]> Git Repo - qemu.git/blame - target-arm/op_helper.c
scripts: Add new clean-includes script to fix C include directives
[qemu.git] / target-arm / op_helper.c
CommitLineData
b7bcbe95
FB
1/*
2 * ARM helper routines
5fafdf24 3 *
9ee6e8bb 4 * Copyright (c) 2005-2007 CodeSourcery, LLC
b7bcbe95
FB
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
b7bcbe95 18 */
3e457172 19#include "cpu.h"
2ef6175a 20#include "exec/helper-proto.h"
ccd38087 21#include "internals.h"
f08b6170 22#include "exec/cpu_ldst.h"
b7bcbe95 23
ad69471c
PB
24#define SIGNBIT (uint32_t)0x80000000
25#define SIGNBIT64 ((uint64_t)1 << 63)
26
c6328599
PM
27static void raise_exception(CPUARMState *env, uint32_t excp,
28 uint32_t syndrome, uint32_t target_el)
b7bcbe95 29{
c6328599 30 CPUState *cs = CPU(arm_env_get_cpu(env));
27103424 31
c6328599
PM
32 assert(!excp_is_internal(excp));
33 cs->exception_index = excp;
34 env->exception.syndrome = syndrome;
35 env->exception.target_el = target_el;
5638d180 36 cpu_loop_exit(cs);
b7bcbe95
FB
37}
38
e3b1d480
GB
39static int exception_target_el(CPUARMState *env)
40{
41 int target_el = MAX(1, arm_current_el(env));
42
43 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
44 * to EL3 in this case.
45 */
46 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
47 target_el = 3;
48 }
49
50 return target_el;
51}
52
9ef39277 53uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
8f8e3aa4 54 uint32_t rn, uint32_t maxindex)
9ee6e8bb
PB
55{
56 uint32_t val;
9ee6e8bb
PB
57 uint32_t tmp;
58 int index;
59 int shift;
60 uint64_t *table;
61 table = (uint64_t *)&env->vfp.regs[rn];
62 val = 0;
9ee6e8bb 63 for (shift = 0; shift < 32; shift += 8) {
8f8e3aa4
PB
64 index = (ireg >> shift) & 0xff;
65 if (index < maxindex) {
3018f259 66 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
9ee6e8bb
PB
67 val |= tmp << shift;
68 } else {
8f8e3aa4 69 val |= def & (0xff << shift);
9ee6e8bb
PB
70 }
71 }
8f8e3aa4 72 return val;
9ee6e8bb
PB
73}
74
b5ff1b31
FB
75#if !defined(CONFIG_USER_ONLY)
76
b5ff1b31 77/* try to fill the TLB and return an exception if error. If retaddr is
d5a11fef
AF
78 * NULL, it means that the function was called in C code (i.e. not
79 * from generated code or from helper.c)
80 */
81void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
20503968 82 uintptr_t retaddr)
b5ff1b31 83{
b7cc4e82
PC
84 bool ret;
85 uint32_t fsr = 0;
e14b5a23 86 ARMMMUFaultInfo fi = {};
b5ff1b31 87
e14b5a23 88 ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi);
551bd27f 89 if (unlikely(ret)) {
d5a11fef
AF
90 ARMCPU *cpu = ARM_CPU(cs);
91 CPUARMState *env = &cpu->env;
8c6084bf 92 uint32_t syn, exc;
d759a457
EI
93 unsigned int target_el;
94 bool same_el;
d5a11fef 95
b5ff1b31
FB
96 if (retaddr) {
97 /* now we have a real cpu fault */
3f38f309 98 cpu_restore_state(cs, retaddr);
b5ff1b31 99 }
8c6084bf 100
d759a457
EI
101 target_el = exception_target_el(env);
102 if (fi.stage2) {
103 target_el = 2;
9b539263 104 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
d759a457
EI
105 }
106 same_el = arm_current_el(env) == target_el;
8c6084bf 107 /* AArch64 syndrome does not have an LPAE bit */
b7cc4e82 108 syn = fsr & ~(1 << 9);
8c6084bf
PM
109
110 /* For insn and data aborts we assume there is no instruction syndrome
111 * information; this is always true for exceptions reported to EL1.
112 */
113 if (is_write == 2) {
37785977 114 syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
8c6084bf
PM
115 exc = EXCP_PREFETCH_ABORT;
116 } else {
37785977 117 syn = syn_data_abort(same_el, 0, 0, fi.s1ptw, is_write == 1, syn);
8c6084bf 118 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
b7cc4e82 119 fsr |= (1 << 11);
8c6084bf
PM
120 }
121 exc = EXCP_DATA_ABORT;
122 }
123
8c6084bf 124 env->exception.vaddress = addr;
b7cc4e82 125 env->exception.fsr = fsr;
d759a457 126 raise_exception(env, exc, syn, target_el);
b5ff1b31 127 }
b5ff1b31 128}
30901475
AB
129
130/* Raise a data fault alignment exception for the specified virtual address */
131void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write,
132 int is_user, uintptr_t retaddr)
133{
134 ARMCPU *cpu = ARM_CPU(cs);
135 CPUARMState *env = &cpu->env;
136 int target_el;
137 bool same_el;
138
139 if (retaddr) {
140 /* now we have a real cpu fault */
141 cpu_restore_state(cs, retaddr);
142 }
143
144 target_el = exception_target_el(env);
145 same_el = (arm_current_el(env) == target_el);
146
147 env->exception.vaddress = vaddr;
148
149 /* the DFSR for an alignment fault depends on whether we're using
150 * the LPAE long descriptor format, or the short descriptor format
151 */
deb2db99 152 if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
30901475
AB
153 env->exception.fsr = 0x21;
154 } else {
155 env->exception.fsr = 0x1;
156 }
157
158 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
159 env->exception.fsr |= (1 << 11);
160 }
161
162 raise_exception(env, EXCP_DATA_ABORT,
163 syn_data_abort(same_el, 0, 0, 0, is_write == 1, 0x21),
164 target_el);
165}
166
167#endif /* !defined(CONFIG_USER_ONLY) */
1497c961 168
9ef39277 169uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
1497c961
PB
170{
171 uint32_t res = a + b;
172 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
173 env->QF = 1;
174 return res;
175}
176
9ef39277 177uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
1497c961
PB
178{
179 uint32_t res = a + b;
180 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
181 env->QF = 1;
182 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
183 }
184 return res;
185}
186
9ef39277 187uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
1497c961
PB
188{
189 uint32_t res = a - b;
190 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
191 env->QF = 1;
192 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
193 }
194 return res;
195}
196
9ef39277 197uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
1497c961
PB
198{
199 uint32_t res;
200 if (val >= 0x40000000) {
201 res = ~SIGNBIT;
202 env->QF = 1;
203 } else if (val <= (int32_t)0xc0000000) {
204 res = SIGNBIT;
205 env->QF = 1;
206 } else {
207 res = val << 1;
208 }
209 return res;
210}
211
9ef39277 212uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
1497c961
PB
213{
214 uint32_t res = a + b;
215 if (res < a) {
216 env->QF = 1;
217 res = ~0;
218 }
219 return res;
220}
221
9ef39277 222uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
1497c961
PB
223{
224 uint32_t res = a - b;
225 if (res > a) {
226 env->QF = 1;
227 res = 0;
228 }
229 return res;
230}
231
6ddbc6e4 232/* Signed saturation. */
9ef39277 233static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
6ddbc6e4
PB
234{
235 int32_t top;
236 uint32_t mask;
237
6ddbc6e4
PB
238 top = val >> shift;
239 mask = (1u << shift) - 1;
240 if (top > 0) {
241 env->QF = 1;
242 return mask;
243 } else if (top < -1) {
244 env->QF = 1;
245 return ~mask;
246 }
247 return val;
248}
249
250/* Unsigned saturation. */
9ef39277 251static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
6ddbc6e4
PB
252{
253 uint32_t max;
254
6ddbc6e4
PB
255 max = (1u << shift) - 1;
256 if (val < 0) {
257 env->QF = 1;
258 return 0;
259 } else if (val > max) {
260 env->QF = 1;
261 return max;
262 }
263 return val;
264}
265
266/* Signed saturate. */
9ef39277 267uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
6ddbc6e4 268{
9ef39277 269 return do_ssat(env, x, shift);
6ddbc6e4
PB
270}
271
272/* Dual halfword signed saturate. */
9ef39277 273uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
6ddbc6e4
PB
274{
275 uint32_t res;
276
9ef39277
BS
277 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
278 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
6ddbc6e4
PB
279 return res;
280}
281
282/* Unsigned saturate. */
9ef39277 283uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
6ddbc6e4 284{
9ef39277 285 return do_usat(env, x, shift);
6ddbc6e4
PB
286}
287
288/* Dual halfword unsigned saturate. */
9ef39277 289uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
6ddbc6e4
PB
290{
291 uint32_t res;
292
9ef39277
BS
293 res = (uint16_t)do_usat(env, (int16_t)x, shift);
294 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
6ddbc6e4
PB
295 return res;
296}
d9ba4830 297
b1eced71
GB
298/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
299 * The function returns the target EL (1-3) if the instruction is to be trapped;
300 * otherwise it returns 0 indicating it is not trapped.
301 */
302static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
303{
304 int cur_el = arm_current_el(env);
305 uint64_t mask;
306
307 /* If we are currently in EL0 then we need to check if SCTLR is set up for
308 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
309 */
310 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
311 int target_el;
312
313 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
314 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
315 /* Secure EL0 and Secure PL1 is at EL3 */
316 target_el = 3;
317 } else {
318 target_el = 1;
319 }
320
321 if (!(env->cp15.sctlr_el[target_el] & mask)) {
322 return target_el;
323 }
324 }
325
326 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
327 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
328 * bits will be zero indicating no trap.
329 */
330 if (cur_el < 2 && !arm_is_secure(env)) {
331 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
332 if (env->cp15.hcr_el2 & mask) {
333 return 2;
334 }
335 }
336
337 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
338 if (cur_el < 3) {
339 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
340 if (env->cp15.scr_el3 & mask) {
341 return 3;
342 }
343 }
344
345 return 0;
346}
347
1ce94f81 348void HELPER(wfi)(CPUARMState *env)
d9ba4830 349{
259186a7 350 CPUState *cs = CPU(arm_env_get_cpu(env));
b1eced71 351 int target_el = check_wfx_trap(env, false);
259186a7 352
84549b6d
PM
353 if (cpu_has_work(cs)) {
354 /* Don't bother to go into our "low power state" if
355 * we would just wake up immediately.
356 */
357 return;
358 }
359
b1eced71
GB
360 if (target_el) {
361 env->pc -= 4;
362 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
363 }
364
27103424 365 cs->exception_index = EXCP_HLT;
259186a7 366 cs->halted = 1;
5638d180 367 cpu_loop_exit(cs);
d9ba4830
PB
368}
369
72c1d3af
PM
370void HELPER(wfe)(CPUARMState *env)
371{
049e24a1
PM
372 /* This is a hint instruction that is semantically different
373 * from YIELD even though we currently implement it identically.
374 * Don't actually halt the CPU, just yield back to top
b1eced71
GB
375 * level loop. This is not going into a "low power state"
376 * (ie halting until some event occurs), so we never take
377 * a configurable trap to a different exception level.
72c1d3af 378 */
049e24a1
PM
379 HELPER(yield)(env);
380}
381
382void HELPER(yield)(CPUARMState *env)
383{
384 ARMCPU *cpu = arm_env_get_cpu(env);
385 CPUState *cs = CPU(cpu);
386
387 /* This is a non-trappable hint instruction that generally indicates
388 * that the guest is currently busy-looping. Yield control back to the
389 * top level loop so that a more deserving VCPU has a chance to run.
390 */
27103424 391 cs->exception_index = EXCP_YIELD;
5638d180 392 cpu_loop_exit(cs);
72c1d3af
PM
393}
394
d4a2dc67
PM
395/* Raise an internal-to-QEMU exception. This is limited to only
396 * those EXCP values which are special cases for QEMU to interrupt
397 * execution and not to be used for exceptions which are passed to
398 * the guest (those must all have syndrome information and thus should
399 * use exception_with_syndrome).
400 */
401void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
402{
403 CPUState *cs = CPU(arm_env_get_cpu(env));
404
405 assert(excp_is_internal(excp));
406 cs->exception_index = excp;
407 cpu_loop_exit(cs);
408}
409
410/* Raise an exception with the specified syndrome register value */
411void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
73710361 412 uint32_t syndrome, uint32_t target_el)
d9ba4830 413{
c6328599 414 raise_exception(env, excp, syndrome, target_el);
d9ba4830
PB
415}
416
9ef39277 417uint32_t HELPER(cpsr_read)(CPUARMState *env)
d9ba4830 418{
4051e12c 419 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
d9ba4830
PB
420}
421
1ce94f81 422void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
d9ba4830
PB
423{
424 cpsr_write(env, val, mask);
425}
b0109805
PB
426
427/* Access to user mode registers from privileged modes. */
9ef39277 428uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
b0109805
PB
429{
430 uint32_t val;
431
432 if (regno == 13) {
99a99c1f 433 val = env->banked_r13[BANK_USRSYS];
b0109805 434 } else if (regno == 14) {
99a99c1f 435 val = env->banked_r14[BANK_USRSYS];
b0109805
PB
436 } else if (regno >= 8
437 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
438 val = env->usr_regs[regno - 8];
439 } else {
440 val = env->regs[regno];
441 }
442 return val;
443}
444
1ce94f81 445void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
b0109805
PB
446{
447 if (regno == 13) {
99a99c1f 448 env->banked_r13[BANK_USRSYS] = val;
b0109805 449 } else if (regno == 14) {
99a99c1f 450 env->banked_r14[BANK_USRSYS] = val;
b0109805
PB
451 } else if (regno >= 8
452 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
453 env->usr_regs[regno - 8] = val;
454 } else {
455 env->regs[regno] = val;
456 }
457}
4b6a83fb 458
8bcbf37c 459void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome)
f59df3f2
PM
460{
461 const ARMCPRegInfo *ri = rip;
38836a2c 462 int target_el;
c0f4af17
PM
463
464 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
465 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
c6328599 466 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
c0f4af17
PM
467 }
468
469 if (!ri->accessfn) {
470 return;
471 }
472
f59df3f2
PM
473 switch (ri->accessfn(env, ri)) {
474 case CP_ACCESS_OK:
475 return;
476 case CP_ACCESS_TRAP:
38836a2c
PM
477 target_el = exception_target_el(env);
478 break;
479 case CP_ACCESS_TRAP_EL2:
480 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
481 * a bug in the access function.
482 */
3fc827d5 483 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
38836a2c
PM
484 target_el = 2;
485 break;
486 case CP_ACCESS_TRAP_EL3:
487 target_el = 3;
8bcbf37c 488 break;
f59df3f2 489 case CP_ACCESS_TRAP_UNCATEGORIZED:
38836a2c 490 target_el = exception_target_el(env);
c6328599 491 syndrome = syn_uncategorized();
f59df3f2 492 break;
e7615726
PM
493 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
494 target_el = 2;
495 syndrome = syn_uncategorized();
496 break;
497 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
498 target_el = 3;
499 syndrome = syn_uncategorized();
500 break;
f59df3f2
PM
501 default:
502 g_assert_not_reached();
503 }
c6328599 504
38836a2c 505 raise_exception(env, EXCP_UDEF, syndrome, target_el);
f59df3f2
PM
506}
507
4b6a83fb
PM
508void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
509{
510 const ARMCPRegInfo *ri = rip;
c4241c7d
PM
511
512 ri->writefn(env, ri, value);
4b6a83fb
PM
513}
514
515uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
516{
517 const ARMCPRegInfo *ri = rip;
c4241c7d
PM
518
519 return ri->readfn(env, ri);
4b6a83fb
PM
520}
521
522void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
523{
524 const ARMCPRegInfo *ri = rip;
c4241c7d
PM
525
526 ri->writefn(env, ri, value);
4b6a83fb
PM
527}
528
529uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
530{
531 const ARMCPRegInfo *ri = rip;
c4241c7d
PM
532
533 return ri->readfn(env, ri);
4b6a83fb 534}
b0109805 535
9cfa0b4e
PM
536void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
537{
538 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
539 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
540 * to catch that case at translate time.
541 */
137feaa9 542 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c6328599
PM
543 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
544 extract32(op, 3, 3), 4,
545 imm, 0x1f, 0);
546 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
9cfa0b4e
PM
547 }
548
549 switch (op) {
550 case 0x05: /* SPSel */
f502cfc2 551 update_spsel(env, imm);
9cfa0b4e
PM
552 break;
553 case 0x1e: /* DAIFSet */
554 env->daif |= (imm << 6) & PSTATE_DAIF;
555 break;
556 case 0x1f: /* DAIFClear */
557 env->daif &= ~((imm << 6) & PSTATE_DAIF);
558 break;
559 default:
560 g_assert_not_reached();
561 }
562}
563
7ea47fe7
PM
564void HELPER(clear_pstate_ss)(CPUARMState *env)
565{
566 env->pstate &= ~PSTATE_SS;
567}
568
35979d71
EI
569void HELPER(pre_hvc)(CPUARMState *env)
570{
98128601 571 ARMCPU *cpu = arm_env_get_cpu(env);
dcbff19b 572 int cur_el = arm_current_el(env);
35979d71
EI
573 /* FIXME: Use actual secure state. */
574 bool secure = false;
575 bool undef;
576
98128601
RH
577 if (arm_is_psci_call(cpu, EXCP_HVC)) {
578 /* If PSCI is enabled and this looks like a valid PSCI call then
579 * that overrides the architecturally mandated HVC behaviour.
580 */
581 return;
582 }
583
39404338
PM
584 if (!arm_feature(env, ARM_FEATURE_EL2)) {
585 /* If EL2 doesn't exist, HVC always UNDEFs */
586 undef = true;
587 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
588 /* EL3.HCE has priority over EL2.HCD. */
35979d71
EI
589 undef = !(env->cp15.scr_el3 & SCR_HCE);
590 } else {
591 undef = env->cp15.hcr_el2 & HCR_HCD;
592 }
593
594 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
595 * For ARMv8/AArch64, HVC is allowed in EL3.
596 * Note that we've already trapped HVC from EL0 at translation
597 * time.
598 */
599 if (secure && (!is_a64(env) || cur_el == 1)) {
600 undef = true;
601 }
602
603 if (undef) {
c6328599
PM
604 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
605 exception_target_el(env));
35979d71
EI
606 }
607}
608
e0d6e6a5
EI
609void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
610{
98128601 611 ARMCPU *cpu = arm_env_get_cpu(env);
dcbff19b 612 int cur_el = arm_current_el(env);
dbe9d163 613 bool secure = arm_is_secure(env);
e0d6e6a5
EI
614 bool smd = env->cp15.scr_el3 & SCR_SMD;
615 /* On ARMv8 AArch32, SMD only applies to NS state.
616 * On ARMv7 SMD only applies to NS state and only if EL2 is available.
617 * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
618 * the EL2 condition here.
619 */
620 bool undef = is_a64(env) ? smd : (!secure && smd);
621
98128601
RH
622 if (arm_is_psci_call(cpu, EXCP_SMC)) {
623 /* If PSCI is enabled and this looks like a valid PSCI call then
624 * that overrides the architecturally mandated SMC behaviour.
625 */
626 return;
627 }
628
39404338
PM
629 if (!arm_feature(env, ARM_FEATURE_EL3)) {
630 /* If we have no EL3 then SMC always UNDEFs */
631 undef = true;
632 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
633 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
c6328599 634 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
e0d6e6a5
EI
635 }
636
e0d6e6a5 637 if (undef) {
c6328599
PM
638 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
639 exception_target_el(env));
e0d6e6a5
EI
640 }
641}
642
52e60cdd
RH
643void HELPER(exception_return)(CPUARMState *env)
644{
dcbff19b 645 int cur_el = arm_current_el(env);
db6c3cd0 646 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
2a923c4d 647 uint32_t spsr = env->banked_spsr[spsr_idx];
ce02049d 648 int new_el;
52e60cdd 649
9208b961 650 aarch64_save_sp(env, cur_el);
52e60cdd
RH
651
652 env->exclusive_addr = -1;
653
3a298203
PM
654 /* We must squash the PSTATE.SS bit to zero unless both of the
655 * following hold:
656 * 1. debug exceptions are currently disabled
657 * 2. singlestep will be active in the EL we return to
658 * We check 1 here and 2 after we've done the pstate/cpsr write() to
659 * transition to the EL we're going to.
660 */
661 if (arm_generate_debug_exceptions(env)) {
662 spsr &= ~PSTATE_SS;
663 }
664
52e60cdd 665 if (spsr & PSTATE_nRW) {
db6c3cd0 666 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
52e60cdd
RH
667 env->aarch64 = 0;
668 new_el = 0;
669 env->uncached_cpsr = 0x10;
670 cpsr_write(env, spsr, ~0);
3a298203
PM
671 if (!arm_singlestep_active(env)) {
672 env->uncached_cpsr &= ~PSTATE_SS;
673 }
ce02049d 674 aarch64_sync_64_to_32(env);
52e60cdd 675
6947f059 676 env->regs[15] = env->elr_el[1] & ~0x1;
52e60cdd
RH
677 } else {
678 new_el = extract32(spsr, 2, 2);
7ab6c10d
EI
679 if (new_el > cur_el
680 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
681 /* Disallow return to an EL which is unimplemented or higher
682 * than the current one.
683 */
52e60cdd
RH
684 goto illegal_return;
685 }
686 if (extract32(spsr, 1, 1)) {
687 /* Return with reserved M[1] bit set */
688 goto illegal_return;
689 }
690 if (new_el == 0 && (spsr & PSTATE_SP)) {
37f0806e 691 /* Return to EL0 with M[0] bit set */
52e60cdd
RH
692 goto illegal_return;
693 }
694 env->aarch64 = 1;
695 pstate_write(env, spsr);
3a298203
PM
696 if (!arm_singlestep_active(env)) {
697 env->pstate &= ~PSTATE_SS;
698 }
98ea5615 699 aarch64_restore_sp(env, new_el);
db6c3cd0 700 env->pc = env->elr_el[cur_el];
52e60cdd
RH
701 }
702
703 return;
704
705illegal_return:
706 /* Illegal return events of various kinds have architecturally
707 * mandated behaviour:
708 * restore NZCV and DAIF from SPSR_ELx
709 * set PSTATE.IL
710 * restore PC from ELR_ELx
711 * no change to exception level, execution state or stack pointer
712 */
713 env->pstate |= PSTATE_IL;
db6c3cd0 714 env->pc = env->elr_el[cur_el];
52e60cdd
RH
715 spsr &= PSTATE_NZCV | PSTATE_DAIF;
716 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
717 pstate_write(env, spsr);
3a298203
PM
718 if (!arm_singlestep_active(env)) {
719 env->pstate &= ~PSTATE_SS;
720 }
52e60cdd
RH
721}
722
3ff6fc91
PM
723/* Return true if the linked breakpoint entry lbn passes its checks */
724static bool linked_bp_matches(ARMCPU *cpu, int lbn)
725{
726 CPUARMState *env = &cpu->env;
727 uint64_t bcr = env->cp15.dbgbcr[lbn];
728 int brps = extract32(cpu->dbgdidr, 24, 4);
729 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
730 int bt;
731 uint32_t contextidr;
732
733 /* Links to unimplemented or non-context aware breakpoints are
734 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
735 * as if linked to an UNKNOWN context-aware breakpoint (in which
736 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
737 * We choose the former.
738 */
739 if (lbn > brps || lbn < (brps - ctx_cmps)) {
740 return false;
741 }
742
743 bcr = env->cp15.dbgbcr[lbn];
744
745 if (extract64(bcr, 0, 1) == 0) {
746 /* Linked breakpoint disabled : generate no events */
747 return false;
748 }
749
750 bt = extract64(bcr, 20, 4);
751
752 /* We match the whole register even if this is AArch32 using the
753 * short descriptor format (in which case it holds both PROCID and ASID),
754 * since we don't implement the optional v7 context ID masking.
755 */
54bf36ed 756 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
3ff6fc91
PM
757
758 switch (bt) {
759 case 3: /* linked context ID match */
dcbff19b 760 if (arm_current_el(env) > 1) {
3ff6fc91
PM
761 /* Context matches never fire in EL2 or (AArch64) EL3 */
762 return false;
763 }
764 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
765 case 5: /* linked address mismatch (reserved in AArch64) */
766 case 9: /* linked VMID match (reserved if no EL2) */
767 case 11: /* linked context ID and VMID match (reserved if no EL2) */
768 default:
769 /* Links to Unlinked context breakpoints must generate no
770 * events; we choose to do the same for reserved values too.
771 */
772 return false;
773 }
774
775 return false;
776}
777
0eacea70 778static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
3ff6fc91
PM
779{
780 CPUARMState *env = &cpu->env;
0eacea70 781 uint64_t cr;
3ff6fc91 782 int pac, hmc, ssc, wt, lbn;
ef7bab8d
PM
783 /* Note that for watchpoints the check is against the CPU security
784 * state, not the S/NS attribute on the offending data access.
785 */
786 bool is_secure = arm_is_secure(env);
9e1fc5bd 787 int access_el = arm_current_el(env);
3ff6fc91 788
0eacea70 789 if (is_wp) {
9e1fc5bd
PM
790 CPUWatchpoint *wp = env->cpu_watchpoint[n];
791
792 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
0eacea70
PM
793 return false;
794 }
795 cr = env->cp15.dbgwcr[n];
9e1fc5bd
PM
796 if (wp->hitattrs.user) {
797 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
798 * match watchpoints as if they were accesses done at EL0, even if
799 * the CPU is at EL1 or higher.
800 */
801 access_el = 0;
802 }
0eacea70
PM
803 } else {
804 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
3ff6fc91 805
0eacea70
PM
806 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
807 return false;
808 }
809 cr = env->cp15.dbgbcr[n];
810 }
3ff6fc91 811 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
0eacea70
PM
812 * enabled and that the address and access type match; for breakpoints
813 * we know the address matched; check the remaining fields, including
814 * linked breakpoints. We rely on WCR and BCR having the same layout
815 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
816 * Note that some combinations of {PAC, HMC, SSC} are reserved and
3ff6fc91
PM
817 * must act either like some valid combination or as if the watchpoint
818 * were disabled. We choose the former, and use this together with
819 * the fact that EL3 must always be Secure and EL2 must always be
820 * Non-Secure to simplify the code slightly compared to the full
821 * table in the ARM ARM.
822 */
0eacea70
PM
823 pac = extract64(cr, 1, 2);
824 hmc = extract64(cr, 13, 1);
825 ssc = extract64(cr, 14, 2);
3ff6fc91
PM
826
827 switch (ssc) {
828 case 0:
829 break;
830 case 1:
831 case 3:
832 if (is_secure) {
833 return false;
834 }
835 break;
836 case 2:
837 if (!is_secure) {
838 return false;
839 }
840 break;
841 }
842
9e1fc5bd 843 switch (access_el) {
3ff6fc91
PM
844 case 3:
845 case 2:
846 if (!hmc) {
847 return false;
848 }
849 break;
850 case 1:
851 if (extract32(pac, 0, 1) == 0) {
852 return false;
853 }
854 break;
855 case 0:
856 if (extract32(pac, 1, 1) == 0) {
857 return false;
858 }
859 break;
860 default:
861 g_assert_not_reached();
862 }
863
0eacea70
PM
864 wt = extract64(cr, 20, 1);
865 lbn = extract64(cr, 16, 4);
3ff6fc91
PM
866
867 if (wt && !linked_bp_matches(cpu, lbn)) {
868 return false;
869 }
870
871 return true;
872}
873
874static bool check_watchpoints(ARMCPU *cpu)
875{
876 CPUARMState *env = &cpu->env;
877 int n;
878
879 /* If watchpoints are disabled globally or we can't take debug
880 * exceptions here then watchpoint firings are ignored.
881 */
882 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
883 || !arm_generate_debug_exceptions(env)) {
884 return false;
885 }
886
887 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
0eacea70
PM
888 if (bp_wp_matches(cpu, n, true)) {
889 return true;
890 }
891 }
892 return false;
893}
894
895static bool check_breakpoints(ARMCPU *cpu)
896{
897 CPUARMState *env = &cpu->env;
898 int n;
899
900 /* If breakpoints are disabled globally or we can't take debug
901 * exceptions here then breakpoint firings are ignored.
902 */
903 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
904 || !arm_generate_debug_exceptions(env)) {
905 return false;
906 }
907
908 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
909 if (bp_wp_matches(cpu, n, false)) {
3ff6fc91
PM
910 return true;
911 }
912 }
913 return false;
914}
915
5d98bf8f
SF
916void HELPER(check_breakpoints)(CPUARMState *env)
917{
918 ARMCPU *cpu = arm_env_get_cpu(env);
919
920 if (check_breakpoints(cpu)) {
921 HELPER(exception_internal(env, EXCP_DEBUG));
922 }
923}
924
3ff6fc91
PM
925void arm_debug_excp_handler(CPUState *cs)
926{
927 /* Called by core code when a watchpoint or breakpoint fires;
928 * need to check which one and raise the appropriate exception.
929 */
930 ARMCPU *cpu = ARM_CPU(cs);
931 CPUARMState *env = &cpu->env;
932 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
933
934 if (wp_hit) {
935 if (wp_hit->flags & BP_CPU) {
936 cs->watchpoint_hit = NULL;
937 if (check_watchpoints(cpu)) {
938 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
dcbff19b 939 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
3ff6fc91 940
3ff6fc91
PM
941 if (extended_addresses_enabled(env)) {
942 env->exception.fsr = (1 << 9) | 0x22;
943 } else {
944 env->exception.fsr = 0x2;
945 }
946 env->exception.vaddress = wp_hit->hitaddr;
c6328599
PM
947 raise_exception(env, EXCP_DATA_ABORT,
948 syn_watchpoint(same_el, 0, wnr),
949 arm_debug_target_el(env));
3ff6fc91
PM
950 } else {
951 cpu_resume_from_signal(cs, NULL);
952 }
953 }
0eacea70 954 } else {
e63a2d4d 955 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
5d98bf8f 956 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
e63a2d4d 957
5c629f4f
SF
958 /* (1) GDB breakpoints should be handled first.
959 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
960 * since singlestep is also done by generating a debug internal
961 * exception.
962 */
963 if (cpu_breakpoint_test(cs, pc, BP_GDB)
964 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
e63a2d4d
SF
965 return;
966 }
967
5d98bf8f
SF
968 if (extended_addresses_enabled(env)) {
969 env->exception.fsr = (1 << 9) | 0x22;
970 } else {
971 env->exception.fsr = 0x2;
0eacea70 972 }
5d98bf8f
SF
973 /* FAR is UNKNOWN, so doesn't need setting */
974 raise_exception(env, EXCP_PREFETCH_ABORT,
975 syn_breakpoint(same_el),
976 arm_debug_target_el(env));
3ff6fc91
PM
977 }
978}
979
8984bd2e
PB
980/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
981 The only way to do that in TCG is a conditional branch, which clobbers
982 all our temporaries. For now implement these as helper functions. */
983
8984bd2e
PB
984/* Similarly for variable shift instructions. */
985
9ef39277 986uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
8984bd2e
PB
987{
988 int shift = i & 0xff;
989 if (shift >= 32) {
990 if (shift == 32)
991 env->CF = x & 1;
992 else
993 env->CF = 0;
994 return 0;
995 } else if (shift != 0) {
996 env->CF = (x >> (32 - shift)) & 1;
997 return x << shift;
998 }
999 return x;
1000}
1001
9ef39277 1002uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
8984bd2e
PB
1003{
1004 int shift = i & 0xff;
1005 if (shift >= 32) {
1006 if (shift == 32)
1007 env->CF = (x >> 31) & 1;
1008 else
1009 env->CF = 0;
1010 return 0;
1011 } else if (shift != 0) {
1012 env->CF = (x >> (shift - 1)) & 1;
1013 return x >> shift;
1014 }
1015 return x;
1016}
1017
9ef39277 1018uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
8984bd2e
PB
1019{
1020 int shift = i & 0xff;
1021 if (shift >= 32) {
1022 env->CF = (x >> 31) & 1;
1023 return (int32_t)x >> 31;
1024 } else if (shift != 0) {
1025 env->CF = (x >> (shift - 1)) & 1;
1026 return (int32_t)x >> shift;
1027 }
1028 return x;
1029}
1030
9ef39277 1031uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
8984bd2e
PB
1032{
1033 int shift1, shift;
1034 shift1 = i & 0xff;
1035 shift = shift1 & 0x1f;
1036 if (shift == 0) {
1037 if (shift1 != 0)
1038 env->CF = (x >> 31) & 1;
1039 return x;
1040 } else {
1041 env->CF = (x >> (shift - 1)) & 1;
1042 return ((uint32_t)x >> shift) | (x << (32 - shift));
1043 }
1044}
This page took 1.089998 seconds and 4 git commands to generate.