]>
Commit | Line | Data |
---|---|---|
b7bcbe95 FB |
1 | /* |
2 | * ARM helper routines | |
5fafdf24 | 3 | * |
9ee6e8bb | 4 | * Copyright (c) 2005-2007 CodeSourcery, LLC |
b7bcbe95 FB |
5 | * |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
b7bcbe95 | 18 | */ |
74c21bd0 | 19 | #include "qemu/osdep.h" |
c9b61d9a | 20 | #include "qemu/log.h" |
8d04fb55 | 21 | #include "qemu/main-loop.h" |
3e457172 | 22 | #include "cpu.h" |
2ef6175a | 23 | #include "exec/helper-proto.h" |
ccd38087 | 24 | #include "internals.h" |
63c91552 | 25 | #include "exec/exec-all.h" |
f08b6170 | 26 | #include "exec/cpu_ldst.h" |
b7bcbe95 | 27 | |
ad69471c PB |
28 | #define SIGNBIT (uint32_t)0x80000000 |
29 | #define SIGNBIT64 ((uint64_t)1 << 63) | |
30 | ||
c6328599 PM |
31 | static void raise_exception(CPUARMState *env, uint32_t excp, |
32 | uint32_t syndrome, uint32_t target_el) | |
b7bcbe95 | 33 | { |
c6328599 | 34 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
27103424 | 35 | |
c6328599 PM |
36 | assert(!excp_is_internal(excp)); |
37 | cs->exception_index = excp; | |
38 | env->exception.syndrome = syndrome; | |
39 | env->exception.target_el = target_el; | |
5638d180 | 40 | cpu_loop_exit(cs); |
b7bcbe95 FB |
41 | } |
42 | ||
e3b1d480 GB |
43 | static int exception_target_el(CPUARMState *env) |
44 | { | |
45 | int target_el = MAX(1, arm_current_el(env)); | |
46 | ||
47 | /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL | |
48 | * to EL3 in this case. | |
49 | */ | |
50 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { | |
51 | target_el = 3; | |
52 | } | |
53 | ||
54 | return target_el; | |
55 | } | |
56 | ||
9ef39277 | 57 | uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def, |
8f8e3aa4 | 58 | uint32_t rn, uint32_t maxindex) |
9ee6e8bb PB |
59 | { |
60 | uint32_t val; | |
9ee6e8bb PB |
61 | uint32_t tmp; |
62 | int index; | |
63 | int shift; | |
64 | uint64_t *table; | |
65 | table = (uint64_t *)&env->vfp.regs[rn]; | |
66 | val = 0; | |
9ee6e8bb | 67 | for (shift = 0; shift < 32; shift += 8) { |
8f8e3aa4 PB |
68 | index = (ireg >> shift) & 0xff; |
69 | if (index < maxindex) { | |
3018f259 | 70 | tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff; |
9ee6e8bb PB |
71 | val |= tmp << shift; |
72 | } else { | |
8f8e3aa4 | 73 | val |= def & (0xff << shift); |
9ee6e8bb PB |
74 | } |
75 | } | |
8f8e3aa4 | 76 | return val; |
9ee6e8bb PB |
77 | } |
78 | ||
b5ff1b31 FB |
79 | #if !defined(CONFIG_USER_ONLY) |
80 | ||
aaa1f954 EI |
81 | static inline uint32_t merge_syn_data_abort(uint32_t template_syn, |
82 | unsigned int target_el, | |
c528af7a | 83 | bool same_el, bool ea, |
b35399bb | 84 | bool s1ptw, bool is_write, |
aaa1f954 EI |
85 | int fsc) |
86 | { | |
87 | uint32_t syn; | |
88 | ||
89 | /* ISV is only set for data aborts routed to EL2 and | |
90 | * never for stage-1 page table walks faulting on stage 2. | |
91 | * | |
92 | * Furthermore, ISV is only set for certain kinds of load/stores. | |
93 | * If the template syndrome does not have ISV set, we should leave | |
94 | * it cleared. | |
95 | * | |
96 | * See ARMv8 specs, D7-1974: | |
97 | * ISS encoding for an exception from a Data Abort, the | |
98 | * ISV field. | |
99 | */ | |
100 | if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) { | |
101 | syn = syn_data_abort_no_iss(same_el, | |
c528af7a | 102 | ea, 0, s1ptw, is_write, fsc); |
aaa1f954 EI |
103 | } else { |
104 | /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template | |
105 | * syndrome created at translation time. | |
106 | * Now we create the runtime syndrome with the remaining fields. | |
107 | */ | |
108 | syn = syn_data_abort_with_iss(same_el, | |
109 | 0, 0, 0, 0, 0, | |
c528af7a | 110 | ea, 0, s1ptw, is_write, fsc, |
aaa1f954 EI |
111 | false); |
112 | /* Merge the runtime syndrome with the template syndrome. */ | |
113 | syn |= template_syn; | |
114 | } | |
115 | return syn; | |
116 | } | |
117 | ||
aac43da1 PM |
118 | static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type, |
119 | uint32_t fsr, uint32_t fsc, ARMMMUFaultInfo *fi) | |
120 | { | |
121 | CPUARMState *env = &cpu->env; | |
122 | int target_el; | |
123 | bool same_el; | |
124 | uint32_t syn, exc; | |
125 | ||
126 | target_el = exception_target_el(env); | |
127 | if (fi->stage2) { | |
128 | target_el = 2; | |
129 | env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4; | |
130 | } | |
131 | same_el = (arm_current_el(env) == target_el); | |
132 | ||
133 | if (fsc == 0x3f) { | |
134 | /* Caller doesn't have a long-format fault status code. This | |
135 | * should only happen if this fault will never actually be reported | |
136 | * to an EL that uses a syndrome register. Check that here. | |
137 | * 0x3f is a (currently) reserved FSC code, in case the constructed | |
138 | * syndrome does leak into the guest somehow. | |
139 | */ | |
140 | assert(target_el != 2 && !arm_el_is_aa64(env, target_el)); | |
141 | } | |
142 | ||
143 | if (access_type == MMU_INST_FETCH) { | |
c528af7a | 144 | syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc); |
aac43da1 PM |
145 | exc = EXCP_PREFETCH_ABORT; |
146 | } else { | |
147 | syn = merge_syn_data_abort(env->exception.syndrome, target_el, | |
c528af7a | 148 | same_el, fi->ea, fi->s1ptw, |
aac43da1 PM |
149 | access_type == MMU_DATA_STORE, |
150 | fsc); | |
151 | if (access_type == MMU_DATA_STORE | |
152 | && arm_feature(env, ARM_FEATURE_V6)) { | |
153 | fsr |= (1 << 11); | |
154 | } | |
155 | exc = EXCP_DATA_ABORT; | |
156 | } | |
157 | ||
158 | env->exception.vaddress = addr; | |
159 | env->exception.fsr = fsr; | |
160 | raise_exception(env, exc, syn, target_el); | |
161 | } | |
162 | ||
b5ff1b31 | 163 | /* try to fill the TLB and return an exception if error. If retaddr is |
d5a11fef AF |
164 | * NULL, it means that the function was called in C code (i.e. not |
165 | * from generated code or from helper.c) | |
166 | */ | |
b35399bb SS |
167 | void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type, |
168 | int mmu_idx, uintptr_t retaddr) | |
b5ff1b31 | 169 | { |
b7cc4e82 PC |
170 | bool ret; |
171 | uint32_t fsr = 0; | |
e14b5a23 | 172 | ARMMMUFaultInfo fi = {}; |
b5ff1b31 | 173 | |
b35399bb | 174 | ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi); |
551bd27f | 175 | if (unlikely(ret)) { |
d5a11fef | 176 | ARMCPU *cpu = ARM_CPU(cs); |
aac43da1 | 177 | uint32_t fsc; |
d5a11fef | 178 | |
b5ff1b31 FB |
179 | if (retaddr) { |
180 | /* now we have a real cpu fault */ | |
3f38f309 | 181 | cpu_restore_state(cs, retaddr); |
b5ff1b31 | 182 | } |
8c6084bf | 183 | |
65ed2ed9 PM |
184 | if (fsr & (1 << 9)) { |
185 | /* LPAE format fault status register : bottom 6 bits are | |
186 | * status code in the same form as needed for syndrome | |
187 | */ | |
188 | fsc = extract32(fsr, 0, 6); | |
189 | } else { | |
190 | /* Short format FSR : this fault will never actually be reported | |
aac43da1 PM |
191 | * to an EL that uses a syndrome register. Use a (currently) |
192 | * reserved FSR code in case the constructed syndrome does leak | |
193 | * into the guest somehow. deliver_fault will assert that | |
194 | * we don't target an EL using the syndrome. | |
65ed2ed9 | 195 | */ |
65ed2ed9 PM |
196 | fsc = 0x3f; |
197 | } | |
8c6084bf | 198 | |
aac43da1 | 199 | deliver_fault(cpu, addr, access_type, fsr, fsc, &fi); |
b5ff1b31 | 200 | } |
b5ff1b31 | 201 | } |
30901475 AB |
202 | |
203 | /* Raise a data fault alignment exception for the specified virtual address */ | |
b35399bb SS |
204 | void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, |
205 | MMUAccessType access_type, | |
206 | int mmu_idx, uintptr_t retaddr) | |
30901475 AB |
207 | { |
208 | ARMCPU *cpu = ARM_CPU(cs); | |
209 | CPUARMState *env = &cpu->env; | |
aac43da1 PM |
210 | uint32_t fsr, fsc; |
211 | ARMMMUFaultInfo fi = {}; | |
8bd5c820 | 212 | ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx); |
30901475 AB |
213 | |
214 | if (retaddr) { | |
215 | /* now we have a real cpu fault */ | |
216 | cpu_restore_state(cs, retaddr); | |
217 | } | |
218 | ||
30901475 AB |
219 | /* the DFSR for an alignment fault depends on whether we're using |
220 | * the LPAE long descriptor format, or the short descriptor format | |
221 | */ | |
8bd5c820 | 222 | if (arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) { |
aac43da1 | 223 | fsr = (1 << 9) | 0x21; |
30901475 | 224 | } else { |
aac43da1 | 225 | fsr = 0x1; |
30901475 | 226 | } |
aac43da1 | 227 | fsc = 0x21; |
30901475 | 228 | |
aac43da1 | 229 | deliver_fault(cpu, vaddr, access_type, fsr, fsc, &fi); |
30901475 AB |
230 | } |
231 | ||
c79c0a31 PM |
232 | /* arm_cpu_do_transaction_failed: handle a memory system error response |
233 | * (eg "no device/memory present at address") by raising an external abort | |
234 | * exception | |
235 | */ | |
236 | void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, | |
237 | vaddr addr, unsigned size, | |
238 | MMUAccessType access_type, | |
239 | int mmu_idx, MemTxAttrs attrs, | |
240 | MemTxResult response, uintptr_t retaddr) | |
241 | { | |
242 | ARMCPU *cpu = ARM_CPU(cs); | |
243 | CPUARMState *env = &cpu->env; | |
244 | uint32_t fsr, fsc; | |
245 | ARMMMUFaultInfo fi = {}; | |
246 | ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx); | |
247 | ||
248 | if (retaddr) { | |
249 | /* now we have a real cpu fault */ | |
250 | cpu_restore_state(cs, retaddr); | |
251 | } | |
252 | ||
253 | /* The EA bit in syndromes and fault status registers is an | |
254 | * IMPDEF classification of external aborts. ARM implementations | |
255 | * usually use this to indicate AXI bus Decode error (0) or | |
256 | * Slave error (1); in QEMU we follow that. | |
257 | */ | |
258 | fi.ea = (response != MEMTX_DECODE_ERROR); | |
259 | ||
260 | /* The fault status register format depends on whether we're using | |
261 | * the LPAE long descriptor format, or the short descriptor format. | |
262 | */ | |
263 | if (arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) { | |
264 | /* long descriptor form, STATUS 0b010000: synchronous ext abort */ | |
265 | fsr = (fi.ea << 12) | (1 << 9) | 0x10; | |
266 | } else { | |
267 | /* short descriptor form, FSR 0b01000 : synchronous ext abort */ | |
268 | fsr = (fi.ea << 12) | 0x8; | |
269 | } | |
270 | fsc = 0x10; | |
271 | ||
272 | deliver_fault(cpu, addr, access_type, fsr, fsc, &fi); | |
273 | } | |
274 | ||
30901475 | 275 | #endif /* !defined(CONFIG_USER_ONLY) */ |
1497c961 | 276 | |
9ef39277 | 277 | uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
278 | { |
279 | uint32_t res = a + b; | |
280 | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) | |
281 | env->QF = 1; | |
282 | return res; | |
283 | } | |
284 | ||
9ef39277 | 285 | uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
286 | { |
287 | uint32_t res = a + b; | |
288 | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { | |
289 | env->QF = 1; | |
290 | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | |
291 | } | |
292 | return res; | |
293 | } | |
294 | ||
9ef39277 | 295 | uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
296 | { |
297 | uint32_t res = a - b; | |
298 | if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { | |
299 | env->QF = 1; | |
300 | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | |
301 | } | |
302 | return res; | |
303 | } | |
304 | ||
9ef39277 | 305 | uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val) |
1497c961 PB |
306 | { |
307 | uint32_t res; | |
308 | if (val >= 0x40000000) { | |
309 | res = ~SIGNBIT; | |
310 | env->QF = 1; | |
311 | } else if (val <= (int32_t)0xc0000000) { | |
312 | res = SIGNBIT; | |
313 | env->QF = 1; | |
314 | } else { | |
315 | res = val << 1; | |
316 | } | |
317 | return res; | |
318 | } | |
319 | ||
9ef39277 | 320 | uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
321 | { |
322 | uint32_t res = a + b; | |
323 | if (res < a) { | |
324 | env->QF = 1; | |
325 | res = ~0; | |
326 | } | |
327 | return res; | |
328 | } | |
329 | ||
9ef39277 | 330 | uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
331 | { |
332 | uint32_t res = a - b; | |
333 | if (res > a) { | |
334 | env->QF = 1; | |
335 | res = 0; | |
336 | } | |
337 | return res; | |
338 | } | |
339 | ||
6ddbc6e4 | 340 | /* Signed saturation. */ |
9ef39277 | 341 | static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) |
6ddbc6e4 PB |
342 | { |
343 | int32_t top; | |
344 | uint32_t mask; | |
345 | ||
6ddbc6e4 PB |
346 | top = val >> shift; |
347 | mask = (1u << shift) - 1; | |
348 | if (top > 0) { | |
349 | env->QF = 1; | |
350 | return mask; | |
351 | } else if (top < -1) { | |
352 | env->QF = 1; | |
353 | return ~mask; | |
354 | } | |
355 | return val; | |
356 | } | |
357 | ||
358 | /* Unsigned saturation. */ | |
9ef39277 | 359 | static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) |
6ddbc6e4 PB |
360 | { |
361 | uint32_t max; | |
362 | ||
6ddbc6e4 PB |
363 | max = (1u << shift) - 1; |
364 | if (val < 0) { | |
365 | env->QF = 1; | |
366 | return 0; | |
367 | } else if (val > max) { | |
368 | env->QF = 1; | |
369 | return max; | |
370 | } | |
371 | return val; | |
372 | } | |
373 | ||
374 | /* Signed saturate. */ | |
9ef39277 | 375 | uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 | 376 | { |
9ef39277 | 377 | return do_ssat(env, x, shift); |
6ddbc6e4 PB |
378 | } |
379 | ||
380 | /* Dual halfword signed saturate. */ | |
9ef39277 | 381 | uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 PB |
382 | { |
383 | uint32_t res; | |
384 | ||
9ef39277 BS |
385 | res = (uint16_t)do_ssat(env, (int16_t)x, shift); |
386 | res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; | |
6ddbc6e4 PB |
387 | return res; |
388 | } | |
389 | ||
390 | /* Unsigned saturate. */ | |
9ef39277 | 391 | uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 | 392 | { |
9ef39277 | 393 | return do_usat(env, x, shift); |
6ddbc6e4 PB |
394 | } |
395 | ||
396 | /* Dual halfword unsigned saturate. */ | |
9ef39277 | 397 | uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 PB |
398 | { |
399 | uint32_t res; | |
400 | ||
9ef39277 BS |
401 | res = (uint16_t)do_usat(env, (int16_t)x, shift); |
402 | res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; | |
6ddbc6e4 PB |
403 | return res; |
404 | } | |
d9ba4830 | 405 | |
9886ecdf PB |
406 | void HELPER(setend)(CPUARMState *env) |
407 | { | |
408 | env->uncached_cpsr ^= CPSR_E; | |
409 | } | |
410 | ||
b1eced71 GB |
411 | /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. |
412 | * The function returns the target EL (1-3) if the instruction is to be trapped; | |
413 | * otherwise it returns 0 indicating it is not trapped. | |
414 | */ | |
415 | static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) | |
416 | { | |
417 | int cur_el = arm_current_el(env); | |
418 | uint64_t mask; | |
419 | ||
0e284568 PM |
420 | if (arm_feature(env, ARM_FEATURE_M)) { |
421 | /* M profile cores can never trap WFI/WFE. */ | |
422 | return 0; | |
423 | } | |
424 | ||
b1eced71 GB |
425 | /* If we are currently in EL0 then we need to check if SCTLR is set up for |
426 | * WFx instructions being trapped to EL1. These trap bits don't exist in v7. | |
427 | */ | |
428 | if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { | |
429 | int target_el; | |
430 | ||
431 | mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; | |
432 | if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { | |
433 | /* Secure EL0 and Secure PL1 is at EL3 */ | |
434 | target_el = 3; | |
435 | } else { | |
436 | target_el = 1; | |
437 | } | |
438 | ||
439 | if (!(env->cp15.sctlr_el[target_el] & mask)) { | |
440 | return target_el; | |
441 | } | |
442 | } | |
443 | ||
444 | /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it | |
445 | * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the | |
446 | * bits will be zero indicating no trap. | |
447 | */ | |
448 | if (cur_el < 2 && !arm_is_secure(env)) { | |
449 | mask = (is_wfe) ? HCR_TWE : HCR_TWI; | |
450 | if (env->cp15.hcr_el2 & mask) { | |
451 | return 2; | |
452 | } | |
453 | } | |
454 | ||
455 | /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ | |
456 | if (cur_el < 3) { | |
457 | mask = (is_wfe) ? SCR_TWE : SCR_TWI; | |
458 | if (env->cp15.scr_el3 & mask) { | |
459 | return 3; | |
460 | } | |
461 | } | |
462 | ||
463 | return 0; | |
464 | } | |
465 | ||
58803318 | 466 | void HELPER(wfi)(CPUARMState *env, uint32_t insn_len) |
d9ba4830 | 467 | { |
259186a7 | 468 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b1eced71 | 469 | int target_el = check_wfx_trap(env, false); |
259186a7 | 470 | |
84549b6d PM |
471 | if (cpu_has_work(cs)) { |
472 | /* Don't bother to go into our "low power state" if | |
473 | * we would just wake up immediately. | |
474 | */ | |
475 | return; | |
476 | } | |
477 | ||
b1eced71 | 478 | if (target_el) { |
58803318 SS |
479 | env->pc -= insn_len; |
480 | raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2), | |
481 | target_el); | |
b1eced71 GB |
482 | } |
483 | ||
27103424 | 484 | cs->exception_index = EXCP_HLT; |
259186a7 | 485 | cs->halted = 1; |
5638d180 | 486 | cpu_loop_exit(cs); |
d9ba4830 PB |
487 | } |
488 | ||
72c1d3af PM |
489 | void HELPER(wfe)(CPUARMState *env) |
490 | { | |
049e24a1 PM |
491 | /* This is a hint instruction that is semantically different |
492 | * from YIELD even though we currently implement it identically. | |
493 | * Don't actually halt the CPU, just yield back to top | |
b1eced71 GB |
494 | * level loop. This is not going into a "low power state" |
495 | * (ie halting until some event occurs), so we never take | |
496 | * a configurable trap to a different exception level. | |
72c1d3af | 497 | */ |
049e24a1 PM |
498 | HELPER(yield)(env); |
499 | } | |
500 | ||
501 | void HELPER(yield)(CPUARMState *env) | |
502 | { | |
503 | ARMCPU *cpu = arm_env_get_cpu(env); | |
504 | CPUState *cs = CPU(cpu); | |
505 | ||
506 | /* This is a non-trappable hint instruction that generally indicates | |
507 | * that the guest is currently busy-looping. Yield control back to the | |
508 | * top level loop so that a more deserving VCPU has a chance to run. | |
509 | */ | |
27103424 | 510 | cs->exception_index = EXCP_YIELD; |
5638d180 | 511 | cpu_loop_exit(cs); |
72c1d3af PM |
512 | } |
513 | ||
d4a2dc67 PM |
514 | /* Raise an internal-to-QEMU exception. This is limited to only |
515 | * those EXCP values which are special cases for QEMU to interrupt | |
516 | * execution and not to be used for exceptions which are passed to | |
517 | * the guest (those must all have syndrome information and thus should | |
518 | * use exception_with_syndrome). | |
519 | */ | |
520 | void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) | |
521 | { | |
522 | CPUState *cs = CPU(arm_env_get_cpu(env)); | |
523 | ||
524 | assert(excp_is_internal(excp)); | |
525 | cs->exception_index = excp; | |
526 | cpu_loop_exit(cs); | |
527 | } | |
528 | ||
529 | /* Raise an exception with the specified syndrome register value */ | |
530 | void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, | |
73710361 | 531 | uint32_t syndrome, uint32_t target_el) |
d9ba4830 | 532 | { |
c6328599 | 533 | raise_exception(env, excp, syndrome, target_el); |
d9ba4830 PB |
534 | } |
535 | ||
9ef39277 | 536 | uint32_t HELPER(cpsr_read)(CPUARMState *env) |
d9ba4830 | 537 | { |
4051e12c | 538 | return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED); |
d9ba4830 PB |
539 | } |
540 | ||
1ce94f81 | 541 | void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) |
d9ba4830 | 542 | { |
50866ba5 | 543 | cpsr_write(env, val, mask, CPSRWriteByInstr); |
d9ba4830 | 544 | } |
b0109805 | 545 | |
235ea1f5 PM |
546 | /* Write the CPSR for a 32-bit exception return */ |
547 | void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val) | |
548 | { | |
50866ba5 | 549 | cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn); |
bd7d00fc | 550 | |
fb0e8e79 PM |
551 | /* Generated code has already stored the new PC value, but |
552 | * without masking out its low bits, because which bits need | |
553 | * masking depends on whether we're returning to Thumb or ARM | |
554 | * state. Do the masking now. | |
555 | */ | |
556 | env->regs[15] &= (env->thumb ? ~1 : ~3); | |
557 | ||
8d04fb55 | 558 | qemu_mutex_lock_iothread(); |
bd7d00fc | 559 | arm_call_el_change_hook(arm_env_get_cpu(env)); |
8d04fb55 | 560 | qemu_mutex_unlock_iothread(); |
235ea1f5 PM |
561 | } |
562 | ||
b0109805 | 563 | /* Access to user mode registers from privileged modes. */ |
9ef39277 | 564 | uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) |
b0109805 PB |
565 | { |
566 | uint32_t val; | |
567 | ||
568 | if (regno == 13) { | |
99a99c1f | 569 | val = env->banked_r13[BANK_USRSYS]; |
b0109805 | 570 | } else if (regno == 14) { |
99a99c1f | 571 | val = env->banked_r14[BANK_USRSYS]; |
b0109805 PB |
572 | } else if (regno >= 8 |
573 | && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { | |
574 | val = env->usr_regs[regno - 8]; | |
575 | } else { | |
576 | val = env->regs[regno]; | |
577 | } | |
578 | return val; | |
579 | } | |
580 | ||
1ce94f81 | 581 | void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) |
b0109805 PB |
582 | { |
583 | if (regno == 13) { | |
99a99c1f | 584 | env->banked_r13[BANK_USRSYS] = val; |
b0109805 | 585 | } else if (regno == 14) { |
99a99c1f | 586 | env->banked_r14[BANK_USRSYS] = val; |
b0109805 PB |
587 | } else if (regno >= 8 |
588 | && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { | |
589 | env->usr_regs[regno - 8] = val; | |
590 | } else { | |
591 | env->regs[regno] = val; | |
592 | } | |
593 | } | |
4b6a83fb | 594 | |
72309cee PM |
595 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
596 | { | |
597 | if ((env->uncached_cpsr & CPSR_M) == mode) { | |
598 | env->regs[13] = val; | |
599 | } else { | |
600 | env->banked_r13[bank_number(mode)] = val; | |
601 | } | |
602 | } | |
603 | ||
604 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) | |
605 | { | |
f01377f5 PM |
606 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) { |
607 | /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF. | |
608 | * Other UNPREDICTABLE and UNDEF cases were caught at translate time. | |
609 | */ | |
610 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), | |
611 | exception_target_el(env)); | |
612 | } | |
613 | ||
72309cee PM |
614 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
615 | return env->regs[13]; | |
616 | } else { | |
617 | return env->banked_r13[bank_number(mode)]; | |
618 | } | |
619 | } | |
72309cee | 620 | |
8bfd0550 PM |
621 | static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode, |
622 | uint32_t regno) | |
623 | { | |
624 | /* Raise an exception if the requested access is one of the UNPREDICTABLE | |
625 | * cases; otherwise return. This broadly corresponds to the pseudocode | |
626 | * BankedRegisterAccessValid() and SPSRAccessValid(), | |
627 | * except that we have already handled some cases at translate time. | |
628 | */ | |
629 | int curmode = env->uncached_cpsr & CPSR_M; | |
630 | ||
631 | if (curmode == tgtmode) { | |
632 | goto undef; | |
633 | } | |
634 | ||
635 | if (tgtmode == ARM_CPU_MODE_USR) { | |
636 | switch (regno) { | |
637 | case 8 ... 12: | |
638 | if (curmode != ARM_CPU_MODE_FIQ) { | |
639 | goto undef; | |
640 | } | |
641 | break; | |
642 | case 13: | |
643 | if (curmode == ARM_CPU_MODE_SYS) { | |
644 | goto undef; | |
645 | } | |
646 | break; | |
647 | case 14: | |
648 | if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) { | |
649 | goto undef; | |
650 | } | |
651 | break; | |
652 | default: | |
653 | break; | |
654 | } | |
655 | } | |
656 | ||
657 | if (tgtmode == ARM_CPU_MODE_HYP) { | |
658 | switch (regno) { | |
659 | case 17: /* ELR_Hyp */ | |
660 | if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) { | |
661 | goto undef; | |
662 | } | |
663 | break; | |
664 | default: | |
665 | if (curmode != ARM_CPU_MODE_MON) { | |
666 | goto undef; | |
667 | } | |
668 | break; | |
669 | } | |
670 | } | |
671 | ||
672 | return; | |
673 | ||
674 | undef: | |
675 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), | |
676 | exception_target_el(env)); | |
677 | } | |
678 | ||
679 | void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode, | |
680 | uint32_t regno) | |
681 | { | |
682 | msr_mrs_banked_exc_checks(env, tgtmode, regno); | |
683 | ||
684 | switch (regno) { | |
685 | case 16: /* SPSRs */ | |
686 | env->banked_spsr[bank_number(tgtmode)] = value; | |
687 | break; | |
688 | case 17: /* ELR_Hyp */ | |
689 | env->elr_el[2] = value; | |
690 | break; | |
691 | case 13: | |
692 | env->banked_r13[bank_number(tgtmode)] = value; | |
693 | break; | |
694 | case 14: | |
695 | env->banked_r14[bank_number(tgtmode)] = value; | |
696 | break; | |
697 | case 8 ... 12: | |
698 | switch (tgtmode) { | |
699 | case ARM_CPU_MODE_USR: | |
700 | env->usr_regs[regno - 8] = value; | |
701 | break; | |
702 | case ARM_CPU_MODE_FIQ: | |
703 | env->fiq_regs[regno - 8] = value; | |
704 | break; | |
705 | default: | |
706 | g_assert_not_reached(); | |
707 | } | |
708 | break; | |
709 | default: | |
710 | g_assert_not_reached(); | |
711 | } | |
712 | } | |
713 | ||
714 | uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno) | |
715 | { | |
716 | msr_mrs_banked_exc_checks(env, tgtmode, regno); | |
717 | ||
718 | switch (regno) { | |
719 | case 16: /* SPSRs */ | |
720 | return env->banked_spsr[bank_number(tgtmode)]; | |
721 | case 17: /* ELR_Hyp */ | |
722 | return env->elr_el[2]; | |
723 | case 13: | |
724 | return env->banked_r13[bank_number(tgtmode)]; | |
725 | case 14: | |
726 | return env->banked_r14[bank_number(tgtmode)]; | |
727 | case 8 ... 12: | |
728 | switch (tgtmode) { | |
729 | case ARM_CPU_MODE_USR: | |
730 | return env->usr_regs[regno - 8]; | |
731 | case ARM_CPU_MODE_FIQ: | |
732 | return env->fiq_regs[regno - 8]; | |
733 | default: | |
734 | g_assert_not_reached(); | |
735 | } | |
736 | default: | |
737 | g_assert_not_reached(); | |
738 | } | |
739 | } | |
740 | ||
3f208fd7 PM |
741 | void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome, |
742 | uint32_t isread) | |
f59df3f2 PM |
743 | { |
744 | const ARMCPRegInfo *ri = rip; | |
38836a2c | 745 | int target_el; |
c0f4af17 PM |
746 | |
747 | if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 | |
748 | && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { | |
c6328599 | 749 | raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); |
c0f4af17 PM |
750 | } |
751 | ||
752 | if (!ri->accessfn) { | |
753 | return; | |
754 | } | |
755 | ||
3f208fd7 | 756 | switch (ri->accessfn(env, ri, isread)) { |
f59df3f2 PM |
757 | case CP_ACCESS_OK: |
758 | return; | |
759 | case CP_ACCESS_TRAP: | |
38836a2c PM |
760 | target_el = exception_target_el(env); |
761 | break; | |
762 | case CP_ACCESS_TRAP_EL2: | |
763 | /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is | |
764 | * a bug in the access function. | |
765 | */ | |
3fc827d5 | 766 | assert(!arm_is_secure(env) && arm_current_el(env) != 3); |
38836a2c PM |
767 | target_el = 2; |
768 | break; | |
769 | case CP_ACCESS_TRAP_EL3: | |
770 | target_el = 3; | |
8bcbf37c | 771 | break; |
f59df3f2 | 772 | case CP_ACCESS_TRAP_UNCATEGORIZED: |
38836a2c | 773 | target_el = exception_target_el(env); |
c6328599 | 774 | syndrome = syn_uncategorized(); |
f59df3f2 | 775 | break; |
e7615726 PM |
776 | case CP_ACCESS_TRAP_UNCATEGORIZED_EL2: |
777 | target_el = 2; | |
778 | syndrome = syn_uncategorized(); | |
779 | break; | |
780 | case CP_ACCESS_TRAP_UNCATEGORIZED_EL3: | |
781 | target_el = 3; | |
782 | syndrome = syn_uncategorized(); | |
783 | break; | |
f2cae609 PM |
784 | case CP_ACCESS_TRAP_FP_EL2: |
785 | target_el = 2; | |
786 | /* Since we are an implementation that takes exceptions on a trapped | |
787 | * conditional insn only if the insn has passed its condition code | |
788 | * check, we take the IMPDEF choice to always report CV=1 COND=0xe | |
789 | * (which is also the required value for AArch64 traps). | |
790 | */ | |
791 | syndrome = syn_fp_access_trap(1, 0xe, false); | |
792 | break; | |
793 | case CP_ACCESS_TRAP_FP_EL3: | |
794 | target_el = 3; | |
795 | syndrome = syn_fp_access_trap(1, 0xe, false); | |
796 | break; | |
f59df3f2 PM |
797 | default: |
798 | g_assert_not_reached(); | |
799 | } | |
c6328599 | 800 | |
38836a2c | 801 | raise_exception(env, EXCP_UDEF, syndrome, target_el); |
f59df3f2 PM |
802 | } |
803 | ||
4b6a83fb PM |
804 | void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value) |
805 | { | |
806 | const ARMCPRegInfo *ri = rip; | |
c4241c7d | 807 | |
8d04fb55 JK |
808 | if (ri->type & ARM_CP_IO) { |
809 | qemu_mutex_lock_iothread(); | |
810 | ri->writefn(env, ri, value); | |
811 | qemu_mutex_unlock_iothread(); | |
812 | } else { | |
813 | ri->writefn(env, ri, value); | |
814 | } | |
4b6a83fb PM |
815 | } |
816 | ||
817 | uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip) | |
818 | { | |
819 | const ARMCPRegInfo *ri = rip; | |
8d04fb55 | 820 | uint32_t res; |
c4241c7d | 821 | |
8d04fb55 JK |
822 | if (ri->type & ARM_CP_IO) { |
823 | qemu_mutex_lock_iothread(); | |
824 | res = ri->readfn(env, ri); | |
825 | qemu_mutex_unlock_iothread(); | |
826 | } else { | |
827 | res = ri->readfn(env, ri); | |
828 | } | |
829 | ||
830 | return res; | |
4b6a83fb PM |
831 | } |
832 | ||
833 | void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value) | |
834 | { | |
835 | const ARMCPRegInfo *ri = rip; | |
c4241c7d | 836 | |
8d04fb55 JK |
837 | if (ri->type & ARM_CP_IO) { |
838 | qemu_mutex_lock_iothread(); | |
839 | ri->writefn(env, ri, value); | |
840 | qemu_mutex_unlock_iothread(); | |
841 | } else { | |
842 | ri->writefn(env, ri, value); | |
843 | } | |
4b6a83fb PM |
844 | } |
845 | ||
846 | uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip) | |
847 | { | |
848 | const ARMCPRegInfo *ri = rip; | |
8d04fb55 JK |
849 | uint64_t res; |
850 | ||
851 | if (ri->type & ARM_CP_IO) { | |
852 | qemu_mutex_lock_iothread(); | |
853 | res = ri->readfn(env, ri); | |
854 | qemu_mutex_unlock_iothread(); | |
855 | } else { | |
856 | res = ri->readfn(env, ri); | |
857 | } | |
c4241c7d | 858 | |
8d04fb55 | 859 | return res; |
4b6a83fb | 860 | } |
b0109805 | 861 | |
9cfa0b4e PM |
862 | void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm) |
863 | { | |
864 | /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set. | |
865 | * Note that SPSel is never OK from EL0; we rely on handle_msr_i() | |
866 | * to catch that case at translate time. | |
867 | */ | |
137feaa9 | 868 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c6328599 PM |
869 | uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3), |
870 | extract32(op, 3, 3), 4, | |
871 | imm, 0x1f, 0); | |
872 | raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); | |
9cfa0b4e PM |
873 | } |
874 | ||
875 | switch (op) { | |
876 | case 0x05: /* SPSel */ | |
f502cfc2 | 877 | update_spsel(env, imm); |
9cfa0b4e PM |
878 | break; |
879 | case 0x1e: /* DAIFSet */ | |
880 | env->daif |= (imm << 6) & PSTATE_DAIF; | |
881 | break; | |
882 | case 0x1f: /* DAIFClear */ | |
883 | env->daif &= ~((imm << 6) & PSTATE_DAIF); | |
884 | break; | |
885 | default: | |
886 | g_assert_not_reached(); | |
887 | } | |
888 | } | |
889 | ||
7ea47fe7 PM |
890 | void HELPER(clear_pstate_ss)(CPUARMState *env) |
891 | { | |
892 | env->pstate &= ~PSTATE_SS; | |
893 | } | |
894 | ||
35979d71 EI |
895 | void HELPER(pre_hvc)(CPUARMState *env) |
896 | { | |
98128601 | 897 | ARMCPU *cpu = arm_env_get_cpu(env); |
dcbff19b | 898 | int cur_el = arm_current_el(env); |
35979d71 EI |
899 | /* FIXME: Use actual secure state. */ |
900 | bool secure = false; | |
901 | bool undef; | |
902 | ||
98128601 RH |
903 | if (arm_is_psci_call(cpu, EXCP_HVC)) { |
904 | /* If PSCI is enabled and this looks like a valid PSCI call then | |
905 | * that overrides the architecturally mandated HVC behaviour. | |
906 | */ | |
907 | return; | |
908 | } | |
909 | ||
39404338 PM |
910 | if (!arm_feature(env, ARM_FEATURE_EL2)) { |
911 | /* If EL2 doesn't exist, HVC always UNDEFs */ | |
912 | undef = true; | |
913 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
914 | /* EL3.HCE has priority over EL2.HCD. */ | |
35979d71 EI |
915 | undef = !(env->cp15.scr_el3 & SCR_HCE); |
916 | } else { | |
917 | undef = env->cp15.hcr_el2 & HCR_HCD; | |
918 | } | |
919 | ||
920 | /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. | |
921 | * For ARMv8/AArch64, HVC is allowed in EL3. | |
922 | * Note that we've already trapped HVC from EL0 at translation | |
923 | * time. | |
924 | */ | |
925 | if (secure && (!is_a64(env) || cur_el == 1)) { | |
926 | undef = true; | |
927 | } | |
928 | ||
929 | if (undef) { | |
c6328599 PM |
930 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
931 | exception_target_el(env)); | |
35979d71 EI |
932 | } |
933 | } | |
934 | ||
e0d6e6a5 EI |
935 | void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) |
936 | { | |
98128601 | 937 | ARMCPU *cpu = arm_env_get_cpu(env); |
dcbff19b | 938 | int cur_el = arm_current_el(env); |
dbe9d163 | 939 | bool secure = arm_is_secure(env); |
e0d6e6a5 | 940 | bool smd = env->cp15.scr_el3 & SCR_SMD; |
f096e92b PM |
941 | /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state. |
942 | * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization | |
943 | * extensions, SMD only applies to NS state. | |
944 | * On ARMv7 without the Virtualization extensions, the SMD bit | |
945 | * doesn't exist, but we forbid the guest to set it to 1 in scr_write(), | |
946 | * so we need not special case this here. | |
e0d6e6a5 | 947 | */ |
f096e92b | 948 | bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure; |
e0d6e6a5 | 949 | |
77077a83 JK |
950 | if (!arm_feature(env, ARM_FEATURE_EL3) && |
951 | cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { | |
952 | /* If we have no EL3 then SMC always UNDEFs and can't be | |
953 | * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3 | |
954 | * firmware within QEMU, and we want an EL2 guest to be able | |
955 | * to forbid its EL1 from making PSCI calls into QEMU's | |
956 | * "firmware" via HCR.TSC, so for these purposes treat | |
957 | * PSCI-via-SMC as implying an EL3. | |
98128601 | 958 | */ |
39404338 PM |
959 | undef = true; |
960 | } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) { | |
77077a83 JK |
961 | /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. |
962 | * We also want an EL2 guest to be able to forbid its EL1 from | |
963 | * making PSCI calls into QEMU's "firmware" via HCR.TSC. | |
964 | */ | |
c6328599 | 965 | raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); |
e0d6e6a5 EI |
966 | } |
967 | ||
77077a83 JK |
968 | /* If PSCI is enabled and this looks like a valid PSCI call then |
969 | * suppress the UNDEF -- we'll catch the SMC exception and | |
970 | * implement the PSCI call behaviour there. | |
971 | */ | |
972 | if (undef && !arm_is_psci_call(cpu, EXCP_SMC)) { | |
c6328599 PM |
973 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
974 | exception_target_el(env)); | |
e0d6e6a5 EI |
975 | } |
976 | } | |
977 | ||
3809951b PM |
978 | static int el_from_spsr(uint32_t spsr) |
979 | { | |
980 | /* Return the exception level that this SPSR is requesting a return to, | |
981 | * or -1 if it is invalid (an illegal return) | |
982 | */ | |
983 | if (spsr & PSTATE_nRW) { | |
984 | switch (spsr & CPSR_M) { | |
985 | case ARM_CPU_MODE_USR: | |
986 | return 0; | |
987 | case ARM_CPU_MODE_HYP: | |
988 | return 2; | |
989 | case ARM_CPU_MODE_FIQ: | |
990 | case ARM_CPU_MODE_IRQ: | |
991 | case ARM_CPU_MODE_SVC: | |
992 | case ARM_CPU_MODE_ABT: | |
993 | case ARM_CPU_MODE_UND: | |
994 | case ARM_CPU_MODE_SYS: | |
995 | return 1; | |
996 | case ARM_CPU_MODE_MON: | |
997 | /* Returning to Mon from AArch64 is never possible, | |
998 | * so this is an illegal return. | |
999 | */ | |
1000 | default: | |
1001 | return -1; | |
1002 | } | |
1003 | } else { | |
1004 | if (extract32(spsr, 1, 1)) { | |
1005 | /* Return with reserved M[1] bit set */ | |
1006 | return -1; | |
1007 | } | |
1008 | if (extract32(spsr, 0, 4) == 1) { | |
1009 | /* return to EL0 with M[0] bit set */ | |
1010 | return -1; | |
1011 | } | |
1012 | return extract32(spsr, 2, 2); | |
1013 | } | |
1014 | } | |
1015 | ||
52e60cdd RH |
1016 | void HELPER(exception_return)(CPUARMState *env) |
1017 | { | |
dcbff19b | 1018 | int cur_el = arm_current_el(env); |
db6c3cd0 | 1019 | unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el); |
2a923c4d | 1020 | uint32_t spsr = env->banked_spsr[spsr_idx]; |
ce02049d | 1021 | int new_el; |
3809951b | 1022 | bool return_to_aa64 = (spsr & PSTATE_nRW) == 0; |
52e60cdd | 1023 | |
9208b961 | 1024 | aarch64_save_sp(env, cur_el); |
52e60cdd | 1025 | |
dc3c4c14 | 1026 | arm_clear_exclusive(env); |
52e60cdd | 1027 | |
3a298203 PM |
1028 | /* We must squash the PSTATE.SS bit to zero unless both of the |
1029 | * following hold: | |
1030 | * 1. debug exceptions are currently disabled | |
1031 | * 2. singlestep will be active in the EL we return to | |
1032 | * We check 1 here and 2 after we've done the pstate/cpsr write() to | |
1033 | * transition to the EL we're going to. | |
1034 | */ | |
1035 | if (arm_generate_debug_exceptions(env)) { | |
1036 | spsr &= ~PSTATE_SS; | |
1037 | } | |
1038 | ||
3809951b PM |
1039 | new_el = el_from_spsr(spsr); |
1040 | if (new_el == -1) { | |
1041 | goto illegal_return; | |
1042 | } | |
1043 | if (new_el > cur_el | |
1044 | || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) { | |
1045 | /* Disallow return to an EL which is unimplemented or higher | |
1046 | * than the current one. | |
1047 | */ | |
1048 | goto illegal_return; | |
1049 | } | |
1050 | ||
1051 | if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) { | |
1052 | /* Return to an EL which is configured for a different register width */ | |
1053 | goto illegal_return; | |
1054 | } | |
1055 | ||
e393f339 PM |
1056 | if (new_el == 2 && arm_is_secure_below_el3(env)) { |
1057 | /* Return to the non-existent secure-EL2 */ | |
1058 | goto illegal_return; | |
1059 | } | |
1060 | ||
1061 | if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE) | |
1062 | && !arm_is_secure_below_el3(env)) { | |
1063 | goto illegal_return; | |
1064 | } | |
1065 | ||
3809951b | 1066 | if (!return_to_aa64) { |
52e60cdd | 1067 | env->aarch64 = 0; |
f8c88bbc PM |
1068 | /* We do a raw CPSR write because aarch64_sync_64_to_32() |
1069 | * will sort the register banks out for us, and we've already | |
1070 | * caught all the bad-mode cases in el_from_spsr(). | |
1071 | */ | |
50866ba5 | 1072 | cpsr_write(env, spsr, ~0, CPSRWriteRaw); |
3a298203 PM |
1073 | if (!arm_singlestep_active(env)) { |
1074 | env->uncached_cpsr &= ~PSTATE_SS; | |
1075 | } | |
ce02049d | 1076 | aarch64_sync_64_to_32(env); |
52e60cdd | 1077 | |
c1e03714 PM |
1078 | if (spsr & CPSR_T) { |
1079 | env->regs[15] = env->elr_el[cur_el] & ~0x1; | |
1080 | } else { | |
1081 | env->regs[15] = env->elr_el[cur_el] & ~0x3; | |
1082 | } | |
c9b61d9a PM |
1083 | qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " |
1084 | "AArch32 EL%d PC 0x%" PRIx32 "\n", | |
1085 | cur_el, new_el, env->regs[15]); | |
52e60cdd | 1086 | } else { |
52e60cdd RH |
1087 | env->aarch64 = 1; |
1088 | pstate_write(env, spsr); | |
3a298203 PM |
1089 | if (!arm_singlestep_active(env)) { |
1090 | env->pstate &= ~PSTATE_SS; | |
1091 | } | |
98ea5615 | 1092 | aarch64_restore_sp(env, new_el); |
db6c3cd0 | 1093 | env->pc = env->elr_el[cur_el]; |
c9b61d9a PM |
1094 | qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " |
1095 | "AArch64 EL%d PC 0x%" PRIx64 "\n", | |
1096 | cur_el, new_el, env->pc); | |
52e60cdd RH |
1097 | } |
1098 | ||
8d04fb55 | 1099 | qemu_mutex_lock_iothread(); |
bd7d00fc | 1100 | arm_call_el_change_hook(arm_env_get_cpu(env)); |
8d04fb55 | 1101 | qemu_mutex_unlock_iothread(); |
bd7d00fc | 1102 | |
52e60cdd RH |
1103 | return; |
1104 | ||
1105 | illegal_return: | |
1106 | /* Illegal return events of various kinds have architecturally | |
1107 | * mandated behaviour: | |
1108 | * restore NZCV and DAIF from SPSR_ELx | |
1109 | * set PSTATE.IL | |
1110 | * restore PC from ELR_ELx | |
1111 | * no change to exception level, execution state or stack pointer | |
1112 | */ | |
1113 | env->pstate |= PSTATE_IL; | |
db6c3cd0 | 1114 | env->pc = env->elr_el[cur_el]; |
52e60cdd RH |
1115 | spsr &= PSTATE_NZCV | PSTATE_DAIF; |
1116 | spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); | |
1117 | pstate_write(env, spsr); | |
3a298203 PM |
1118 | if (!arm_singlestep_active(env)) { |
1119 | env->pstate &= ~PSTATE_SS; | |
1120 | } | |
c9b61d9a PM |
1121 | qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: " |
1122 | "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc); | |
52e60cdd RH |
1123 | } |
1124 | ||
3ff6fc91 PM |
1125 | /* Return true if the linked breakpoint entry lbn passes its checks */ |
1126 | static bool linked_bp_matches(ARMCPU *cpu, int lbn) | |
1127 | { | |
1128 | CPUARMState *env = &cpu->env; | |
1129 | uint64_t bcr = env->cp15.dbgbcr[lbn]; | |
1130 | int brps = extract32(cpu->dbgdidr, 24, 4); | |
1131 | int ctx_cmps = extract32(cpu->dbgdidr, 20, 4); | |
1132 | int bt; | |
1133 | uint32_t contextidr; | |
1134 | ||
1135 | /* Links to unimplemented or non-context aware breakpoints are | |
1136 | * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or | |
1137 | * as if linked to an UNKNOWN context-aware breakpoint (in which | |
1138 | * case DBGWCR<n>_EL1.LBN must indicate that breakpoint). | |
1139 | * We choose the former. | |
1140 | */ | |
1141 | if (lbn > brps || lbn < (brps - ctx_cmps)) { | |
1142 | return false; | |
1143 | } | |
1144 | ||
1145 | bcr = env->cp15.dbgbcr[lbn]; | |
1146 | ||
1147 | if (extract64(bcr, 0, 1) == 0) { | |
1148 | /* Linked breakpoint disabled : generate no events */ | |
1149 | return false; | |
1150 | } | |
1151 | ||
1152 | bt = extract64(bcr, 20, 4); | |
1153 | ||
1154 | /* We match the whole register even if this is AArch32 using the | |
1155 | * short descriptor format (in which case it holds both PROCID and ASID), | |
1156 | * since we don't implement the optional v7 context ID masking. | |
1157 | */ | |
54bf36ed | 1158 | contextidr = extract64(env->cp15.contextidr_el[1], 0, 32); |
3ff6fc91 PM |
1159 | |
1160 | switch (bt) { | |
1161 | case 3: /* linked context ID match */ | |
dcbff19b | 1162 | if (arm_current_el(env) > 1) { |
3ff6fc91 PM |
1163 | /* Context matches never fire in EL2 or (AArch64) EL3 */ |
1164 | return false; | |
1165 | } | |
1166 | return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32)); | |
1167 | case 5: /* linked address mismatch (reserved in AArch64) */ | |
1168 | case 9: /* linked VMID match (reserved if no EL2) */ | |
1169 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
1170 | default: | |
1171 | /* Links to Unlinked context breakpoints must generate no | |
1172 | * events; we choose to do the same for reserved values too. | |
1173 | */ | |
1174 | return false; | |
1175 | } | |
1176 | ||
1177 | return false; | |
1178 | } | |
1179 | ||
0eacea70 | 1180 | static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp) |
3ff6fc91 PM |
1181 | { |
1182 | CPUARMState *env = &cpu->env; | |
0eacea70 | 1183 | uint64_t cr; |
3ff6fc91 | 1184 | int pac, hmc, ssc, wt, lbn; |
ef7bab8d PM |
1185 | /* Note that for watchpoints the check is against the CPU security |
1186 | * state, not the S/NS attribute on the offending data access. | |
1187 | */ | |
1188 | bool is_secure = arm_is_secure(env); | |
9e1fc5bd | 1189 | int access_el = arm_current_el(env); |
3ff6fc91 | 1190 | |
0eacea70 | 1191 | if (is_wp) { |
9e1fc5bd PM |
1192 | CPUWatchpoint *wp = env->cpu_watchpoint[n]; |
1193 | ||
1194 | if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) { | |
0eacea70 PM |
1195 | return false; |
1196 | } | |
1197 | cr = env->cp15.dbgwcr[n]; | |
9e1fc5bd PM |
1198 | if (wp->hitattrs.user) { |
1199 | /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should | |
1200 | * match watchpoints as if they were accesses done at EL0, even if | |
1201 | * the CPU is at EL1 or higher. | |
1202 | */ | |
1203 | access_el = 0; | |
1204 | } | |
0eacea70 PM |
1205 | } else { |
1206 | uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; | |
3ff6fc91 | 1207 | |
0eacea70 PM |
1208 | if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) { |
1209 | return false; | |
1210 | } | |
1211 | cr = env->cp15.dbgbcr[n]; | |
1212 | } | |
3ff6fc91 | 1213 | /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is |
0eacea70 PM |
1214 | * enabled and that the address and access type match; for breakpoints |
1215 | * we know the address matched; check the remaining fields, including | |
1216 | * linked breakpoints. We rely on WCR and BCR having the same layout | |
1217 | * for the LBN, SSC, HMC, PAC/PMC and is-linked fields. | |
1218 | * Note that some combinations of {PAC, HMC, SSC} are reserved and | |
3ff6fc91 PM |
1219 | * must act either like some valid combination or as if the watchpoint |
1220 | * were disabled. We choose the former, and use this together with | |
1221 | * the fact that EL3 must always be Secure and EL2 must always be | |
1222 | * Non-Secure to simplify the code slightly compared to the full | |
1223 | * table in the ARM ARM. | |
1224 | */ | |
0eacea70 PM |
1225 | pac = extract64(cr, 1, 2); |
1226 | hmc = extract64(cr, 13, 1); | |
1227 | ssc = extract64(cr, 14, 2); | |
3ff6fc91 PM |
1228 | |
1229 | switch (ssc) { | |
1230 | case 0: | |
1231 | break; | |
1232 | case 1: | |
1233 | case 3: | |
1234 | if (is_secure) { | |
1235 | return false; | |
1236 | } | |
1237 | break; | |
1238 | case 2: | |
1239 | if (!is_secure) { | |
1240 | return false; | |
1241 | } | |
1242 | break; | |
1243 | } | |
1244 | ||
9e1fc5bd | 1245 | switch (access_el) { |
3ff6fc91 PM |
1246 | case 3: |
1247 | case 2: | |
1248 | if (!hmc) { | |
1249 | return false; | |
1250 | } | |
1251 | break; | |
1252 | case 1: | |
1253 | if (extract32(pac, 0, 1) == 0) { | |
1254 | return false; | |
1255 | } | |
1256 | break; | |
1257 | case 0: | |
1258 | if (extract32(pac, 1, 1) == 0) { | |
1259 | return false; | |
1260 | } | |
1261 | break; | |
1262 | default: | |
1263 | g_assert_not_reached(); | |
1264 | } | |
1265 | ||
0eacea70 PM |
1266 | wt = extract64(cr, 20, 1); |
1267 | lbn = extract64(cr, 16, 4); | |
3ff6fc91 PM |
1268 | |
1269 | if (wt && !linked_bp_matches(cpu, lbn)) { | |
1270 | return false; | |
1271 | } | |
1272 | ||
1273 | return true; | |
1274 | } | |
1275 | ||
1276 | static bool check_watchpoints(ARMCPU *cpu) | |
1277 | { | |
1278 | CPUARMState *env = &cpu->env; | |
1279 | int n; | |
1280 | ||
1281 | /* If watchpoints are disabled globally or we can't take debug | |
1282 | * exceptions here then watchpoint firings are ignored. | |
1283 | */ | |
1284 | if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 | |
1285 | || !arm_generate_debug_exceptions(env)) { | |
1286 | return false; | |
1287 | } | |
1288 | ||
1289 | for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) { | |
0eacea70 PM |
1290 | if (bp_wp_matches(cpu, n, true)) { |
1291 | return true; | |
1292 | } | |
1293 | } | |
1294 | return false; | |
1295 | } | |
1296 | ||
1297 | static bool check_breakpoints(ARMCPU *cpu) | |
1298 | { | |
1299 | CPUARMState *env = &cpu->env; | |
1300 | int n; | |
1301 | ||
1302 | /* If breakpoints are disabled globally or we can't take debug | |
1303 | * exceptions here then breakpoint firings are ignored. | |
1304 | */ | |
1305 | if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 | |
1306 | || !arm_generate_debug_exceptions(env)) { | |
1307 | return false; | |
1308 | } | |
1309 | ||
1310 | for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) { | |
1311 | if (bp_wp_matches(cpu, n, false)) { | |
3ff6fc91 PM |
1312 | return true; |
1313 | } | |
1314 | } | |
1315 | return false; | |
1316 | } | |
1317 | ||
5d98bf8f SF |
1318 | void HELPER(check_breakpoints)(CPUARMState *env) |
1319 | { | |
1320 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1321 | ||
1322 | if (check_breakpoints(cpu)) { | |
1323 | HELPER(exception_internal(env, EXCP_DEBUG)); | |
1324 | } | |
1325 | } | |
1326 | ||
3826121d SF |
1327 | bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp) |
1328 | { | |
1329 | /* Called by core code when a CPU watchpoint fires; need to check if this | |
1330 | * is also an architectural watchpoint match. | |
1331 | */ | |
1332 | ARMCPU *cpu = ARM_CPU(cs); | |
1333 | ||
1334 | return check_watchpoints(cpu); | |
1335 | } | |
1336 | ||
40612000 JB |
1337 | vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len) |
1338 | { | |
1339 | ARMCPU *cpu = ARM_CPU(cs); | |
1340 | CPUARMState *env = &cpu->env; | |
1341 | ||
1342 | /* In BE32 system mode, target memory is stored byteswapped (on a | |
1343 | * little-endian host system), and by the time we reach here (via an | |
1344 | * opcode helper) the addresses of subword accesses have been adjusted | |
1345 | * to account for that, which means that watchpoints will not match. | |
1346 | * Undo the adjustment here. | |
1347 | */ | |
1348 | if (arm_sctlr_b(env)) { | |
1349 | if (len == 1) { | |
1350 | addr ^= 3; | |
1351 | } else if (len == 2) { | |
1352 | addr ^= 2; | |
1353 | } | |
1354 | } | |
1355 | ||
1356 | return addr; | |
1357 | } | |
1358 | ||
3ff6fc91 PM |
1359 | void arm_debug_excp_handler(CPUState *cs) |
1360 | { | |
1361 | /* Called by core code when a watchpoint or breakpoint fires; | |
1362 | * need to check which one and raise the appropriate exception. | |
1363 | */ | |
1364 | ARMCPU *cpu = ARM_CPU(cs); | |
1365 | CPUARMState *env = &cpu->env; | |
1366 | CPUWatchpoint *wp_hit = cs->watchpoint_hit; | |
1367 | ||
1368 | if (wp_hit) { | |
1369 | if (wp_hit->flags & BP_CPU) { | |
3826121d SF |
1370 | bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0; |
1371 | bool same_el = arm_debug_target_el(env) == arm_current_el(env); | |
1372 | ||
3ff6fc91 | 1373 | cs->watchpoint_hit = NULL; |
3826121d SF |
1374 | |
1375 | if (extended_addresses_enabled(env)) { | |
1376 | env->exception.fsr = (1 << 9) | 0x22; | |
3ff6fc91 | 1377 | } else { |
3826121d | 1378 | env->exception.fsr = 0x2; |
3ff6fc91 | 1379 | } |
3826121d SF |
1380 | env->exception.vaddress = wp_hit->hitaddr; |
1381 | raise_exception(env, EXCP_DATA_ABORT, | |
1382 | syn_watchpoint(same_el, 0, wnr), | |
1383 | arm_debug_target_el(env)); | |
3ff6fc91 | 1384 | } |
0eacea70 | 1385 | } else { |
e63a2d4d | 1386 | uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; |
5d98bf8f | 1387 | bool same_el = (arm_debug_target_el(env) == arm_current_el(env)); |
e63a2d4d | 1388 | |
5c629f4f SF |
1389 | /* (1) GDB breakpoints should be handled first. |
1390 | * (2) Do not raise a CPU exception if no CPU breakpoint has fired, | |
1391 | * since singlestep is also done by generating a debug internal | |
1392 | * exception. | |
1393 | */ | |
1394 | if (cpu_breakpoint_test(cs, pc, BP_GDB) | |
1395 | || !cpu_breakpoint_test(cs, pc, BP_CPU)) { | |
e63a2d4d SF |
1396 | return; |
1397 | } | |
1398 | ||
5d98bf8f SF |
1399 | if (extended_addresses_enabled(env)) { |
1400 | env->exception.fsr = (1 << 9) | 0x22; | |
1401 | } else { | |
1402 | env->exception.fsr = 0x2; | |
0eacea70 | 1403 | } |
5d98bf8f SF |
1404 | /* FAR is UNKNOWN, so doesn't need setting */ |
1405 | raise_exception(env, EXCP_PREFETCH_ABORT, | |
1406 | syn_breakpoint(same_el), | |
1407 | arm_debug_target_el(env)); | |
3ff6fc91 PM |
1408 | } |
1409 | } | |
1410 | ||
8984bd2e PB |
1411 | /* ??? Flag setting arithmetic is awkward because we need to do comparisons. |
1412 | The only way to do that in TCG is a conditional branch, which clobbers | |
1413 | all our temporaries. For now implement these as helper functions. */ | |
1414 | ||
8984bd2e PB |
1415 | /* Similarly for variable shift instructions. */ |
1416 | ||
9ef39277 | 1417 | uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1418 | { |
1419 | int shift = i & 0xff; | |
1420 | if (shift >= 32) { | |
1421 | if (shift == 32) | |
1422 | env->CF = x & 1; | |
1423 | else | |
1424 | env->CF = 0; | |
1425 | return 0; | |
1426 | } else if (shift != 0) { | |
1427 | env->CF = (x >> (32 - shift)) & 1; | |
1428 | return x << shift; | |
1429 | } | |
1430 | return x; | |
1431 | } | |
1432 | ||
9ef39277 | 1433 | uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1434 | { |
1435 | int shift = i & 0xff; | |
1436 | if (shift >= 32) { | |
1437 | if (shift == 32) | |
1438 | env->CF = (x >> 31) & 1; | |
1439 | else | |
1440 | env->CF = 0; | |
1441 | return 0; | |
1442 | } else if (shift != 0) { | |
1443 | env->CF = (x >> (shift - 1)) & 1; | |
1444 | return x >> shift; | |
1445 | } | |
1446 | return x; | |
1447 | } | |
1448 | ||
9ef39277 | 1449 | uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1450 | { |
1451 | int shift = i & 0xff; | |
1452 | if (shift >= 32) { | |
1453 | env->CF = (x >> 31) & 1; | |
1454 | return (int32_t)x >> 31; | |
1455 | } else if (shift != 0) { | |
1456 | env->CF = (x >> (shift - 1)) & 1; | |
1457 | return (int32_t)x >> shift; | |
1458 | } | |
1459 | return x; | |
1460 | } | |
1461 | ||
9ef39277 | 1462 | uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1463 | { |
1464 | int shift1, shift; | |
1465 | shift1 = i & 0xff; | |
1466 | shift = shift1 & 0x1f; | |
1467 | if (shift == 0) { | |
1468 | if (shift1 != 0) | |
1469 | env->CF = (x >> 31) & 1; | |
1470 | return x; | |
1471 | } else { | |
1472 | env->CF = (x >> (shift - 1)) & 1; | |
1473 | return ((uint32_t)x >> shift) | (x << (32 - shift)); | |
1474 | } | |
1475 | } |