1; | |
1248 | ||
1249 | tb1 = tb->jmp_next[n]; | |
1250 | if (tb1 != NULL) { | |
1251 | /* find head of list */ | |
1252 | for(;;) { | |
1253 | n1 = (long)tb1 & 3; | |
1254 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1255 | if (n1 == 2) | |
1256 | break; | |
1257 | tb1 = tb1->jmp_next[n1]; | |
1258 | } | |
1259 | /* we are now sure now that tb jumps to tb1 */ | |
1260 | tb_next = tb1; | |
1261 | ||
1262 | /* remove tb from the jmp_first list */ | |
1263 | ptb = &tb_next->jmp_first; | |
1264 | for(;;) { | |
1265 | tb1 = *ptb; | |
1266 | n1 = (long)tb1 & 3; | |
1267 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1268 | if (n1 == n && tb1 == tb) | |
1269 | break; | |
1270 | ptb = &tb1->jmp_next[n1]; | |
1271 | } | |
1272 | *ptb = tb->jmp_next[n]; | |
1273 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1274 | |
ea041c0e FB |
1275 | /* suppress the jump to next tb in generated code */ |
1276 | tb_reset_jump(tb, n); | |
1277 | ||
0124311e | 1278 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1279 | tb_reset_jump_recursive(tb_next); |
1280 | } | |
1281 | } | |
1282 | ||
1283 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1284 | { | |
1285 | tb_reset_jump_recursive2(tb, 0); | |
1286 | tb_reset_jump_recursive2(tb, 1); | |
1287 | } | |
1288 | ||
1fddef4b | 1289 | #if defined(TARGET_HAS_ICE) |
d720b93d FB |
1290 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
1291 | { | |
9b3c35e0 JM |
1292 | target_phys_addr_t addr; |
1293 | target_ulong pd; | |
c2f07f81 PB |
1294 | ram_addr_t ram_addr; |
1295 | PhysPageDesc *p; | |
d720b93d | 1296 | |
c2f07f81 PB |
1297 | addr = cpu_get_phys_page_debug(env, pc); |
1298 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1299 | if (!p) { | |
1300 | pd = IO_MEM_UNASSIGNED; | |
1301 | } else { | |
1302 | pd = p->phys_offset; | |
1303 | } | |
1304 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
706cd4b5 | 1305 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1306 | } |
c27004ec | 1307 | #endif |
d720b93d | 1308 | |
6658ffb8 | 1309 | /* Add a watchpoint. */ |
a1d1bb31 AL |
1310 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, |
1311 | int flags, CPUWatchpoint **watchpoint) | |
6658ffb8 | 1312 | { |
b4051334 | 1313 | target_ulong len_mask = ~(len - 1); |
c0ce998e | 1314 | CPUWatchpoint *wp; |
6658ffb8 | 1315 | |
b4051334 AL |
1316 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ |
1317 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { | |
1318 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
1319 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1320 | return -EINVAL; | |
1321 | } | |
a1d1bb31 | 1322 | wp = qemu_malloc(sizeof(*wp)); |
a1d1bb31 AL |
1323 | |
1324 | wp->vaddr = addr; | |
b4051334 | 1325 | wp->len_mask = len_mask; |
a1d1bb31 AL |
1326 | wp->flags = flags; |
1327 | ||
2dc9f411 | 1328 | /* keep all GDB-injected watchpoints in front */ |
c0ce998e AL |
1329 | if (flags & BP_GDB) |
1330 | TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
1331 | else | |
1332 | TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
6658ffb8 | 1333 | |
6658ffb8 | 1334 | tlb_flush_page(env, addr); |
a1d1bb31 AL |
1335 | |
1336 | if (watchpoint) | |
1337 | *watchpoint = wp; | |
1338 | return 0; | |
6658ffb8 PB |
1339 | } |
1340 | ||
a1d1bb31 AL |
1341 | /* Remove a specific watchpoint. */ |
1342 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, | |
1343 | int flags) | |
6658ffb8 | 1344 | { |
b4051334 | 1345 | target_ulong len_mask = ~(len - 1); |
a1d1bb31 | 1346 | CPUWatchpoint *wp; |
6658ffb8 | 1347 | |
c0ce998e | 1348 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 | 1349 | if (addr == wp->vaddr && len_mask == wp->len_mask |
6e140f28 | 1350 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
a1d1bb31 | 1351 | cpu_watchpoint_remove_by_ref(env, wp); |
6658ffb8 PB |
1352 | return 0; |
1353 | } | |
1354 | } | |
a1d1bb31 | 1355 | return -ENOENT; |
6658ffb8 PB |
1356 | } |
1357 | ||
a1d1bb31 AL |
1358 | /* Remove a specific watchpoint by reference. */ |
1359 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) | |
1360 | { | |
c0ce998e | 1361 | TAILQ_REMOVE(&env->watchpoints, watchpoint, entry); |
7d03f82f | 1362 | |
a1d1bb31 AL |
1363 | tlb_flush_page(env, watchpoint->vaddr); |
1364 | ||
1365 | qemu_free(watchpoint); | |
1366 | } | |
1367 | ||
1368 | /* Remove all matching watchpoints. */ | |
1369 | void cpu_watchpoint_remove_all(CPUState *env, int mask) | |
1370 | { | |
c0ce998e | 1371 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1372 | |
c0ce998e | 1373 | TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { |
a1d1bb31 AL |
1374 | if (wp->flags & mask) |
1375 | cpu_watchpoint_remove_by_ref(env, wp); | |
c0ce998e | 1376 | } |
7d03f82f EI |
1377 | } |
1378 | ||
a1d1bb31 AL |
1379 | /* Add a breakpoint. */ |
1380 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | |
1381 | CPUBreakpoint **breakpoint) | |
4c3a88a2 | 1382 | { |
1fddef4b | 1383 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1384 | CPUBreakpoint *bp; |
3b46e624 | 1385 | |
a1d1bb31 | 1386 | bp = qemu_malloc(sizeof(*bp)); |
4c3a88a2 | 1387 | |
a1d1bb31 AL |
1388 | bp->pc = pc; |
1389 | bp->flags = flags; | |
1390 | ||
2dc9f411 | 1391 | /* keep all GDB-injected breakpoints in front */ |
c0ce998e AL |
1392 | if (flags & BP_GDB) |
1393 | TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
1394 | else | |
1395 | TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
3b46e624 | 1396 | |
d720b93d | 1397 | breakpoint_invalidate(env, pc); |
a1d1bb31 AL |
1398 | |
1399 | if (breakpoint) | |
1400 | *breakpoint = bp; | |
4c3a88a2 FB |
1401 | return 0; |
1402 | #else | |
a1d1bb31 | 1403 | return -ENOSYS; |
4c3a88a2 FB |
1404 | #endif |
1405 | } | |
1406 | ||
a1d1bb31 AL |
1407 | /* Remove a specific breakpoint. */ |
1408 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) | |
1409 | { | |
7d03f82f | 1410 | #if defined(TARGET_HAS_ICE) |
a1d1bb31 AL |
1411 | CPUBreakpoint *bp; |
1412 | ||
c0ce998e | 1413 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { |
a1d1bb31 AL |
1414 | if (bp->pc == pc && bp->flags == flags) { |
1415 | cpu_breakpoint_remove_by_ref(env, bp); | |
1416 | return 0; | |
1417 | } | |
7d03f82f | 1418 | } |
a1d1bb31 AL |
1419 | return -ENOENT; |
1420 | #else | |
1421 | return -ENOSYS; | |
7d03f82f EI |
1422 | #endif |
1423 | } | |
1424 | ||
a1d1bb31 AL |
1425 | /* Remove a specific breakpoint by reference. */ |
1426 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) | |
4c3a88a2 | 1427 | { |
1fddef4b | 1428 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1429 | TAILQ_REMOVE(&env->breakpoints, breakpoint, entry); |
d720b93d | 1430 | |
a1d1bb31 AL |
1431 | breakpoint_invalidate(env, breakpoint->pc); |
1432 | ||
1433 | qemu_free(breakpoint); | |
1434 | #endif | |
1435 | } | |
1436 | ||
1437 | /* Remove all matching breakpoints. */ | |
1438 | void cpu_breakpoint_remove_all(CPUState *env, int mask) | |
1439 | { | |
1440 | #if defined(TARGET_HAS_ICE) | |
c0ce998e | 1441 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1442 | |
c0ce998e | 1443 | TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { |
a1d1bb31 AL |
1444 | if (bp->flags & mask) |
1445 | cpu_breakpoint_remove_by_ref(env, bp); | |
c0ce998e | 1446 | } |
4c3a88a2 FB |
1447 | #endif |
1448 | } | |
1449 | ||
c33a346e FB |
1450 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1451 | CPU loop after each instruction */ | |
1452 | void cpu_single_step(CPUState *env, int enabled) | |
1453 | { | |
1fddef4b | 1454 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1455 | if (env->singlestep_enabled != enabled) { |
1456 | env->singlestep_enabled = enabled; | |
1457 | /* must flush all the translated code to avoid inconsistancies */ | |
9fa3e853 | 1458 | /* XXX: only flush what is necessary */ |
0124311e | 1459 | tb_flush(env); |
c33a346e FB |
1460 | } |
1461 | #endif | |
1462 | } | |
1463 | ||
34865134 FB |
1464 | /* enable or disable low levels log */ |
1465 | void cpu_set_log(int log_flags) | |
1466 | { | |
1467 | loglevel = log_flags; | |
1468 | if (loglevel && !logfile) { | |
11fcfab4 | 1469 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1470 | if (!logfile) { |
1471 | perror(logfilename); | |
1472 | _exit(1); | |
1473 | } | |
9fa3e853 FB |
1474 | #if !defined(CONFIG_SOFTMMU) |
1475 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1476 | { | |
b55266b5 | 1477 | static char logfile_buf[4096]; |
9fa3e853 FB |
1478 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1479 | } | |
1480 | #else | |
34865134 | 1481 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1482 | #endif |
e735b91c PB |
1483 | log_append = 1; |
1484 | } | |
1485 | if (!loglevel && logfile) { | |
1486 | fclose(logfile); | |
1487 | logfile = NULL; | |
34865134 FB |
1488 | } |
1489 | } | |
1490 | ||
1491 | void cpu_set_log_filename(const char *filename) | |
1492 | { | |
1493 | logfilename = strdup(filename); | |
e735b91c PB |
1494 | if (logfile) { |
1495 | fclose(logfile); | |
1496 | logfile = NULL; | |
1497 | } | |
1498 | cpu_set_log(loglevel); | |
34865134 | 1499 | } |
c33a346e | 1500 | |
0124311e | 1501 | /* mask must never be zero, except for A20 change call */ |
68a79315 | 1502 | void cpu_interrupt(CPUState *env, int mask) |
ea041c0e | 1503 | { |
d5975363 | 1504 | #if !defined(USE_NPTL) |
ea041c0e | 1505 | TranslationBlock *tb; |
15a51156 | 1506 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
d5975363 | 1507 | #endif |
2e70f6ef | 1508 | int old_mask; |
59817ccb | 1509 | |
be214e6c AJ |
1510 | if (mask & CPU_INTERRUPT_EXIT) { |
1511 | env->exit_request = 1; | |
1512 | mask &= ~CPU_INTERRUPT_EXIT; | |
1513 | } | |
1514 | ||
2e70f6ef | 1515 | old_mask = env->interrupt_request; |
68a79315 | 1516 | env->interrupt_request |= mask; |
d5975363 PB |
1517 | #if defined(USE_NPTL) |
1518 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1519 | problem and hope the cpu will stop of its own accord. For userspace | |
1520 | emulation this often isn't actually as bad as it sounds. Often | |
1521 | signals are used primarily to interrupt blocking syscalls. */ | |
1522 | #else | |
2e70f6ef | 1523 | if (use_icount) { |
266910c4 | 1524 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef | 1525 | #ifndef CONFIG_USER_ONLY |
2e70f6ef | 1526 | if (!can_do_io(env) |
be214e6c | 1527 | && (mask & ~old_mask) != 0) { |
2e70f6ef PB |
1528 | cpu_abort(env, "Raised interrupt while not in I/O function"); |
1529 | } | |
1530 | #endif | |
1531 | } else { | |
1532 | tb = env->current_tb; | |
1533 | /* if the cpu is currently executing code, we must unlink it and | |
1534 | all the potentially executing TB */ | |
1535 | if (tb && !testandset(&interrupt_lock)) { | |
1536 | env->current_tb = NULL; | |
1537 | tb_reset_jump_recursive(tb); | |
1538 | resetlock(&interrupt_lock); | |
1539 | } | |
ea041c0e | 1540 | } |
d5975363 | 1541 | #endif |
ea041c0e FB |
1542 | } |
1543 | ||
b54ad049 FB |
1544 | void cpu_reset_interrupt(CPUState *env, int mask) |
1545 | { | |
1546 | env->interrupt_request &= ~mask; | |
1547 | } | |
1548 | ||
c7cd6a37 | 1549 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1550 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1551 | "show generated host assembly code for each compiled TB" }, |
1552 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1553 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1554 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1555 | "show micro ops for each compiled TB" }, |
f193c797 | 1556 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1557 | "show micro ops " |
1558 | #ifdef TARGET_I386 | |
1559 | "before eflags optimization and " | |
f193c797 | 1560 | #endif |
e01a1157 | 1561 | "after liveness analysis" }, |
f193c797 FB |
1562 | { CPU_LOG_INT, "int", |
1563 | "show interrupts/exceptions in short format" }, | |
1564 | { CPU_LOG_EXEC, "exec", | |
1565 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1566 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1567 | "show CPU state before block translation" }, |
f193c797 FB |
1568 | #ifdef TARGET_I386 |
1569 | { CPU_LOG_PCALL, "pcall", | |
1570 | "show protected mode far calls/returns/exceptions" }, | |
eca1bdf4 AL |
1571 | { CPU_LOG_RESET, "cpu_reset", |
1572 | "show CPU state before CPU resets" }, | |
f193c797 | 1573 | #endif |
8e3a9fd2 | 1574 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1575 | { CPU_LOG_IOPORT, "ioport", |
1576 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1577 | #endif |
f193c797 FB |
1578 | { 0, NULL, NULL }, |
1579 | }; | |
1580 | ||
1581 | static int cmp1(const char *s1, int n, const char *s2) | |
1582 | { | |
1583 | if (strlen(s2) != n) | |
1584 | return 0; | |
1585 | return memcmp(s1, s2, n) == 0; | |
1586 | } | |
3b46e624 | 1587 | |
f193c797 FB |
1588 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1589 | int cpu_str_to_log_mask(const char *str) | |
1590 | { | |
c7cd6a37 | 1591 | const CPULogItem *item; |
f193c797 FB |
1592 | int mask; |
1593 | const char *p, *p1; | |
1594 | ||
1595 | p = str; | |
1596 | mask = 0; | |
1597 | for(;;) { | |
1598 | p1 = strchr(p, ','); | |
1599 | if (!p1) | |
1600 | p1 = p + strlen(p); | |
8e3a9fd2 FB |
1601 | if(cmp1(p,p1-p,"all")) { |
1602 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1603 | mask |= item->mask; | |
1604 | } | |
1605 | } else { | |
f193c797 FB |
1606 | for(item = cpu_log_items; item->mask != 0; item++) { |
1607 | if (cmp1(p, p1 - p, item->name)) | |
1608 | goto found; | |
1609 | } | |
1610 | return 0; | |
8e3a9fd2 | 1611 | } |
f193c797 FB |
1612 | found: |
1613 | mask |= item->mask; | |
1614 | if (*p1 != ',') | |
1615 | break; | |
1616 | p = p1 + 1; | |
1617 | } | |
1618 | return mask; | |
1619 | } | |
ea041c0e | 1620 | |
7501267e FB |
1621 | void cpu_abort(CPUState *env, const char *fmt, ...) |
1622 | { | |
1623 | va_list ap; | |
493ae1f0 | 1624 | va_list ap2; |
7501267e FB |
1625 | |
1626 | va_start(ap, fmt); | |
493ae1f0 | 1627 | va_copy(ap2, ap); |
7501267e FB |
1628 | fprintf(stderr, "qemu: fatal: "); |
1629 | vfprintf(stderr, fmt, ap); | |
1630 | fprintf(stderr, "\n"); | |
1631 | #ifdef TARGET_I386 | |
7fe48483 FB |
1632 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1633 | #else | |
1634 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1635 | #endif |
93fcfe39 AL |
1636 | if (qemu_log_enabled()) { |
1637 | qemu_log("qemu: fatal: "); | |
1638 | qemu_log_vprintf(fmt, ap2); | |
1639 | qemu_log("\n"); | |
f9373291 | 1640 | #ifdef TARGET_I386 |
93fcfe39 | 1641 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); |
f9373291 | 1642 | #else |
93fcfe39 | 1643 | log_cpu_state(env, 0); |
f9373291 | 1644 | #endif |
31b1a7b4 | 1645 | qemu_log_flush(); |
93fcfe39 | 1646 | qemu_log_close(); |
924edcae | 1647 | } |
493ae1f0 | 1648 | va_end(ap2); |
f9373291 | 1649 | va_end(ap); |
7501267e FB |
1650 | abort(); |
1651 | } | |
1652 | ||
c5be9f08 TS |
1653 | CPUState *cpu_copy(CPUState *env) |
1654 | { | |
01ba9816 | 1655 | CPUState *new_env = cpu_init(env->cpu_model_str); |
c5be9f08 TS |
1656 | CPUState *next_cpu = new_env->next_cpu; |
1657 | int cpu_index = new_env->cpu_index; | |
5a38f081 AL |
1658 | #if defined(TARGET_HAS_ICE) |
1659 | CPUBreakpoint *bp; | |
1660 | CPUWatchpoint *wp; | |
1661 | #endif | |
1662 | ||
c5be9f08 | 1663 | memcpy(new_env, env, sizeof(CPUState)); |
5a38f081 AL |
1664 | |
1665 | /* Preserve chaining and index. */ | |
c5be9f08 TS |
1666 | new_env->next_cpu = next_cpu; |
1667 | new_env->cpu_index = cpu_index; | |
5a38f081 AL |
1668 | |
1669 | /* Clone all break/watchpoints. | |
1670 | Note: Once we support ptrace with hw-debug register access, make sure | |
1671 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
1672 | TAILQ_INIT(&env->breakpoints); | |
1673 | TAILQ_INIT(&env->watchpoints); | |
1674 | #if defined(TARGET_HAS_ICE) | |
1675 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
1676 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | |
1677 | } | |
1678 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1679 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | |
1680 | wp->flags, NULL); | |
1681 | } | |
1682 | #endif | |
1683 | ||
c5be9f08 TS |
1684 | return new_env; |
1685 | } | |
1686 | ||
0124311e FB |
1687 | #if !defined(CONFIG_USER_ONLY) |
1688 | ||
5c751e99 EI |
1689 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
1690 | { | |
1691 | unsigned int i; | |
1692 | ||
1693 | /* Discard jump cache entries for any tb which might potentially | |
1694 | overlap the flushed page. */ | |
1695 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1696 | memset (&env->tb_jmp_cache[i], 0, | |
1697 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1698 | ||
1699 | i = tb_jmp_cache_hash_page(addr); | |
1700 | memset (&env->tb_jmp_cache[i], 0, | |
1701 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1702 | } | |
1703 | ||
ee8b7021 FB |
1704 | /* NOTE: if flush_global is true, also flush global entries (not |
1705 | implemented yet) */ | |
1706 | void tlb_flush(CPUState *env, int flush_global) | |
33417e70 | 1707 | { |
33417e70 | 1708 | int i; |
0124311e | 1709 | |
9fa3e853 FB |
1710 | #if defined(DEBUG_TLB) |
1711 | printf("tlb_flush:\n"); | |
1712 | #endif | |
0124311e FB |
1713 | /* must reset current TB so that interrupts cannot modify the |
1714 | links while we are modifying them */ | |
1715 | env->current_tb = NULL; | |
1716 | ||
33417e70 | 1717 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
84b7b8e7 FB |
1718 | env->tlb_table[0][i].addr_read = -1; |
1719 | env->tlb_table[0][i].addr_write = -1; | |
1720 | env->tlb_table[0][i].addr_code = -1; | |
1721 | env->tlb_table[1][i].addr_read = -1; | |
1722 | env->tlb_table[1][i].addr_write = -1; | |
1723 | env->tlb_table[1][i].addr_code = -1; | |
6fa4cea9 JM |
1724 | #if (NB_MMU_MODES >= 3) |
1725 | env->tlb_table[2][i].addr_read = -1; | |
1726 | env->tlb_table[2][i].addr_write = -1; | |
1727 | env->tlb_table[2][i].addr_code = -1; | |
1728 | #if (NB_MMU_MODES == 4) | |
1729 | env->tlb_table[3][i].addr_read = -1; | |
1730 | env->tlb_table[3][i].addr_write = -1; | |
1731 | env->tlb_table[3][i].addr_code = -1; | |
1732 | #endif | |
1733 | #endif | |
33417e70 | 1734 | } |
9fa3e853 | 1735 | |
8a40a180 | 1736 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1737 | |
0a962c02 FB |
1738 | #ifdef USE_KQEMU |
1739 | if (env->kqemu_enabled) { | |
1740 | kqemu_flush(env, flush_global); | |
1741 | } | |
9fa3e853 | 1742 | #endif |
e3db7226 | 1743 | tlb_flush_count++; |
33417e70 FB |
1744 | } |
1745 | ||
274da6b2 | 1746 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1747 | { |
5fafdf24 | 1748 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1749 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1750 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1751 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1752 | addr == (tlb_entry->addr_code & |
84b7b8e7 FB |
1753 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
1754 | tlb_entry->addr_read = -1; | |
1755 | tlb_entry->addr_write = -1; | |
1756 | tlb_entry->addr_code = -1; | |
1757 | } | |
61382a50 FB |
1758 | } |
1759 | ||
2e12669a | 1760 | void tlb_flush_page(CPUState *env, target_ulong addr) |
33417e70 | 1761 | { |
8a40a180 | 1762 | int i; |
0124311e | 1763 | |
9fa3e853 | 1764 | #if defined(DEBUG_TLB) |
108c49b8 | 1765 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1766 | #endif |
0124311e FB |
1767 | /* must reset current TB so that interrupts cannot modify the |
1768 | links while we are modifying them */ | |
1769 | env->current_tb = NULL; | |
61382a50 FB |
1770 | |
1771 | addr &= TARGET_PAGE_MASK; | |
1772 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
84b7b8e7 FB |
1773 | tlb_flush_entry(&env->tlb_table[0][i], addr); |
1774 | tlb_flush_entry(&env->tlb_table[1][i], addr); | |
6fa4cea9 JM |
1775 | #if (NB_MMU_MODES >= 3) |
1776 | tlb_flush_entry(&env->tlb_table[2][i], addr); | |
1777 | #if (NB_MMU_MODES == 4) | |
1778 | tlb_flush_entry(&env->tlb_table[3][i], addr); | |
1779 | #endif | |
1780 | #endif | |
0124311e | 1781 | |
5c751e99 | 1782 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 | 1783 | |
0a962c02 FB |
1784 | #ifdef USE_KQEMU |
1785 | if (env->kqemu_enabled) { | |
1786 | kqemu_flush_page(env, addr); | |
1787 | } | |
1788 | #endif | |
9fa3e853 FB |
1789 | } |
1790 | ||
9fa3e853 FB |
1791 | /* update the TLBs so that writes to code in the virtual page 'addr' |
1792 | can be detected */ | |
6a00d601 | 1793 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 1794 | { |
5fafdf24 | 1795 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
1796 | ram_addr + TARGET_PAGE_SIZE, |
1797 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
1798 | } |
1799 | ||
9fa3e853 | 1800 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 1801 | tested for self modifying code */ |
5fafdf24 | 1802 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 1803 | target_ulong vaddr) |
9fa3e853 | 1804 | { |
3a7d929e | 1805 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
1ccde1cb FB |
1806 | } |
1807 | ||
5fafdf24 | 1808 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
1809 | unsigned long start, unsigned long length) |
1810 | { | |
1811 | unsigned long addr; | |
84b7b8e7 FB |
1812 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
1813 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1ccde1cb | 1814 | if ((addr - start) < length) { |
0f459d16 | 1815 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
1ccde1cb FB |
1816 | } |
1817 | } | |
1818 | } | |
1819 | ||
3a7d929e | 1820 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 1821 | int dirty_flags) |
1ccde1cb FB |
1822 | { |
1823 | CPUState *env; | |
4f2ac237 | 1824 | unsigned long length, start1; |
0a962c02 FB |
1825 | int i, mask, len; |
1826 | uint8_t *p; | |
1ccde1cb FB |
1827 | |
1828 | start &= TARGET_PAGE_MASK; | |
1829 | end = TARGET_PAGE_ALIGN(end); | |
1830 | ||
1831 | length = end - start; | |
1832 | if (length == 0) | |
1833 | return; | |
0a962c02 | 1834 | len = length >> TARGET_PAGE_BITS; |
3a7d929e | 1835 | #ifdef USE_KQEMU |
6a00d601 FB |
1836 | /* XXX: should not depend on cpu context */ |
1837 | env = first_cpu; | |
3a7d929e | 1838 | if (env->kqemu_enabled) { |
f23db169 FB |
1839 | ram_addr_t addr; |
1840 | addr = start; | |
1841 | for(i = 0; i < len; i++) { | |
1842 | kqemu_set_notdirty(env, addr); | |
1843 | addr += TARGET_PAGE_SIZE; | |
1844 | } | |
3a7d929e FB |
1845 | } |
1846 | #endif | |
f23db169 FB |
1847 | mask = ~dirty_flags; |
1848 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1849 | for(i = 0; i < len; i++) | |
1850 | p[i] &= mask; | |
1851 | ||
1ccde1cb FB |
1852 | /* we modify the TLB cache so that the dirty bit will be set again |
1853 | when accessing the range */ | |
59817ccb | 1854 | start1 = start + (unsigned long)phys_ram_base; |
6a00d601 FB |
1855 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
1856 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1857 | tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length); |
6a00d601 | 1858 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1859 | tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length); |
6fa4cea9 JM |
1860 | #if (NB_MMU_MODES >= 3) |
1861 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1862 | tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length); | |
1863 | #if (NB_MMU_MODES == 4) | |
1864 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1865 | tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length); | |
1866 | #endif | |
1867 | #endif | |
6a00d601 | 1868 | } |
1ccde1cb FB |
1869 | } |
1870 | ||
74576198 AL |
1871 | int cpu_physical_memory_set_dirty_tracking(int enable) |
1872 | { | |
1873 | in_migration = enable; | |
1874 | return 0; | |
1875 | } | |
1876 | ||
1877 | int cpu_physical_memory_get_dirty_tracking(void) | |
1878 | { | |
1879 | return in_migration; | |
1880 | } | |
1881 | ||
2bec46dc AL |
1882 | void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) |
1883 | { | |
1884 | if (kvm_enabled()) | |
1885 | kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
1886 | } | |
1887 | ||
3a7d929e FB |
1888 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
1889 | { | |
1890 | ram_addr_t ram_addr; | |
1891 | ||
84b7b8e7 | 1892 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
5fafdf24 | 1893 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + |
3a7d929e FB |
1894 | tlb_entry->addend - (unsigned long)phys_ram_base; |
1895 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
0f459d16 | 1896 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
1897 | } |
1898 | } | |
1899 | } | |
1900 | ||
1901 | /* update the TLB according to the current state of the dirty bits */ | |
1902 | void cpu_tlb_update_dirty(CPUState *env) | |
1903 | { | |
1904 | int i; | |
1905 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1906 | tlb_update_dirty(&env->tlb_table[0][i]); |
3a7d929e | 1907 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1908 | tlb_update_dirty(&env->tlb_table[1][i]); |
6fa4cea9 JM |
1909 | #if (NB_MMU_MODES >= 3) |
1910 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1911 | tlb_update_dirty(&env->tlb_table[2][i]); | |
1912 | #if (NB_MMU_MODES == 4) | |
1913 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1914 | tlb_update_dirty(&env->tlb_table[3][i]); | |
1915 | #endif | |
1916 | #endif | |
3a7d929e FB |
1917 | } |
1918 | ||
0f459d16 | 1919 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 1920 | { |
0f459d16 PB |
1921 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
1922 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
1923 | } |
1924 | ||
0f459d16 PB |
1925 | /* update the TLB corresponding to virtual page vaddr |
1926 | so that it is no longer dirty */ | |
1927 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1ccde1cb | 1928 | { |
1ccde1cb FB |
1929 | int i; |
1930 | ||
0f459d16 | 1931 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 1932 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
0f459d16 PB |
1933 | tlb_set_dirty1(&env->tlb_table[0][i], vaddr); |
1934 | tlb_set_dirty1(&env->tlb_table[1][i], vaddr); | |
6fa4cea9 | 1935 | #if (NB_MMU_MODES >= 3) |
0f459d16 | 1936 | tlb_set_dirty1(&env->tlb_table[2][i], vaddr); |
6fa4cea9 | 1937 | #if (NB_MMU_MODES == 4) |
0f459d16 | 1938 | tlb_set_dirty1(&env->tlb_table[3][i], vaddr); |
6fa4cea9 JM |
1939 | #endif |
1940 | #endif | |
9fa3e853 FB |
1941 | } |
1942 | ||
59817ccb FB |
1943 | /* add a new TLB entry. At most one entry for a given virtual address |
1944 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1945 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1946 | conflicting with the host address space). */ | |
5fafdf24 TS |
1947 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1948 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1949 | int mmu_idx, int is_softmmu) |
9fa3e853 | 1950 | { |
92e873b9 | 1951 | PhysPageDesc *p; |
4f2ac237 | 1952 | unsigned long pd; |
9fa3e853 | 1953 | unsigned int index; |
4f2ac237 | 1954 | target_ulong address; |
0f459d16 | 1955 | target_ulong code_address; |
108c49b8 | 1956 | target_phys_addr_t addend; |
9fa3e853 | 1957 | int ret; |
84b7b8e7 | 1958 | CPUTLBEntry *te; |
a1d1bb31 | 1959 | CPUWatchpoint *wp; |
0f459d16 | 1960 | target_phys_addr_t iotlb; |
9fa3e853 | 1961 | |
92e873b9 | 1962 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1963 | if (!p) { |
1964 | pd = IO_MEM_UNASSIGNED; | |
9fa3e853 FB |
1965 | } else { |
1966 | pd = p->phys_offset; | |
9fa3e853 FB |
1967 | } |
1968 | #if defined(DEBUG_TLB) | |
6ebbf390 JM |
1969 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
1970 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
9fa3e853 FB |
1971 | #endif |
1972 | ||
1973 | ret = 0; | |
0f459d16 PB |
1974 | address = vaddr; |
1975 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1976 | /* IO memory case (romd handled later) */ | |
1977 | address |= TLB_MMIO; | |
1978 | } | |
1979 | addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK); | |
1980 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { | |
1981 | /* Normal RAM. */ | |
1982 | iotlb = pd & TARGET_PAGE_MASK; | |
1983 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
1984 | iotlb |= IO_MEM_NOTDIRTY; | |
1985 | else | |
1986 | iotlb |= IO_MEM_ROM; | |
1987 | } else { | |
1988 | /* IO handlers are currently passed a phsical address. | |
1989 | It would be nice to pass an offset from the base address | |
1990 | of that region. This would avoid having to special case RAM, | |
1991 | and avoid full address decoding in every device. | |
1992 | We can't use the high bits of pd for this because | |
1993 | IO_MEM_ROMD uses these as a ram address. */ | |
8da3ff18 PB |
1994 | iotlb = (pd & ~TARGET_PAGE_MASK); |
1995 | if (p) { | |
8da3ff18 PB |
1996 | iotlb += p->region_offset; |
1997 | } else { | |
1998 | iotlb += paddr; | |
1999 | } | |
0f459d16 PB |
2000 | } |
2001 | ||
2002 | code_address = address; | |
2003 | /* Make accesses to pages with watchpoints go via the | |
2004 | watchpoint trap routines. */ | |
c0ce998e | 2005 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
a1d1bb31 | 2006 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { |
0f459d16 PB |
2007 | iotlb = io_mem_watch + paddr; |
2008 | /* TODO: The memory case can be optimized by not trapping | |
2009 | reads of pages with a write breakpoint. */ | |
2010 | address |= TLB_MMIO; | |
6658ffb8 | 2011 | } |
0f459d16 | 2012 | } |
d79acba4 | 2013 | |
0f459d16 PB |
2014 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
2015 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
2016 | te = &env->tlb_table[mmu_idx][index]; | |
2017 | te->addend = addend - vaddr; | |
2018 | if (prot & PAGE_READ) { | |
2019 | te->addr_read = address; | |
2020 | } else { | |
2021 | te->addr_read = -1; | |
2022 | } | |
5c751e99 | 2023 | |
0f459d16 PB |
2024 | if (prot & PAGE_EXEC) { |
2025 | te->addr_code = code_address; | |
2026 | } else { | |
2027 | te->addr_code = -1; | |
2028 | } | |
2029 | if (prot & PAGE_WRITE) { | |
2030 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
2031 | (pd & IO_MEM_ROMD)) { | |
2032 | /* Write access calls the I/O callback. */ | |
2033 | te->addr_write = address | TLB_MMIO; | |
2034 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
2035 | !cpu_physical_memory_is_dirty(pd)) { | |
2036 | te->addr_write = address | TLB_NOTDIRTY; | |
9fa3e853 | 2037 | } else { |
0f459d16 | 2038 | te->addr_write = address; |
9fa3e853 | 2039 | } |
0f459d16 PB |
2040 | } else { |
2041 | te->addr_write = -1; | |
9fa3e853 | 2042 | } |
9fa3e853 FB |
2043 | return ret; |
2044 | } | |
2045 | ||
0124311e FB |
2046 | #else |
2047 | ||
ee8b7021 | 2048 | void tlb_flush(CPUState *env, int flush_global) |
0124311e FB |
2049 | { |
2050 | } | |
2051 | ||
2e12669a | 2052 | void tlb_flush_page(CPUState *env, target_ulong addr) |
0124311e FB |
2053 | { |
2054 | } | |
2055 | ||
5fafdf24 TS |
2056 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
2057 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 2058 | int mmu_idx, int is_softmmu) |
9fa3e853 FB |
2059 | { |
2060 | return 0; | |
2061 | } | |
0124311e | 2062 | |
9fa3e853 FB |
2063 | /* dump memory mappings */ |
2064 | void page_dump(FILE *f) | |
33417e70 | 2065 | { |
9fa3e853 FB |
2066 | unsigned long start, end; |
2067 | int i, j, prot, prot1; | |
2068 | PageDesc *p; | |
33417e70 | 2069 | |
9fa3e853 FB |
2070 | fprintf(f, "%-8s %-8s %-8s %s\n", |
2071 | "start", "end", "size", "prot"); | |
2072 | start = -1; | |
2073 | end = -1; | |
2074 | prot = 0; | |
2075 | for(i = 0; i <= L1_SIZE; i++) { | |
2076 | if (i < L1_SIZE) | |
2077 | p = l1_map[i]; | |
2078 | else | |
2079 | p = NULL; | |
2080 | for(j = 0;j < L2_SIZE; j++) { | |
2081 | if (!p) | |
2082 | prot1 = 0; | |
2083 | else | |
2084 | prot1 = p[j].flags; | |
2085 | if (prot1 != prot) { | |
2086 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2087 | if (start != -1) { | |
2088 | fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
5fafdf24 | 2089 | start, end, end - start, |
9fa3e853 FB |
2090 | prot & PAGE_READ ? 'r' : '-', |
2091 | prot & PAGE_WRITE ? 'w' : '-', | |
2092 | prot & PAGE_EXEC ? 'x' : '-'); | |
2093 | } | |
2094 | if (prot1 != 0) | |
2095 | start = end; | |
2096 | else | |
2097 | start = -1; | |
2098 | prot = prot1; | |
2099 | } | |
2100 | if (!p) | |
2101 | break; | |
2102 | } | |
33417e70 | 2103 | } |
33417e70 FB |
2104 | } |
2105 | ||
53a5960a | 2106 | int page_get_flags(target_ulong address) |
33417e70 | 2107 | { |
9fa3e853 FB |
2108 | PageDesc *p; |
2109 | ||
2110 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2111 | if (!p) |
9fa3e853 FB |
2112 | return 0; |
2113 | return p->flags; | |
2114 | } | |
2115 | ||
2116 | /* modify the flags of a page and invalidate the code if | |
2117 | necessary. The flag PAGE_WRITE_ORG is positionned automatically | |
2118 | depending on PAGE_WRITE */ | |
53a5960a | 2119 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 FB |
2120 | { |
2121 | PageDesc *p; | |
53a5960a | 2122 | target_ulong addr; |
9fa3e853 | 2123 | |
c8a706fe | 2124 | /* mmap_lock should already be held. */ |
9fa3e853 FB |
2125 | start = start & TARGET_PAGE_MASK; |
2126 | end = TARGET_PAGE_ALIGN(end); | |
2127 | if (flags & PAGE_WRITE) | |
2128 | flags |= PAGE_WRITE_ORG; | |
9fa3e853 FB |
2129 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2130 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
17e2377a PB |
2131 | /* We may be called for host regions that are outside guest |
2132 | address space. */ | |
2133 | if (!p) | |
2134 | return; | |
9fa3e853 FB |
2135 | /* if the write protection is set, then we invalidate the code |
2136 | inside */ | |
5fafdf24 | 2137 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2138 | (flags & PAGE_WRITE) && |
2139 | p->first_tb) { | |
d720b93d | 2140 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2141 | } |
2142 | p->flags = flags; | |
2143 | } | |
33417e70 FB |
2144 | } |
2145 | ||
3d97b40b TS |
2146 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2147 | { | |
2148 | PageDesc *p; | |
2149 | target_ulong end; | |
2150 | target_ulong addr; | |
2151 | ||
55f280c9 AZ |
2152 | if (start + len < start) |
2153 | /* we've wrapped around */ | |
2154 | return -1; | |
2155 | ||
3d97b40b TS |
2156 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ |
2157 | start = start & TARGET_PAGE_MASK; | |
2158 | ||
3d97b40b TS |
2159 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2160 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2161 | if( !p ) | |
2162 | return -1; | |
2163 | if( !(p->flags & PAGE_VALID) ) | |
2164 | return -1; | |
2165 | ||
dae3270c | 2166 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2167 | return -1; |
dae3270c FB |
2168 | if (flags & PAGE_WRITE) { |
2169 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2170 | return -1; | |
2171 | /* unprotect the page if it was put read-only because it | |
2172 | contains translated code */ | |
2173 | if (!(p->flags & PAGE_WRITE)) { | |
2174 | if (!page_unprotect(addr, 0, NULL)) | |
2175 | return -1; | |
2176 | } | |
2177 | return 0; | |
2178 | } | |
3d97b40b TS |
2179 | } |
2180 | return 0; | |
2181 | } | |
2182 | ||
9fa3e853 FB |
2183 | /* called from signal handler: invalidate the code and unprotect the |
2184 | page. Return TRUE if the fault was succesfully handled. */ | |
53a5960a | 2185 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
9fa3e853 FB |
2186 | { |
2187 | unsigned int page_index, prot, pindex; | |
2188 | PageDesc *p, *p1; | |
53a5960a | 2189 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2190 | |
c8a706fe PB |
2191 | /* Technically this isn't safe inside a signal handler. However we |
2192 | know this only ever happens in a synchronous SEGV handler, so in | |
2193 | practice it seems to be ok. */ | |
2194 | mmap_lock(); | |
2195 | ||
83fb7adf | 2196 | host_start = address & qemu_host_page_mask; |
9fa3e853 FB |
2197 | page_index = host_start >> TARGET_PAGE_BITS; |
2198 | p1 = page_find(page_index); | |
c8a706fe PB |
2199 | if (!p1) { |
2200 | mmap_unlock(); | |
9fa3e853 | 2201 | return 0; |
c8a706fe | 2202 | } |
83fb7adf | 2203 | host_end = host_start + qemu_host_page_size; |
9fa3e853 FB |
2204 | p = p1; |
2205 | prot = 0; | |
2206 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2207 | prot |= p->flags; | |
2208 | p++; | |
2209 | } | |
2210 | /* if the page was really writable, then we change its | |
2211 | protection back to writable */ | |
2212 | if (prot & PAGE_WRITE_ORG) { | |
2213 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2214 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
5fafdf24 | 2215 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
9fa3e853 FB |
2216 | (prot & PAGE_BITS) | PAGE_WRITE); |
2217 | p1[pindex].flags |= PAGE_WRITE; | |
2218 | /* and since the content will be modified, we must invalidate | |
2219 | the corresponding translated code. */ | |
d720b93d | 2220 | tb_invalidate_phys_page(address, pc, puc); |
9fa3e853 FB |
2221 | #ifdef DEBUG_TB_CHECK |
2222 | tb_invalidate_check(address); | |
2223 | #endif | |
c8a706fe | 2224 | mmap_unlock(); |
9fa3e853 FB |
2225 | return 1; |
2226 | } | |
2227 | } | |
c8a706fe | 2228 | mmap_unlock(); |
9fa3e853 FB |
2229 | return 0; |
2230 | } | |
2231 | ||
6a00d601 FB |
2232 | static inline void tlb_set_dirty(CPUState *env, |
2233 | unsigned long addr, target_ulong vaddr) | |
1ccde1cb FB |
2234 | { |
2235 | } | |
9fa3e853 FB |
2236 | #endif /* defined(CONFIG_USER_ONLY) */ |
2237 | ||
e2eef170 | 2238 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 2239 | |
db7b5426 | 2240 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
8da3ff18 | 2241 | ram_addr_t memory, ram_addr_t region_offset); |
00f82b8a | 2242 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2243 | ram_addr_t orig_memory, ram_addr_t region_offset); |
db7b5426 BS |
2244 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
2245 | need_subpage) \ | |
2246 | do { \ | |
2247 | if (addr > start_addr) \ | |
2248 | start_addr2 = 0; \ | |
2249 | else { \ | |
2250 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2251 | if (start_addr2 > 0) \ | |
2252 | need_subpage = 1; \ | |
2253 | } \ | |
2254 | \ | |
49e9fba2 | 2255 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
db7b5426 BS |
2256 | end_addr2 = TARGET_PAGE_SIZE - 1; \ |
2257 | else { \ | |
2258 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2259 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2260 | need_subpage = 1; \ | |
2261 | } \ | |
2262 | } while (0) | |
2263 | ||
33417e70 FB |
2264 | /* register physical memory. 'size' must be a multiple of the target |
2265 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
8da3ff18 PB |
2266 | io memory page. The address used when calling the IO function is |
2267 | the offset from the start of the region, plus region_offset. Both | |
2268 | start_region and regon_offset are rounded down to a page boundary | |
2269 | before calculating this offset. This should not be a problem unless | |
2270 | the low bits of start_addr and region_offset differ. */ | |
2271 | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr, | |
2272 | ram_addr_t size, | |
2273 | ram_addr_t phys_offset, | |
2274 | ram_addr_t region_offset) | |
33417e70 | 2275 | { |
108c49b8 | 2276 | target_phys_addr_t addr, end_addr; |
92e873b9 | 2277 | PhysPageDesc *p; |
9d42037b | 2278 | CPUState *env; |
00f82b8a | 2279 | ram_addr_t orig_size = size; |
db7b5426 | 2280 | void *subpage; |
33417e70 | 2281 | |
da260249 FB |
2282 | #ifdef USE_KQEMU |
2283 | /* XXX: should not depend on cpu context */ | |
2284 | env = first_cpu; | |
2285 | if (env->kqemu_enabled) { | |
2286 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2287 | } | |
2288 | #endif | |
7ba1e619 AL |
2289 | if (kvm_enabled()) |
2290 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
2291 | ||
67c4d23c PB |
2292 | if (phys_offset == IO_MEM_UNASSIGNED) { |
2293 | region_offset = start_addr; | |
2294 | } | |
8da3ff18 | 2295 | region_offset &= TARGET_PAGE_MASK; |
5fd386f6 | 2296 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
49e9fba2 BS |
2297 | end_addr = start_addr + (target_phys_addr_t)size; |
2298 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
db7b5426 BS |
2299 | p = phys_page_find(addr >> TARGET_PAGE_BITS); |
2300 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
00f82b8a | 2301 | ram_addr_t orig_memory = p->phys_offset; |
db7b5426 BS |
2302 | target_phys_addr_t start_addr2, end_addr2; |
2303 | int need_subpage = 0; | |
2304 | ||
2305 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2306 | need_subpage); | |
4254fab8 | 2307 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2308 | if (!(orig_memory & IO_MEM_SUBPAGE)) { |
2309 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
8da3ff18 PB |
2310 | &p->phys_offset, orig_memory, |
2311 | p->region_offset); | |
db7b5426 BS |
2312 | } else { |
2313 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2314 | >> IO_MEM_SHIFT]; | |
2315 | } | |
8da3ff18 PB |
2316 | subpage_register(subpage, start_addr2, end_addr2, phys_offset, |
2317 | region_offset); | |
2318 | p->region_offset = 0; | |
db7b5426 BS |
2319 | } else { |
2320 | p->phys_offset = phys_offset; | |
2321 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2322 | (phys_offset & IO_MEM_ROMD)) | |
2323 | phys_offset += TARGET_PAGE_SIZE; | |
2324 | } | |
2325 | } else { | |
2326 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2327 | p->phys_offset = phys_offset; | |
8da3ff18 | 2328 | p->region_offset = region_offset; |
db7b5426 | 2329 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || |
8da3ff18 | 2330 | (phys_offset & IO_MEM_ROMD)) { |
db7b5426 | 2331 | phys_offset += TARGET_PAGE_SIZE; |
0e8f0967 | 2332 | } else { |
db7b5426 BS |
2333 | target_phys_addr_t start_addr2, end_addr2; |
2334 | int need_subpage = 0; | |
2335 | ||
2336 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2337 | end_addr2, need_subpage); | |
2338 | ||
4254fab8 | 2339 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 | 2340 | subpage = subpage_init((addr & TARGET_PAGE_MASK), |
8da3ff18 | 2341 | &p->phys_offset, IO_MEM_UNASSIGNED, |
67c4d23c | 2342 | addr & TARGET_PAGE_MASK); |
db7b5426 | 2343 | subpage_register(subpage, start_addr2, end_addr2, |
8da3ff18 PB |
2344 | phys_offset, region_offset); |
2345 | p->region_offset = 0; | |
db7b5426 BS |
2346 | } |
2347 | } | |
2348 | } | |
8da3ff18 | 2349 | region_offset += TARGET_PAGE_SIZE; |
33417e70 | 2350 | } |
3b46e624 | 2351 | |
9d42037b FB |
2352 | /* since each CPU stores ram addresses in its TLB cache, we must |
2353 | reset the modified entries */ | |
2354 | /* XXX: slow ! */ | |
2355 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2356 | tlb_flush(env, 1); | |
2357 | } | |
33417e70 FB |
2358 | } |
2359 | ||
ba863458 | 2360 | /* XXX: temporary until new memory mapping API */ |
00f82b8a | 2361 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
ba863458 FB |
2362 | { |
2363 | PhysPageDesc *p; | |
2364 | ||
2365 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2366 | if (!p) | |
2367 | return IO_MEM_UNASSIGNED; | |
2368 | return p->phys_offset; | |
2369 | } | |
2370 | ||
f65ed4c1 AL |
2371 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) |
2372 | { | |
2373 | if (kvm_enabled()) | |
2374 | kvm_coalesce_mmio_region(addr, size); | |
2375 | } | |
2376 | ||
2377 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) | |
2378 | { | |
2379 | if (kvm_enabled()) | |
2380 | kvm_uncoalesce_mmio_region(addr, size); | |
2381 | } | |
2382 | ||
e9a1ab19 | 2383 | /* XXX: better than nothing */ |
00f82b8a | 2384 | ram_addr_t qemu_ram_alloc(ram_addr_t size) |
e9a1ab19 FB |
2385 | { |
2386 | ram_addr_t addr; | |
7fb4fdcf | 2387 | if ((phys_ram_alloc_offset + size) > phys_ram_size) { |
012a7045 | 2388 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", |
ed441467 | 2389 | (uint64_t)size, (uint64_t)phys_ram_size); |
e9a1ab19 FB |
2390 | abort(); |
2391 | } | |
2392 | addr = phys_ram_alloc_offset; | |
2393 | phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size); | |
2394 | return addr; | |
2395 | } | |
2396 | ||
2397 | void qemu_ram_free(ram_addr_t addr) | |
2398 | { | |
2399 | } | |
2400 | ||
a4193c8a | 2401 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
33417e70 | 2402 | { |
67d3b957 | 2403 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2404 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
b4f0a316 | 2405 | #endif |
0a6f8a6d | 2406 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2407 | do_unassigned_access(addr, 0, 0, 0, 1); |
2408 | #endif | |
2409 | return 0; | |
2410 | } | |
2411 | ||
2412 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | |
2413 | { | |
2414 | #ifdef DEBUG_UNASSIGNED | |
2415 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2416 | #endif | |
0a6f8a6d | 2417 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2418 | do_unassigned_access(addr, 0, 0, 0, 2); |
2419 | #endif | |
2420 | return 0; | |
2421 | } | |
2422 | ||
2423 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | |
2424 | { | |
2425 | #ifdef DEBUG_UNASSIGNED | |
2426 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2427 | #endif | |
0a6f8a6d | 2428 | #if defined(TARGET_SPARC) |
e18231a3 | 2429 | do_unassigned_access(addr, 0, 0, 0, 4); |
67d3b957 | 2430 | #endif |
33417e70 FB |
2431 | return 0; |
2432 | } | |
2433 | ||
a4193c8a | 2434 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
33417e70 | 2435 | { |
67d3b957 | 2436 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2437 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
67d3b957 | 2438 | #endif |
0a6f8a6d | 2439 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2440 | do_unassigned_access(addr, 1, 0, 0, 1); |
2441 | #endif | |
2442 | } | |
2443 | ||
2444 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2445 | { | |
2446 | #ifdef DEBUG_UNASSIGNED | |
2447 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2448 | #endif | |
0a6f8a6d | 2449 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2450 | do_unassigned_access(addr, 1, 0, 0, 2); |
2451 | #endif | |
2452 | } | |
2453 | ||
2454 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2455 | { | |
2456 | #ifdef DEBUG_UNASSIGNED | |
2457 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2458 | #endif | |
0a6f8a6d | 2459 | #if defined(TARGET_SPARC) |
e18231a3 | 2460 | do_unassigned_access(addr, 1, 0, 0, 4); |
b4f0a316 | 2461 | #endif |
33417e70 FB |
2462 | } |
2463 | ||
2464 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2465 | unassigned_mem_readb, | |
e18231a3 BS |
2466 | unassigned_mem_readw, |
2467 | unassigned_mem_readl, | |
33417e70 FB |
2468 | }; |
2469 | ||
2470 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2471 | unassigned_mem_writeb, | |
e18231a3 BS |
2472 | unassigned_mem_writew, |
2473 | unassigned_mem_writel, | |
33417e70 FB |
2474 | }; |
2475 | ||
0f459d16 PB |
2476 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
2477 | uint32_t val) | |
9fa3e853 | 2478 | { |
3a7d929e | 2479 | int dirty_flags; |
3a7d929e FB |
2480 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2481 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2482 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2483 | tb_invalidate_phys_page_fast(ram_addr, 1); |
2484 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2485 | #endif |
3a7d929e | 2486 | } |
0f459d16 | 2487 | stb_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2488 | #ifdef USE_KQEMU |
2489 | if (cpu_single_env->kqemu_enabled && | |
2490 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2491 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2492 | #endif | |
f23db169 FB |
2493 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2494 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2495 | /* we remove the notdirty callback only if the code has been | |
2496 | flushed */ | |
2497 | if (dirty_flags == 0xff) | |
2e70f6ef | 2498 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2499 | } |
2500 | ||
0f459d16 PB |
2501 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
2502 | uint32_t val) | |
9fa3e853 | 2503 | { |
3a7d929e | 2504 | int dirty_flags; |
3a7d929e FB |
2505 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2506 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2507 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2508 | tb_invalidate_phys_page_fast(ram_addr, 2); |
2509 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2510 | #endif |
3a7d929e | 2511 | } |
0f459d16 | 2512 | stw_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2513 | #ifdef USE_KQEMU |
2514 | if (cpu_single_env->kqemu_enabled && | |
2515 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2516 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2517 | #endif | |
f23db169 FB |
2518 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2519 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2520 | /* we remove the notdirty callback only if the code has been | |
2521 | flushed */ | |
2522 | if (dirty_flags == 0xff) | |
2e70f6ef | 2523 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2524 | } |
2525 | ||
0f459d16 PB |
2526 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
2527 | uint32_t val) | |
9fa3e853 | 2528 | { |
3a7d929e | 2529 | int dirty_flags; |
3a7d929e FB |
2530 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2531 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2532 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2533 | tb_invalidate_phys_page_fast(ram_addr, 4); |
2534 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2535 | #endif |
3a7d929e | 2536 | } |
0f459d16 | 2537 | stl_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2538 | #ifdef USE_KQEMU |
2539 | if (cpu_single_env->kqemu_enabled && | |
2540 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2541 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2542 | #endif | |
f23db169 FB |
2543 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2544 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2545 | /* we remove the notdirty callback only if the code has been | |
2546 | flushed */ | |
2547 | if (dirty_flags == 0xff) | |
2e70f6ef | 2548 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2549 | } |
2550 | ||
3a7d929e | 2551 | static CPUReadMemoryFunc *error_mem_read[3] = { |
9fa3e853 FB |
2552 | NULL, /* never used */ |
2553 | NULL, /* never used */ | |
2554 | NULL, /* never used */ | |
2555 | }; | |
2556 | ||
1ccde1cb FB |
2557 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
2558 | notdirty_mem_writeb, | |
2559 | notdirty_mem_writew, | |
2560 | notdirty_mem_writel, | |
2561 | }; | |
2562 | ||
0f459d16 | 2563 | /* Generate a debug exception if a watchpoint has been hit. */ |
b4051334 | 2564 | static void check_watchpoint(int offset, int len_mask, int flags) |
0f459d16 PB |
2565 | { |
2566 | CPUState *env = cpu_single_env; | |
06d55cc1 AL |
2567 | target_ulong pc, cs_base; |
2568 | TranslationBlock *tb; | |
0f459d16 | 2569 | target_ulong vaddr; |
a1d1bb31 | 2570 | CPUWatchpoint *wp; |
06d55cc1 | 2571 | int cpu_flags; |
0f459d16 | 2572 | |
06d55cc1 AL |
2573 | if (env->watchpoint_hit) { |
2574 | /* We re-entered the check after replacing the TB. Now raise | |
2575 | * the debug interrupt so that is will trigger after the | |
2576 | * current instruction. */ | |
2577 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2578 | return; | |
2579 | } | |
2e70f6ef | 2580 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
c0ce998e | 2581 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 AL |
2582 | if ((vaddr == (wp->vaddr & len_mask) || |
2583 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
6e140f28 AL |
2584 | wp->flags |= BP_WATCHPOINT_HIT; |
2585 | if (!env->watchpoint_hit) { | |
2586 | env->watchpoint_hit = wp; | |
2587 | tb = tb_find_pc(env->mem_io_pc); | |
2588 | if (!tb) { | |
2589 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
2590 | "pc=%p", (void *)env->mem_io_pc); | |
2591 | } | |
2592 | cpu_restore_state(tb, env, env->mem_io_pc, NULL); | |
2593 | tb_phys_invalidate(tb, -1); | |
2594 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2595 | env->exception_index = EXCP_DEBUG; | |
2596 | } else { | |
2597 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2598 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
2599 | } | |
2600 | cpu_resume_from_signal(env, NULL); | |
06d55cc1 | 2601 | } |
6e140f28 AL |
2602 | } else { |
2603 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2604 | } |
2605 | } | |
2606 | } | |
2607 | ||
6658ffb8 PB |
2608 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2609 | so these check for a hit then pass through to the normal out-of-line | |
2610 | phys routines. */ | |
2611 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2612 | { | |
b4051334 | 2613 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); |
6658ffb8 PB |
2614 | return ldub_phys(addr); |
2615 | } | |
2616 | ||
2617 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2618 | { | |
b4051334 | 2619 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); |
6658ffb8 PB |
2620 | return lduw_phys(addr); |
2621 | } | |
2622 | ||
2623 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2624 | { | |
b4051334 | 2625 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); |
6658ffb8 PB |
2626 | return ldl_phys(addr); |
2627 | } | |
2628 | ||
6658ffb8 PB |
2629 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
2630 | uint32_t val) | |
2631 | { | |
b4051334 | 2632 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); |
6658ffb8 PB |
2633 | stb_phys(addr, val); |
2634 | } | |
2635 | ||
2636 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2637 | uint32_t val) | |
2638 | { | |
b4051334 | 2639 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); |
6658ffb8 PB |
2640 | stw_phys(addr, val); |
2641 | } | |
2642 | ||
2643 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2644 | uint32_t val) | |
2645 | { | |
b4051334 | 2646 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); |
6658ffb8 PB |
2647 | stl_phys(addr, val); |
2648 | } | |
2649 | ||
2650 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2651 | watch_mem_readb, | |
2652 | watch_mem_readw, | |
2653 | watch_mem_readl, | |
2654 | }; | |
2655 | ||
2656 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2657 | watch_mem_writeb, | |
2658 | watch_mem_writew, | |
2659 | watch_mem_writel, | |
2660 | }; | |
6658ffb8 | 2661 | |
db7b5426 BS |
2662 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
2663 | unsigned int len) | |
2664 | { | |
db7b5426 BS |
2665 | uint32_t ret; |
2666 | unsigned int idx; | |
2667 | ||
8da3ff18 | 2668 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2669 | #if defined(DEBUG_SUBPAGE) |
2670 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2671 | mmio, len, addr, idx); | |
2672 | #endif | |
8da3ff18 PB |
2673 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], |
2674 | addr + mmio->region_offset[idx][0][len]); | |
db7b5426 BS |
2675 | |
2676 | return ret; | |
2677 | } | |
2678 | ||
2679 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2680 | uint32_t value, unsigned int len) | |
2681 | { | |
db7b5426 BS |
2682 | unsigned int idx; |
2683 | ||
8da3ff18 | 2684 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2685 | #if defined(DEBUG_SUBPAGE) |
2686 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2687 | mmio, len, addr, idx, value); | |
2688 | #endif | |
8da3ff18 PB |
2689 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], |
2690 | addr + mmio->region_offset[idx][1][len], | |
2691 | value); | |
db7b5426 BS |
2692 | } |
2693 | ||
2694 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2695 | { | |
2696 | #if defined(DEBUG_SUBPAGE) | |
2697 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2698 | #endif | |
2699 | ||
2700 | return subpage_readlen(opaque, addr, 0); | |
2701 | } | |
2702 | ||
2703 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2704 | uint32_t value) | |
2705 | { | |
2706 | #if defined(DEBUG_SUBPAGE) | |
2707 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2708 | #endif | |
2709 | subpage_writelen(opaque, addr, value, 0); | |
2710 | } | |
2711 | ||
2712 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2713 | { | |
2714 | #if defined(DEBUG_SUBPAGE) | |
2715 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2716 | #endif | |
2717 | ||
2718 | return subpage_readlen(opaque, addr, 1); | |
2719 | } | |
2720 | ||
2721 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2722 | uint32_t value) | |
2723 | { | |
2724 | #if defined(DEBUG_SUBPAGE) | |
2725 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2726 | #endif | |
2727 | subpage_writelen(opaque, addr, value, 1); | |
2728 | } | |
2729 | ||
2730 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2731 | { | |
2732 | #if defined(DEBUG_SUBPAGE) | |
2733 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2734 | #endif | |
2735 | ||
2736 | return subpage_readlen(opaque, addr, 2); | |
2737 | } | |
2738 | ||
2739 | static void subpage_writel (void *opaque, | |
2740 | target_phys_addr_t addr, uint32_t value) | |
2741 | { | |
2742 | #if defined(DEBUG_SUBPAGE) | |
2743 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2744 | #endif | |
2745 | subpage_writelen(opaque, addr, value, 2); | |
2746 | } | |
2747 | ||
2748 | static CPUReadMemoryFunc *subpage_read[] = { | |
2749 | &subpage_readb, | |
2750 | &subpage_readw, | |
2751 | &subpage_readl, | |
2752 | }; | |
2753 | ||
2754 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2755 | &subpage_writeb, | |
2756 | &subpage_writew, | |
2757 | &subpage_writel, | |
2758 | }; | |
2759 | ||
2760 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
8da3ff18 | 2761 | ram_addr_t memory, ram_addr_t region_offset) |
db7b5426 BS |
2762 | { |
2763 | int idx, eidx; | |
4254fab8 | 2764 | unsigned int i; |
db7b5426 BS |
2765 | |
2766 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2767 | return -1; | |
2768 | idx = SUBPAGE_IDX(start); | |
2769 | eidx = SUBPAGE_IDX(end); | |
2770 | #if defined(DEBUG_SUBPAGE) | |
2771 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__, | |
2772 | mmio, start, end, idx, eidx, memory); | |
2773 | #endif | |
2774 | memory >>= IO_MEM_SHIFT; | |
2775 | for (; idx <= eidx; idx++) { | |
4254fab8 | 2776 | for (i = 0; i < 4; i++) { |
3ee89922 BS |
2777 | if (io_mem_read[memory][i]) { |
2778 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2779 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2780 | mmio->region_offset[idx][0][i] = region_offset; |
3ee89922 BS |
2781 | } |
2782 | if (io_mem_write[memory][i]) { | |
2783 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2784 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2785 | mmio->region_offset[idx][1][i] = region_offset; |
3ee89922 | 2786 | } |
4254fab8 | 2787 | } |
db7b5426 BS |
2788 | } |
2789 | ||
2790 | return 0; | |
2791 | } | |
2792 | ||
00f82b8a | 2793 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2794 | ram_addr_t orig_memory, ram_addr_t region_offset) |
db7b5426 BS |
2795 | { |
2796 | subpage_t *mmio; | |
2797 | int subpage_memory; | |
2798 | ||
2799 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
1eec614b AL |
2800 | |
2801 | mmio->base = base; | |
2802 | subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio); | |
db7b5426 | 2803 | #if defined(DEBUG_SUBPAGE) |
1eec614b AL |
2804 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, |
2805 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
db7b5426 | 2806 | #endif |
1eec614b AL |
2807 | *phys = subpage_memory | IO_MEM_SUBPAGE; |
2808 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory, | |
8da3ff18 | 2809 | region_offset); |
db7b5426 BS |
2810 | |
2811 | return mmio; | |
2812 | } | |
2813 | ||
88715657 AL |
2814 | static int get_free_io_mem_idx(void) |
2815 | { | |
2816 | int i; | |
2817 | ||
2818 | for (i = 0; i<IO_MEM_NB_ENTRIES; i++) | |
2819 | if (!io_mem_used[i]) { | |
2820 | io_mem_used[i] = 1; | |
2821 | return i; | |
2822 | } | |
2823 | ||
2824 | return -1; | |
2825 | } | |
2826 | ||
33417e70 FB |
2827 | static void io_mem_init(void) |
2828 | { | |
88715657 AL |
2829 | int i; |
2830 | ||
3a7d929e | 2831 | cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL); |
a4193c8a | 2832 | cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL); |
3a7d929e | 2833 | cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL); |
88715657 AL |
2834 | for (i=0; i<5; i++) |
2835 | io_mem_used[i] = 1; | |
1ccde1cb | 2836 | |
0f459d16 | 2837 | io_mem_watch = cpu_register_io_memory(0, watch_mem_read, |
6658ffb8 | 2838 | watch_mem_write, NULL); |
1ccde1cb | 2839 | /* alloc dirty bits array */ |
0a962c02 | 2840 | phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS); |
3a7d929e | 2841 | memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS); |
33417e70 FB |
2842 | } |
2843 | ||
2844 | /* mem_read and mem_write are arrays of functions containing the | |
2845 | function to access byte (index 0), word (index 1) and dword (index | |
3ee89922 BS |
2846 | 2). Functions can be omitted with a NULL function pointer. The |
2847 | registered functions may be modified dynamically later. | |
2848 | If io_index is non zero, the corresponding io zone is | |
4254fab8 BS |
2849 | modified. If it is zero, a new io zone is allocated. The return |
2850 | value can be used with cpu_register_physical_memory(). (-1) is | |
2851 | returned if error. */ | |
33417e70 FB |
2852 | int cpu_register_io_memory(int io_index, |
2853 | CPUReadMemoryFunc **mem_read, | |
a4193c8a FB |
2854 | CPUWriteMemoryFunc **mem_write, |
2855 | void *opaque) | |
33417e70 | 2856 | { |
4254fab8 | 2857 | int i, subwidth = 0; |
33417e70 FB |
2858 | |
2859 | if (io_index <= 0) { | |
88715657 AL |
2860 | io_index = get_free_io_mem_idx(); |
2861 | if (io_index == -1) | |
2862 | return io_index; | |
33417e70 FB |
2863 | } else { |
2864 | if (io_index >= IO_MEM_NB_ENTRIES) | |
2865 | return -1; | |
2866 | } | |
b5ff1b31 | 2867 | |
33417e70 | 2868 | for(i = 0;i < 3; i++) { |
4254fab8 BS |
2869 | if (!mem_read[i] || !mem_write[i]) |
2870 | subwidth = IO_MEM_SUBWIDTH; | |
33417e70 FB |
2871 | io_mem_read[io_index][i] = mem_read[i]; |
2872 | io_mem_write[io_index][i] = mem_write[i]; | |
2873 | } | |
a4193c8a | 2874 | io_mem_opaque[io_index] = opaque; |
4254fab8 | 2875 | return (io_index << IO_MEM_SHIFT) | subwidth; |
33417e70 | 2876 | } |
61382a50 | 2877 | |
88715657 AL |
2878 | void cpu_unregister_io_memory(int io_table_address) |
2879 | { | |
2880 | int i; | |
2881 | int io_index = io_table_address >> IO_MEM_SHIFT; | |
2882 | ||
2883 | for (i=0;i < 3; i++) { | |
2884 | io_mem_read[io_index][i] = unassigned_mem_read[i]; | |
2885 | io_mem_write[io_index][i] = unassigned_mem_write[i]; | |
2886 | } | |
2887 | io_mem_opaque[io_index] = NULL; | |
2888 | io_mem_used[io_index] = 0; | |
2889 | } | |
2890 | ||
8926b517 FB |
2891 | CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index) |
2892 | { | |
2893 | return io_mem_write[io_index >> IO_MEM_SHIFT]; | |
2894 | } | |
2895 | ||
2896 | CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index) | |
2897 | { | |
2898 | return io_mem_read[io_index >> IO_MEM_SHIFT]; | |
2899 | } | |
2900 | ||
e2eef170 PB |
2901 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2902 | ||
13eb76e0 FB |
2903 | /* physical memory access (slow version, mainly for debug) */ |
2904 | #if defined(CONFIG_USER_ONLY) | |
5fafdf24 | 2905 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2906 | int len, int is_write) |
2907 | { | |
2908 | int l, flags; | |
2909 | target_ulong page; | |
53a5960a | 2910 | void * p; |
13eb76e0 FB |
2911 | |
2912 | while (len > 0) { | |
2913 | page = addr & TARGET_PAGE_MASK; | |
2914 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2915 | if (l > len) | |
2916 | l = len; | |
2917 | flags = page_get_flags(page); | |
2918 | if (!(flags & PAGE_VALID)) | |
2919 | return; | |
2920 | if (is_write) { | |
2921 | if (!(flags & PAGE_WRITE)) | |
2922 | return; | |
579a97f7 | 2923 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2924 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
579a97f7 FB |
2925 | /* FIXME - should this return an error rather than just fail? */ |
2926 | return; | |
72fb7daa AJ |
2927 | memcpy(p, buf, l); |
2928 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2929 | } else { |
2930 | if (!(flags & PAGE_READ)) | |
2931 | return; | |
579a97f7 | 2932 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2933 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
579a97f7 FB |
2934 | /* FIXME - should this return an error rather than just fail? */ |
2935 | return; | |
72fb7daa | 2936 | memcpy(buf, p, l); |
5b257578 | 2937 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2938 | } |
2939 | len -= l; | |
2940 | buf += l; | |
2941 | addr += l; | |
2942 | } | |
2943 | } | |
8df1cd07 | 2944 | |
13eb76e0 | 2945 | #else |
5fafdf24 | 2946 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2947 | int len, int is_write) |
2948 | { | |
2949 | int l, io_index; | |
2950 | uint8_t *ptr; | |
2951 | uint32_t val; | |
2e12669a FB |
2952 | target_phys_addr_t page; |
2953 | unsigned long pd; | |
92e873b9 | 2954 | PhysPageDesc *p; |
3b46e624 | 2955 | |
13eb76e0 FB |
2956 | while (len > 0) { |
2957 | page = addr & TARGET_PAGE_MASK; | |
2958 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2959 | if (l > len) | |
2960 | l = len; | |
92e873b9 | 2961 | p = phys_page_find(page >> TARGET_PAGE_BITS); |
13eb76e0 FB |
2962 | if (!p) { |
2963 | pd = IO_MEM_UNASSIGNED; | |
2964 | } else { | |
2965 | pd = p->phys_offset; | |
2966 | } | |
3b46e624 | 2967 | |
13eb76e0 | 2968 | if (is_write) { |
3a7d929e | 2969 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
6c2934db | 2970 | target_phys_addr_t addr1 = addr; |
13eb76e0 | 2971 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 | 2972 | if (p) |
6c2934db | 2973 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
6a00d601 FB |
2974 | /* XXX: could force cpu_single_env to NULL to avoid |
2975 | potential bugs */ | |
6c2934db | 2976 | if (l >= 4 && ((addr1 & 3) == 0)) { |
1c213d19 | 2977 | /* 32 bit write access */ |
c27004ec | 2978 | val = ldl_p(buf); |
6c2934db | 2979 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val); |
13eb76e0 | 2980 | l = 4; |
6c2934db | 2981 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
1c213d19 | 2982 | /* 16 bit write access */ |
c27004ec | 2983 | val = lduw_p(buf); |
6c2934db | 2984 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val); |
13eb76e0 FB |
2985 | l = 2; |
2986 | } else { | |
1c213d19 | 2987 | /* 8 bit write access */ |
c27004ec | 2988 | val = ldub_p(buf); |
6c2934db | 2989 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val); |
13eb76e0 FB |
2990 | l = 1; |
2991 | } | |
2992 | } else { | |
b448f2f3 FB |
2993 | unsigned long addr1; |
2994 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
13eb76e0 | 2995 | /* RAM case */ |
b448f2f3 | 2996 | ptr = phys_ram_base + addr1; |
13eb76e0 | 2997 | memcpy(ptr, buf, l); |
3a7d929e FB |
2998 | if (!cpu_physical_memory_is_dirty(addr1)) { |
2999 | /* invalidate code */ | |
3000 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3001 | /* set dirty bit */ | |
5fafdf24 | 3002 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
f23db169 | 3003 | (0xff & ~CODE_DIRTY_FLAG); |
3a7d929e | 3004 | } |
13eb76e0 FB |
3005 | } |
3006 | } else { | |
5fafdf24 | 3007 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3008 | !(pd & IO_MEM_ROMD)) { |
6c2934db | 3009 | target_phys_addr_t addr1 = addr; |
13eb76e0 FB |
3010 | /* I/O case */ |
3011 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 | 3012 | if (p) |
6c2934db AJ |
3013 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
3014 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
13eb76e0 | 3015 | /* 32 bit read access */ |
6c2934db | 3016 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1); |
c27004ec | 3017 | stl_p(buf, val); |
13eb76e0 | 3018 | l = 4; |
6c2934db | 3019 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
13eb76e0 | 3020 | /* 16 bit read access */ |
6c2934db | 3021 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1); |
c27004ec | 3022 | stw_p(buf, val); |
13eb76e0 FB |
3023 | l = 2; |
3024 | } else { | |
1c213d19 | 3025 | /* 8 bit read access */ |
6c2934db | 3026 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1); |
c27004ec | 3027 | stb_p(buf, val); |
13eb76e0 FB |
3028 | l = 1; |
3029 | } | |
3030 | } else { | |
3031 | /* RAM case */ | |
5fafdf24 | 3032 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
13eb76e0 FB |
3033 | (addr & ~TARGET_PAGE_MASK); |
3034 | memcpy(buf, ptr, l); | |
3035 | } | |
3036 | } | |
3037 | len -= l; | |
3038 | buf += l; | |
3039 | addr += l; | |
3040 | } | |
3041 | } | |
8df1cd07 | 3042 | |
d0ecd2aa | 3043 | /* used for ROM loading : can write in RAM and ROM */ |
5fafdf24 | 3044 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
3045 | const uint8_t *buf, int len) |
3046 | { | |
3047 | int l; | |
3048 | uint8_t *ptr; | |
3049 | target_phys_addr_t page; | |
3050 | unsigned long pd; | |
3051 | PhysPageDesc *p; | |
3b46e624 | 3052 | |
d0ecd2aa FB |
3053 | while (len > 0) { |
3054 | page = addr & TARGET_PAGE_MASK; | |
3055 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3056 | if (l > len) | |
3057 | l = len; | |
3058 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3059 | if (!p) { | |
3060 | pd = IO_MEM_UNASSIGNED; | |
3061 | } else { | |
3062 | pd = p->phys_offset; | |
3063 | } | |
3b46e624 | 3064 | |
d0ecd2aa | 3065 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
2a4188a3 FB |
3066 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
3067 | !(pd & IO_MEM_ROMD)) { | |
d0ecd2aa FB |
3068 | /* do nothing */ |
3069 | } else { | |
3070 | unsigned long addr1; | |
3071 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3072 | /* ROM/RAM case */ | |
3073 | ptr = phys_ram_base + addr1; | |
3074 | memcpy(ptr, buf, l); | |
3075 | } | |
3076 | len -= l; | |
3077 | buf += l; | |
3078 | addr += l; | |
3079 | } | |
3080 | } | |
3081 | ||
6d16c2f8 AL |
3082 | typedef struct { |
3083 | void *buffer; | |
3084 | target_phys_addr_t addr; | |
3085 | target_phys_addr_t len; | |
3086 | } BounceBuffer; | |
3087 | ||
3088 | static BounceBuffer bounce; | |
3089 | ||
ba223c29 AL |
3090 | typedef struct MapClient { |
3091 | void *opaque; | |
3092 | void (*callback)(void *opaque); | |
3093 | LIST_ENTRY(MapClient) link; | |
3094 | } MapClient; | |
3095 | ||
3096 | static LIST_HEAD(map_client_list, MapClient) map_client_list | |
3097 | = LIST_HEAD_INITIALIZER(map_client_list); | |
3098 | ||
3099 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
3100 | { | |
3101 | MapClient *client = qemu_malloc(sizeof(*client)); | |
3102 | ||
3103 | client->opaque = opaque; | |
3104 | client->callback = callback; | |
3105 | LIST_INSERT_HEAD(&map_client_list, client, link); | |
3106 | return client; | |
3107 | } | |
3108 | ||
3109 | void cpu_unregister_map_client(void *_client) | |
3110 | { | |
3111 | MapClient *client = (MapClient *)_client; | |
3112 | ||
3113 | LIST_REMOVE(client, link); | |
3114 | } | |
3115 | ||
3116 | static void cpu_notify_map_clients(void) | |
3117 | { | |
3118 | MapClient *client; | |
3119 | ||
3120 | while (!LIST_EMPTY(&map_client_list)) { | |
3121 | client = LIST_FIRST(&map_client_list); | |
3122 | client->callback(client->opaque); | |
3123 | LIST_REMOVE(client, link); | |
3124 | } | |
3125 | } | |
3126 | ||
6d16c2f8 AL |
3127 | /* Map a physical memory region into a host virtual address. |
3128 | * May map a subset of the requested range, given by and returned in *plen. | |
3129 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3130 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3131 | * Use cpu_register_map_client() to know when retrying the map operation is |
3132 | * likely to succeed. | |
6d16c2f8 AL |
3133 | */ |
3134 | void *cpu_physical_memory_map(target_phys_addr_t addr, | |
3135 | target_phys_addr_t *plen, | |
3136 | int is_write) | |
3137 | { | |
3138 | target_phys_addr_t len = *plen; | |
3139 | target_phys_addr_t done = 0; | |
3140 | int l; | |
3141 | uint8_t *ret = NULL; | |
3142 | uint8_t *ptr; | |
3143 | target_phys_addr_t page; | |
3144 | unsigned long pd; | |
3145 | PhysPageDesc *p; | |
3146 | unsigned long addr1; | |
3147 | ||
3148 | while (len > 0) { | |
3149 | page = addr & TARGET_PAGE_MASK; | |
3150 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3151 | if (l > len) | |
3152 | l = len; | |
3153 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3154 | if (!p) { | |
3155 | pd = IO_MEM_UNASSIGNED; | |
3156 | } else { | |
3157 | pd = p->phys_offset; | |
3158 | } | |
3159 | ||
3160 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3161 | if (done || bounce.buffer) { | |
3162 | break; | |
3163 | } | |
3164 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
3165 | bounce.addr = addr; | |
3166 | bounce.len = l; | |
3167 | if (!is_write) { | |
3168 | cpu_physical_memory_rw(addr, bounce.buffer, l, 0); | |
3169 | } | |
3170 | ptr = bounce.buffer; | |
3171 | } else { | |
3172 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3173 | ptr = phys_ram_base + addr1; | |
3174 | } | |
3175 | if (!done) { | |
3176 | ret = ptr; | |
3177 | } else if (ret + done != ptr) { | |
3178 | break; | |
3179 | } | |
3180 | ||
3181 | len -= l; | |
3182 | addr += l; | |
3183 | done += l; | |
3184 | } | |
3185 | *plen = done; | |
3186 | return ret; | |
3187 | } | |
3188 | ||
3189 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map(). | |
3190 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
3191 | * the amount of memory that was actually read or written by the caller. | |
3192 | */ | |
3193 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, | |
3194 | int is_write, target_phys_addr_t access_len) | |
3195 | { | |
3196 | if (buffer != bounce.buffer) { | |
3197 | if (is_write) { | |
3198 | unsigned long addr1 = (uint8_t *)buffer - phys_ram_base; | |
3199 | while (access_len) { | |
3200 | unsigned l; | |
3201 | l = TARGET_PAGE_SIZE; | |
3202 | if (l > access_len) | |
3203 | l = access_len; | |
3204 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3205 | /* invalidate code */ | |
3206 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3207 | /* set dirty bit */ | |
3208 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3209 | (0xff & ~CODE_DIRTY_FLAG); | |
3210 | } | |
3211 | addr1 += l; | |
3212 | access_len -= l; | |
3213 | } | |
3214 | } | |
3215 | return; | |
3216 | } | |
3217 | if (is_write) { | |
3218 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); | |
3219 | } | |
3220 | qemu_free(bounce.buffer); | |
3221 | bounce.buffer = NULL; | |
ba223c29 | 3222 | cpu_notify_map_clients(); |
6d16c2f8 | 3223 | } |
d0ecd2aa | 3224 | |
8df1cd07 FB |
3225 | /* warning: addr must be aligned */ |
3226 | uint32_t ldl_phys(target_phys_addr_t addr) | |
3227 | { | |
3228 | int io_index; | |
3229 | uint8_t *ptr; | |
3230 | uint32_t val; | |
3231 | unsigned long pd; | |
3232 | PhysPageDesc *p; | |
3233 | ||
3234 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3235 | if (!p) { | |
3236 | pd = IO_MEM_UNASSIGNED; | |
3237 | } else { | |
3238 | pd = p->phys_offset; | |
3239 | } | |
3b46e624 | 3240 | |
5fafdf24 | 3241 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3242 | !(pd & IO_MEM_ROMD)) { |
8df1cd07 FB |
3243 | /* I/O case */ |
3244 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3245 | if (p) |
3246 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3247 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
3248 | } else { | |
3249 | /* RAM case */ | |
5fafdf24 | 3250 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
3251 | (addr & ~TARGET_PAGE_MASK); |
3252 | val = ldl_p(ptr); | |
3253 | } | |
3254 | return val; | |
3255 | } | |
3256 | ||
84b7b8e7 FB |
3257 | /* warning: addr must be aligned */ |
3258 | uint64_t ldq_phys(target_phys_addr_t addr) | |
3259 | { | |
3260 | int io_index; | |
3261 | uint8_t *ptr; | |
3262 | uint64_t val; | |
3263 | unsigned long pd; | |
3264 | PhysPageDesc *p; | |
3265 | ||
3266 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3267 | if (!p) { | |
3268 | pd = IO_MEM_UNASSIGNED; | |
3269 | } else { | |
3270 | pd = p->phys_offset; | |
3271 | } | |
3b46e624 | 3272 | |
2a4188a3 FB |
3273 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
3274 | !(pd & IO_MEM_ROMD)) { | |
84b7b8e7 FB |
3275 | /* I/O case */ |
3276 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3277 | if (p) |
3278 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
84b7b8e7 FB |
3279 | #ifdef TARGET_WORDS_BIGENDIAN |
3280 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
3281 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
3282 | #else | |
3283 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3284 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
3285 | #endif | |
3286 | } else { | |
3287 | /* RAM case */ | |
5fafdf24 | 3288 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
84b7b8e7 FB |
3289 | (addr & ~TARGET_PAGE_MASK); |
3290 | val = ldq_p(ptr); | |
3291 | } | |
3292 | return val; | |
3293 | } | |
3294 | ||
aab33094 FB |
3295 | /* XXX: optimize */ |
3296 | uint32_t ldub_phys(target_phys_addr_t addr) | |
3297 | { | |
3298 | uint8_t val; | |
3299 | cpu_physical_memory_read(addr, &val, 1); | |
3300 | return val; | |
3301 | } | |
3302 | ||
3303 | /* XXX: optimize */ | |
3304 | uint32_t lduw_phys(target_phys_addr_t addr) | |
3305 | { | |
3306 | uint16_t val; | |
3307 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
3308 | return tswap16(val); | |
3309 | } | |
3310 | ||
8df1cd07 FB |
3311 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3312 | and the code inside is not invalidated. It is useful if the dirty | |
3313 | bits are used to track modified PTEs */ | |
3314 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
3315 | { | |
3316 | int io_index; | |
3317 | uint8_t *ptr; | |
3318 | unsigned long pd; | |
3319 | PhysPageDesc *p; | |
3320 | ||
3321 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3322 | if (!p) { | |
3323 | pd = IO_MEM_UNASSIGNED; | |
3324 | } else { | |
3325 | pd = p->phys_offset; | |
3326 | } | |
3b46e624 | 3327 | |
3a7d929e | 3328 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3329 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3330 | if (p) |
3331 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3332 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3333 | } else { | |
74576198 AL |
3334 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
3335 | ptr = phys_ram_base + addr1; | |
8df1cd07 | 3336 | stl_p(ptr, val); |
74576198 AL |
3337 | |
3338 | if (unlikely(in_migration)) { | |
3339 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3340 | /* invalidate code */ | |
3341 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3342 | /* set dirty bit */ | |
3343 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3344 | (0xff & ~CODE_DIRTY_FLAG); | |
3345 | } | |
3346 | } | |
8df1cd07 FB |
3347 | } |
3348 | } | |
3349 | ||
bc98a7ef JM |
3350 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
3351 | { | |
3352 | int io_index; | |
3353 | uint8_t *ptr; | |
3354 | unsigned long pd; | |
3355 | PhysPageDesc *p; | |
3356 | ||
3357 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3358 | if (!p) { | |
3359 | pd = IO_MEM_UNASSIGNED; | |
3360 | } else { | |
3361 | pd = p->phys_offset; | |
3362 | } | |
3b46e624 | 3363 | |
bc98a7ef JM |
3364 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
3365 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3366 | if (p) |
3367 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
bc98a7ef JM |
3368 | #ifdef TARGET_WORDS_BIGENDIAN |
3369 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
3370 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
3371 | #else | |
3372 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3373 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
3374 | #endif | |
3375 | } else { | |
5fafdf24 | 3376 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
bc98a7ef JM |
3377 | (addr & ~TARGET_PAGE_MASK); |
3378 | stq_p(ptr, val); | |
3379 | } | |
3380 | } | |
3381 | ||
8df1cd07 | 3382 | /* warning: addr must be aligned */ |
8df1cd07 FB |
3383 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
3384 | { | |
3385 | int io_index; | |
3386 | uint8_t *ptr; | |
3387 | unsigned long pd; | |
3388 | PhysPageDesc *p; | |
3389 | ||
3390 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3391 | if (!p) { | |
3392 | pd = IO_MEM_UNASSIGNED; | |
3393 | } else { | |
3394 | pd = p->phys_offset; | |
3395 | } | |
3b46e624 | 3396 | |
3a7d929e | 3397 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3398 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3399 | if (p) |
3400 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3401 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3402 | } else { | |
3403 | unsigned long addr1; | |
3404 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3405 | /* RAM case */ | |
3406 | ptr = phys_ram_base + addr1; | |
3407 | stl_p(ptr, val); | |
3a7d929e FB |
3408 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3409 | /* invalidate code */ | |
3410 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3411 | /* set dirty bit */ | |
f23db169 FB |
3412 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
3413 | (0xff & ~CODE_DIRTY_FLAG); | |
3a7d929e | 3414 | } |
8df1cd07 FB |
3415 | } |
3416 | } | |
3417 | ||
aab33094 FB |
3418 | /* XXX: optimize */ |
3419 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3420 | { | |
3421 | uint8_t v = val; | |
3422 | cpu_physical_memory_write(addr, &v, 1); | |
3423 | } | |
3424 | ||
3425 | /* XXX: optimize */ | |
3426 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3427 | { | |
3428 | uint16_t v = tswap16(val); | |
3429 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3430 | } | |
3431 | ||
3432 | /* XXX: optimize */ | |
3433 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3434 | { | |
3435 | val = tswap64(val); | |
3436 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3437 | } | |
3438 | ||
13eb76e0 FB |
3439 | #endif |
3440 | ||
3441 | /* virtual memory access for debug */ | |
5fafdf24 | 3442 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
b448f2f3 | 3443 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3444 | { |
3445 | int l; | |
9b3c35e0 JM |
3446 | target_phys_addr_t phys_addr; |
3447 | target_ulong page; | |
13eb76e0 FB |
3448 | |
3449 | while (len > 0) { | |
3450 | page = addr & TARGET_PAGE_MASK; | |
3451 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3452 | /* if no physical page mapped, return an error */ | |
3453 | if (phys_addr == -1) | |
3454 | return -1; | |
3455 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3456 | if (l > len) | |
3457 | l = len; | |
5fafdf24 | 3458 | cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), |
b448f2f3 | 3459 | buf, l, is_write); |
13eb76e0 FB |
3460 | len -= l; |
3461 | buf += l; | |
3462 | addr += l; | |
3463 | } | |
3464 | return 0; | |
3465 | } | |
3466 | ||
2e70f6ef PB |
3467 | /* in deterministic execution mode, instructions doing device I/Os |
3468 | must be at the end of the TB */ | |
3469 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3470 | { | |
3471 | TranslationBlock *tb; | |
3472 | uint32_t n, cflags; | |
3473 | target_ulong pc, cs_base; | |
3474 | uint64_t flags; | |
3475 | ||
3476 | tb = tb_find_pc((unsigned long)retaddr); | |
3477 | if (!tb) { | |
3478 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3479 | retaddr); | |
3480 | } | |
3481 | n = env->icount_decr.u16.low + tb->icount; | |
3482 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3483 | /* Calculate how many instructions had been executed before the fault | |
bf20dc07 | 3484 | occurred. */ |
2e70f6ef PB |
3485 | n = n - env->icount_decr.u16.low; |
3486 | /* Generate a new TB ending on the I/O insn. */ | |
3487 | n++; | |
3488 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3489 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 3490 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
3491 | branch. */ |
3492 | #if defined(TARGET_MIPS) | |
3493 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3494 | env->active_tc.PC -= 4; | |
3495 | env->icount_decr.u16.low++; | |
3496 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3497 | } | |
3498 | #elif defined(TARGET_SH4) | |
3499 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3500 | && n > 1) { | |
3501 | env->pc -= 2; | |
3502 | env->icount_decr.u16.low++; | |
3503 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3504 | } | |
3505 | #endif | |
3506 | /* This should never happen. */ | |
3507 | if (n > CF_COUNT_MASK) | |
3508 | cpu_abort(env, "TB too big during recompile"); | |
3509 | ||
3510 | cflags = n | CF_LAST_IO; | |
3511 | pc = tb->pc; | |
3512 | cs_base = tb->cs_base; | |
3513 | flags = tb->flags; | |
3514 | tb_phys_invalidate(tb, -1); | |
3515 | /* FIXME: In theory this could raise an exception. In practice | |
3516 | we have already translated the block once so it's probably ok. */ | |
3517 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 3518 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
3519 | the first in the TB) then we end up generating a whole new TB and |
3520 | repeating the fault, which is horribly inefficient. | |
3521 | Better would be to execute just this insn uncached, or generate a | |
3522 | second new TB. */ | |
3523 | cpu_resume_from_signal(env, NULL); | |
3524 | } | |
3525 | ||
e3db7226 FB |
3526 | void dump_exec_info(FILE *f, |
3527 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3528 | { | |
3529 | int i, target_code_size, max_target_code_size; | |
3530 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3531 | TranslationBlock *tb; | |
3b46e624 | 3532 | |
e3db7226 FB |
3533 | target_code_size = 0; |
3534 | max_target_code_size = 0; | |
3535 | cross_page = 0; | |
3536 | direct_jmp_count = 0; | |
3537 | direct_jmp2_count = 0; | |
3538 | for(i = 0; i < nb_tbs; i++) { | |
3539 | tb = &tbs[i]; | |
3540 | target_code_size += tb->size; | |
3541 | if (tb->size > max_target_code_size) | |
3542 | max_target_code_size = tb->size; | |
3543 | if (tb->page_addr[1] != -1) | |
3544 | cross_page++; | |
3545 | if (tb->tb_next_offset[0] != 0xffff) { | |
3546 | direct_jmp_count++; | |
3547 | if (tb->tb_next_offset[1] != 0xffff) { | |
3548 | direct_jmp2_count++; | |
3549 | } | |
3550 | } | |
3551 | } | |
3552 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 3553 | cpu_fprintf(f, "Translation buffer state:\n"); |
26a5f13b FB |
3554 | cpu_fprintf(f, "gen code size %ld/%ld\n", |
3555 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3556 | cpu_fprintf(f, "TB count %d/%d\n", | |
3557 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 3558 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
3559 | nb_tbs ? target_code_size / nb_tbs : 0, |
3560 | max_target_code_size); | |
5fafdf24 | 3561 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
3562 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
3563 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
3564 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
3565 | cross_page, | |
e3db7226 FB |
3566 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
3567 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 3568 | direct_jmp_count, |
e3db7226 FB |
3569 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
3570 | direct_jmp2_count, | |
3571 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 3572 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
3573 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
3574 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3575 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 3576 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
3577 | } |
3578 | ||
5fafdf24 | 3579 | #if !defined(CONFIG_USER_ONLY) |
61382a50 FB |
3580 | |
3581 | #define MMUSUFFIX _cmmu | |
3582 | #define GETPC() NULL | |
3583 | #define env cpu_single_env | |
b769d8fe | 3584 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
3585 | |
3586 | #define SHIFT 0 | |
3587 | #include "softmmu_template.h" | |
3588 | ||
3589 | #define SHIFT 1 | |
3590 | #include "softmmu_template.h" | |
3591 | ||
3592 | #define SHIFT 2 | |
3593 | #include "softmmu_template.h" | |
3594 | ||
3595 | #define SHIFT 3 | |
3596 | #include "softmmu_template.h" | |
3597 | ||
3598 | #undef env | |
3599 | ||
3600 | #endif |