]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
fad6cb1a | 18 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA |
54936004 | 19 | */ |
67b915a5 | 20 | #include "config.h" |
d5a8f07c | 21 | #ifdef _WIN32 |
4fddf62a | 22 | #define WIN32_LEAN_AND_MEAN |
d5a8f07c FB |
23 | #include <windows.h> |
24 | #else | |
a98d49b1 | 25 | #include <sys/types.h> |
d5a8f07c FB |
26 | #include <sys/mman.h> |
27 | #endif | |
54936004 FB |
28 | #include <stdlib.h> |
29 | #include <stdio.h> | |
30 | #include <stdarg.h> | |
31 | #include <string.h> | |
32 | #include <errno.h> | |
33 | #include <unistd.h> | |
34 | #include <inttypes.h> | |
35 | ||
6180a181 FB |
36 | #include "cpu.h" |
37 | #include "exec-all.h" | |
ca10f867 | 38 | #include "qemu-common.h" |
b67d9a52 | 39 | #include "tcg.h" |
b3c7724c | 40 | #include "hw/hw.h" |
74576198 | 41 | #include "osdep.h" |
7ba1e619 | 42 | #include "kvm.h" |
53a5960a PB |
43 | #if defined(CONFIG_USER_ONLY) |
44 | #include <qemu.h> | |
45 | #endif | |
54936004 | 46 | |
fd6ce8f6 | 47 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 48 | //#define DEBUG_FLUSH |
9fa3e853 | 49 | //#define DEBUG_TLB |
67d3b957 | 50 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
51 | |
52 | /* make various TB consistency checks */ | |
5fafdf24 TS |
53 | //#define DEBUG_TB_CHECK |
54 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 55 | |
1196be37 | 56 | //#define DEBUG_IOPORT |
db7b5426 | 57 | //#define DEBUG_SUBPAGE |
1196be37 | 58 | |
99773bd4 PB |
59 | #if !defined(CONFIG_USER_ONLY) |
60 | /* TB consistency checks only implemented for usermode emulation. */ | |
61 | #undef DEBUG_TB_CHECK | |
62 | #endif | |
63 | ||
9fa3e853 FB |
64 | #define SMC_BITMAP_USE_THRESHOLD 10 |
65 | ||
66 | #define MMAP_AREA_START 0x00000000 | |
67 | #define MMAP_AREA_END 0xa8000000 | |
fd6ce8f6 | 68 | |
108c49b8 FB |
69 | #if defined(TARGET_SPARC64) |
70 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
5dcb6b91 BS |
71 | #elif defined(TARGET_SPARC) |
72 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
bedb69ea JM |
73 | #elif defined(TARGET_ALPHA) |
74 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
75 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
108c49b8 FB |
76 | #elif defined(TARGET_PPC64) |
77 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
00f82b8a AJ |
78 | #elif defined(TARGET_X86_64) && !defined(USE_KQEMU) |
79 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
80 | #elif defined(TARGET_I386) && !defined(USE_KQEMU) | |
81 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
108c49b8 FB |
82 | #else |
83 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
84 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
85 | #endif | |
86 | ||
bdaf78e0 | 87 | static TranslationBlock *tbs; |
26a5f13b | 88 | int code_gen_max_blocks; |
9fa3e853 | 89 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
bdaf78e0 | 90 | static int nb_tbs; |
eb51d102 FB |
91 | /* any access to the tbs or the page table must use this lock */ |
92 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
fd6ce8f6 | 93 | |
141ac468 BS |
94 | #if defined(__arm__) || defined(__sparc_v9__) |
95 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
96 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
97 | section close to code segment. */ |
98 | #define code_gen_section \ | |
99 | __attribute__((__section__(".gen_code"))) \ | |
100 | __attribute__((aligned (32))) | |
101 | #else | |
102 | #define code_gen_section \ | |
103 | __attribute__((aligned (32))) | |
104 | #endif | |
105 | ||
106 | uint8_t code_gen_prologue[1024] code_gen_section; | |
bdaf78e0 BS |
107 | static uint8_t *code_gen_buffer; |
108 | static unsigned long code_gen_buffer_size; | |
26a5f13b | 109 | /* threshold to flush the translated code buffer */ |
bdaf78e0 | 110 | static unsigned long code_gen_buffer_max_size; |
fd6ce8f6 FB |
111 | uint8_t *code_gen_ptr; |
112 | ||
e2eef170 | 113 | #if !defined(CONFIG_USER_ONLY) |
00f82b8a | 114 | ram_addr_t phys_ram_size; |
9fa3e853 FB |
115 | int phys_ram_fd; |
116 | uint8_t *phys_ram_base; | |
1ccde1cb | 117 | uint8_t *phys_ram_dirty; |
74576198 | 118 | static int in_migration; |
e9a1ab19 | 119 | static ram_addr_t phys_ram_alloc_offset = 0; |
e2eef170 | 120 | #endif |
9fa3e853 | 121 | |
6a00d601 FB |
122 | CPUState *first_cpu; |
123 | /* current CPU in the current thread. It is only valid inside | |
124 | cpu_exec() */ | |
5fafdf24 | 125 | CPUState *cpu_single_env; |
2e70f6ef | 126 | /* 0 = Do not count executed instructions. |
bf20dc07 | 127 | 1 = Precise instruction counting. |
2e70f6ef PB |
128 | 2 = Adaptive rate instruction counting. */ |
129 | int use_icount = 0; | |
130 | /* Current instruction counter. While executing translated code this may | |
131 | include some instructions that have not yet been executed. */ | |
132 | int64_t qemu_icount; | |
6a00d601 | 133 | |
54936004 | 134 | typedef struct PageDesc { |
92e873b9 | 135 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 136 | TranslationBlock *first_tb; |
9fa3e853 FB |
137 | /* in order to optimize self modifying code, we count the number |
138 | of lookups we do to a given page to use a bitmap */ | |
139 | unsigned int code_write_count; | |
140 | uint8_t *code_bitmap; | |
141 | #if defined(CONFIG_USER_ONLY) | |
142 | unsigned long flags; | |
143 | #endif | |
54936004 FB |
144 | } PageDesc; |
145 | ||
92e873b9 | 146 | typedef struct PhysPageDesc { |
0f459d16 | 147 | /* offset in host memory of the page + io_index in the low bits */ |
00f82b8a | 148 | ram_addr_t phys_offset; |
8da3ff18 | 149 | ram_addr_t region_offset; |
92e873b9 FB |
150 | } PhysPageDesc; |
151 | ||
54936004 | 152 | #define L2_BITS 10 |
bedb69ea JM |
153 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
154 | /* XXX: this is a temporary hack for alpha target. | |
155 | * In the future, this is to be replaced by a multi-level table | |
156 | * to actually be able to handle the complete 64 bits address space. | |
157 | */ | |
158 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
159 | #else | |
03875444 | 160 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
bedb69ea | 161 | #endif |
54936004 FB |
162 | |
163 | #define L1_SIZE (1 << L1_BITS) | |
164 | #define L2_SIZE (1 << L2_BITS) | |
165 | ||
83fb7adf FB |
166 | unsigned long qemu_real_host_page_size; |
167 | unsigned long qemu_host_page_bits; | |
168 | unsigned long qemu_host_page_size; | |
169 | unsigned long qemu_host_page_mask; | |
54936004 | 170 | |
92e873b9 | 171 | /* XXX: for system emulation, it could just be an array */ |
54936004 | 172 | static PageDesc *l1_map[L1_SIZE]; |
bdaf78e0 | 173 | static PhysPageDesc **l1_phys_map; |
54936004 | 174 | |
e2eef170 PB |
175 | #if !defined(CONFIG_USER_ONLY) |
176 | static void io_mem_init(void); | |
177 | ||
33417e70 | 178 | /* io memory support */ |
33417e70 FB |
179 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
180 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
a4193c8a | 181 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
33417e70 | 182 | static int io_mem_nb; |
6658ffb8 PB |
183 | static int io_mem_watch; |
184 | #endif | |
33417e70 | 185 | |
34865134 | 186 | /* log support */ |
d9b630fd | 187 | static const char *logfilename = "/tmp/qemu.log"; |
34865134 FB |
188 | FILE *logfile; |
189 | int loglevel; | |
e735b91c | 190 | static int log_append = 0; |
34865134 | 191 | |
e3db7226 FB |
192 | /* statistics */ |
193 | static int tlb_flush_count; | |
194 | static int tb_flush_count; | |
195 | static int tb_phys_invalidate_count; | |
196 | ||
db7b5426 BS |
197 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
198 | typedef struct subpage_t { | |
199 | target_phys_addr_t base; | |
3ee89922 BS |
200 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
201 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
202 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
8da3ff18 | 203 | ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4]; |
db7b5426 BS |
204 | } subpage_t; |
205 | ||
7cb69cae FB |
206 | #ifdef _WIN32 |
207 | static void map_exec(void *addr, long size) | |
208 | { | |
209 | DWORD old_protect; | |
210 | VirtualProtect(addr, size, | |
211 | PAGE_EXECUTE_READWRITE, &old_protect); | |
212 | ||
213 | } | |
214 | #else | |
215 | static void map_exec(void *addr, long size) | |
216 | { | |
4369415f | 217 | unsigned long start, end, page_size; |
7cb69cae | 218 | |
4369415f | 219 | page_size = getpagesize(); |
7cb69cae | 220 | start = (unsigned long)addr; |
4369415f | 221 | start &= ~(page_size - 1); |
7cb69cae FB |
222 | |
223 | end = (unsigned long)addr + size; | |
4369415f FB |
224 | end += page_size - 1; |
225 | end &= ~(page_size - 1); | |
7cb69cae FB |
226 | |
227 | mprotect((void *)start, end - start, | |
228 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
229 | } | |
230 | #endif | |
231 | ||
b346ff46 | 232 | static void page_init(void) |
54936004 | 233 | { |
83fb7adf | 234 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 235 | TARGET_PAGE_SIZE */ |
c2b48b69 AL |
236 | #ifdef _WIN32 |
237 | { | |
238 | SYSTEM_INFO system_info; | |
239 | ||
240 | GetSystemInfo(&system_info); | |
241 | qemu_real_host_page_size = system_info.dwPageSize; | |
242 | } | |
243 | #else | |
244 | qemu_real_host_page_size = getpagesize(); | |
245 | #endif | |
83fb7adf FB |
246 | if (qemu_host_page_size == 0) |
247 | qemu_host_page_size = qemu_real_host_page_size; | |
248 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
249 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
250 | qemu_host_page_bits = 0; | |
251 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
252 | qemu_host_page_bits++; | |
253 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
108c49b8 FB |
254 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
255 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
50a9569b AZ |
256 | |
257 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
258 | { | |
259 | long long startaddr, endaddr; | |
260 | FILE *f; | |
261 | int n; | |
262 | ||
c8a706fe | 263 | mmap_lock(); |
0776590d | 264 | last_brk = (unsigned long)sbrk(0); |
50a9569b AZ |
265 | f = fopen("/proc/self/maps", "r"); |
266 | if (f) { | |
267 | do { | |
268 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
269 | if (n == 2) { | |
e0b8d65a BS |
270 | startaddr = MIN(startaddr, |
271 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
272 | endaddr = MIN(endaddr, | |
273 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
b5fc909e | 274 | page_set_flags(startaddr & TARGET_PAGE_MASK, |
50a9569b AZ |
275 | TARGET_PAGE_ALIGN(endaddr), |
276 | PAGE_RESERVED); | |
277 | } | |
278 | } while (!feof(f)); | |
279 | fclose(f); | |
280 | } | |
c8a706fe | 281 | mmap_unlock(); |
50a9569b AZ |
282 | } |
283 | #endif | |
54936004 FB |
284 | } |
285 | ||
434929bf | 286 | static inline PageDesc **page_l1_map(target_ulong index) |
54936004 | 287 | { |
17e2377a PB |
288 | #if TARGET_LONG_BITS > 32 |
289 | /* Host memory outside guest VM. For 32-bit targets we have already | |
290 | excluded high addresses. */ | |
d8173e0f | 291 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) |
17e2377a PB |
292 | return NULL; |
293 | #endif | |
434929bf AL |
294 | return &l1_map[index >> L2_BITS]; |
295 | } | |
296 | ||
297 | static inline PageDesc *page_find_alloc(target_ulong index) | |
298 | { | |
299 | PageDesc **lp, *p; | |
300 | lp = page_l1_map(index); | |
301 | if (!lp) | |
302 | return NULL; | |
303 | ||
54936004 FB |
304 | p = *lp; |
305 | if (!p) { | |
306 | /* allocate if not found */ | |
17e2377a | 307 | #if defined(CONFIG_USER_ONLY) |
17e2377a PB |
308 | size_t len = sizeof(PageDesc) * L2_SIZE; |
309 | /* Don't use qemu_malloc because it may recurse. */ | |
310 | p = mmap(0, len, PROT_READ | PROT_WRITE, | |
311 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
54936004 | 312 | *lp = p; |
fb1c2cd7 AJ |
313 | if (h2g_valid(p)) { |
314 | unsigned long addr = h2g(p); | |
17e2377a PB |
315 | page_set_flags(addr & TARGET_PAGE_MASK, |
316 | TARGET_PAGE_ALIGN(addr + len), | |
317 | PAGE_RESERVED); | |
318 | } | |
319 | #else | |
320 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
321 | *lp = p; | |
322 | #endif | |
54936004 FB |
323 | } |
324 | return p + (index & (L2_SIZE - 1)); | |
325 | } | |
326 | ||
00f82b8a | 327 | static inline PageDesc *page_find(target_ulong index) |
54936004 | 328 | { |
434929bf AL |
329 | PageDesc **lp, *p; |
330 | lp = page_l1_map(index); | |
331 | if (!lp) | |
332 | return NULL; | |
54936004 | 333 | |
434929bf | 334 | p = *lp; |
54936004 FB |
335 | if (!p) |
336 | return 0; | |
fd6ce8f6 FB |
337 | return p + (index & (L2_SIZE - 1)); |
338 | } | |
339 | ||
108c49b8 | 340 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
92e873b9 | 341 | { |
108c49b8 | 342 | void **lp, **p; |
e3f4e2a4 | 343 | PhysPageDesc *pd; |
92e873b9 | 344 | |
108c49b8 FB |
345 | p = (void **)l1_phys_map; |
346 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
347 | ||
348 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
349 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
350 | #endif | |
351 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
92e873b9 FB |
352 | p = *lp; |
353 | if (!p) { | |
354 | /* allocate if not found */ | |
108c49b8 FB |
355 | if (!alloc) |
356 | return NULL; | |
357 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
358 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
359 | *lp = p; | |
360 | } | |
361 | #endif | |
362 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
e3f4e2a4 PB |
363 | pd = *lp; |
364 | if (!pd) { | |
365 | int i; | |
108c49b8 FB |
366 | /* allocate if not found */ |
367 | if (!alloc) | |
368 | return NULL; | |
e3f4e2a4 PB |
369 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
370 | *lp = pd; | |
371 | for (i = 0; i < L2_SIZE; i++) | |
372 | pd[i].phys_offset = IO_MEM_UNASSIGNED; | |
92e873b9 | 373 | } |
e3f4e2a4 | 374 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
92e873b9 FB |
375 | } |
376 | ||
108c49b8 | 377 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
92e873b9 | 378 | { |
108c49b8 | 379 | return phys_page_find_alloc(index, 0); |
92e873b9 FB |
380 | } |
381 | ||
9fa3e853 | 382 | #if !defined(CONFIG_USER_ONLY) |
6a00d601 | 383 | static void tlb_protect_code(ram_addr_t ram_addr); |
5fafdf24 | 384 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 385 | target_ulong vaddr); |
c8a706fe PB |
386 | #define mmap_lock() do { } while(0) |
387 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 388 | #endif |
fd6ce8f6 | 389 | |
4369415f FB |
390 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
391 | ||
392 | #if defined(CONFIG_USER_ONLY) | |
393 | /* Currently it is not recommanded to allocate big chunks of data in | |
394 | user mode. It will change when a dedicated libc will be used */ | |
395 | #define USE_STATIC_CODE_GEN_BUFFER | |
396 | #endif | |
397 | ||
398 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
399 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
400 | #endif | |
401 | ||
8fcd3692 | 402 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 403 | { |
4369415f FB |
404 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
405 | code_gen_buffer = static_code_gen_buffer; | |
406 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
407 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
408 | #else | |
26a5f13b FB |
409 | code_gen_buffer_size = tb_size; |
410 | if (code_gen_buffer_size == 0) { | |
4369415f FB |
411 | #if defined(CONFIG_USER_ONLY) |
412 | /* in user mode, phys_ram_size is not meaningful */ | |
413 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
414 | #else | |
26a5f13b | 415 | /* XXX: needs ajustments */ |
174a9a1f | 416 | code_gen_buffer_size = (unsigned long)(phys_ram_size / 4); |
4369415f | 417 | #endif |
26a5f13b FB |
418 | } |
419 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
420 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
421 | /* The code gen buffer location may have constraints depending on | |
422 | the host cpu and OS */ | |
423 | #if defined(__linux__) | |
424 | { | |
425 | int flags; | |
141ac468 BS |
426 | void *start = NULL; |
427 | ||
26a5f13b FB |
428 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
429 | #if defined(__x86_64__) | |
430 | flags |= MAP_32BIT; | |
431 | /* Cannot map more than that */ | |
432 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
433 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
434 | #elif defined(__sparc_v9__) |
435 | // Map the buffer below 2G, so we can use direct calls and branches | |
436 | flags |= MAP_FIXED; | |
437 | start = (void *) 0x60000000UL; | |
438 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
439 | code_gen_buffer_size = (512 * 1024 * 1024); | |
1cb0661e | 440 | #elif defined(__arm__) |
63d41246 | 441 | /* Map the buffer below 32M, so we can use direct calls and branches */ |
1cb0661e AZ |
442 | flags |= MAP_FIXED; |
443 | start = (void *) 0x01000000UL; | |
444 | if (code_gen_buffer_size > 16 * 1024 * 1024) | |
445 | code_gen_buffer_size = 16 * 1024 * 1024; | |
26a5f13b | 446 | #endif |
141ac468 BS |
447 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
448 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
449 | flags, -1, 0); |
450 | if (code_gen_buffer == MAP_FAILED) { | |
451 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
452 | exit(1); | |
453 | } | |
454 | } | |
06e67a82 AL |
455 | #elif defined(__FreeBSD__) |
456 | { | |
457 | int flags; | |
458 | void *addr = NULL; | |
459 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
460 | #if defined(__x86_64__) | |
461 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
462 | * 0x40000000 is free */ | |
463 | flags |= MAP_FIXED; | |
464 | addr = (void *)0x40000000; | |
465 | /* Cannot map more than that */ | |
466 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
467 | code_gen_buffer_size = (800 * 1024 * 1024); | |
468 | #endif | |
469 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
470 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
471 | flags, -1, 0); | |
472 | if (code_gen_buffer == MAP_FAILED) { | |
473 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
474 | exit(1); | |
475 | } | |
476 | } | |
26a5f13b FB |
477 | #else |
478 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
479 | if (!code_gen_buffer) { | |
480 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
481 | exit(1); | |
482 | } | |
483 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
484 | #endif | |
4369415f | 485 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b FB |
486 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
487 | code_gen_buffer_max_size = code_gen_buffer_size - | |
488 | code_gen_max_block_size(); | |
489 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
490 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
491 | } | |
492 | ||
493 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
494 | (in bytes) allocated to the translation buffer. Zero means default | |
495 | size. */ | |
496 | void cpu_exec_init_all(unsigned long tb_size) | |
497 | { | |
26a5f13b FB |
498 | cpu_gen_init(); |
499 | code_gen_alloc(tb_size); | |
500 | code_gen_ptr = code_gen_buffer; | |
4369415f | 501 | page_init(); |
e2eef170 | 502 | #if !defined(CONFIG_USER_ONLY) |
26a5f13b | 503 | io_mem_init(); |
e2eef170 | 504 | #endif |
26a5f13b FB |
505 | } |
506 | ||
9656f324 PB |
507 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
508 | ||
509 | #define CPU_COMMON_SAVE_VERSION 1 | |
510 | ||
511 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
512 | { | |
513 | CPUState *env = opaque; | |
514 | ||
515 | qemu_put_be32s(f, &env->halted); | |
516 | qemu_put_be32s(f, &env->interrupt_request); | |
517 | } | |
518 | ||
519 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
520 | { | |
521 | CPUState *env = opaque; | |
522 | ||
523 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
524 | return -EINVAL; | |
525 | ||
526 | qemu_get_be32s(f, &env->halted); | |
75f482ae | 527 | qemu_get_be32s(f, &env->interrupt_request); |
9656f324 PB |
528 | tlb_flush(env, 1); |
529 | ||
530 | return 0; | |
531 | } | |
532 | #endif | |
533 | ||
6a00d601 | 534 | void cpu_exec_init(CPUState *env) |
fd6ce8f6 | 535 | { |
6a00d601 FB |
536 | CPUState **penv; |
537 | int cpu_index; | |
538 | ||
6a00d601 FB |
539 | env->next_cpu = NULL; |
540 | penv = &first_cpu; | |
541 | cpu_index = 0; | |
542 | while (*penv != NULL) { | |
543 | penv = (CPUState **)&(*penv)->next_cpu; | |
544 | cpu_index++; | |
545 | } | |
546 | env->cpu_index = cpu_index; | |
c0ce998e AL |
547 | TAILQ_INIT(&env->breakpoints); |
548 | TAILQ_INIT(&env->watchpoints); | |
6a00d601 | 549 | *penv = env; |
b3c7724c | 550 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
9656f324 PB |
551 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
552 | cpu_common_save, cpu_common_load, env); | |
b3c7724c PB |
553 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
554 | cpu_save, cpu_load, env); | |
555 | #endif | |
fd6ce8f6 FB |
556 | } |
557 | ||
9fa3e853 FB |
558 | static inline void invalidate_page_bitmap(PageDesc *p) |
559 | { | |
560 | if (p->code_bitmap) { | |
59817ccb | 561 | qemu_free(p->code_bitmap); |
9fa3e853 FB |
562 | p->code_bitmap = NULL; |
563 | } | |
564 | p->code_write_count = 0; | |
565 | } | |
566 | ||
fd6ce8f6 FB |
567 | /* set to NULL all the 'first_tb' fields in all PageDescs */ |
568 | static void page_flush_tb(void) | |
569 | { | |
570 | int i, j; | |
571 | PageDesc *p; | |
572 | ||
573 | for(i = 0; i < L1_SIZE; i++) { | |
574 | p = l1_map[i]; | |
575 | if (p) { | |
9fa3e853 FB |
576 | for(j = 0; j < L2_SIZE; j++) { |
577 | p->first_tb = NULL; | |
578 | invalidate_page_bitmap(p); | |
579 | p++; | |
580 | } | |
fd6ce8f6 FB |
581 | } |
582 | } | |
583 | } | |
584 | ||
585 | /* flush all the translation blocks */ | |
d4e8164f | 586 | /* XXX: tb_flush is currently not thread safe */ |
6a00d601 | 587 | void tb_flush(CPUState *env1) |
fd6ce8f6 | 588 | { |
6a00d601 | 589 | CPUState *env; |
0124311e | 590 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
591 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
592 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
593 | nb_tbs, nb_tbs > 0 ? | |
594 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 595 | #endif |
26a5f13b | 596 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
597 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
598 | ||
fd6ce8f6 | 599 | nb_tbs = 0; |
3b46e624 | 600 | |
6a00d601 FB |
601 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
602 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
603 | } | |
9fa3e853 | 604 | |
8a8a608f | 605 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 606 | page_flush_tb(); |
9fa3e853 | 607 | |
fd6ce8f6 | 608 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
609 | /* XXX: flush processor icache at this point if cache flush is |
610 | expensive */ | |
e3db7226 | 611 | tb_flush_count++; |
fd6ce8f6 FB |
612 | } |
613 | ||
614 | #ifdef DEBUG_TB_CHECK | |
615 | ||
bc98a7ef | 616 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
617 | { |
618 | TranslationBlock *tb; | |
619 | int i; | |
620 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
621 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
622 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
623 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
624 | address >= tb->pc + tb->size)) { | |
625 | printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n", | |
99773bd4 | 626 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
627 | } |
628 | } | |
629 | } | |
630 | } | |
631 | ||
632 | /* verify that all the pages have correct rights for code */ | |
633 | static void tb_page_check(void) | |
634 | { | |
635 | TranslationBlock *tb; | |
636 | int i, flags1, flags2; | |
3b46e624 | 637 | |
99773bd4 PB |
638 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
639 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
640 | flags1 = page_get_flags(tb->pc); |
641 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
642 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
643 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 644 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
645 | } |
646 | } | |
647 | } | |
648 | } | |
649 | ||
bdaf78e0 | 650 | static void tb_jmp_check(TranslationBlock *tb) |
d4e8164f FB |
651 | { |
652 | TranslationBlock *tb1; | |
653 | unsigned int n1; | |
654 | ||
655 | /* suppress any remaining jumps to this TB */ | |
656 | tb1 = tb->jmp_first; | |
657 | for(;;) { | |
658 | n1 = (long)tb1 & 3; | |
659 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
660 | if (n1 == 2) | |
661 | break; | |
662 | tb1 = tb1->jmp_next[n1]; | |
663 | } | |
664 | /* check end of list */ | |
665 | if (tb1 != tb) { | |
666 | printf("ERROR: jmp_list from 0x%08lx\n", (long)tb); | |
667 | } | |
668 | } | |
669 | ||
fd6ce8f6 FB |
670 | #endif |
671 | ||
672 | /* invalidate one TB */ | |
673 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
674 | int next_offset) | |
675 | { | |
676 | TranslationBlock *tb1; | |
677 | for(;;) { | |
678 | tb1 = *ptb; | |
679 | if (tb1 == tb) { | |
680 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
681 | break; | |
682 | } | |
683 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
684 | } | |
685 | } | |
686 | ||
9fa3e853 FB |
687 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
688 | { | |
689 | TranslationBlock *tb1; | |
690 | unsigned int n1; | |
691 | ||
692 | for(;;) { | |
693 | tb1 = *ptb; | |
694 | n1 = (long)tb1 & 3; | |
695 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
696 | if (tb1 == tb) { | |
697 | *ptb = tb1->page_next[n1]; | |
698 | break; | |
699 | } | |
700 | ptb = &tb1->page_next[n1]; | |
701 | } | |
702 | } | |
703 | ||
d4e8164f FB |
704 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
705 | { | |
706 | TranslationBlock *tb1, **ptb; | |
707 | unsigned int n1; | |
708 | ||
709 | ptb = &tb->jmp_next[n]; | |
710 | tb1 = *ptb; | |
711 | if (tb1) { | |
712 | /* find tb(n) in circular list */ | |
713 | for(;;) { | |
714 | tb1 = *ptb; | |
715 | n1 = (long)tb1 & 3; | |
716 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
717 | if (n1 == n && tb1 == tb) | |
718 | break; | |
719 | if (n1 == 2) { | |
720 | ptb = &tb1->jmp_first; | |
721 | } else { | |
722 | ptb = &tb1->jmp_next[n1]; | |
723 | } | |
724 | } | |
725 | /* now we can suppress tb(n) from the list */ | |
726 | *ptb = tb->jmp_next[n]; | |
727 | ||
728 | tb->jmp_next[n] = NULL; | |
729 | } | |
730 | } | |
731 | ||
732 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
733 | another TB */ | |
734 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
735 | { | |
736 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
737 | } | |
738 | ||
2e70f6ef | 739 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
fd6ce8f6 | 740 | { |
6a00d601 | 741 | CPUState *env; |
8a40a180 | 742 | PageDesc *p; |
d4e8164f | 743 | unsigned int h, n1; |
00f82b8a | 744 | target_phys_addr_t phys_pc; |
8a40a180 | 745 | TranslationBlock *tb1, *tb2; |
3b46e624 | 746 | |
8a40a180 FB |
747 | /* remove the TB from the hash list */ |
748 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
749 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 750 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
751 | offsetof(TranslationBlock, phys_hash_next)); |
752 | ||
753 | /* remove the TB from the page list */ | |
754 | if (tb->page_addr[0] != page_addr) { | |
755 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
756 | tb_page_remove(&p->first_tb, tb); | |
757 | invalidate_page_bitmap(p); | |
758 | } | |
759 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
760 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
761 | tb_page_remove(&p->first_tb, tb); | |
762 | invalidate_page_bitmap(p); | |
763 | } | |
764 | ||
36bdbe54 | 765 | tb_invalidated_flag = 1; |
59817ccb | 766 | |
fd6ce8f6 | 767 | /* remove the TB from the hash list */ |
8a40a180 | 768 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
769 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
770 | if (env->tb_jmp_cache[h] == tb) | |
771 | env->tb_jmp_cache[h] = NULL; | |
772 | } | |
d4e8164f FB |
773 | |
774 | /* suppress this TB from the two jump lists */ | |
775 | tb_jmp_remove(tb, 0); | |
776 | tb_jmp_remove(tb, 1); | |
777 | ||
778 | /* suppress any remaining jumps to this TB */ | |
779 | tb1 = tb->jmp_first; | |
780 | for(;;) { | |
781 | n1 = (long)tb1 & 3; | |
782 | if (n1 == 2) | |
783 | break; | |
784 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
785 | tb2 = tb1->jmp_next[n1]; | |
786 | tb_reset_jump(tb1, n1); | |
787 | tb1->jmp_next[n1] = NULL; | |
788 | tb1 = tb2; | |
789 | } | |
790 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 791 | |
e3db7226 | 792 | tb_phys_invalidate_count++; |
9fa3e853 FB |
793 | } |
794 | ||
795 | static inline void set_bits(uint8_t *tab, int start, int len) | |
796 | { | |
797 | int end, mask, end1; | |
798 | ||
799 | end = start + len; | |
800 | tab += start >> 3; | |
801 | mask = 0xff << (start & 7); | |
802 | if ((start & ~7) == (end & ~7)) { | |
803 | if (start < end) { | |
804 | mask &= ~(0xff << (end & 7)); | |
805 | *tab |= mask; | |
806 | } | |
807 | } else { | |
808 | *tab++ |= mask; | |
809 | start = (start + 8) & ~7; | |
810 | end1 = end & ~7; | |
811 | while (start < end1) { | |
812 | *tab++ = 0xff; | |
813 | start += 8; | |
814 | } | |
815 | if (start < end) { | |
816 | mask = ~(0xff << (end & 7)); | |
817 | *tab |= mask; | |
818 | } | |
819 | } | |
820 | } | |
821 | ||
822 | static void build_page_bitmap(PageDesc *p) | |
823 | { | |
824 | int n, tb_start, tb_end; | |
825 | TranslationBlock *tb; | |
3b46e624 | 826 | |
b2a7081a | 827 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
828 | if (!p->code_bitmap) |
829 | return; | |
9fa3e853 FB |
830 | |
831 | tb = p->first_tb; | |
832 | while (tb != NULL) { | |
833 | n = (long)tb & 3; | |
834 | tb = (TranslationBlock *)((long)tb & ~3); | |
835 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
836 | if (n == 0) { | |
837 | /* NOTE: tb_end may be after the end of the page, but | |
838 | it is not a problem */ | |
839 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
840 | tb_end = tb_start + tb->size; | |
841 | if (tb_end > TARGET_PAGE_SIZE) | |
842 | tb_end = TARGET_PAGE_SIZE; | |
843 | } else { | |
844 | tb_start = 0; | |
845 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
846 | } | |
847 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
848 | tb = tb->page_next[n]; | |
849 | } | |
850 | } | |
851 | ||
2e70f6ef PB |
852 | TranslationBlock *tb_gen_code(CPUState *env, |
853 | target_ulong pc, target_ulong cs_base, | |
854 | int flags, int cflags) | |
d720b93d FB |
855 | { |
856 | TranslationBlock *tb; | |
857 | uint8_t *tc_ptr; | |
858 | target_ulong phys_pc, phys_page2, virt_page2; | |
859 | int code_gen_size; | |
860 | ||
c27004ec FB |
861 | phys_pc = get_phys_addr_code(env, pc); |
862 | tb = tb_alloc(pc); | |
d720b93d FB |
863 | if (!tb) { |
864 | /* flush must be done */ | |
865 | tb_flush(env); | |
866 | /* cannot fail at this point */ | |
c27004ec | 867 | tb = tb_alloc(pc); |
2e70f6ef PB |
868 | /* Don't forget to invalidate previous TB info. */ |
869 | tb_invalidated_flag = 1; | |
d720b93d FB |
870 | } |
871 | tc_ptr = code_gen_ptr; | |
872 | tb->tc_ptr = tc_ptr; | |
873 | tb->cs_base = cs_base; | |
874 | tb->flags = flags; | |
875 | tb->cflags = cflags; | |
d07bde88 | 876 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 877 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 878 | |
d720b93d | 879 | /* check next page if needed */ |
c27004ec | 880 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 881 | phys_page2 = -1; |
c27004ec | 882 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
d720b93d FB |
883 | phys_page2 = get_phys_addr_code(env, virt_page2); |
884 | } | |
885 | tb_link_phys(tb, phys_pc, phys_page2); | |
2e70f6ef | 886 | return tb; |
d720b93d | 887 | } |
3b46e624 | 888 | |
9fa3e853 FB |
889 | /* invalidate all TBs which intersect with the target physical page |
890 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
891 | the same physical page. 'is_cpu_write_access' should be true if called |
892 | from a real cpu write access: the virtual CPU will exit the current | |
893 | TB if code is modified inside this TB. */ | |
00f82b8a | 894 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
d720b93d FB |
895 | int is_cpu_write_access) |
896 | { | |
6b917547 | 897 | TranslationBlock *tb, *tb_next, *saved_tb; |
d720b93d | 898 | CPUState *env = cpu_single_env; |
9fa3e853 | 899 | target_ulong tb_start, tb_end; |
6b917547 AL |
900 | PageDesc *p; |
901 | int n; | |
902 | #ifdef TARGET_HAS_PRECISE_SMC | |
903 | int current_tb_not_found = is_cpu_write_access; | |
904 | TranslationBlock *current_tb = NULL; | |
905 | int current_tb_modified = 0; | |
906 | target_ulong current_pc = 0; | |
907 | target_ulong current_cs_base = 0; | |
908 | int current_flags = 0; | |
909 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
910 | |
911 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 912 | if (!p) |
9fa3e853 | 913 | return; |
5fafdf24 | 914 | if (!p->code_bitmap && |
d720b93d FB |
915 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
916 | is_cpu_write_access) { | |
9fa3e853 FB |
917 | /* build code bitmap */ |
918 | build_page_bitmap(p); | |
919 | } | |
920 | ||
921 | /* we remove all the TBs in the range [start, end[ */ | |
922 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
923 | tb = p->first_tb; | |
924 | while (tb != NULL) { | |
925 | n = (long)tb & 3; | |
926 | tb = (TranslationBlock *)((long)tb & ~3); | |
927 | tb_next = tb->page_next[n]; | |
928 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
929 | if (n == 0) { | |
930 | /* NOTE: tb_end may be after the end of the page, but | |
931 | it is not a problem */ | |
932 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
933 | tb_end = tb_start + tb->size; | |
934 | } else { | |
935 | tb_start = tb->page_addr[1]; | |
936 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
937 | } | |
938 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
939 | #ifdef TARGET_HAS_PRECISE_SMC |
940 | if (current_tb_not_found) { | |
941 | current_tb_not_found = 0; | |
942 | current_tb = NULL; | |
2e70f6ef | 943 | if (env->mem_io_pc) { |
d720b93d | 944 | /* now we have a real cpu fault */ |
2e70f6ef | 945 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
946 | } |
947 | } | |
948 | if (current_tb == tb && | |
2e70f6ef | 949 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
950 | /* If we are modifying the current TB, we must stop |
951 | its execution. We could be more precise by checking | |
952 | that the modification is after the current PC, but it | |
953 | would require a specialized function to partially | |
954 | restore the CPU state */ | |
3b46e624 | 955 | |
d720b93d | 956 | current_tb_modified = 1; |
5fafdf24 | 957 | cpu_restore_state(current_tb, env, |
2e70f6ef | 958 | env->mem_io_pc, NULL); |
6b917547 AL |
959 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
960 | ¤t_flags); | |
d720b93d FB |
961 | } |
962 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
963 | /* we need to do that to handle the case where a signal |
964 | occurs while doing tb_phys_invalidate() */ | |
965 | saved_tb = NULL; | |
966 | if (env) { | |
967 | saved_tb = env->current_tb; | |
968 | env->current_tb = NULL; | |
969 | } | |
9fa3e853 | 970 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
971 | if (env) { |
972 | env->current_tb = saved_tb; | |
973 | if (env->interrupt_request && env->current_tb) | |
974 | cpu_interrupt(env, env->interrupt_request); | |
975 | } | |
9fa3e853 FB |
976 | } |
977 | tb = tb_next; | |
978 | } | |
979 | #if !defined(CONFIG_USER_ONLY) | |
980 | /* if no code remaining, no need to continue to use slow writes */ | |
981 | if (!p->first_tb) { | |
982 | invalidate_page_bitmap(p); | |
d720b93d | 983 | if (is_cpu_write_access) { |
2e70f6ef | 984 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
985 | } |
986 | } | |
987 | #endif | |
988 | #ifdef TARGET_HAS_PRECISE_SMC | |
989 | if (current_tb_modified) { | |
990 | /* we generate a block containing just the instruction | |
991 | modifying the memory. It will ensure that it cannot modify | |
992 | itself */ | |
ea1c1802 | 993 | env->current_tb = NULL; |
2e70f6ef | 994 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 995 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 996 | } |
fd6ce8f6 | 997 | #endif |
9fa3e853 | 998 | } |
fd6ce8f6 | 999 | |
9fa3e853 | 1000 | /* len must be <= 8 and start must be a multiple of len */ |
00f82b8a | 1001 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
9fa3e853 FB |
1002 | { |
1003 | PageDesc *p; | |
1004 | int offset, b; | |
59817ccb | 1005 | #if 0 |
a4193c8a | 1006 | if (1) { |
93fcfe39 AL |
1007 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
1008 | cpu_single_env->mem_io_vaddr, len, | |
1009 | cpu_single_env->eip, | |
1010 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); | |
59817ccb FB |
1011 | } |
1012 | #endif | |
9fa3e853 | 1013 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1014 | if (!p) |
9fa3e853 FB |
1015 | return; |
1016 | if (p->code_bitmap) { | |
1017 | offset = start & ~TARGET_PAGE_MASK; | |
1018 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1019 | if (b & ((1 << len) - 1)) | |
1020 | goto do_invalidate; | |
1021 | } else { | |
1022 | do_invalidate: | |
d720b93d | 1023 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1024 | } |
1025 | } | |
1026 | ||
9fa3e853 | 1027 | #if !defined(CONFIG_SOFTMMU) |
00f82b8a | 1028 | static void tb_invalidate_phys_page(target_phys_addr_t addr, |
d720b93d | 1029 | unsigned long pc, void *puc) |
9fa3e853 | 1030 | { |
6b917547 | 1031 | TranslationBlock *tb; |
9fa3e853 | 1032 | PageDesc *p; |
6b917547 | 1033 | int n; |
d720b93d | 1034 | #ifdef TARGET_HAS_PRECISE_SMC |
6b917547 | 1035 | TranslationBlock *current_tb = NULL; |
d720b93d | 1036 | CPUState *env = cpu_single_env; |
6b917547 AL |
1037 | int current_tb_modified = 0; |
1038 | target_ulong current_pc = 0; | |
1039 | target_ulong current_cs_base = 0; | |
1040 | int current_flags = 0; | |
d720b93d | 1041 | #endif |
9fa3e853 FB |
1042 | |
1043 | addr &= TARGET_PAGE_MASK; | |
1044 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1045 | if (!p) |
9fa3e853 FB |
1046 | return; |
1047 | tb = p->first_tb; | |
d720b93d FB |
1048 | #ifdef TARGET_HAS_PRECISE_SMC |
1049 | if (tb && pc != 0) { | |
1050 | current_tb = tb_find_pc(pc); | |
1051 | } | |
1052 | #endif | |
9fa3e853 FB |
1053 | while (tb != NULL) { |
1054 | n = (long)tb & 3; | |
1055 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1056 | #ifdef TARGET_HAS_PRECISE_SMC |
1057 | if (current_tb == tb && | |
2e70f6ef | 1058 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1059 | /* If we are modifying the current TB, we must stop |
1060 | its execution. We could be more precise by checking | |
1061 | that the modification is after the current PC, but it | |
1062 | would require a specialized function to partially | |
1063 | restore the CPU state */ | |
3b46e624 | 1064 | |
d720b93d FB |
1065 | current_tb_modified = 1; |
1066 | cpu_restore_state(current_tb, env, pc, puc); | |
6b917547 AL |
1067 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1068 | ¤t_flags); | |
d720b93d FB |
1069 | } |
1070 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1071 | tb_phys_invalidate(tb, addr); |
1072 | tb = tb->page_next[n]; | |
1073 | } | |
fd6ce8f6 | 1074 | p->first_tb = NULL; |
d720b93d FB |
1075 | #ifdef TARGET_HAS_PRECISE_SMC |
1076 | if (current_tb_modified) { | |
1077 | /* we generate a block containing just the instruction | |
1078 | modifying the memory. It will ensure that it cannot modify | |
1079 | itself */ | |
ea1c1802 | 1080 | env->current_tb = NULL; |
2e70f6ef | 1081 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1082 | cpu_resume_from_signal(env, puc); |
1083 | } | |
1084 | #endif | |
fd6ce8f6 | 1085 | } |
9fa3e853 | 1086 | #endif |
fd6ce8f6 FB |
1087 | |
1088 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1089 | static inline void tb_alloc_page(TranslationBlock *tb, |
53a5960a | 1090 | unsigned int n, target_ulong page_addr) |
fd6ce8f6 FB |
1091 | { |
1092 | PageDesc *p; | |
9fa3e853 FB |
1093 | TranslationBlock *last_first_tb; |
1094 | ||
1095 | tb->page_addr[n] = page_addr; | |
3a7d929e | 1096 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1097 | tb->page_next[n] = p->first_tb; |
1098 | last_first_tb = p->first_tb; | |
1099 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1100 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1101 | |
107db443 | 1102 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1103 | |
9fa3e853 | 1104 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1105 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1106 | target_ulong addr; |
1107 | PageDesc *p2; | |
9fa3e853 FB |
1108 | int prot; |
1109 | ||
fd6ce8f6 FB |
1110 | /* force the host page as non writable (writes will have a |
1111 | page fault + mprotect overhead) */ | |
53a5960a | 1112 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1113 | prot = 0; |
53a5960a PB |
1114 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1115 | addr += TARGET_PAGE_SIZE) { | |
1116 | ||
1117 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1118 | if (!p2) | |
1119 | continue; | |
1120 | prot |= p2->flags; | |
1121 | p2->flags &= ~PAGE_WRITE; | |
1122 | page_get_flags(addr); | |
1123 | } | |
5fafdf24 | 1124 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1125 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1126 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1127 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1128 | page_addr); |
fd6ce8f6 | 1129 | #endif |
fd6ce8f6 | 1130 | } |
9fa3e853 FB |
1131 | #else |
1132 | /* if some code is already present, then the pages are already | |
1133 | protected. So we handle the case where only the first TB is | |
1134 | allocated in a physical page */ | |
1135 | if (!last_first_tb) { | |
6a00d601 | 1136 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1137 | } |
1138 | #endif | |
d720b93d FB |
1139 | |
1140 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1141 | } |
1142 | ||
1143 | /* Allocate a new translation block. Flush the translation buffer if | |
1144 | too many translation blocks or too much generated code. */ | |
c27004ec | 1145 | TranslationBlock *tb_alloc(target_ulong pc) |
fd6ce8f6 FB |
1146 | { |
1147 | TranslationBlock *tb; | |
fd6ce8f6 | 1148 | |
26a5f13b FB |
1149 | if (nb_tbs >= code_gen_max_blocks || |
1150 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
d4e8164f | 1151 | return NULL; |
fd6ce8f6 FB |
1152 | tb = &tbs[nb_tbs++]; |
1153 | tb->pc = pc; | |
b448f2f3 | 1154 | tb->cflags = 0; |
d4e8164f FB |
1155 | return tb; |
1156 | } | |
1157 | ||
2e70f6ef PB |
1158 | void tb_free(TranslationBlock *tb) |
1159 | { | |
bf20dc07 | 1160 | /* In practice this is mostly used for single use temporary TB |
2e70f6ef PB |
1161 | Ignore the hard cases and just back up if this TB happens to |
1162 | be the last one generated. */ | |
1163 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1164 | code_gen_ptr = tb->tc_ptr; | |
1165 | nb_tbs--; | |
1166 | } | |
1167 | } | |
1168 | ||
9fa3e853 FB |
1169 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1170 | (-1) to indicate that only one page contains the TB. */ | |
5fafdf24 | 1171 | void tb_link_phys(TranslationBlock *tb, |
9fa3e853 | 1172 | target_ulong phys_pc, target_ulong phys_page2) |
d4e8164f | 1173 | { |
9fa3e853 FB |
1174 | unsigned int h; |
1175 | TranslationBlock **ptb; | |
1176 | ||
c8a706fe PB |
1177 | /* Grab the mmap lock to stop another thread invalidating this TB |
1178 | before we are done. */ | |
1179 | mmap_lock(); | |
9fa3e853 FB |
1180 | /* add in the physical hash table */ |
1181 | h = tb_phys_hash_func(phys_pc); | |
1182 | ptb = &tb_phys_hash[h]; | |
1183 | tb->phys_hash_next = *ptb; | |
1184 | *ptb = tb; | |
fd6ce8f6 FB |
1185 | |
1186 | /* add in the page list */ | |
9fa3e853 FB |
1187 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1188 | if (phys_page2 != -1) | |
1189 | tb_alloc_page(tb, 1, phys_page2); | |
1190 | else | |
1191 | tb->page_addr[1] = -1; | |
9fa3e853 | 1192 | |
d4e8164f FB |
1193 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1194 | tb->jmp_next[0] = NULL; | |
1195 | tb->jmp_next[1] = NULL; | |
1196 | ||
1197 | /* init original jump addresses */ | |
1198 | if (tb->tb_next_offset[0] != 0xffff) | |
1199 | tb_reset_jump(tb, 0); | |
1200 | if (tb->tb_next_offset[1] != 0xffff) | |
1201 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1202 | |
1203 | #ifdef DEBUG_TB_CHECK | |
1204 | tb_page_check(); | |
1205 | #endif | |
c8a706fe | 1206 | mmap_unlock(); |
fd6ce8f6 FB |
1207 | } |
1208 | ||
9fa3e853 FB |
1209 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1210 | tb[1].tc_ptr. Return NULL if not found */ | |
1211 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
fd6ce8f6 | 1212 | { |
9fa3e853 FB |
1213 | int m_min, m_max, m; |
1214 | unsigned long v; | |
1215 | TranslationBlock *tb; | |
a513fe19 FB |
1216 | |
1217 | if (nb_tbs <= 0) | |
1218 | return NULL; | |
1219 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1220 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1221 | return NULL; | |
1222 | /* binary search (cf Knuth) */ | |
1223 | m_min = 0; | |
1224 | m_max = nb_tbs - 1; | |
1225 | while (m_min <= m_max) { | |
1226 | m = (m_min + m_max) >> 1; | |
1227 | tb = &tbs[m]; | |
1228 | v = (unsigned long)tb->tc_ptr; | |
1229 | if (v == tc_ptr) | |
1230 | return tb; | |
1231 | else if (tc_ptr < v) { | |
1232 | m_max = m - 1; | |
1233 | } else { | |
1234 | m_min = m + 1; | |
1235 | } | |
5fafdf24 | 1236 | } |
a513fe19 FB |
1237 | return &tbs[m_max]; |
1238 | } | |
7501267e | 1239 | |
ea041c0e FB |
1240 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1241 | ||
1242 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1243 | { | |
1244 | TranslationBlock *tb1, *tb_next, **ptb; | |
1245 | unsigned int n1; | |
1246 | ||
1247 | tb1 = tb->jmp_next[n]; | |
1248 | if (tb1 != NULL) { | |
1249 | /* find head of list */ | |
1250 | for(;;) { | |
1251 | n1 = (long)tb1 & 3; | |
1252 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1253 | if (n1 == 2) | |
1254 | break; | |
1255 | tb1 = tb1->jmp_next[n1]; | |
1256 | } | |
1257 | /* we are now sure now that tb jumps to tb1 */ | |
1258 | tb_next = tb1; | |
1259 | ||
1260 | /* remove tb from the jmp_first list */ | |
1261 | ptb = &tb_next->jmp_first; | |
1262 | for(;;) { | |
1263 | tb1 = *ptb; | |
1264 | n1 = (long)tb1 & 3; | |
1265 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1266 | if (n1 == n && tb1 == tb) | |
1267 | break; | |
1268 | ptb = &tb1->jmp_next[n1]; | |
1269 | } | |
1270 | *ptb = tb->jmp_next[n]; | |
1271 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1272 | |
ea041c0e FB |
1273 | /* suppress the jump to next tb in generated code */ |
1274 | tb_reset_jump(tb, n); | |
1275 | ||
0124311e | 1276 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1277 | tb_reset_jump_recursive(tb_next); |
1278 | } | |
1279 | } | |
1280 | ||
1281 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1282 | { | |
1283 | tb_reset_jump_recursive2(tb, 0); | |
1284 | tb_reset_jump_recursive2(tb, 1); | |
1285 | } | |
1286 | ||
1fddef4b | 1287 | #if defined(TARGET_HAS_ICE) |
d720b93d FB |
1288 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
1289 | { | |
9b3c35e0 JM |
1290 | target_phys_addr_t addr; |
1291 | target_ulong pd; | |
c2f07f81 PB |
1292 | ram_addr_t ram_addr; |
1293 | PhysPageDesc *p; | |
d720b93d | 1294 | |
c2f07f81 PB |
1295 | addr = cpu_get_phys_page_debug(env, pc); |
1296 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1297 | if (!p) { | |
1298 | pd = IO_MEM_UNASSIGNED; | |
1299 | } else { | |
1300 | pd = p->phys_offset; | |
1301 | } | |
1302 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
706cd4b5 | 1303 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1304 | } |
c27004ec | 1305 | #endif |
d720b93d | 1306 | |
6658ffb8 | 1307 | /* Add a watchpoint. */ |
a1d1bb31 AL |
1308 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, |
1309 | int flags, CPUWatchpoint **watchpoint) | |
6658ffb8 | 1310 | { |
b4051334 | 1311 | target_ulong len_mask = ~(len - 1); |
c0ce998e | 1312 | CPUWatchpoint *wp; |
6658ffb8 | 1313 | |
b4051334 AL |
1314 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ |
1315 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { | |
1316 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
1317 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1318 | return -EINVAL; | |
1319 | } | |
a1d1bb31 AL |
1320 | wp = qemu_malloc(sizeof(*wp)); |
1321 | if (!wp) | |
426cd5d6 | 1322 | return -ENOMEM; |
a1d1bb31 AL |
1323 | |
1324 | wp->vaddr = addr; | |
b4051334 | 1325 | wp->len_mask = len_mask; |
a1d1bb31 AL |
1326 | wp->flags = flags; |
1327 | ||
2dc9f411 | 1328 | /* keep all GDB-injected watchpoints in front */ |
c0ce998e AL |
1329 | if (flags & BP_GDB) |
1330 | TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
1331 | else | |
1332 | TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
6658ffb8 | 1333 | |
6658ffb8 | 1334 | tlb_flush_page(env, addr); |
a1d1bb31 AL |
1335 | |
1336 | if (watchpoint) | |
1337 | *watchpoint = wp; | |
1338 | return 0; | |
6658ffb8 PB |
1339 | } |
1340 | ||
a1d1bb31 AL |
1341 | /* Remove a specific watchpoint. */ |
1342 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, | |
1343 | int flags) | |
6658ffb8 | 1344 | { |
b4051334 | 1345 | target_ulong len_mask = ~(len - 1); |
a1d1bb31 | 1346 | CPUWatchpoint *wp; |
6658ffb8 | 1347 | |
c0ce998e | 1348 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 | 1349 | if (addr == wp->vaddr && len_mask == wp->len_mask |
6e140f28 | 1350 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
a1d1bb31 | 1351 | cpu_watchpoint_remove_by_ref(env, wp); |
6658ffb8 PB |
1352 | return 0; |
1353 | } | |
1354 | } | |
a1d1bb31 | 1355 | return -ENOENT; |
6658ffb8 PB |
1356 | } |
1357 | ||
a1d1bb31 AL |
1358 | /* Remove a specific watchpoint by reference. */ |
1359 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) | |
1360 | { | |
c0ce998e | 1361 | TAILQ_REMOVE(&env->watchpoints, watchpoint, entry); |
7d03f82f | 1362 | |
a1d1bb31 AL |
1363 | tlb_flush_page(env, watchpoint->vaddr); |
1364 | ||
1365 | qemu_free(watchpoint); | |
1366 | } | |
1367 | ||
1368 | /* Remove all matching watchpoints. */ | |
1369 | void cpu_watchpoint_remove_all(CPUState *env, int mask) | |
1370 | { | |
c0ce998e | 1371 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1372 | |
c0ce998e | 1373 | TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { |
a1d1bb31 AL |
1374 | if (wp->flags & mask) |
1375 | cpu_watchpoint_remove_by_ref(env, wp); | |
c0ce998e | 1376 | } |
7d03f82f EI |
1377 | } |
1378 | ||
a1d1bb31 AL |
1379 | /* Add a breakpoint. */ |
1380 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | |
1381 | CPUBreakpoint **breakpoint) | |
4c3a88a2 | 1382 | { |
1fddef4b | 1383 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1384 | CPUBreakpoint *bp; |
3b46e624 | 1385 | |
a1d1bb31 AL |
1386 | bp = qemu_malloc(sizeof(*bp)); |
1387 | if (!bp) | |
426cd5d6 | 1388 | return -ENOMEM; |
4c3a88a2 | 1389 | |
a1d1bb31 AL |
1390 | bp->pc = pc; |
1391 | bp->flags = flags; | |
1392 | ||
2dc9f411 | 1393 | /* keep all GDB-injected breakpoints in front */ |
c0ce998e AL |
1394 | if (flags & BP_GDB) |
1395 | TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
1396 | else | |
1397 | TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
3b46e624 | 1398 | |
d720b93d | 1399 | breakpoint_invalidate(env, pc); |
a1d1bb31 AL |
1400 | |
1401 | if (breakpoint) | |
1402 | *breakpoint = bp; | |
4c3a88a2 FB |
1403 | return 0; |
1404 | #else | |
a1d1bb31 | 1405 | return -ENOSYS; |
4c3a88a2 FB |
1406 | #endif |
1407 | } | |
1408 | ||
a1d1bb31 AL |
1409 | /* Remove a specific breakpoint. */ |
1410 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) | |
1411 | { | |
7d03f82f | 1412 | #if defined(TARGET_HAS_ICE) |
a1d1bb31 AL |
1413 | CPUBreakpoint *bp; |
1414 | ||
c0ce998e | 1415 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { |
a1d1bb31 AL |
1416 | if (bp->pc == pc && bp->flags == flags) { |
1417 | cpu_breakpoint_remove_by_ref(env, bp); | |
1418 | return 0; | |
1419 | } | |
7d03f82f | 1420 | } |
a1d1bb31 AL |
1421 | return -ENOENT; |
1422 | #else | |
1423 | return -ENOSYS; | |
7d03f82f EI |
1424 | #endif |
1425 | } | |
1426 | ||
a1d1bb31 AL |
1427 | /* Remove a specific breakpoint by reference. */ |
1428 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) | |
4c3a88a2 | 1429 | { |
1fddef4b | 1430 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1431 | TAILQ_REMOVE(&env->breakpoints, breakpoint, entry); |
d720b93d | 1432 | |
a1d1bb31 AL |
1433 | breakpoint_invalidate(env, breakpoint->pc); |
1434 | ||
1435 | qemu_free(breakpoint); | |
1436 | #endif | |
1437 | } | |
1438 | ||
1439 | /* Remove all matching breakpoints. */ | |
1440 | void cpu_breakpoint_remove_all(CPUState *env, int mask) | |
1441 | { | |
1442 | #if defined(TARGET_HAS_ICE) | |
c0ce998e | 1443 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1444 | |
c0ce998e | 1445 | TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { |
a1d1bb31 AL |
1446 | if (bp->flags & mask) |
1447 | cpu_breakpoint_remove_by_ref(env, bp); | |
c0ce998e | 1448 | } |
4c3a88a2 FB |
1449 | #endif |
1450 | } | |
1451 | ||
c33a346e FB |
1452 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1453 | CPU loop after each instruction */ | |
1454 | void cpu_single_step(CPUState *env, int enabled) | |
1455 | { | |
1fddef4b | 1456 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1457 | if (env->singlestep_enabled != enabled) { |
1458 | env->singlestep_enabled = enabled; | |
1459 | /* must flush all the translated code to avoid inconsistancies */ | |
9fa3e853 | 1460 | /* XXX: only flush what is necessary */ |
0124311e | 1461 | tb_flush(env); |
c33a346e FB |
1462 | } |
1463 | #endif | |
1464 | } | |
1465 | ||
34865134 FB |
1466 | /* enable or disable low levels log */ |
1467 | void cpu_set_log(int log_flags) | |
1468 | { | |
1469 | loglevel = log_flags; | |
1470 | if (loglevel && !logfile) { | |
11fcfab4 | 1471 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1472 | if (!logfile) { |
1473 | perror(logfilename); | |
1474 | _exit(1); | |
1475 | } | |
9fa3e853 FB |
1476 | #if !defined(CONFIG_SOFTMMU) |
1477 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1478 | { | |
b55266b5 | 1479 | static char logfile_buf[4096]; |
9fa3e853 FB |
1480 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1481 | } | |
1482 | #else | |
34865134 | 1483 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1484 | #endif |
e735b91c PB |
1485 | log_append = 1; |
1486 | } | |
1487 | if (!loglevel && logfile) { | |
1488 | fclose(logfile); | |
1489 | logfile = NULL; | |
34865134 FB |
1490 | } |
1491 | } | |
1492 | ||
1493 | void cpu_set_log_filename(const char *filename) | |
1494 | { | |
1495 | logfilename = strdup(filename); | |
e735b91c PB |
1496 | if (logfile) { |
1497 | fclose(logfile); | |
1498 | logfile = NULL; | |
1499 | } | |
1500 | cpu_set_log(loglevel); | |
34865134 | 1501 | } |
c33a346e | 1502 | |
0124311e | 1503 | /* mask must never be zero, except for A20 change call */ |
68a79315 | 1504 | void cpu_interrupt(CPUState *env, int mask) |
ea041c0e | 1505 | { |
d5975363 | 1506 | #if !defined(USE_NPTL) |
ea041c0e | 1507 | TranslationBlock *tb; |
15a51156 | 1508 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
d5975363 | 1509 | #endif |
2e70f6ef | 1510 | int old_mask; |
59817ccb | 1511 | |
2e70f6ef | 1512 | old_mask = env->interrupt_request; |
d5975363 | 1513 | /* FIXME: This is probably not threadsafe. A different thread could |
bf20dc07 | 1514 | be in the middle of a read-modify-write operation. */ |
68a79315 | 1515 | env->interrupt_request |= mask; |
d5975363 PB |
1516 | #if defined(USE_NPTL) |
1517 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1518 | problem and hope the cpu will stop of its own accord. For userspace | |
1519 | emulation this often isn't actually as bad as it sounds. Often | |
1520 | signals are used primarily to interrupt blocking syscalls. */ | |
1521 | #else | |
2e70f6ef | 1522 | if (use_icount) { |
266910c4 | 1523 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef PB |
1524 | #ifndef CONFIG_USER_ONLY |
1525 | /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means | |
1526 | an async event happened and we need to process it. */ | |
1527 | if (!can_do_io(env) | |
1528 | && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) { | |
1529 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |
1530 | } | |
1531 | #endif | |
1532 | } else { | |
1533 | tb = env->current_tb; | |
1534 | /* if the cpu is currently executing code, we must unlink it and | |
1535 | all the potentially executing TB */ | |
1536 | if (tb && !testandset(&interrupt_lock)) { | |
1537 | env->current_tb = NULL; | |
1538 | tb_reset_jump_recursive(tb); | |
1539 | resetlock(&interrupt_lock); | |
1540 | } | |
ea041c0e | 1541 | } |
d5975363 | 1542 | #endif |
ea041c0e FB |
1543 | } |
1544 | ||
b54ad049 FB |
1545 | void cpu_reset_interrupt(CPUState *env, int mask) |
1546 | { | |
1547 | env->interrupt_request &= ~mask; | |
1548 | } | |
1549 | ||
c7cd6a37 | 1550 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1551 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1552 | "show generated host assembly code for each compiled TB" }, |
1553 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1554 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1555 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1556 | "show micro ops for each compiled TB" }, |
f193c797 | 1557 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1558 | "show micro ops " |
1559 | #ifdef TARGET_I386 | |
1560 | "before eflags optimization and " | |
f193c797 | 1561 | #endif |
e01a1157 | 1562 | "after liveness analysis" }, |
f193c797 FB |
1563 | { CPU_LOG_INT, "int", |
1564 | "show interrupts/exceptions in short format" }, | |
1565 | { CPU_LOG_EXEC, "exec", | |
1566 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1567 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1568 | "show CPU state before block translation" }, |
f193c797 FB |
1569 | #ifdef TARGET_I386 |
1570 | { CPU_LOG_PCALL, "pcall", | |
1571 | "show protected mode far calls/returns/exceptions" }, | |
1572 | #endif | |
8e3a9fd2 | 1573 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1574 | { CPU_LOG_IOPORT, "ioport", |
1575 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1576 | #endif |
f193c797 FB |
1577 | { 0, NULL, NULL }, |
1578 | }; | |
1579 | ||
1580 | static int cmp1(const char *s1, int n, const char *s2) | |
1581 | { | |
1582 | if (strlen(s2) != n) | |
1583 | return 0; | |
1584 | return memcmp(s1, s2, n) == 0; | |
1585 | } | |
3b46e624 | 1586 | |
f193c797 FB |
1587 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1588 | int cpu_str_to_log_mask(const char *str) | |
1589 | { | |
c7cd6a37 | 1590 | const CPULogItem *item; |
f193c797 FB |
1591 | int mask; |
1592 | const char *p, *p1; | |
1593 | ||
1594 | p = str; | |
1595 | mask = 0; | |
1596 | for(;;) { | |
1597 | p1 = strchr(p, ','); | |
1598 | if (!p1) | |
1599 | p1 = p + strlen(p); | |
8e3a9fd2 FB |
1600 | if(cmp1(p,p1-p,"all")) { |
1601 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1602 | mask |= item->mask; | |
1603 | } | |
1604 | } else { | |
f193c797 FB |
1605 | for(item = cpu_log_items; item->mask != 0; item++) { |
1606 | if (cmp1(p, p1 - p, item->name)) | |
1607 | goto found; | |
1608 | } | |
1609 | return 0; | |
8e3a9fd2 | 1610 | } |
f193c797 FB |
1611 | found: |
1612 | mask |= item->mask; | |
1613 | if (*p1 != ',') | |
1614 | break; | |
1615 | p = p1 + 1; | |
1616 | } | |
1617 | return mask; | |
1618 | } | |
ea041c0e | 1619 | |
7501267e FB |
1620 | void cpu_abort(CPUState *env, const char *fmt, ...) |
1621 | { | |
1622 | va_list ap; | |
493ae1f0 | 1623 | va_list ap2; |
7501267e FB |
1624 | |
1625 | va_start(ap, fmt); | |
493ae1f0 | 1626 | va_copy(ap2, ap); |
7501267e FB |
1627 | fprintf(stderr, "qemu: fatal: "); |
1628 | vfprintf(stderr, fmt, ap); | |
1629 | fprintf(stderr, "\n"); | |
1630 | #ifdef TARGET_I386 | |
7fe48483 FB |
1631 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1632 | #else | |
1633 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1634 | #endif |
93fcfe39 AL |
1635 | if (qemu_log_enabled()) { |
1636 | qemu_log("qemu: fatal: "); | |
1637 | qemu_log_vprintf(fmt, ap2); | |
1638 | qemu_log("\n"); | |
f9373291 | 1639 | #ifdef TARGET_I386 |
93fcfe39 | 1640 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); |
f9373291 | 1641 | #else |
93fcfe39 | 1642 | log_cpu_state(env, 0); |
f9373291 | 1643 | #endif |
31b1a7b4 | 1644 | qemu_log_flush(); |
93fcfe39 | 1645 | qemu_log_close(); |
924edcae | 1646 | } |
493ae1f0 | 1647 | va_end(ap2); |
f9373291 | 1648 | va_end(ap); |
7501267e FB |
1649 | abort(); |
1650 | } | |
1651 | ||
c5be9f08 TS |
1652 | CPUState *cpu_copy(CPUState *env) |
1653 | { | |
01ba9816 | 1654 | CPUState *new_env = cpu_init(env->cpu_model_str); |
c5be9f08 TS |
1655 | CPUState *next_cpu = new_env->next_cpu; |
1656 | int cpu_index = new_env->cpu_index; | |
5a38f081 AL |
1657 | #if defined(TARGET_HAS_ICE) |
1658 | CPUBreakpoint *bp; | |
1659 | CPUWatchpoint *wp; | |
1660 | #endif | |
1661 | ||
c5be9f08 | 1662 | memcpy(new_env, env, sizeof(CPUState)); |
5a38f081 AL |
1663 | |
1664 | /* Preserve chaining and index. */ | |
c5be9f08 TS |
1665 | new_env->next_cpu = next_cpu; |
1666 | new_env->cpu_index = cpu_index; | |
5a38f081 AL |
1667 | |
1668 | /* Clone all break/watchpoints. | |
1669 | Note: Once we support ptrace with hw-debug register access, make sure | |
1670 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
1671 | TAILQ_INIT(&env->breakpoints); | |
1672 | TAILQ_INIT(&env->watchpoints); | |
1673 | #if defined(TARGET_HAS_ICE) | |
1674 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
1675 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | |
1676 | } | |
1677 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1678 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | |
1679 | wp->flags, NULL); | |
1680 | } | |
1681 | #endif | |
1682 | ||
c5be9f08 TS |
1683 | return new_env; |
1684 | } | |
1685 | ||
0124311e FB |
1686 | #if !defined(CONFIG_USER_ONLY) |
1687 | ||
5c751e99 EI |
1688 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
1689 | { | |
1690 | unsigned int i; | |
1691 | ||
1692 | /* Discard jump cache entries for any tb which might potentially | |
1693 | overlap the flushed page. */ | |
1694 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1695 | memset (&env->tb_jmp_cache[i], 0, | |
1696 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1697 | ||
1698 | i = tb_jmp_cache_hash_page(addr); | |
1699 | memset (&env->tb_jmp_cache[i], 0, | |
1700 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1701 | } | |
1702 | ||
ee8b7021 FB |
1703 | /* NOTE: if flush_global is true, also flush global entries (not |
1704 | implemented yet) */ | |
1705 | void tlb_flush(CPUState *env, int flush_global) | |
33417e70 | 1706 | { |
33417e70 | 1707 | int i; |
0124311e | 1708 | |
9fa3e853 FB |
1709 | #if defined(DEBUG_TLB) |
1710 | printf("tlb_flush:\n"); | |
1711 | #endif | |
0124311e FB |
1712 | /* must reset current TB so that interrupts cannot modify the |
1713 | links while we are modifying them */ | |
1714 | env->current_tb = NULL; | |
1715 | ||
33417e70 | 1716 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
84b7b8e7 FB |
1717 | env->tlb_table[0][i].addr_read = -1; |
1718 | env->tlb_table[0][i].addr_write = -1; | |
1719 | env->tlb_table[0][i].addr_code = -1; | |
1720 | env->tlb_table[1][i].addr_read = -1; | |
1721 | env->tlb_table[1][i].addr_write = -1; | |
1722 | env->tlb_table[1][i].addr_code = -1; | |
6fa4cea9 JM |
1723 | #if (NB_MMU_MODES >= 3) |
1724 | env->tlb_table[2][i].addr_read = -1; | |
1725 | env->tlb_table[2][i].addr_write = -1; | |
1726 | env->tlb_table[2][i].addr_code = -1; | |
1727 | #if (NB_MMU_MODES == 4) | |
1728 | env->tlb_table[3][i].addr_read = -1; | |
1729 | env->tlb_table[3][i].addr_write = -1; | |
1730 | env->tlb_table[3][i].addr_code = -1; | |
1731 | #endif | |
1732 | #endif | |
33417e70 | 1733 | } |
9fa3e853 | 1734 | |
8a40a180 | 1735 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1736 | |
0a962c02 FB |
1737 | #ifdef USE_KQEMU |
1738 | if (env->kqemu_enabled) { | |
1739 | kqemu_flush(env, flush_global); | |
1740 | } | |
9fa3e853 | 1741 | #endif |
e3db7226 | 1742 | tlb_flush_count++; |
33417e70 FB |
1743 | } |
1744 | ||
274da6b2 | 1745 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1746 | { |
5fafdf24 | 1747 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1748 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1749 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1750 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1751 | addr == (tlb_entry->addr_code & |
84b7b8e7 FB |
1752 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
1753 | tlb_entry->addr_read = -1; | |
1754 | tlb_entry->addr_write = -1; | |
1755 | tlb_entry->addr_code = -1; | |
1756 | } | |
61382a50 FB |
1757 | } |
1758 | ||
2e12669a | 1759 | void tlb_flush_page(CPUState *env, target_ulong addr) |
33417e70 | 1760 | { |
8a40a180 | 1761 | int i; |
0124311e | 1762 | |
9fa3e853 | 1763 | #if defined(DEBUG_TLB) |
108c49b8 | 1764 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1765 | #endif |
0124311e FB |
1766 | /* must reset current TB so that interrupts cannot modify the |
1767 | links while we are modifying them */ | |
1768 | env->current_tb = NULL; | |
61382a50 FB |
1769 | |
1770 | addr &= TARGET_PAGE_MASK; | |
1771 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
84b7b8e7 FB |
1772 | tlb_flush_entry(&env->tlb_table[0][i], addr); |
1773 | tlb_flush_entry(&env->tlb_table[1][i], addr); | |
6fa4cea9 JM |
1774 | #if (NB_MMU_MODES >= 3) |
1775 | tlb_flush_entry(&env->tlb_table[2][i], addr); | |
1776 | #if (NB_MMU_MODES == 4) | |
1777 | tlb_flush_entry(&env->tlb_table[3][i], addr); | |
1778 | #endif | |
1779 | #endif | |
0124311e | 1780 | |
5c751e99 | 1781 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 | 1782 | |
0a962c02 FB |
1783 | #ifdef USE_KQEMU |
1784 | if (env->kqemu_enabled) { | |
1785 | kqemu_flush_page(env, addr); | |
1786 | } | |
1787 | #endif | |
9fa3e853 FB |
1788 | } |
1789 | ||
9fa3e853 FB |
1790 | /* update the TLBs so that writes to code in the virtual page 'addr' |
1791 | can be detected */ | |
6a00d601 | 1792 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 1793 | { |
5fafdf24 | 1794 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
1795 | ram_addr + TARGET_PAGE_SIZE, |
1796 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
1797 | } |
1798 | ||
9fa3e853 | 1799 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 1800 | tested for self modifying code */ |
5fafdf24 | 1801 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 1802 | target_ulong vaddr) |
9fa3e853 | 1803 | { |
3a7d929e | 1804 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
1ccde1cb FB |
1805 | } |
1806 | ||
5fafdf24 | 1807 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
1808 | unsigned long start, unsigned long length) |
1809 | { | |
1810 | unsigned long addr; | |
84b7b8e7 FB |
1811 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
1812 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1ccde1cb | 1813 | if ((addr - start) < length) { |
0f459d16 | 1814 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
1ccde1cb FB |
1815 | } |
1816 | } | |
1817 | } | |
1818 | ||
3a7d929e | 1819 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 1820 | int dirty_flags) |
1ccde1cb FB |
1821 | { |
1822 | CPUState *env; | |
4f2ac237 | 1823 | unsigned long length, start1; |
0a962c02 FB |
1824 | int i, mask, len; |
1825 | uint8_t *p; | |
1ccde1cb FB |
1826 | |
1827 | start &= TARGET_PAGE_MASK; | |
1828 | end = TARGET_PAGE_ALIGN(end); | |
1829 | ||
1830 | length = end - start; | |
1831 | if (length == 0) | |
1832 | return; | |
0a962c02 | 1833 | len = length >> TARGET_PAGE_BITS; |
3a7d929e | 1834 | #ifdef USE_KQEMU |
6a00d601 FB |
1835 | /* XXX: should not depend on cpu context */ |
1836 | env = first_cpu; | |
3a7d929e | 1837 | if (env->kqemu_enabled) { |
f23db169 FB |
1838 | ram_addr_t addr; |
1839 | addr = start; | |
1840 | for(i = 0; i < len; i++) { | |
1841 | kqemu_set_notdirty(env, addr); | |
1842 | addr += TARGET_PAGE_SIZE; | |
1843 | } | |
3a7d929e FB |
1844 | } |
1845 | #endif | |
f23db169 FB |
1846 | mask = ~dirty_flags; |
1847 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1848 | for(i = 0; i < len; i++) | |
1849 | p[i] &= mask; | |
1850 | ||
1ccde1cb FB |
1851 | /* we modify the TLB cache so that the dirty bit will be set again |
1852 | when accessing the range */ | |
59817ccb | 1853 | start1 = start + (unsigned long)phys_ram_base; |
6a00d601 FB |
1854 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
1855 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1856 | tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length); |
6a00d601 | 1857 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1858 | tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length); |
6fa4cea9 JM |
1859 | #if (NB_MMU_MODES >= 3) |
1860 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1861 | tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length); | |
1862 | #if (NB_MMU_MODES == 4) | |
1863 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1864 | tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length); | |
1865 | #endif | |
1866 | #endif | |
6a00d601 | 1867 | } |
1ccde1cb FB |
1868 | } |
1869 | ||
74576198 AL |
1870 | int cpu_physical_memory_set_dirty_tracking(int enable) |
1871 | { | |
1872 | in_migration = enable; | |
1873 | return 0; | |
1874 | } | |
1875 | ||
1876 | int cpu_physical_memory_get_dirty_tracking(void) | |
1877 | { | |
1878 | return in_migration; | |
1879 | } | |
1880 | ||
2bec46dc AL |
1881 | void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) |
1882 | { | |
1883 | if (kvm_enabled()) | |
1884 | kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
1885 | } | |
1886 | ||
3a7d929e FB |
1887 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
1888 | { | |
1889 | ram_addr_t ram_addr; | |
1890 | ||
84b7b8e7 | 1891 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
5fafdf24 | 1892 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + |
3a7d929e FB |
1893 | tlb_entry->addend - (unsigned long)phys_ram_base; |
1894 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
0f459d16 | 1895 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
1896 | } |
1897 | } | |
1898 | } | |
1899 | ||
1900 | /* update the TLB according to the current state of the dirty bits */ | |
1901 | void cpu_tlb_update_dirty(CPUState *env) | |
1902 | { | |
1903 | int i; | |
1904 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1905 | tlb_update_dirty(&env->tlb_table[0][i]); |
3a7d929e | 1906 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1907 | tlb_update_dirty(&env->tlb_table[1][i]); |
6fa4cea9 JM |
1908 | #if (NB_MMU_MODES >= 3) |
1909 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1910 | tlb_update_dirty(&env->tlb_table[2][i]); | |
1911 | #if (NB_MMU_MODES == 4) | |
1912 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1913 | tlb_update_dirty(&env->tlb_table[3][i]); | |
1914 | #endif | |
1915 | #endif | |
3a7d929e FB |
1916 | } |
1917 | ||
0f459d16 | 1918 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 1919 | { |
0f459d16 PB |
1920 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
1921 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
1922 | } |
1923 | ||
0f459d16 PB |
1924 | /* update the TLB corresponding to virtual page vaddr |
1925 | so that it is no longer dirty */ | |
1926 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1ccde1cb | 1927 | { |
1ccde1cb FB |
1928 | int i; |
1929 | ||
0f459d16 | 1930 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 1931 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
0f459d16 PB |
1932 | tlb_set_dirty1(&env->tlb_table[0][i], vaddr); |
1933 | tlb_set_dirty1(&env->tlb_table[1][i], vaddr); | |
6fa4cea9 | 1934 | #if (NB_MMU_MODES >= 3) |
0f459d16 | 1935 | tlb_set_dirty1(&env->tlb_table[2][i], vaddr); |
6fa4cea9 | 1936 | #if (NB_MMU_MODES == 4) |
0f459d16 | 1937 | tlb_set_dirty1(&env->tlb_table[3][i], vaddr); |
6fa4cea9 JM |
1938 | #endif |
1939 | #endif | |
9fa3e853 FB |
1940 | } |
1941 | ||
59817ccb FB |
1942 | /* add a new TLB entry. At most one entry for a given virtual address |
1943 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1944 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1945 | conflicting with the host address space). */ | |
5fafdf24 TS |
1946 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1947 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1948 | int mmu_idx, int is_softmmu) |
9fa3e853 | 1949 | { |
92e873b9 | 1950 | PhysPageDesc *p; |
4f2ac237 | 1951 | unsigned long pd; |
9fa3e853 | 1952 | unsigned int index; |
4f2ac237 | 1953 | target_ulong address; |
0f459d16 | 1954 | target_ulong code_address; |
108c49b8 | 1955 | target_phys_addr_t addend; |
9fa3e853 | 1956 | int ret; |
84b7b8e7 | 1957 | CPUTLBEntry *te; |
a1d1bb31 | 1958 | CPUWatchpoint *wp; |
0f459d16 | 1959 | target_phys_addr_t iotlb; |
9fa3e853 | 1960 | |
92e873b9 | 1961 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1962 | if (!p) { |
1963 | pd = IO_MEM_UNASSIGNED; | |
9fa3e853 FB |
1964 | } else { |
1965 | pd = p->phys_offset; | |
9fa3e853 FB |
1966 | } |
1967 | #if defined(DEBUG_TLB) | |
6ebbf390 JM |
1968 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
1969 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
9fa3e853 FB |
1970 | #endif |
1971 | ||
1972 | ret = 0; | |
0f459d16 PB |
1973 | address = vaddr; |
1974 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1975 | /* IO memory case (romd handled later) */ | |
1976 | address |= TLB_MMIO; | |
1977 | } | |
1978 | addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK); | |
1979 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { | |
1980 | /* Normal RAM. */ | |
1981 | iotlb = pd & TARGET_PAGE_MASK; | |
1982 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
1983 | iotlb |= IO_MEM_NOTDIRTY; | |
1984 | else | |
1985 | iotlb |= IO_MEM_ROM; | |
1986 | } else { | |
1987 | /* IO handlers are currently passed a phsical address. | |
1988 | It would be nice to pass an offset from the base address | |
1989 | of that region. This would avoid having to special case RAM, | |
1990 | and avoid full address decoding in every device. | |
1991 | We can't use the high bits of pd for this because | |
1992 | IO_MEM_ROMD uses these as a ram address. */ | |
8da3ff18 PB |
1993 | iotlb = (pd & ~TARGET_PAGE_MASK); |
1994 | if (p) { | |
8da3ff18 PB |
1995 | iotlb += p->region_offset; |
1996 | } else { | |
1997 | iotlb += paddr; | |
1998 | } | |
0f459d16 PB |
1999 | } |
2000 | ||
2001 | code_address = address; | |
2002 | /* Make accesses to pages with watchpoints go via the | |
2003 | watchpoint trap routines. */ | |
c0ce998e | 2004 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
a1d1bb31 | 2005 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { |
0f459d16 PB |
2006 | iotlb = io_mem_watch + paddr; |
2007 | /* TODO: The memory case can be optimized by not trapping | |
2008 | reads of pages with a write breakpoint. */ | |
2009 | address |= TLB_MMIO; | |
6658ffb8 | 2010 | } |
0f459d16 | 2011 | } |
d79acba4 | 2012 | |
0f459d16 PB |
2013 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
2014 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
2015 | te = &env->tlb_table[mmu_idx][index]; | |
2016 | te->addend = addend - vaddr; | |
2017 | if (prot & PAGE_READ) { | |
2018 | te->addr_read = address; | |
2019 | } else { | |
2020 | te->addr_read = -1; | |
2021 | } | |
5c751e99 | 2022 | |
0f459d16 PB |
2023 | if (prot & PAGE_EXEC) { |
2024 | te->addr_code = code_address; | |
2025 | } else { | |
2026 | te->addr_code = -1; | |
2027 | } | |
2028 | if (prot & PAGE_WRITE) { | |
2029 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
2030 | (pd & IO_MEM_ROMD)) { | |
2031 | /* Write access calls the I/O callback. */ | |
2032 | te->addr_write = address | TLB_MMIO; | |
2033 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
2034 | !cpu_physical_memory_is_dirty(pd)) { | |
2035 | te->addr_write = address | TLB_NOTDIRTY; | |
9fa3e853 | 2036 | } else { |
0f459d16 | 2037 | te->addr_write = address; |
9fa3e853 | 2038 | } |
0f459d16 PB |
2039 | } else { |
2040 | te->addr_write = -1; | |
9fa3e853 | 2041 | } |
9fa3e853 FB |
2042 | return ret; |
2043 | } | |
2044 | ||
0124311e FB |
2045 | #else |
2046 | ||
ee8b7021 | 2047 | void tlb_flush(CPUState *env, int flush_global) |
0124311e FB |
2048 | { |
2049 | } | |
2050 | ||
2e12669a | 2051 | void tlb_flush_page(CPUState *env, target_ulong addr) |
0124311e FB |
2052 | { |
2053 | } | |
2054 | ||
5fafdf24 TS |
2055 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
2056 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 2057 | int mmu_idx, int is_softmmu) |
9fa3e853 FB |
2058 | { |
2059 | return 0; | |
2060 | } | |
0124311e | 2061 | |
9fa3e853 FB |
2062 | /* dump memory mappings */ |
2063 | void page_dump(FILE *f) | |
33417e70 | 2064 | { |
9fa3e853 FB |
2065 | unsigned long start, end; |
2066 | int i, j, prot, prot1; | |
2067 | PageDesc *p; | |
33417e70 | 2068 | |
9fa3e853 FB |
2069 | fprintf(f, "%-8s %-8s %-8s %s\n", |
2070 | "start", "end", "size", "prot"); | |
2071 | start = -1; | |
2072 | end = -1; | |
2073 | prot = 0; | |
2074 | for(i = 0; i <= L1_SIZE; i++) { | |
2075 | if (i < L1_SIZE) | |
2076 | p = l1_map[i]; | |
2077 | else | |
2078 | p = NULL; | |
2079 | for(j = 0;j < L2_SIZE; j++) { | |
2080 | if (!p) | |
2081 | prot1 = 0; | |
2082 | else | |
2083 | prot1 = p[j].flags; | |
2084 | if (prot1 != prot) { | |
2085 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2086 | if (start != -1) { | |
2087 | fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
5fafdf24 | 2088 | start, end, end - start, |
9fa3e853 FB |
2089 | prot & PAGE_READ ? 'r' : '-', |
2090 | prot & PAGE_WRITE ? 'w' : '-', | |
2091 | prot & PAGE_EXEC ? 'x' : '-'); | |
2092 | } | |
2093 | if (prot1 != 0) | |
2094 | start = end; | |
2095 | else | |
2096 | start = -1; | |
2097 | prot = prot1; | |
2098 | } | |
2099 | if (!p) | |
2100 | break; | |
2101 | } | |
33417e70 | 2102 | } |
33417e70 FB |
2103 | } |
2104 | ||
53a5960a | 2105 | int page_get_flags(target_ulong address) |
33417e70 | 2106 | { |
9fa3e853 FB |
2107 | PageDesc *p; |
2108 | ||
2109 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2110 | if (!p) |
9fa3e853 FB |
2111 | return 0; |
2112 | return p->flags; | |
2113 | } | |
2114 | ||
2115 | /* modify the flags of a page and invalidate the code if | |
2116 | necessary. The flag PAGE_WRITE_ORG is positionned automatically | |
2117 | depending on PAGE_WRITE */ | |
53a5960a | 2118 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 FB |
2119 | { |
2120 | PageDesc *p; | |
53a5960a | 2121 | target_ulong addr; |
9fa3e853 | 2122 | |
c8a706fe | 2123 | /* mmap_lock should already be held. */ |
9fa3e853 FB |
2124 | start = start & TARGET_PAGE_MASK; |
2125 | end = TARGET_PAGE_ALIGN(end); | |
2126 | if (flags & PAGE_WRITE) | |
2127 | flags |= PAGE_WRITE_ORG; | |
9fa3e853 FB |
2128 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2129 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
17e2377a PB |
2130 | /* We may be called for host regions that are outside guest |
2131 | address space. */ | |
2132 | if (!p) | |
2133 | return; | |
9fa3e853 FB |
2134 | /* if the write protection is set, then we invalidate the code |
2135 | inside */ | |
5fafdf24 | 2136 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2137 | (flags & PAGE_WRITE) && |
2138 | p->first_tb) { | |
d720b93d | 2139 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2140 | } |
2141 | p->flags = flags; | |
2142 | } | |
33417e70 FB |
2143 | } |
2144 | ||
3d97b40b TS |
2145 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2146 | { | |
2147 | PageDesc *p; | |
2148 | target_ulong end; | |
2149 | target_ulong addr; | |
2150 | ||
55f280c9 AZ |
2151 | if (start + len < start) |
2152 | /* we've wrapped around */ | |
2153 | return -1; | |
2154 | ||
3d97b40b TS |
2155 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ |
2156 | start = start & TARGET_PAGE_MASK; | |
2157 | ||
3d97b40b TS |
2158 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2159 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2160 | if( !p ) | |
2161 | return -1; | |
2162 | if( !(p->flags & PAGE_VALID) ) | |
2163 | return -1; | |
2164 | ||
dae3270c | 2165 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2166 | return -1; |
dae3270c FB |
2167 | if (flags & PAGE_WRITE) { |
2168 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2169 | return -1; | |
2170 | /* unprotect the page if it was put read-only because it | |
2171 | contains translated code */ | |
2172 | if (!(p->flags & PAGE_WRITE)) { | |
2173 | if (!page_unprotect(addr, 0, NULL)) | |
2174 | return -1; | |
2175 | } | |
2176 | return 0; | |
2177 | } | |
3d97b40b TS |
2178 | } |
2179 | return 0; | |
2180 | } | |
2181 | ||
9fa3e853 FB |
2182 | /* called from signal handler: invalidate the code and unprotect the |
2183 | page. Return TRUE if the fault was succesfully handled. */ | |
53a5960a | 2184 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
9fa3e853 FB |
2185 | { |
2186 | unsigned int page_index, prot, pindex; | |
2187 | PageDesc *p, *p1; | |
53a5960a | 2188 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2189 | |
c8a706fe PB |
2190 | /* Technically this isn't safe inside a signal handler. However we |
2191 | know this only ever happens in a synchronous SEGV handler, so in | |
2192 | practice it seems to be ok. */ | |
2193 | mmap_lock(); | |
2194 | ||
83fb7adf | 2195 | host_start = address & qemu_host_page_mask; |
9fa3e853 FB |
2196 | page_index = host_start >> TARGET_PAGE_BITS; |
2197 | p1 = page_find(page_index); | |
c8a706fe PB |
2198 | if (!p1) { |
2199 | mmap_unlock(); | |
9fa3e853 | 2200 | return 0; |
c8a706fe | 2201 | } |
83fb7adf | 2202 | host_end = host_start + qemu_host_page_size; |
9fa3e853 FB |
2203 | p = p1; |
2204 | prot = 0; | |
2205 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2206 | prot |= p->flags; | |
2207 | p++; | |
2208 | } | |
2209 | /* if the page was really writable, then we change its | |
2210 | protection back to writable */ | |
2211 | if (prot & PAGE_WRITE_ORG) { | |
2212 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2213 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
5fafdf24 | 2214 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
9fa3e853 FB |
2215 | (prot & PAGE_BITS) | PAGE_WRITE); |
2216 | p1[pindex].flags |= PAGE_WRITE; | |
2217 | /* and since the content will be modified, we must invalidate | |
2218 | the corresponding translated code. */ | |
d720b93d | 2219 | tb_invalidate_phys_page(address, pc, puc); |
9fa3e853 FB |
2220 | #ifdef DEBUG_TB_CHECK |
2221 | tb_invalidate_check(address); | |
2222 | #endif | |
c8a706fe | 2223 | mmap_unlock(); |
9fa3e853 FB |
2224 | return 1; |
2225 | } | |
2226 | } | |
c8a706fe | 2227 | mmap_unlock(); |
9fa3e853 FB |
2228 | return 0; |
2229 | } | |
2230 | ||
6a00d601 FB |
2231 | static inline void tlb_set_dirty(CPUState *env, |
2232 | unsigned long addr, target_ulong vaddr) | |
1ccde1cb FB |
2233 | { |
2234 | } | |
9fa3e853 FB |
2235 | #endif /* defined(CONFIG_USER_ONLY) */ |
2236 | ||
e2eef170 | 2237 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 2238 | |
db7b5426 | 2239 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
8da3ff18 | 2240 | ram_addr_t memory, ram_addr_t region_offset); |
00f82b8a | 2241 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2242 | ram_addr_t orig_memory, ram_addr_t region_offset); |
db7b5426 BS |
2243 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
2244 | need_subpage) \ | |
2245 | do { \ | |
2246 | if (addr > start_addr) \ | |
2247 | start_addr2 = 0; \ | |
2248 | else { \ | |
2249 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2250 | if (start_addr2 > 0) \ | |
2251 | need_subpage = 1; \ | |
2252 | } \ | |
2253 | \ | |
49e9fba2 | 2254 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
db7b5426 BS |
2255 | end_addr2 = TARGET_PAGE_SIZE - 1; \ |
2256 | else { \ | |
2257 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2258 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2259 | need_subpage = 1; \ | |
2260 | } \ | |
2261 | } while (0) | |
2262 | ||
33417e70 FB |
2263 | /* register physical memory. 'size' must be a multiple of the target |
2264 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
8da3ff18 PB |
2265 | io memory page. The address used when calling the IO function is |
2266 | the offset from the start of the region, plus region_offset. Both | |
2267 | start_region and regon_offset are rounded down to a page boundary | |
2268 | before calculating this offset. This should not be a problem unless | |
2269 | the low bits of start_addr and region_offset differ. */ | |
2270 | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr, | |
2271 | ram_addr_t size, | |
2272 | ram_addr_t phys_offset, | |
2273 | ram_addr_t region_offset) | |
33417e70 | 2274 | { |
108c49b8 | 2275 | target_phys_addr_t addr, end_addr; |
92e873b9 | 2276 | PhysPageDesc *p; |
9d42037b | 2277 | CPUState *env; |
00f82b8a | 2278 | ram_addr_t orig_size = size; |
db7b5426 | 2279 | void *subpage; |
33417e70 | 2280 | |
da260249 FB |
2281 | #ifdef USE_KQEMU |
2282 | /* XXX: should not depend on cpu context */ | |
2283 | env = first_cpu; | |
2284 | if (env->kqemu_enabled) { | |
2285 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2286 | } | |
2287 | #endif | |
7ba1e619 AL |
2288 | if (kvm_enabled()) |
2289 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
2290 | ||
8da3ff18 | 2291 | region_offset &= TARGET_PAGE_MASK; |
5fd386f6 | 2292 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
49e9fba2 BS |
2293 | end_addr = start_addr + (target_phys_addr_t)size; |
2294 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
db7b5426 BS |
2295 | p = phys_page_find(addr >> TARGET_PAGE_BITS); |
2296 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
00f82b8a | 2297 | ram_addr_t orig_memory = p->phys_offset; |
db7b5426 BS |
2298 | target_phys_addr_t start_addr2, end_addr2; |
2299 | int need_subpage = 0; | |
2300 | ||
2301 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2302 | need_subpage); | |
4254fab8 | 2303 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2304 | if (!(orig_memory & IO_MEM_SUBPAGE)) { |
2305 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
8da3ff18 PB |
2306 | &p->phys_offset, orig_memory, |
2307 | p->region_offset); | |
db7b5426 BS |
2308 | } else { |
2309 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2310 | >> IO_MEM_SHIFT]; | |
2311 | } | |
8da3ff18 PB |
2312 | subpage_register(subpage, start_addr2, end_addr2, phys_offset, |
2313 | region_offset); | |
2314 | p->region_offset = 0; | |
db7b5426 BS |
2315 | } else { |
2316 | p->phys_offset = phys_offset; | |
2317 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2318 | (phys_offset & IO_MEM_ROMD)) | |
2319 | phys_offset += TARGET_PAGE_SIZE; | |
2320 | } | |
2321 | } else { | |
2322 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2323 | p->phys_offset = phys_offset; | |
8da3ff18 | 2324 | p->region_offset = region_offset; |
db7b5426 | 2325 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || |
8da3ff18 | 2326 | (phys_offset & IO_MEM_ROMD)) { |
db7b5426 | 2327 | phys_offset += TARGET_PAGE_SIZE; |
0e8f0967 | 2328 | } else { |
db7b5426 BS |
2329 | target_phys_addr_t start_addr2, end_addr2; |
2330 | int need_subpage = 0; | |
2331 | ||
2332 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2333 | end_addr2, need_subpage); | |
2334 | ||
4254fab8 | 2335 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 | 2336 | subpage = subpage_init((addr & TARGET_PAGE_MASK), |
8da3ff18 PB |
2337 | &p->phys_offset, IO_MEM_UNASSIGNED, |
2338 | 0); | |
db7b5426 | 2339 | subpage_register(subpage, start_addr2, end_addr2, |
8da3ff18 PB |
2340 | phys_offset, region_offset); |
2341 | p->region_offset = 0; | |
db7b5426 BS |
2342 | } |
2343 | } | |
2344 | } | |
8da3ff18 | 2345 | region_offset += TARGET_PAGE_SIZE; |
33417e70 | 2346 | } |
3b46e624 | 2347 | |
9d42037b FB |
2348 | /* since each CPU stores ram addresses in its TLB cache, we must |
2349 | reset the modified entries */ | |
2350 | /* XXX: slow ! */ | |
2351 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2352 | tlb_flush(env, 1); | |
2353 | } | |
33417e70 FB |
2354 | } |
2355 | ||
ba863458 | 2356 | /* XXX: temporary until new memory mapping API */ |
00f82b8a | 2357 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
ba863458 FB |
2358 | { |
2359 | PhysPageDesc *p; | |
2360 | ||
2361 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2362 | if (!p) | |
2363 | return IO_MEM_UNASSIGNED; | |
2364 | return p->phys_offset; | |
2365 | } | |
2366 | ||
f65ed4c1 AL |
2367 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) |
2368 | { | |
2369 | if (kvm_enabled()) | |
2370 | kvm_coalesce_mmio_region(addr, size); | |
2371 | } | |
2372 | ||
2373 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) | |
2374 | { | |
2375 | if (kvm_enabled()) | |
2376 | kvm_uncoalesce_mmio_region(addr, size); | |
2377 | } | |
2378 | ||
e9a1ab19 | 2379 | /* XXX: better than nothing */ |
00f82b8a | 2380 | ram_addr_t qemu_ram_alloc(ram_addr_t size) |
e9a1ab19 FB |
2381 | { |
2382 | ram_addr_t addr; | |
7fb4fdcf | 2383 | if ((phys_ram_alloc_offset + size) > phys_ram_size) { |
012a7045 | 2384 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", |
ed441467 | 2385 | (uint64_t)size, (uint64_t)phys_ram_size); |
e9a1ab19 FB |
2386 | abort(); |
2387 | } | |
2388 | addr = phys_ram_alloc_offset; | |
2389 | phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size); | |
2390 | return addr; | |
2391 | } | |
2392 | ||
2393 | void qemu_ram_free(ram_addr_t addr) | |
2394 | { | |
2395 | } | |
2396 | ||
a4193c8a | 2397 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
33417e70 | 2398 | { |
67d3b957 | 2399 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2400 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
b4f0a316 | 2401 | #endif |
0a6f8a6d | 2402 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2403 | do_unassigned_access(addr, 0, 0, 0, 1); |
2404 | #endif | |
2405 | return 0; | |
2406 | } | |
2407 | ||
2408 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | |
2409 | { | |
2410 | #ifdef DEBUG_UNASSIGNED | |
2411 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2412 | #endif | |
0a6f8a6d | 2413 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2414 | do_unassigned_access(addr, 0, 0, 0, 2); |
2415 | #endif | |
2416 | return 0; | |
2417 | } | |
2418 | ||
2419 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | |
2420 | { | |
2421 | #ifdef DEBUG_UNASSIGNED | |
2422 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2423 | #endif | |
0a6f8a6d | 2424 | #if defined(TARGET_SPARC) |
e18231a3 | 2425 | do_unassigned_access(addr, 0, 0, 0, 4); |
67d3b957 | 2426 | #endif |
33417e70 FB |
2427 | return 0; |
2428 | } | |
2429 | ||
a4193c8a | 2430 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
33417e70 | 2431 | { |
67d3b957 | 2432 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2433 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
67d3b957 | 2434 | #endif |
0a6f8a6d | 2435 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2436 | do_unassigned_access(addr, 1, 0, 0, 1); |
2437 | #endif | |
2438 | } | |
2439 | ||
2440 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2441 | { | |
2442 | #ifdef DEBUG_UNASSIGNED | |
2443 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2444 | #endif | |
0a6f8a6d | 2445 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2446 | do_unassigned_access(addr, 1, 0, 0, 2); |
2447 | #endif | |
2448 | } | |
2449 | ||
2450 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2451 | { | |
2452 | #ifdef DEBUG_UNASSIGNED | |
2453 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2454 | #endif | |
0a6f8a6d | 2455 | #if defined(TARGET_SPARC) |
e18231a3 | 2456 | do_unassigned_access(addr, 1, 0, 0, 4); |
b4f0a316 | 2457 | #endif |
33417e70 FB |
2458 | } |
2459 | ||
2460 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2461 | unassigned_mem_readb, | |
e18231a3 BS |
2462 | unassigned_mem_readw, |
2463 | unassigned_mem_readl, | |
33417e70 FB |
2464 | }; |
2465 | ||
2466 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2467 | unassigned_mem_writeb, | |
e18231a3 BS |
2468 | unassigned_mem_writew, |
2469 | unassigned_mem_writel, | |
33417e70 FB |
2470 | }; |
2471 | ||
0f459d16 PB |
2472 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
2473 | uint32_t val) | |
9fa3e853 | 2474 | { |
3a7d929e | 2475 | int dirty_flags; |
3a7d929e FB |
2476 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2477 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2478 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2479 | tb_invalidate_phys_page_fast(ram_addr, 1); |
2480 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2481 | #endif |
3a7d929e | 2482 | } |
0f459d16 | 2483 | stb_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2484 | #ifdef USE_KQEMU |
2485 | if (cpu_single_env->kqemu_enabled && | |
2486 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2487 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2488 | #endif | |
f23db169 FB |
2489 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2490 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2491 | /* we remove the notdirty callback only if the code has been | |
2492 | flushed */ | |
2493 | if (dirty_flags == 0xff) | |
2e70f6ef | 2494 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2495 | } |
2496 | ||
0f459d16 PB |
2497 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
2498 | uint32_t val) | |
9fa3e853 | 2499 | { |
3a7d929e | 2500 | int dirty_flags; |
3a7d929e FB |
2501 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2502 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2503 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2504 | tb_invalidate_phys_page_fast(ram_addr, 2); |
2505 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2506 | #endif |
3a7d929e | 2507 | } |
0f459d16 | 2508 | stw_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2509 | #ifdef USE_KQEMU |
2510 | if (cpu_single_env->kqemu_enabled && | |
2511 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2512 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2513 | #endif | |
f23db169 FB |
2514 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2515 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2516 | /* we remove the notdirty callback only if the code has been | |
2517 | flushed */ | |
2518 | if (dirty_flags == 0xff) | |
2e70f6ef | 2519 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2520 | } |
2521 | ||
0f459d16 PB |
2522 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
2523 | uint32_t val) | |
9fa3e853 | 2524 | { |
3a7d929e | 2525 | int dirty_flags; |
3a7d929e FB |
2526 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2527 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2528 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2529 | tb_invalidate_phys_page_fast(ram_addr, 4); |
2530 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2531 | #endif |
3a7d929e | 2532 | } |
0f459d16 | 2533 | stl_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2534 | #ifdef USE_KQEMU |
2535 | if (cpu_single_env->kqemu_enabled && | |
2536 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2537 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2538 | #endif | |
f23db169 FB |
2539 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2540 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2541 | /* we remove the notdirty callback only if the code has been | |
2542 | flushed */ | |
2543 | if (dirty_flags == 0xff) | |
2e70f6ef | 2544 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2545 | } |
2546 | ||
3a7d929e | 2547 | static CPUReadMemoryFunc *error_mem_read[3] = { |
9fa3e853 FB |
2548 | NULL, /* never used */ |
2549 | NULL, /* never used */ | |
2550 | NULL, /* never used */ | |
2551 | }; | |
2552 | ||
1ccde1cb FB |
2553 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
2554 | notdirty_mem_writeb, | |
2555 | notdirty_mem_writew, | |
2556 | notdirty_mem_writel, | |
2557 | }; | |
2558 | ||
0f459d16 | 2559 | /* Generate a debug exception if a watchpoint has been hit. */ |
b4051334 | 2560 | static void check_watchpoint(int offset, int len_mask, int flags) |
0f459d16 PB |
2561 | { |
2562 | CPUState *env = cpu_single_env; | |
06d55cc1 AL |
2563 | target_ulong pc, cs_base; |
2564 | TranslationBlock *tb; | |
0f459d16 | 2565 | target_ulong vaddr; |
a1d1bb31 | 2566 | CPUWatchpoint *wp; |
06d55cc1 | 2567 | int cpu_flags; |
0f459d16 | 2568 | |
06d55cc1 AL |
2569 | if (env->watchpoint_hit) { |
2570 | /* We re-entered the check after replacing the TB. Now raise | |
2571 | * the debug interrupt so that is will trigger after the | |
2572 | * current instruction. */ | |
2573 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2574 | return; | |
2575 | } | |
2e70f6ef | 2576 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
c0ce998e | 2577 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 AL |
2578 | if ((vaddr == (wp->vaddr & len_mask) || |
2579 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
6e140f28 AL |
2580 | wp->flags |= BP_WATCHPOINT_HIT; |
2581 | if (!env->watchpoint_hit) { | |
2582 | env->watchpoint_hit = wp; | |
2583 | tb = tb_find_pc(env->mem_io_pc); | |
2584 | if (!tb) { | |
2585 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
2586 | "pc=%p", (void *)env->mem_io_pc); | |
2587 | } | |
2588 | cpu_restore_state(tb, env, env->mem_io_pc, NULL); | |
2589 | tb_phys_invalidate(tb, -1); | |
2590 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2591 | env->exception_index = EXCP_DEBUG; | |
2592 | } else { | |
2593 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2594 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
2595 | } | |
2596 | cpu_resume_from_signal(env, NULL); | |
06d55cc1 | 2597 | } |
6e140f28 AL |
2598 | } else { |
2599 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2600 | } |
2601 | } | |
2602 | } | |
2603 | ||
6658ffb8 PB |
2604 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2605 | so these check for a hit then pass through to the normal out-of-line | |
2606 | phys routines. */ | |
2607 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2608 | { | |
b4051334 | 2609 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); |
6658ffb8 PB |
2610 | return ldub_phys(addr); |
2611 | } | |
2612 | ||
2613 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2614 | { | |
b4051334 | 2615 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); |
6658ffb8 PB |
2616 | return lduw_phys(addr); |
2617 | } | |
2618 | ||
2619 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2620 | { | |
b4051334 | 2621 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); |
6658ffb8 PB |
2622 | return ldl_phys(addr); |
2623 | } | |
2624 | ||
6658ffb8 PB |
2625 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
2626 | uint32_t val) | |
2627 | { | |
b4051334 | 2628 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); |
6658ffb8 PB |
2629 | stb_phys(addr, val); |
2630 | } | |
2631 | ||
2632 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2633 | uint32_t val) | |
2634 | { | |
b4051334 | 2635 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); |
6658ffb8 PB |
2636 | stw_phys(addr, val); |
2637 | } | |
2638 | ||
2639 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2640 | uint32_t val) | |
2641 | { | |
b4051334 | 2642 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); |
6658ffb8 PB |
2643 | stl_phys(addr, val); |
2644 | } | |
2645 | ||
2646 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2647 | watch_mem_readb, | |
2648 | watch_mem_readw, | |
2649 | watch_mem_readl, | |
2650 | }; | |
2651 | ||
2652 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2653 | watch_mem_writeb, | |
2654 | watch_mem_writew, | |
2655 | watch_mem_writel, | |
2656 | }; | |
6658ffb8 | 2657 | |
db7b5426 BS |
2658 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
2659 | unsigned int len) | |
2660 | { | |
db7b5426 BS |
2661 | uint32_t ret; |
2662 | unsigned int idx; | |
2663 | ||
8da3ff18 | 2664 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2665 | #if defined(DEBUG_SUBPAGE) |
2666 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2667 | mmio, len, addr, idx); | |
2668 | #endif | |
8da3ff18 PB |
2669 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], |
2670 | addr + mmio->region_offset[idx][0][len]); | |
db7b5426 BS |
2671 | |
2672 | return ret; | |
2673 | } | |
2674 | ||
2675 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2676 | uint32_t value, unsigned int len) | |
2677 | { | |
db7b5426 BS |
2678 | unsigned int idx; |
2679 | ||
8da3ff18 | 2680 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2681 | #if defined(DEBUG_SUBPAGE) |
2682 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2683 | mmio, len, addr, idx, value); | |
2684 | #endif | |
8da3ff18 PB |
2685 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], |
2686 | addr + mmio->region_offset[idx][1][len], | |
2687 | value); | |
db7b5426 BS |
2688 | } |
2689 | ||
2690 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2691 | { | |
2692 | #if defined(DEBUG_SUBPAGE) | |
2693 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2694 | #endif | |
2695 | ||
2696 | return subpage_readlen(opaque, addr, 0); | |
2697 | } | |
2698 | ||
2699 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2700 | uint32_t value) | |
2701 | { | |
2702 | #if defined(DEBUG_SUBPAGE) | |
2703 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2704 | #endif | |
2705 | subpage_writelen(opaque, addr, value, 0); | |
2706 | } | |
2707 | ||
2708 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2709 | { | |
2710 | #if defined(DEBUG_SUBPAGE) | |
2711 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2712 | #endif | |
2713 | ||
2714 | return subpage_readlen(opaque, addr, 1); | |
2715 | } | |
2716 | ||
2717 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2718 | uint32_t value) | |
2719 | { | |
2720 | #if defined(DEBUG_SUBPAGE) | |
2721 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2722 | #endif | |
2723 | subpage_writelen(opaque, addr, value, 1); | |
2724 | } | |
2725 | ||
2726 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2727 | { | |
2728 | #if defined(DEBUG_SUBPAGE) | |
2729 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2730 | #endif | |
2731 | ||
2732 | return subpage_readlen(opaque, addr, 2); | |
2733 | } | |
2734 | ||
2735 | static void subpage_writel (void *opaque, | |
2736 | target_phys_addr_t addr, uint32_t value) | |
2737 | { | |
2738 | #if defined(DEBUG_SUBPAGE) | |
2739 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2740 | #endif | |
2741 | subpage_writelen(opaque, addr, value, 2); | |
2742 | } | |
2743 | ||
2744 | static CPUReadMemoryFunc *subpage_read[] = { | |
2745 | &subpage_readb, | |
2746 | &subpage_readw, | |
2747 | &subpage_readl, | |
2748 | }; | |
2749 | ||
2750 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2751 | &subpage_writeb, | |
2752 | &subpage_writew, | |
2753 | &subpage_writel, | |
2754 | }; | |
2755 | ||
2756 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
8da3ff18 | 2757 | ram_addr_t memory, ram_addr_t region_offset) |
db7b5426 BS |
2758 | { |
2759 | int idx, eidx; | |
4254fab8 | 2760 | unsigned int i; |
db7b5426 BS |
2761 | |
2762 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2763 | return -1; | |
2764 | idx = SUBPAGE_IDX(start); | |
2765 | eidx = SUBPAGE_IDX(end); | |
2766 | #if defined(DEBUG_SUBPAGE) | |
2767 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__, | |
2768 | mmio, start, end, idx, eidx, memory); | |
2769 | #endif | |
2770 | memory >>= IO_MEM_SHIFT; | |
2771 | for (; idx <= eidx; idx++) { | |
4254fab8 | 2772 | for (i = 0; i < 4; i++) { |
3ee89922 BS |
2773 | if (io_mem_read[memory][i]) { |
2774 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2775 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2776 | mmio->region_offset[idx][0][i] = region_offset; |
3ee89922 BS |
2777 | } |
2778 | if (io_mem_write[memory][i]) { | |
2779 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2780 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2781 | mmio->region_offset[idx][1][i] = region_offset; |
3ee89922 | 2782 | } |
4254fab8 | 2783 | } |
db7b5426 BS |
2784 | } |
2785 | ||
2786 | return 0; | |
2787 | } | |
2788 | ||
00f82b8a | 2789 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2790 | ram_addr_t orig_memory, ram_addr_t region_offset) |
db7b5426 BS |
2791 | { |
2792 | subpage_t *mmio; | |
2793 | int subpage_memory; | |
2794 | ||
2795 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
2796 | if (mmio != NULL) { | |
2797 | mmio->base = base; | |
2798 | subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio); | |
2799 | #if defined(DEBUG_SUBPAGE) | |
2800 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | |
2801 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
2802 | #endif | |
2803 | *phys = subpage_memory | IO_MEM_SUBPAGE; | |
8da3ff18 PB |
2804 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory, |
2805 | region_offset); | |
db7b5426 BS |
2806 | } |
2807 | ||
2808 | return mmio; | |
2809 | } | |
2810 | ||
33417e70 FB |
2811 | static void io_mem_init(void) |
2812 | { | |
3a7d929e | 2813 | cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL); |
a4193c8a | 2814 | cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL); |
3a7d929e | 2815 | cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL); |
1ccde1cb FB |
2816 | io_mem_nb = 5; |
2817 | ||
0f459d16 | 2818 | io_mem_watch = cpu_register_io_memory(0, watch_mem_read, |
6658ffb8 | 2819 | watch_mem_write, NULL); |
1ccde1cb | 2820 | /* alloc dirty bits array */ |
0a962c02 | 2821 | phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS); |
3a7d929e | 2822 | memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS); |
33417e70 FB |
2823 | } |
2824 | ||
2825 | /* mem_read and mem_write are arrays of functions containing the | |
2826 | function to access byte (index 0), word (index 1) and dword (index | |
3ee89922 BS |
2827 | 2). Functions can be omitted with a NULL function pointer. The |
2828 | registered functions may be modified dynamically later. | |
2829 | If io_index is non zero, the corresponding io zone is | |
4254fab8 BS |
2830 | modified. If it is zero, a new io zone is allocated. The return |
2831 | value can be used with cpu_register_physical_memory(). (-1) is | |
2832 | returned if error. */ | |
33417e70 FB |
2833 | int cpu_register_io_memory(int io_index, |
2834 | CPUReadMemoryFunc **mem_read, | |
a4193c8a FB |
2835 | CPUWriteMemoryFunc **mem_write, |
2836 | void *opaque) | |
33417e70 | 2837 | { |
4254fab8 | 2838 | int i, subwidth = 0; |
33417e70 FB |
2839 | |
2840 | if (io_index <= 0) { | |
b5ff1b31 | 2841 | if (io_mem_nb >= IO_MEM_NB_ENTRIES) |
33417e70 FB |
2842 | return -1; |
2843 | io_index = io_mem_nb++; | |
2844 | } else { | |
2845 | if (io_index >= IO_MEM_NB_ENTRIES) | |
2846 | return -1; | |
2847 | } | |
b5ff1b31 | 2848 | |
33417e70 | 2849 | for(i = 0;i < 3; i++) { |
4254fab8 BS |
2850 | if (!mem_read[i] || !mem_write[i]) |
2851 | subwidth = IO_MEM_SUBWIDTH; | |
33417e70 FB |
2852 | io_mem_read[io_index][i] = mem_read[i]; |
2853 | io_mem_write[io_index][i] = mem_write[i]; | |
2854 | } | |
a4193c8a | 2855 | io_mem_opaque[io_index] = opaque; |
4254fab8 | 2856 | return (io_index << IO_MEM_SHIFT) | subwidth; |
33417e70 | 2857 | } |
61382a50 | 2858 | |
8926b517 FB |
2859 | CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index) |
2860 | { | |
2861 | return io_mem_write[io_index >> IO_MEM_SHIFT]; | |
2862 | } | |
2863 | ||
2864 | CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index) | |
2865 | { | |
2866 | return io_mem_read[io_index >> IO_MEM_SHIFT]; | |
2867 | } | |
2868 | ||
e2eef170 PB |
2869 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2870 | ||
13eb76e0 FB |
2871 | /* physical memory access (slow version, mainly for debug) */ |
2872 | #if defined(CONFIG_USER_ONLY) | |
5fafdf24 | 2873 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2874 | int len, int is_write) |
2875 | { | |
2876 | int l, flags; | |
2877 | target_ulong page; | |
53a5960a | 2878 | void * p; |
13eb76e0 FB |
2879 | |
2880 | while (len > 0) { | |
2881 | page = addr & TARGET_PAGE_MASK; | |
2882 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2883 | if (l > len) | |
2884 | l = len; | |
2885 | flags = page_get_flags(page); | |
2886 | if (!(flags & PAGE_VALID)) | |
2887 | return; | |
2888 | if (is_write) { | |
2889 | if (!(flags & PAGE_WRITE)) | |
2890 | return; | |
579a97f7 | 2891 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2892 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
579a97f7 FB |
2893 | /* FIXME - should this return an error rather than just fail? */ |
2894 | return; | |
72fb7daa AJ |
2895 | memcpy(p, buf, l); |
2896 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2897 | } else { |
2898 | if (!(flags & PAGE_READ)) | |
2899 | return; | |
579a97f7 | 2900 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2901 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
579a97f7 FB |
2902 | /* FIXME - should this return an error rather than just fail? */ |
2903 | return; | |
72fb7daa | 2904 | memcpy(buf, p, l); |
5b257578 | 2905 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2906 | } |
2907 | len -= l; | |
2908 | buf += l; | |
2909 | addr += l; | |
2910 | } | |
2911 | } | |
8df1cd07 | 2912 | |
13eb76e0 | 2913 | #else |
5fafdf24 | 2914 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2915 | int len, int is_write) |
2916 | { | |
2917 | int l, io_index; | |
2918 | uint8_t *ptr; | |
2919 | uint32_t val; | |
2e12669a FB |
2920 | target_phys_addr_t page; |
2921 | unsigned long pd; | |
92e873b9 | 2922 | PhysPageDesc *p; |
3b46e624 | 2923 | |
13eb76e0 FB |
2924 | while (len > 0) { |
2925 | page = addr & TARGET_PAGE_MASK; | |
2926 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2927 | if (l > len) | |
2928 | l = len; | |
92e873b9 | 2929 | p = phys_page_find(page >> TARGET_PAGE_BITS); |
13eb76e0 FB |
2930 | if (!p) { |
2931 | pd = IO_MEM_UNASSIGNED; | |
2932 | } else { | |
2933 | pd = p->phys_offset; | |
2934 | } | |
3b46e624 | 2935 | |
13eb76e0 | 2936 | if (is_write) { |
3a7d929e | 2937 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
13eb76e0 | 2938 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
2939 | if (p) |
2940 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
6a00d601 FB |
2941 | /* XXX: could force cpu_single_env to NULL to avoid |
2942 | potential bugs */ | |
13eb76e0 | 2943 | if (l >= 4 && ((addr & 3) == 0)) { |
1c213d19 | 2944 | /* 32 bit write access */ |
c27004ec | 2945 | val = ldl_p(buf); |
a4193c8a | 2946 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2947 | l = 4; |
2948 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
1c213d19 | 2949 | /* 16 bit write access */ |
c27004ec | 2950 | val = lduw_p(buf); |
a4193c8a | 2951 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2952 | l = 2; |
2953 | } else { | |
1c213d19 | 2954 | /* 8 bit write access */ |
c27004ec | 2955 | val = ldub_p(buf); |
a4193c8a | 2956 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2957 | l = 1; |
2958 | } | |
2959 | } else { | |
b448f2f3 FB |
2960 | unsigned long addr1; |
2961 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
13eb76e0 | 2962 | /* RAM case */ |
b448f2f3 | 2963 | ptr = phys_ram_base + addr1; |
13eb76e0 | 2964 | memcpy(ptr, buf, l); |
3a7d929e FB |
2965 | if (!cpu_physical_memory_is_dirty(addr1)) { |
2966 | /* invalidate code */ | |
2967 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
2968 | /* set dirty bit */ | |
5fafdf24 | 2969 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
f23db169 | 2970 | (0xff & ~CODE_DIRTY_FLAG); |
3a7d929e | 2971 | } |
13eb76e0 FB |
2972 | } |
2973 | } else { | |
5fafdf24 | 2974 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 2975 | !(pd & IO_MEM_ROMD)) { |
13eb76e0 FB |
2976 | /* I/O case */ |
2977 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
2978 | if (p) |
2979 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
13eb76e0 FB |
2980 | if (l >= 4 && ((addr & 3) == 0)) { |
2981 | /* 32 bit read access */ | |
a4193c8a | 2982 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
c27004ec | 2983 | stl_p(buf, val); |
13eb76e0 FB |
2984 | l = 4; |
2985 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
2986 | /* 16 bit read access */ | |
a4193c8a | 2987 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr); |
c27004ec | 2988 | stw_p(buf, val); |
13eb76e0 FB |
2989 | l = 2; |
2990 | } else { | |
1c213d19 | 2991 | /* 8 bit read access */ |
a4193c8a | 2992 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr); |
c27004ec | 2993 | stb_p(buf, val); |
13eb76e0 FB |
2994 | l = 1; |
2995 | } | |
2996 | } else { | |
2997 | /* RAM case */ | |
5fafdf24 | 2998 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
13eb76e0 FB |
2999 | (addr & ~TARGET_PAGE_MASK); |
3000 | memcpy(buf, ptr, l); | |
3001 | } | |
3002 | } | |
3003 | len -= l; | |
3004 | buf += l; | |
3005 | addr += l; | |
3006 | } | |
3007 | } | |
8df1cd07 | 3008 | |
d0ecd2aa | 3009 | /* used for ROM loading : can write in RAM and ROM */ |
5fafdf24 | 3010 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
3011 | const uint8_t *buf, int len) |
3012 | { | |
3013 | int l; | |
3014 | uint8_t *ptr; | |
3015 | target_phys_addr_t page; | |
3016 | unsigned long pd; | |
3017 | PhysPageDesc *p; | |
3b46e624 | 3018 | |
d0ecd2aa FB |
3019 | while (len > 0) { |
3020 | page = addr & TARGET_PAGE_MASK; | |
3021 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3022 | if (l > len) | |
3023 | l = len; | |
3024 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3025 | if (!p) { | |
3026 | pd = IO_MEM_UNASSIGNED; | |
3027 | } else { | |
3028 | pd = p->phys_offset; | |
3029 | } | |
3b46e624 | 3030 | |
d0ecd2aa | 3031 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
2a4188a3 FB |
3032 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
3033 | !(pd & IO_MEM_ROMD)) { | |
d0ecd2aa FB |
3034 | /* do nothing */ |
3035 | } else { | |
3036 | unsigned long addr1; | |
3037 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3038 | /* ROM/RAM case */ | |
3039 | ptr = phys_ram_base + addr1; | |
3040 | memcpy(ptr, buf, l); | |
3041 | } | |
3042 | len -= l; | |
3043 | buf += l; | |
3044 | addr += l; | |
3045 | } | |
3046 | } | |
3047 | ||
6d16c2f8 AL |
3048 | typedef struct { |
3049 | void *buffer; | |
3050 | target_phys_addr_t addr; | |
3051 | target_phys_addr_t len; | |
3052 | } BounceBuffer; | |
3053 | ||
3054 | static BounceBuffer bounce; | |
3055 | ||
ba223c29 AL |
3056 | typedef struct MapClient { |
3057 | void *opaque; | |
3058 | void (*callback)(void *opaque); | |
3059 | LIST_ENTRY(MapClient) link; | |
3060 | } MapClient; | |
3061 | ||
3062 | static LIST_HEAD(map_client_list, MapClient) map_client_list | |
3063 | = LIST_HEAD_INITIALIZER(map_client_list); | |
3064 | ||
3065 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
3066 | { | |
3067 | MapClient *client = qemu_malloc(sizeof(*client)); | |
3068 | ||
3069 | client->opaque = opaque; | |
3070 | client->callback = callback; | |
3071 | LIST_INSERT_HEAD(&map_client_list, client, link); | |
3072 | return client; | |
3073 | } | |
3074 | ||
3075 | void cpu_unregister_map_client(void *_client) | |
3076 | { | |
3077 | MapClient *client = (MapClient *)_client; | |
3078 | ||
3079 | LIST_REMOVE(client, link); | |
3080 | } | |
3081 | ||
3082 | static void cpu_notify_map_clients(void) | |
3083 | { | |
3084 | MapClient *client; | |
3085 | ||
3086 | while (!LIST_EMPTY(&map_client_list)) { | |
3087 | client = LIST_FIRST(&map_client_list); | |
3088 | client->callback(client->opaque); | |
3089 | LIST_REMOVE(client, link); | |
3090 | } | |
3091 | } | |
3092 | ||
6d16c2f8 AL |
3093 | /* Map a physical memory region into a host virtual address. |
3094 | * May map a subset of the requested range, given by and returned in *plen. | |
3095 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3096 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3097 | * Use cpu_register_map_client() to know when retrying the map operation is |
3098 | * likely to succeed. | |
6d16c2f8 AL |
3099 | */ |
3100 | void *cpu_physical_memory_map(target_phys_addr_t addr, | |
3101 | target_phys_addr_t *plen, | |
3102 | int is_write) | |
3103 | { | |
3104 | target_phys_addr_t len = *plen; | |
3105 | target_phys_addr_t done = 0; | |
3106 | int l; | |
3107 | uint8_t *ret = NULL; | |
3108 | uint8_t *ptr; | |
3109 | target_phys_addr_t page; | |
3110 | unsigned long pd; | |
3111 | PhysPageDesc *p; | |
3112 | unsigned long addr1; | |
3113 | ||
3114 | while (len > 0) { | |
3115 | page = addr & TARGET_PAGE_MASK; | |
3116 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3117 | if (l > len) | |
3118 | l = len; | |
3119 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3120 | if (!p) { | |
3121 | pd = IO_MEM_UNASSIGNED; | |
3122 | } else { | |
3123 | pd = p->phys_offset; | |
3124 | } | |
3125 | ||
3126 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3127 | if (done || bounce.buffer) { | |
3128 | break; | |
3129 | } | |
3130 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
3131 | bounce.addr = addr; | |
3132 | bounce.len = l; | |
3133 | if (!is_write) { | |
3134 | cpu_physical_memory_rw(addr, bounce.buffer, l, 0); | |
3135 | } | |
3136 | ptr = bounce.buffer; | |
3137 | } else { | |
3138 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3139 | ptr = phys_ram_base + addr1; | |
3140 | } | |
3141 | if (!done) { | |
3142 | ret = ptr; | |
3143 | } else if (ret + done != ptr) { | |
3144 | break; | |
3145 | } | |
3146 | ||
3147 | len -= l; | |
3148 | addr += l; | |
3149 | done += l; | |
3150 | } | |
3151 | *plen = done; | |
3152 | return ret; | |
3153 | } | |
3154 | ||
3155 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map(). | |
3156 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
3157 | * the amount of memory that was actually read or written by the caller. | |
3158 | */ | |
3159 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, | |
3160 | int is_write, target_phys_addr_t access_len) | |
3161 | { | |
3162 | if (buffer != bounce.buffer) { | |
3163 | if (is_write) { | |
3164 | unsigned long addr1 = (uint8_t *)buffer - phys_ram_base; | |
3165 | while (access_len) { | |
3166 | unsigned l; | |
3167 | l = TARGET_PAGE_SIZE; | |
3168 | if (l > access_len) | |
3169 | l = access_len; | |
3170 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3171 | /* invalidate code */ | |
3172 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3173 | /* set dirty bit */ | |
3174 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3175 | (0xff & ~CODE_DIRTY_FLAG); | |
3176 | } | |
3177 | addr1 += l; | |
3178 | access_len -= l; | |
3179 | } | |
3180 | } | |
3181 | return; | |
3182 | } | |
3183 | if (is_write) { | |
3184 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); | |
3185 | } | |
3186 | qemu_free(bounce.buffer); | |
3187 | bounce.buffer = NULL; | |
ba223c29 | 3188 | cpu_notify_map_clients(); |
6d16c2f8 | 3189 | } |
d0ecd2aa | 3190 | |
8df1cd07 FB |
3191 | /* warning: addr must be aligned */ |
3192 | uint32_t ldl_phys(target_phys_addr_t addr) | |
3193 | { | |
3194 | int io_index; | |
3195 | uint8_t *ptr; | |
3196 | uint32_t val; | |
3197 | unsigned long pd; | |
3198 | PhysPageDesc *p; | |
3199 | ||
3200 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3201 | if (!p) { | |
3202 | pd = IO_MEM_UNASSIGNED; | |
3203 | } else { | |
3204 | pd = p->phys_offset; | |
3205 | } | |
3b46e624 | 3206 | |
5fafdf24 | 3207 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3208 | !(pd & IO_MEM_ROMD)) { |
8df1cd07 FB |
3209 | /* I/O case */ |
3210 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3211 | if (p) |
3212 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3213 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
3214 | } else { | |
3215 | /* RAM case */ | |
5fafdf24 | 3216 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
3217 | (addr & ~TARGET_PAGE_MASK); |
3218 | val = ldl_p(ptr); | |
3219 | } | |
3220 | return val; | |
3221 | } | |
3222 | ||
84b7b8e7 FB |
3223 | /* warning: addr must be aligned */ |
3224 | uint64_t ldq_phys(target_phys_addr_t addr) | |
3225 | { | |
3226 | int io_index; | |
3227 | uint8_t *ptr; | |
3228 | uint64_t val; | |
3229 | unsigned long pd; | |
3230 | PhysPageDesc *p; | |
3231 | ||
3232 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3233 | if (!p) { | |
3234 | pd = IO_MEM_UNASSIGNED; | |
3235 | } else { | |
3236 | pd = p->phys_offset; | |
3237 | } | |
3b46e624 | 3238 | |
2a4188a3 FB |
3239 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
3240 | !(pd & IO_MEM_ROMD)) { | |
84b7b8e7 FB |
3241 | /* I/O case */ |
3242 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3243 | if (p) |
3244 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
84b7b8e7 FB |
3245 | #ifdef TARGET_WORDS_BIGENDIAN |
3246 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
3247 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
3248 | #else | |
3249 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3250 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
3251 | #endif | |
3252 | } else { | |
3253 | /* RAM case */ | |
5fafdf24 | 3254 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
84b7b8e7 FB |
3255 | (addr & ~TARGET_PAGE_MASK); |
3256 | val = ldq_p(ptr); | |
3257 | } | |
3258 | return val; | |
3259 | } | |
3260 | ||
aab33094 FB |
3261 | /* XXX: optimize */ |
3262 | uint32_t ldub_phys(target_phys_addr_t addr) | |
3263 | { | |
3264 | uint8_t val; | |
3265 | cpu_physical_memory_read(addr, &val, 1); | |
3266 | return val; | |
3267 | } | |
3268 | ||
3269 | /* XXX: optimize */ | |
3270 | uint32_t lduw_phys(target_phys_addr_t addr) | |
3271 | { | |
3272 | uint16_t val; | |
3273 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
3274 | return tswap16(val); | |
3275 | } | |
3276 | ||
8df1cd07 FB |
3277 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3278 | and the code inside is not invalidated. It is useful if the dirty | |
3279 | bits are used to track modified PTEs */ | |
3280 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
3281 | { | |
3282 | int io_index; | |
3283 | uint8_t *ptr; | |
3284 | unsigned long pd; | |
3285 | PhysPageDesc *p; | |
3286 | ||
3287 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3288 | if (!p) { | |
3289 | pd = IO_MEM_UNASSIGNED; | |
3290 | } else { | |
3291 | pd = p->phys_offset; | |
3292 | } | |
3b46e624 | 3293 | |
3a7d929e | 3294 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3295 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3296 | if (p) |
3297 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3298 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3299 | } else { | |
74576198 AL |
3300 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
3301 | ptr = phys_ram_base + addr1; | |
8df1cd07 | 3302 | stl_p(ptr, val); |
74576198 AL |
3303 | |
3304 | if (unlikely(in_migration)) { | |
3305 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3306 | /* invalidate code */ | |
3307 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3308 | /* set dirty bit */ | |
3309 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3310 | (0xff & ~CODE_DIRTY_FLAG); | |
3311 | } | |
3312 | } | |
8df1cd07 FB |
3313 | } |
3314 | } | |
3315 | ||
bc98a7ef JM |
3316 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
3317 | { | |
3318 | int io_index; | |
3319 | uint8_t *ptr; | |
3320 | unsigned long pd; | |
3321 | PhysPageDesc *p; | |
3322 | ||
3323 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3324 | if (!p) { | |
3325 | pd = IO_MEM_UNASSIGNED; | |
3326 | } else { | |
3327 | pd = p->phys_offset; | |
3328 | } | |
3b46e624 | 3329 | |
bc98a7ef JM |
3330 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
3331 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3332 | if (p) |
3333 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
bc98a7ef JM |
3334 | #ifdef TARGET_WORDS_BIGENDIAN |
3335 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
3336 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
3337 | #else | |
3338 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3339 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
3340 | #endif | |
3341 | } else { | |
5fafdf24 | 3342 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
bc98a7ef JM |
3343 | (addr & ~TARGET_PAGE_MASK); |
3344 | stq_p(ptr, val); | |
3345 | } | |
3346 | } | |
3347 | ||
8df1cd07 | 3348 | /* warning: addr must be aligned */ |
8df1cd07 FB |
3349 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
3350 | { | |
3351 | int io_index; | |
3352 | uint8_t *ptr; | |
3353 | unsigned long pd; | |
3354 | PhysPageDesc *p; | |
3355 | ||
3356 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3357 | if (!p) { | |
3358 | pd = IO_MEM_UNASSIGNED; | |
3359 | } else { | |
3360 | pd = p->phys_offset; | |
3361 | } | |
3b46e624 | 3362 | |
3a7d929e | 3363 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3364 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3365 | if (p) |
3366 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3367 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3368 | } else { | |
3369 | unsigned long addr1; | |
3370 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3371 | /* RAM case */ | |
3372 | ptr = phys_ram_base + addr1; | |
3373 | stl_p(ptr, val); | |
3a7d929e FB |
3374 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3375 | /* invalidate code */ | |
3376 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3377 | /* set dirty bit */ | |
f23db169 FB |
3378 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
3379 | (0xff & ~CODE_DIRTY_FLAG); | |
3a7d929e | 3380 | } |
8df1cd07 FB |
3381 | } |
3382 | } | |
3383 | ||
aab33094 FB |
3384 | /* XXX: optimize */ |
3385 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3386 | { | |
3387 | uint8_t v = val; | |
3388 | cpu_physical_memory_write(addr, &v, 1); | |
3389 | } | |
3390 | ||
3391 | /* XXX: optimize */ | |
3392 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3393 | { | |
3394 | uint16_t v = tswap16(val); | |
3395 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3396 | } | |
3397 | ||
3398 | /* XXX: optimize */ | |
3399 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3400 | { | |
3401 | val = tswap64(val); | |
3402 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3403 | } | |
3404 | ||
13eb76e0 FB |
3405 | #endif |
3406 | ||
3407 | /* virtual memory access for debug */ | |
5fafdf24 | 3408 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
b448f2f3 | 3409 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3410 | { |
3411 | int l; | |
9b3c35e0 JM |
3412 | target_phys_addr_t phys_addr; |
3413 | target_ulong page; | |
13eb76e0 FB |
3414 | |
3415 | while (len > 0) { | |
3416 | page = addr & TARGET_PAGE_MASK; | |
3417 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3418 | /* if no physical page mapped, return an error */ | |
3419 | if (phys_addr == -1) | |
3420 | return -1; | |
3421 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3422 | if (l > len) | |
3423 | l = len; | |
5fafdf24 | 3424 | cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), |
b448f2f3 | 3425 | buf, l, is_write); |
13eb76e0 FB |
3426 | len -= l; |
3427 | buf += l; | |
3428 | addr += l; | |
3429 | } | |
3430 | return 0; | |
3431 | } | |
3432 | ||
2e70f6ef PB |
3433 | /* in deterministic execution mode, instructions doing device I/Os |
3434 | must be at the end of the TB */ | |
3435 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3436 | { | |
3437 | TranslationBlock *tb; | |
3438 | uint32_t n, cflags; | |
3439 | target_ulong pc, cs_base; | |
3440 | uint64_t flags; | |
3441 | ||
3442 | tb = tb_find_pc((unsigned long)retaddr); | |
3443 | if (!tb) { | |
3444 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3445 | retaddr); | |
3446 | } | |
3447 | n = env->icount_decr.u16.low + tb->icount; | |
3448 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3449 | /* Calculate how many instructions had been executed before the fault | |
bf20dc07 | 3450 | occurred. */ |
2e70f6ef PB |
3451 | n = n - env->icount_decr.u16.low; |
3452 | /* Generate a new TB ending on the I/O insn. */ | |
3453 | n++; | |
3454 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3455 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 3456 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
3457 | branch. */ |
3458 | #if defined(TARGET_MIPS) | |
3459 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3460 | env->active_tc.PC -= 4; | |
3461 | env->icount_decr.u16.low++; | |
3462 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3463 | } | |
3464 | #elif defined(TARGET_SH4) | |
3465 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3466 | && n > 1) { | |
3467 | env->pc -= 2; | |
3468 | env->icount_decr.u16.low++; | |
3469 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3470 | } | |
3471 | #endif | |
3472 | /* This should never happen. */ | |
3473 | if (n > CF_COUNT_MASK) | |
3474 | cpu_abort(env, "TB too big during recompile"); | |
3475 | ||
3476 | cflags = n | CF_LAST_IO; | |
3477 | pc = tb->pc; | |
3478 | cs_base = tb->cs_base; | |
3479 | flags = tb->flags; | |
3480 | tb_phys_invalidate(tb, -1); | |
3481 | /* FIXME: In theory this could raise an exception. In practice | |
3482 | we have already translated the block once so it's probably ok. */ | |
3483 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 3484 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
3485 | the first in the TB) then we end up generating a whole new TB and |
3486 | repeating the fault, which is horribly inefficient. | |
3487 | Better would be to execute just this insn uncached, or generate a | |
3488 | second new TB. */ | |
3489 | cpu_resume_from_signal(env, NULL); | |
3490 | } | |
3491 | ||
e3db7226 FB |
3492 | void dump_exec_info(FILE *f, |
3493 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3494 | { | |
3495 | int i, target_code_size, max_target_code_size; | |
3496 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3497 | TranslationBlock *tb; | |
3b46e624 | 3498 | |
e3db7226 FB |
3499 | target_code_size = 0; |
3500 | max_target_code_size = 0; | |
3501 | cross_page = 0; | |
3502 | direct_jmp_count = 0; | |
3503 | direct_jmp2_count = 0; | |
3504 | for(i = 0; i < nb_tbs; i++) { | |
3505 | tb = &tbs[i]; | |
3506 | target_code_size += tb->size; | |
3507 | if (tb->size > max_target_code_size) | |
3508 | max_target_code_size = tb->size; | |
3509 | if (tb->page_addr[1] != -1) | |
3510 | cross_page++; | |
3511 | if (tb->tb_next_offset[0] != 0xffff) { | |
3512 | direct_jmp_count++; | |
3513 | if (tb->tb_next_offset[1] != 0xffff) { | |
3514 | direct_jmp2_count++; | |
3515 | } | |
3516 | } | |
3517 | } | |
3518 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 3519 | cpu_fprintf(f, "Translation buffer state:\n"); |
26a5f13b FB |
3520 | cpu_fprintf(f, "gen code size %ld/%ld\n", |
3521 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3522 | cpu_fprintf(f, "TB count %d/%d\n", | |
3523 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 3524 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
3525 | nb_tbs ? target_code_size / nb_tbs : 0, |
3526 | max_target_code_size); | |
5fafdf24 | 3527 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
3528 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
3529 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
3530 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
3531 | cross_page, | |
e3db7226 FB |
3532 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
3533 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 3534 | direct_jmp_count, |
e3db7226 FB |
3535 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
3536 | direct_jmp2_count, | |
3537 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 3538 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
3539 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
3540 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3541 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 3542 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
3543 | } |
3544 | ||
5fafdf24 | 3545 | #if !defined(CONFIG_USER_ONLY) |
61382a50 FB |
3546 | |
3547 | #define MMUSUFFIX _cmmu | |
3548 | #define GETPC() NULL | |
3549 | #define env cpu_single_env | |
b769d8fe | 3550 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
3551 | |
3552 | #define SHIFT 0 | |
3553 | #include "softmmu_template.h" | |
3554 | ||
3555 | #define SHIFT 1 | |
3556 | #include "softmmu_template.h" | |
3557 | ||
3558 | #define SHIFT 2 | |
3559 | #include "softmmu_template.h" | |
3560 | ||
3561 | #define SHIFT 3 | |
3562 | #include "softmmu_template.h" | |
3563 | ||
3564 | #undef env | |
3565 | ||
3566 | #endif |