]>
Commit | Line | Data |
---|---|---|
b7bcbe95 FB |
1 | /* |
2 | * ARM helper routines | |
5fafdf24 | 3 | * |
9ee6e8bb | 4 | * Copyright (c) 2005-2007 CodeSourcery, LLC |
b7bcbe95 FB |
5 | * |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
b7bcbe95 | 18 | */ |
3e457172 | 19 | #include "cpu.h" |
2ef6175a | 20 | #include "exec/helper-proto.h" |
ccd38087 | 21 | #include "internals.h" |
f08b6170 | 22 | #include "exec/cpu_ldst.h" |
b7bcbe95 | 23 | |
ad69471c PB |
24 | #define SIGNBIT (uint32_t)0x80000000 |
25 | #define SIGNBIT64 ((uint64_t)1 << 63) | |
26 | ||
c6328599 PM |
27 | static void raise_exception(CPUARMState *env, uint32_t excp, |
28 | uint32_t syndrome, uint32_t target_el) | |
b7bcbe95 | 29 | { |
c6328599 | 30 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
27103424 | 31 | |
c6328599 PM |
32 | assert(!excp_is_internal(excp)); |
33 | cs->exception_index = excp; | |
34 | env->exception.syndrome = syndrome; | |
35 | env->exception.target_el = target_el; | |
5638d180 | 36 | cpu_loop_exit(cs); |
b7bcbe95 FB |
37 | } |
38 | ||
e3b1d480 GB |
39 | static int exception_target_el(CPUARMState *env) |
40 | { | |
41 | int target_el = MAX(1, arm_current_el(env)); | |
42 | ||
43 | /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL | |
44 | * to EL3 in this case. | |
45 | */ | |
46 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { | |
47 | target_el = 3; | |
48 | } | |
49 | ||
50 | return target_el; | |
51 | } | |
52 | ||
9ef39277 | 53 | uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def, |
8f8e3aa4 | 54 | uint32_t rn, uint32_t maxindex) |
9ee6e8bb PB |
55 | { |
56 | uint32_t val; | |
9ee6e8bb PB |
57 | uint32_t tmp; |
58 | int index; | |
59 | int shift; | |
60 | uint64_t *table; | |
61 | table = (uint64_t *)&env->vfp.regs[rn]; | |
62 | val = 0; | |
9ee6e8bb | 63 | for (shift = 0; shift < 32; shift += 8) { |
8f8e3aa4 PB |
64 | index = (ireg >> shift) & 0xff; |
65 | if (index < maxindex) { | |
3018f259 | 66 | tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff; |
9ee6e8bb PB |
67 | val |= tmp << shift; |
68 | } else { | |
8f8e3aa4 | 69 | val |= def & (0xff << shift); |
9ee6e8bb PB |
70 | } |
71 | } | |
8f8e3aa4 | 72 | return val; |
9ee6e8bb PB |
73 | } |
74 | ||
b5ff1b31 FB |
75 | #if !defined(CONFIG_USER_ONLY) |
76 | ||
b5ff1b31 | 77 | /* try to fill the TLB and return an exception if error. If retaddr is |
d5a11fef AF |
78 | * NULL, it means that the function was called in C code (i.e. not |
79 | * from generated code or from helper.c) | |
80 | */ | |
81 | void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx, | |
20503968 | 82 | uintptr_t retaddr) |
b5ff1b31 | 83 | { |
b7cc4e82 PC |
84 | bool ret; |
85 | uint32_t fsr = 0; | |
e14b5a23 | 86 | ARMMMUFaultInfo fi = {}; |
b5ff1b31 | 87 | |
e14b5a23 | 88 | ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi); |
551bd27f | 89 | if (unlikely(ret)) { |
d5a11fef AF |
90 | ARMCPU *cpu = ARM_CPU(cs); |
91 | CPUARMState *env = &cpu->env; | |
8c6084bf | 92 | uint32_t syn, exc; |
d759a457 EI |
93 | unsigned int target_el; |
94 | bool same_el; | |
d5a11fef | 95 | |
b5ff1b31 FB |
96 | if (retaddr) { |
97 | /* now we have a real cpu fault */ | |
3f38f309 | 98 | cpu_restore_state(cs, retaddr); |
b5ff1b31 | 99 | } |
8c6084bf | 100 | |
d759a457 EI |
101 | target_el = exception_target_el(env); |
102 | if (fi.stage2) { | |
103 | target_el = 2; | |
9b539263 | 104 | env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; |
d759a457 EI |
105 | } |
106 | same_el = arm_current_el(env) == target_el; | |
8c6084bf | 107 | /* AArch64 syndrome does not have an LPAE bit */ |
b7cc4e82 | 108 | syn = fsr & ~(1 << 9); |
8c6084bf PM |
109 | |
110 | /* For insn and data aborts we assume there is no instruction syndrome | |
111 | * information; this is always true for exceptions reported to EL1. | |
112 | */ | |
113 | if (is_write == 2) { | |
37785977 | 114 | syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn); |
8c6084bf PM |
115 | exc = EXCP_PREFETCH_ABORT; |
116 | } else { | |
37785977 | 117 | syn = syn_data_abort(same_el, 0, 0, fi.s1ptw, is_write == 1, syn); |
8c6084bf | 118 | if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) { |
b7cc4e82 | 119 | fsr |= (1 << 11); |
8c6084bf PM |
120 | } |
121 | exc = EXCP_DATA_ABORT; | |
122 | } | |
123 | ||
8c6084bf | 124 | env->exception.vaddress = addr; |
b7cc4e82 | 125 | env->exception.fsr = fsr; |
d759a457 | 126 | raise_exception(env, exc, syn, target_el); |
b5ff1b31 | 127 | } |
b5ff1b31 | 128 | } |
30901475 AB |
129 | |
130 | /* Raise a data fault alignment exception for the specified virtual address */ | |
131 | void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write, | |
132 | int is_user, uintptr_t retaddr) | |
133 | { | |
134 | ARMCPU *cpu = ARM_CPU(cs); | |
135 | CPUARMState *env = &cpu->env; | |
136 | int target_el; | |
137 | bool same_el; | |
138 | ||
139 | if (retaddr) { | |
140 | /* now we have a real cpu fault */ | |
141 | cpu_restore_state(cs, retaddr); | |
142 | } | |
143 | ||
144 | target_el = exception_target_el(env); | |
145 | same_el = (arm_current_el(env) == target_el); | |
146 | ||
147 | env->exception.vaddress = vaddr; | |
148 | ||
149 | /* the DFSR for an alignment fault depends on whether we're using | |
150 | * the LPAE long descriptor format, or the short descriptor format | |
151 | */ | |
deb2db99 | 152 | if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) { |
30901475 AB |
153 | env->exception.fsr = 0x21; |
154 | } else { | |
155 | env->exception.fsr = 0x1; | |
156 | } | |
157 | ||
158 | if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) { | |
159 | env->exception.fsr |= (1 << 11); | |
160 | } | |
161 | ||
162 | raise_exception(env, EXCP_DATA_ABORT, | |
163 | syn_data_abort(same_el, 0, 0, 0, is_write == 1, 0x21), | |
164 | target_el); | |
165 | } | |
166 | ||
167 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
1497c961 | 168 | |
9ef39277 | 169 | uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
170 | { |
171 | uint32_t res = a + b; | |
172 | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) | |
173 | env->QF = 1; | |
174 | return res; | |
175 | } | |
176 | ||
9ef39277 | 177 | uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
178 | { |
179 | uint32_t res = a + b; | |
180 | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { | |
181 | env->QF = 1; | |
182 | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | |
183 | } | |
184 | return res; | |
185 | } | |
186 | ||
9ef39277 | 187 | uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
188 | { |
189 | uint32_t res = a - b; | |
190 | if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { | |
191 | env->QF = 1; | |
192 | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | |
193 | } | |
194 | return res; | |
195 | } | |
196 | ||
9ef39277 | 197 | uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val) |
1497c961 PB |
198 | { |
199 | uint32_t res; | |
200 | if (val >= 0x40000000) { | |
201 | res = ~SIGNBIT; | |
202 | env->QF = 1; | |
203 | } else if (val <= (int32_t)0xc0000000) { | |
204 | res = SIGNBIT; | |
205 | env->QF = 1; | |
206 | } else { | |
207 | res = val << 1; | |
208 | } | |
209 | return res; | |
210 | } | |
211 | ||
9ef39277 | 212 | uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
213 | { |
214 | uint32_t res = a + b; | |
215 | if (res < a) { | |
216 | env->QF = 1; | |
217 | res = ~0; | |
218 | } | |
219 | return res; | |
220 | } | |
221 | ||
9ef39277 | 222 | uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
223 | { |
224 | uint32_t res = a - b; | |
225 | if (res > a) { | |
226 | env->QF = 1; | |
227 | res = 0; | |
228 | } | |
229 | return res; | |
230 | } | |
231 | ||
6ddbc6e4 | 232 | /* Signed saturation. */ |
9ef39277 | 233 | static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) |
6ddbc6e4 PB |
234 | { |
235 | int32_t top; | |
236 | uint32_t mask; | |
237 | ||
6ddbc6e4 PB |
238 | top = val >> shift; |
239 | mask = (1u << shift) - 1; | |
240 | if (top > 0) { | |
241 | env->QF = 1; | |
242 | return mask; | |
243 | } else if (top < -1) { | |
244 | env->QF = 1; | |
245 | return ~mask; | |
246 | } | |
247 | return val; | |
248 | } | |
249 | ||
250 | /* Unsigned saturation. */ | |
9ef39277 | 251 | static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) |
6ddbc6e4 PB |
252 | { |
253 | uint32_t max; | |
254 | ||
6ddbc6e4 PB |
255 | max = (1u << shift) - 1; |
256 | if (val < 0) { | |
257 | env->QF = 1; | |
258 | return 0; | |
259 | } else if (val > max) { | |
260 | env->QF = 1; | |
261 | return max; | |
262 | } | |
263 | return val; | |
264 | } | |
265 | ||
266 | /* Signed saturate. */ | |
9ef39277 | 267 | uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 | 268 | { |
9ef39277 | 269 | return do_ssat(env, x, shift); |
6ddbc6e4 PB |
270 | } |
271 | ||
272 | /* Dual halfword signed saturate. */ | |
9ef39277 | 273 | uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 PB |
274 | { |
275 | uint32_t res; | |
276 | ||
9ef39277 BS |
277 | res = (uint16_t)do_ssat(env, (int16_t)x, shift); |
278 | res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; | |
6ddbc6e4 PB |
279 | return res; |
280 | } | |
281 | ||
282 | /* Unsigned saturate. */ | |
9ef39277 | 283 | uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 | 284 | { |
9ef39277 | 285 | return do_usat(env, x, shift); |
6ddbc6e4 PB |
286 | } |
287 | ||
288 | /* Dual halfword unsigned saturate. */ | |
9ef39277 | 289 | uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 PB |
290 | { |
291 | uint32_t res; | |
292 | ||
9ef39277 BS |
293 | res = (uint16_t)do_usat(env, (int16_t)x, shift); |
294 | res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; | |
6ddbc6e4 PB |
295 | return res; |
296 | } | |
d9ba4830 | 297 | |
b1eced71 GB |
298 | /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. |
299 | * The function returns the target EL (1-3) if the instruction is to be trapped; | |
300 | * otherwise it returns 0 indicating it is not trapped. | |
301 | */ | |
302 | static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) | |
303 | { | |
304 | int cur_el = arm_current_el(env); | |
305 | uint64_t mask; | |
306 | ||
307 | /* If we are currently in EL0 then we need to check if SCTLR is set up for | |
308 | * WFx instructions being trapped to EL1. These trap bits don't exist in v7. | |
309 | */ | |
310 | if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { | |
311 | int target_el; | |
312 | ||
313 | mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; | |
314 | if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { | |
315 | /* Secure EL0 and Secure PL1 is at EL3 */ | |
316 | target_el = 3; | |
317 | } else { | |
318 | target_el = 1; | |
319 | } | |
320 | ||
321 | if (!(env->cp15.sctlr_el[target_el] & mask)) { | |
322 | return target_el; | |
323 | } | |
324 | } | |
325 | ||
326 | /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it | |
327 | * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the | |
328 | * bits will be zero indicating no trap. | |
329 | */ | |
330 | if (cur_el < 2 && !arm_is_secure(env)) { | |
331 | mask = (is_wfe) ? HCR_TWE : HCR_TWI; | |
332 | if (env->cp15.hcr_el2 & mask) { | |
333 | return 2; | |
334 | } | |
335 | } | |
336 | ||
337 | /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ | |
338 | if (cur_el < 3) { | |
339 | mask = (is_wfe) ? SCR_TWE : SCR_TWI; | |
340 | if (env->cp15.scr_el3 & mask) { | |
341 | return 3; | |
342 | } | |
343 | } | |
344 | ||
345 | return 0; | |
346 | } | |
347 | ||
1ce94f81 | 348 | void HELPER(wfi)(CPUARMState *env) |
d9ba4830 | 349 | { |
259186a7 | 350 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b1eced71 | 351 | int target_el = check_wfx_trap(env, false); |
259186a7 | 352 | |
84549b6d PM |
353 | if (cpu_has_work(cs)) { |
354 | /* Don't bother to go into our "low power state" if | |
355 | * we would just wake up immediately. | |
356 | */ | |
357 | return; | |
358 | } | |
359 | ||
b1eced71 GB |
360 | if (target_el) { |
361 | env->pc -= 4; | |
362 | raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el); | |
363 | } | |
364 | ||
27103424 | 365 | cs->exception_index = EXCP_HLT; |
259186a7 | 366 | cs->halted = 1; |
5638d180 | 367 | cpu_loop_exit(cs); |
d9ba4830 PB |
368 | } |
369 | ||
72c1d3af PM |
370 | void HELPER(wfe)(CPUARMState *env) |
371 | { | |
049e24a1 PM |
372 | /* This is a hint instruction that is semantically different |
373 | * from YIELD even though we currently implement it identically. | |
374 | * Don't actually halt the CPU, just yield back to top | |
b1eced71 GB |
375 | * level loop. This is not going into a "low power state" |
376 | * (ie halting until some event occurs), so we never take | |
377 | * a configurable trap to a different exception level. | |
72c1d3af | 378 | */ |
049e24a1 PM |
379 | HELPER(yield)(env); |
380 | } | |
381 | ||
382 | void HELPER(yield)(CPUARMState *env) | |
383 | { | |
384 | ARMCPU *cpu = arm_env_get_cpu(env); | |
385 | CPUState *cs = CPU(cpu); | |
386 | ||
387 | /* This is a non-trappable hint instruction that generally indicates | |
388 | * that the guest is currently busy-looping. Yield control back to the | |
389 | * top level loop so that a more deserving VCPU has a chance to run. | |
390 | */ | |
27103424 | 391 | cs->exception_index = EXCP_YIELD; |
5638d180 | 392 | cpu_loop_exit(cs); |
72c1d3af PM |
393 | } |
394 | ||
d4a2dc67 PM |
395 | /* Raise an internal-to-QEMU exception. This is limited to only |
396 | * those EXCP values which are special cases for QEMU to interrupt | |
397 | * execution and not to be used for exceptions which are passed to | |
398 | * the guest (those must all have syndrome information and thus should | |
399 | * use exception_with_syndrome). | |
400 | */ | |
401 | void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) | |
402 | { | |
403 | CPUState *cs = CPU(arm_env_get_cpu(env)); | |
404 | ||
405 | assert(excp_is_internal(excp)); | |
406 | cs->exception_index = excp; | |
407 | cpu_loop_exit(cs); | |
408 | } | |
409 | ||
410 | /* Raise an exception with the specified syndrome register value */ | |
411 | void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, | |
73710361 | 412 | uint32_t syndrome, uint32_t target_el) |
d9ba4830 | 413 | { |
c6328599 | 414 | raise_exception(env, excp, syndrome, target_el); |
d9ba4830 PB |
415 | } |
416 | ||
9ef39277 | 417 | uint32_t HELPER(cpsr_read)(CPUARMState *env) |
d9ba4830 | 418 | { |
4051e12c | 419 | return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED); |
d9ba4830 PB |
420 | } |
421 | ||
1ce94f81 | 422 | void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) |
d9ba4830 PB |
423 | { |
424 | cpsr_write(env, val, mask); | |
425 | } | |
b0109805 PB |
426 | |
427 | /* Access to user mode registers from privileged modes. */ | |
9ef39277 | 428 | uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) |
b0109805 PB |
429 | { |
430 | uint32_t val; | |
431 | ||
432 | if (regno == 13) { | |
99a99c1f | 433 | val = env->banked_r13[BANK_USRSYS]; |
b0109805 | 434 | } else if (regno == 14) { |
99a99c1f | 435 | val = env->banked_r14[BANK_USRSYS]; |
b0109805 PB |
436 | } else if (regno >= 8 |
437 | && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { | |
438 | val = env->usr_regs[regno - 8]; | |
439 | } else { | |
440 | val = env->regs[regno]; | |
441 | } | |
442 | return val; | |
443 | } | |
444 | ||
1ce94f81 | 445 | void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) |
b0109805 PB |
446 | { |
447 | if (regno == 13) { | |
99a99c1f | 448 | env->banked_r13[BANK_USRSYS] = val; |
b0109805 | 449 | } else if (regno == 14) { |
99a99c1f | 450 | env->banked_r14[BANK_USRSYS] = val; |
b0109805 PB |
451 | } else if (regno >= 8 |
452 | && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { | |
453 | env->usr_regs[regno - 8] = val; | |
454 | } else { | |
455 | env->regs[regno] = val; | |
456 | } | |
457 | } | |
4b6a83fb | 458 | |
8bcbf37c | 459 | void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome) |
f59df3f2 PM |
460 | { |
461 | const ARMCPRegInfo *ri = rip; | |
38836a2c | 462 | int target_el; |
c0f4af17 PM |
463 | |
464 | if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 | |
465 | && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { | |
c6328599 | 466 | raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); |
c0f4af17 PM |
467 | } |
468 | ||
469 | if (!ri->accessfn) { | |
470 | return; | |
471 | } | |
472 | ||
f59df3f2 PM |
473 | switch (ri->accessfn(env, ri)) { |
474 | case CP_ACCESS_OK: | |
475 | return; | |
476 | case CP_ACCESS_TRAP: | |
38836a2c PM |
477 | target_el = exception_target_el(env); |
478 | break; | |
479 | case CP_ACCESS_TRAP_EL2: | |
480 | /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is | |
481 | * a bug in the access function. | |
482 | */ | |
3fc827d5 | 483 | assert(!arm_is_secure(env) && arm_current_el(env) != 3); |
38836a2c PM |
484 | target_el = 2; |
485 | break; | |
486 | case CP_ACCESS_TRAP_EL3: | |
487 | target_el = 3; | |
8bcbf37c | 488 | break; |
f59df3f2 | 489 | case CP_ACCESS_TRAP_UNCATEGORIZED: |
38836a2c | 490 | target_el = exception_target_el(env); |
c6328599 | 491 | syndrome = syn_uncategorized(); |
f59df3f2 | 492 | break; |
e7615726 PM |
493 | case CP_ACCESS_TRAP_UNCATEGORIZED_EL2: |
494 | target_el = 2; | |
495 | syndrome = syn_uncategorized(); | |
496 | break; | |
497 | case CP_ACCESS_TRAP_UNCATEGORIZED_EL3: | |
498 | target_el = 3; | |
499 | syndrome = syn_uncategorized(); | |
500 | break; | |
f59df3f2 PM |
501 | default: |
502 | g_assert_not_reached(); | |
503 | } | |
c6328599 | 504 | |
38836a2c | 505 | raise_exception(env, EXCP_UDEF, syndrome, target_el); |
f59df3f2 PM |
506 | } |
507 | ||
4b6a83fb PM |
508 | void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value) |
509 | { | |
510 | const ARMCPRegInfo *ri = rip; | |
c4241c7d PM |
511 | |
512 | ri->writefn(env, ri, value); | |
4b6a83fb PM |
513 | } |
514 | ||
515 | uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip) | |
516 | { | |
517 | const ARMCPRegInfo *ri = rip; | |
c4241c7d PM |
518 | |
519 | return ri->readfn(env, ri); | |
4b6a83fb PM |
520 | } |
521 | ||
522 | void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value) | |
523 | { | |
524 | const ARMCPRegInfo *ri = rip; | |
c4241c7d PM |
525 | |
526 | ri->writefn(env, ri, value); | |
4b6a83fb PM |
527 | } |
528 | ||
529 | uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip) | |
530 | { | |
531 | const ARMCPRegInfo *ri = rip; | |
c4241c7d PM |
532 | |
533 | return ri->readfn(env, ri); | |
4b6a83fb | 534 | } |
b0109805 | 535 | |
9cfa0b4e PM |
536 | void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm) |
537 | { | |
538 | /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set. | |
539 | * Note that SPSel is never OK from EL0; we rely on handle_msr_i() | |
540 | * to catch that case at translate time. | |
541 | */ | |
137feaa9 | 542 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c6328599 PM |
543 | uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3), |
544 | extract32(op, 3, 3), 4, | |
545 | imm, 0x1f, 0); | |
546 | raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); | |
9cfa0b4e PM |
547 | } |
548 | ||
549 | switch (op) { | |
550 | case 0x05: /* SPSel */ | |
f502cfc2 | 551 | update_spsel(env, imm); |
9cfa0b4e PM |
552 | break; |
553 | case 0x1e: /* DAIFSet */ | |
554 | env->daif |= (imm << 6) & PSTATE_DAIF; | |
555 | break; | |
556 | case 0x1f: /* DAIFClear */ | |
557 | env->daif &= ~((imm << 6) & PSTATE_DAIF); | |
558 | break; | |
559 | default: | |
560 | g_assert_not_reached(); | |
561 | } | |
562 | } | |
563 | ||
7ea47fe7 PM |
564 | void HELPER(clear_pstate_ss)(CPUARMState *env) |
565 | { | |
566 | env->pstate &= ~PSTATE_SS; | |
567 | } | |
568 | ||
35979d71 EI |
569 | void HELPER(pre_hvc)(CPUARMState *env) |
570 | { | |
98128601 | 571 | ARMCPU *cpu = arm_env_get_cpu(env); |
dcbff19b | 572 | int cur_el = arm_current_el(env); |
35979d71 EI |
573 | /* FIXME: Use actual secure state. */ |
574 | bool secure = false; | |
575 | bool undef; | |
576 | ||
98128601 RH |
577 | if (arm_is_psci_call(cpu, EXCP_HVC)) { |
578 | /* If PSCI is enabled and this looks like a valid PSCI call then | |
579 | * that overrides the architecturally mandated HVC behaviour. | |
580 | */ | |
581 | return; | |
582 | } | |
583 | ||
39404338 PM |
584 | if (!arm_feature(env, ARM_FEATURE_EL2)) { |
585 | /* If EL2 doesn't exist, HVC always UNDEFs */ | |
586 | undef = true; | |
587 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
588 | /* EL3.HCE has priority over EL2.HCD. */ | |
35979d71 EI |
589 | undef = !(env->cp15.scr_el3 & SCR_HCE); |
590 | } else { | |
591 | undef = env->cp15.hcr_el2 & HCR_HCD; | |
592 | } | |
593 | ||
594 | /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. | |
595 | * For ARMv8/AArch64, HVC is allowed in EL3. | |
596 | * Note that we've already trapped HVC from EL0 at translation | |
597 | * time. | |
598 | */ | |
599 | if (secure && (!is_a64(env) || cur_el == 1)) { | |
600 | undef = true; | |
601 | } | |
602 | ||
603 | if (undef) { | |
c6328599 PM |
604 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
605 | exception_target_el(env)); | |
35979d71 EI |
606 | } |
607 | } | |
608 | ||
e0d6e6a5 EI |
609 | void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) |
610 | { | |
98128601 | 611 | ARMCPU *cpu = arm_env_get_cpu(env); |
dcbff19b | 612 | int cur_el = arm_current_el(env); |
dbe9d163 | 613 | bool secure = arm_is_secure(env); |
e0d6e6a5 EI |
614 | bool smd = env->cp15.scr_el3 & SCR_SMD; |
615 | /* On ARMv8 AArch32, SMD only applies to NS state. | |
616 | * On ARMv7 SMD only applies to NS state and only if EL2 is available. | |
617 | * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check | |
618 | * the EL2 condition here. | |
619 | */ | |
620 | bool undef = is_a64(env) ? smd : (!secure && smd); | |
621 | ||
98128601 RH |
622 | if (arm_is_psci_call(cpu, EXCP_SMC)) { |
623 | /* If PSCI is enabled and this looks like a valid PSCI call then | |
624 | * that overrides the architecturally mandated SMC behaviour. | |
625 | */ | |
626 | return; | |
627 | } | |
628 | ||
39404338 PM |
629 | if (!arm_feature(env, ARM_FEATURE_EL3)) { |
630 | /* If we have no EL3 then SMC always UNDEFs */ | |
631 | undef = true; | |
632 | } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) { | |
633 | /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */ | |
c6328599 | 634 | raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); |
e0d6e6a5 EI |
635 | } |
636 | ||
e0d6e6a5 | 637 | if (undef) { |
c6328599 PM |
638 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
639 | exception_target_el(env)); | |
e0d6e6a5 EI |
640 | } |
641 | } | |
642 | ||
52e60cdd RH |
643 | void HELPER(exception_return)(CPUARMState *env) |
644 | { | |
dcbff19b | 645 | int cur_el = arm_current_el(env); |
db6c3cd0 | 646 | unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el); |
2a923c4d | 647 | uint32_t spsr = env->banked_spsr[spsr_idx]; |
ce02049d | 648 | int new_el; |
52e60cdd | 649 | |
9208b961 | 650 | aarch64_save_sp(env, cur_el); |
52e60cdd RH |
651 | |
652 | env->exclusive_addr = -1; | |
653 | ||
3a298203 PM |
654 | /* We must squash the PSTATE.SS bit to zero unless both of the |
655 | * following hold: | |
656 | * 1. debug exceptions are currently disabled | |
657 | * 2. singlestep will be active in the EL we return to | |
658 | * We check 1 here and 2 after we've done the pstate/cpsr write() to | |
659 | * transition to the EL we're going to. | |
660 | */ | |
661 | if (arm_generate_debug_exceptions(env)) { | |
662 | spsr &= ~PSTATE_SS; | |
663 | } | |
664 | ||
52e60cdd | 665 | if (spsr & PSTATE_nRW) { |
db6c3cd0 | 666 | /* TODO: We currently assume EL1/2/3 are running in AArch64. */ |
52e60cdd RH |
667 | env->aarch64 = 0; |
668 | new_el = 0; | |
669 | env->uncached_cpsr = 0x10; | |
670 | cpsr_write(env, spsr, ~0); | |
3a298203 PM |
671 | if (!arm_singlestep_active(env)) { |
672 | env->uncached_cpsr &= ~PSTATE_SS; | |
673 | } | |
ce02049d | 674 | aarch64_sync_64_to_32(env); |
52e60cdd | 675 | |
6947f059 | 676 | env->regs[15] = env->elr_el[1] & ~0x1; |
52e60cdd RH |
677 | } else { |
678 | new_el = extract32(spsr, 2, 2); | |
7ab6c10d EI |
679 | if (new_el > cur_el |
680 | || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) { | |
681 | /* Disallow return to an EL which is unimplemented or higher | |
682 | * than the current one. | |
683 | */ | |
52e60cdd RH |
684 | goto illegal_return; |
685 | } | |
686 | if (extract32(spsr, 1, 1)) { | |
687 | /* Return with reserved M[1] bit set */ | |
688 | goto illegal_return; | |
689 | } | |
690 | if (new_el == 0 && (spsr & PSTATE_SP)) { | |
37f0806e | 691 | /* Return to EL0 with M[0] bit set */ |
52e60cdd RH |
692 | goto illegal_return; |
693 | } | |
694 | env->aarch64 = 1; | |
695 | pstate_write(env, spsr); | |
3a298203 PM |
696 | if (!arm_singlestep_active(env)) { |
697 | env->pstate &= ~PSTATE_SS; | |
698 | } | |
98ea5615 | 699 | aarch64_restore_sp(env, new_el); |
db6c3cd0 | 700 | env->pc = env->elr_el[cur_el]; |
52e60cdd RH |
701 | } |
702 | ||
703 | return; | |
704 | ||
705 | illegal_return: | |
706 | /* Illegal return events of various kinds have architecturally | |
707 | * mandated behaviour: | |
708 | * restore NZCV and DAIF from SPSR_ELx | |
709 | * set PSTATE.IL | |
710 | * restore PC from ELR_ELx | |
711 | * no change to exception level, execution state or stack pointer | |
712 | */ | |
713 | env->pstate |= PSTATE_IL; | |
db6c3cd0 | 714 | env->pc = env->elr_el[cur_el]; |
52e60cdd RH |
715 | spsr &= PSTATE_NZCV | PSTATE_DAIF; |
716 | spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); | |
717 | pstate_write(env, spsr); | |
3a298203 PM |
718 | if (!arm_singlestep_active(env)) { |
719 | env->pstate &= ~PSTATE_SS; | |
720 | } | |
52e60cdd RH |
721 | } |
722 | ||
3ff6fc91 PM |
723 | /* Return true if the linked breakpoint entry lbn passes its checks */ |
724 | static bool linked_bp_matches(ARMCPU *cpu, int lbn) | |
725 | { | |
726 | CPUARMState *env = &cpu->env; | |
727 | uint64_t bcr = env->cp15.dbgbcr[lbn]; | |
728 | int brps = extract32(cpu->dbgdidr, 24, 4); | |
729 | int ctx_cmps = extract32(cpu->dbgdidr, 20, 4); | |
730 | int bt; | |
731 | uint32_t contextidr; | |
732 | ||
733 | /* Links to unimplemented or non-context aware breakpoints are | |
734 | * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or | |
735 | * as if linked to an UNKNOWN context-aware breakpoint (in which | |
736 | * case DBGWCR<n>_EL1.LBN must indicate that breakpoint). | |
737 | * We choose the former. | |
738 | */ | |
739 | if (lbn > brps || lbn < (brps - ctx_cmps)) { | |
740 | return false; | |
741 | } | |
742 | ||
743 | bcr = env->cp15.dbgbcr[lbn]; | |
744 | ||
745 | if (extract64(bcr, 0, 1) == 0) { | |
746 | /* Linked breakpoint disabled : generate no events */ | |
747 | return false; | |
748 | } | |
749 | ||
750 | bt = extract64(bcr, 20, 4); | |
751 | ||
752 | /* We match the whole register even if this is AArch32 using the | |
753 | * short descriptor format (in which case it holds both PROCID and ASID), | |
754 | * since we don't implement the optional v7 context ID masking. | |
755 | */ | |
54bf36ed | 756 | contextidr = extract64(env->cp15.contextidr_el[1], 0, 32); |
3ff6fc91 PM |
757 | |
758 | switch (bt) { | |
759 | case 3: /* linked context ID match */ | |
dcbff19b | 760 | if (arm_current_el(env) > 1) { |
3ff6fc91 PM |
761 | /* Context matches never fire in EL2 or (AArch64) EL3 */ |
762 | return false; | |
763 | } | |
764 | return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32)); | |
765 | case 5: /* linked address mismatch (reserved in AArch64) */ | |
766 | case 9: /* linked VMID match (reserved if no EL2) */ | |
767 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
768 | default: | |
769 | /* Links to Unlinked context breakpoints must generate no | |
770 | * events; we choose to do the same for reserved values too. | |
771 | */ | |
772 | return false; | |
773 | } | |
774 | ||
775 | return false; | |
776 | } | |
777 | ||
0eacea70 | 778 | static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp) |
3ff6fc91 PM |
779 | { |
780 | CPUARMState *env = &cpu->env; | |
0eacea70 | 781 | uint64_t cr; |
3ff6fc91 | 782 | int pac, hmc, ssc, wt, lbn; |
ef7bab8d PM |
783 | /* Note that for watchpoints the check is against the CPU security |
784 | * state, not the S/NS attribute on the offending data access. | |
785 | */ | |
786 | bool is_secure = arm_is_secure(env); | |
9e1fc5bd | 787 | int access_el = arm_current_el(env); |
3ff6fc91 | 788 | |
0eacea70 | 789 | if (is_wp) { |
9e1fc5bd PM |
790 | CPUWatchpoint *wp = env->cpu_watchpoint[n]; |
791 | ||
792 | if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) { | |
0eacea70 PM |
793 | return false; |
794 | } | |
795 | cr = env->cp15.dbgwcr[n]; | |
9e1fc5bd PM |
796 | if (wp->hitattrs.user) { |
797 | /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should | |
798 | * match watchpoints as if they were accesses done at EL0, even if | |
799 | * the CPU is at EL1 or higher. | |
800 | */ | |
801 | access_el = 0; | |
802 | } | |
0eacea70 PM |
803 | } else { |
804 | uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; | |
3ff6fc91 | 805 | |
0eacea70 PM |
806 | if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) { |
807 | return false; | |
808 | } | |
809 | cr = env->cp15.dbgbcr[n]; | |
810 | } | |
3ff6fc91 | 811 | /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is |
0eacea70 PM |
812 | * enabled and that the address and access type match; for breakpoints |
813 | * we know the address matched; check the remaining fields, including | |
814 | * linked breakpoints. We rely on WCR and BCR having the same layout | |
815 | * for the LBN, SSC, HMC, PAC/PMC and is-linked fields. | |
816 | * Note that some combinations of {PAC, HMC, SSC} are reserved and | |
3ff6fc91 PM |
817 | * must act either like some valid combination or as if the watchpoint |
818 | * were disabled. We choose the former, and use this together with | |
819 | * the fact that EL3 must always be Secure and EL2 must always be | |
820 | * Non-Secure to simplify the code slightly compared to the full | |
821 | * table in the ARM ARM. | |
822 | */ | |
0eacea70 PM |
823 | pac = extract64(cr, 1, 2); |
824 | hmc = extract64(cr, 13, 1); | |
825 | ssc = extract64(cr, 14, 2); | |
3ff6fc91 PM |
826 | |
827 | switch (ssc) { | |
828 | case 0: | |
829 | break; | |
830 | case 1: | |
831 | case 3: | |
832 | if (is_secure) { | |
833 | return false; | |
834 | } | |
835 | break; | |
836 | case 2: | |
837 | if (!is_secure) { | |
838 | return false; | |
839 | } | |
840 | break; | |
841 | } | |
842 | ||
9e1fc5bd | 843 | switch (access_el) { |
3ff6fc91 PM |
844 | case 3: |
845 | case 2: | |
846 | if (!hmc) { | |
847 | return false; | |
848 | } | |
849 | break; | |
850 | case 1: | |
851 | if (extract32(pac, 0, 1) == 0) { | |
852 | return false; | |
853 | } | |
854 | break; | |
855 | case 0: | |
856 | if (extract32(pac, 1, 1) == 0) { | |
857 | return false; | |
858 | } | |
859 | break; | |
860 | default: | |
861 | g_assert_not_reached(); | |
862 | } | |
863 | ||
0eacea70 PM |
864 | wt = extract64(cr, 20, 1); |
865 | lbn = extract64(cr, 16, 4); | |
3ff6fc91 PM |
866 | |
867 | if (wt && !linked_bp_matches(cpu, lbn)) { | |
868 | return false; | |
869 | } | |
870 | ||
871 | return true; | |
872 | } | |
873 | ||
874 | static bool check_watchpoints(ARMCPU *cpu) | |
875 | { | |
876 | CPUARMState *env = &cpu->env; | |
877 | int n; | |
878 | ||
879 | /* If watchpoints are disabled globally or we can't take debug | |
880 | * exceptions here then watchpoint firings are ignored. | |
881 | */ | |
882 | if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 | |
883 | || !arm_generate_debug_exceptions(env)) { | |
884 | return false; | |
885 | } | |
886 | ||
887 | for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) { | |
0eacea70 PM |
888 | if (bp_wp_matches(cpu, n, true)) { |
889 | return true; | |
890 | } | |
891 | } | |
892 | return false; | |
893 | } | |
894 | ||
895 | static bool check_breakpoints(ARMCPU *cpu) | |
896 | { | |
897 | CPUARMState *env = &cpu->env; | |
898 | int n; | |
899 | ||
900 | /* If breakpoints are disabled globally or we can't take debug | |
901 | * exceptions here then breakpoint firings are ignored. | |
902 | */ | |
903 | if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 | |
904 | || !arm_generate_debug_exceptions(env)) { | |
905 | return false; | |
906 | } | |
907 | ||
908 | for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) { | |
909 | if (bp_wp_matches(cpu, n, false)) { | |
3ff6fc91 PM |
910 | return true; |
911 | } | |
912 | } | |
913 | return false; | |
914 | } | |
915 | ||
5d98bf8f SF |
916 | void HELPER(check_breakpoints)(CPUARMState *env) |
917 | { | |
918 | ARMCPU *cpu = arm_env_get_cpu(env); | |
919 | ||
920 | if (check_breakpoints(cpu)) { | |
921 | HELPER(exception_internal(env, EXCP_DEBUG)); | |
922 | } | |
923 | } | |
924 | ||
3ff6fc91 PM |
925 | void arm_debug_excp_handler(CPUState *cs) |
926 | { | |
927 | /* Called by core code when a watchpoint or breakpoint fires; | |
928 | * need to check which one and raise the appropriate exception. | |
929 | */ | |
930 | ARMCPU *cpu = ARM_CPU(cs); | |
931 | CPUARMState *env = &cpu->env; | |
932 | CPUWatchpoint *wp_hit = cs->watchpoint_hit; | |
933 | ||
934 | if (wp_hit) { | |
935 | if (wp_hit->flags & BP_CPU) { | |
936 | cs->watchpoint_hit = NULL; | |
937 | if (check_watchpoints(cpu)) { | |
938 | bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0; | |
dcbff19b | 939 | bool same_el = arm_debug_target_el(env) == arm_current_el(env); |
3ff6fc91 | 940 | |
3ff6fc91 PM |
941 | if (extended_addresses_enabled(env)) { |
942 | env->exception.fsr = (1 << 9) | 0x22; | |
943 | } else { | |
944 | env->exception.fsr = 0x2; | |
945 | } | |
946 | env->exception.vaddress = wp_hit->hitaddr; | |
c6328599 PM |
947 | raise_exception(env, EXCP_DATA_ABORT, |
948 | syn_watchpoint(same_el, 0, wnr), | |
949 | arm_debug_target_el(env)); | |
3ff6fc91 PM |
950 | } else { |
951 | cpu_resume_from_signal(cs, NULL); | |
952 | } | |
953 | } | |
0eacea70 | 954 | } else { |
e63a2d4d | 955 | uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; |
5d98bf8f | 956 | bool same_el = (arm_debug_target_el(env) == arm_current_el(env)); |
e63a2d4d | 957 | |
5c629f4f SF |
958 | /* (1) GDB breakpoints should be handled first. |
959 | * (2) Do not raise a CPU exception if no CPU breakpoint has fired, | |
960 | * since singlestep is also done by generating a debug internal | |
961 | * exception. | |
962 | */ | |
963 | if (cpu_breakpoint_test(cs, pc, BP_GDB) | |
964 | || !cpu_breakpoint_test(cs, pc, BP_CPU)) { | |
e63a2d4d SF |
965 | return; |
966 | } | |
967 | ||
5d98bf8f SF |
968 | if (extended_addresses_enabled(env)) { |
969 | env->exception.fsr = (1 << 9) | 0x22; | |
970 | } else { | |
971 | env->exception.fsr = 0x2; | |
0eacea70 | 972 | } |
5d98bf8f SF |
973 | /* FAR is UNKNOWN, so doesn't need setting */ |
974 | raise_exception(env, EXCP_PREFETCH_ABORT, | |
975 | syn_breakpoint(same_el), | |
976 | arm_debug_target_el(env)); | |
3ff6fc91 PM |
977 | } |
978 | } | |
979 | ||
8984bd2e PB |
980 | /* ??? Flag setting arithmetic is awkward because we need to do comparisons. |
981 | The only way to do that in TCG is a conditional branch, which clobbers | |
982 | all our temporaries. For now implement these as helper functions. */ | |
983 | ||
8984bd2e PB |
984 | /* Similarly for variable shift instructions. */ |
985 | ||
9ef39277 | 986 | uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
987 | { |
988 | int shift = i & 0xff; | |
989 | if (shift >= 32) { | |
990 | if (shift == 32) | |
991 | env->CF = x & 1; | |
992 | else | |
993 | env->CF = 0; | |
994 | return 0; | |
995 | } else if (shift != 0) { | |
996 | env->CF = (x >> (32 - shift)) & 1; | |
997 | return x << shift; | |
998 | } | |
999 | return x; | |
1000 | } | |
1001 | ||
9ef39277 | 1002 | uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1003 | { |
1004 | int shift = i & 0xff; | |
1005 | if (shift >= 32) { | |
1006 | if (shift == 32) | |
1007 | env->CF = (x >> 31) & 1; | |
1008 | else | |
1009 | env->CF = 0; | |
1010 | return 0; | |
1011 | } else if (shift != 0) { | |
1012 | env->CF = (x >> (shift - 1)) & 1; | |
1013 | return x >> shift; | |
1014 | } | |
1015 | return x; | |
1016 | } | |
1017 | ||
9ef39277 | 1018 | uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1019 | { |
1020 | int shift = i & 0xff; | |
1021 | if (shift >= 32) { | |
1022 | env->CF = (x >> 31) & 1; | |
1023 | return (int32_t)x >> 31; | |
1024 | } else if (shift != 0) { | |
1025 | env->CF = (x >> (shift - 1)) & 1; | |
1026 | return (int32_t)x >> shift; | |
1027 | } | |
1028 | return x; | |
1029 | } | |
1030 | ||
9ef39277 | 1031 | uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1032 | { |
1033 | int shift1, shift; | |
1034 | shift1 = i & 0xff; | |
1035 | shift = shift1 & 0x1f; | |
1036 | if (shift == 0) { | |
1037 | if (shift1 != 0) | |
1038 | env->CF = (x >> 31) & 1; | |
1039 | return x; | |
1040 | } else { | |
1041 | env->CF = (x >> (shift - 1)) & 1; | |
1042 | return ((uint32_t)x >> shift) | (x << (32 - shift)); | |
1043 | } | |
1044 | } |