]> Git Repo - qemu.git/blame - migration/ram.c
io: use case insensitive check for Connection & Upgrade websock headers
[qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <[email protected]>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
1393a485 28#include "qemu/osdep.h"
33c11879 29#include "cpu.h"
56e93d26 30#include <zlib.h>
4addcd4f 31#include "qapi-event.h"
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
709e3fe8 36#include "xbzrle.h"
7b1e1a22 37#include "ram.h"
6666c96a 38#include "migration.h"
f2a8f0a6 39#include "migration/register.h"
7b1e1a22 40#include "migration/misc.h"
08a0aee1 41#include "qemu-file.h"
be07b0ac 42#include "postcopy-ram.h"
56e93d26 43#include "migration/page_cache.h"
56e93d26 44#include "qemu/error-report.h"
56e93d26 45#include "trace.h"
56e93d26 46#include "exec/ram_addr.h"
56e93d26 47#include "qemu/rcu_queue.h"
a91246c9 48#include "migration/colo.h"
9ac78b61 49#include "migration/block.h"
56e93d26 50
56e93d26
JQ
51/***********************************************************/
52/* ram save/restore */
53
bb890ed5
JQ
54/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
55 * worked for pages that where filled with the same char. We switched
56 * it to only search for the zero value. And to avoid confusion with
57 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
58 */
59
56e93d26 60#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 61#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
62#define RAM_SAVE_FLAG_MEM_SIZE 0x04
63#define RAM_SAVE_FLAG_PAGE 0x08
64#define RAM_SAVE_FLAG_EOS 0x10
65#define RAM_SAVE_FLAG_CONTINUE 0x20
66#define RAM_SAVE_FLAG_XBZRLE 0x40
67/* 0x80 is reserved in migration.h start with 0x100 next */
68#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
69
56e93d26
JQ
70static inline bool is_zero_range(uint8_t *p, uint64_t size)
71{
a1febc49 72 return buffer_is_zero(p, size);
56e93d26
JQ
73}
74
9360447d
JQ
75XBZRLECacheStats xbzrle_counters;
76
56e93d26
JQ
77/* struct contains XBZRLE cache and a static page
78 used by the compression */
79static struct {
80 /* buffer used for XBZRLE encoding */
81 uint8_t *encoded_buf;
82 /* buffer for storing page content */
83 uint8_t *current_buf;
84 /* Cache for XBZRLE, Protected by lock. */
85 PageCache *cache;
86 QemuMutex lock;
c00e0928
JQ
87 /* it will store a page full of zeros */
88 uint8_t *zero_target_page;
f265e0e4
JQ
89 /* buffer used for XBZRLE decoding */
90 uint8_t *decoded_buf;
56e93d26
JQ
91} XBZRLE;
92
56e93d26
JQ
93static void XBZRLE_cache_lock(void)
94{
95 if (migrate_use_xbzrle())
96 qemu_mutex_lock(&XBZRLE.lock);
97}
98
99static void XBZRLE_cache_unlock(void)
100{
101 if (migrate_use_xbzrle())
102 qemu_mutex_unlock(&XBZRLE.lock);
103}
104
3d0684b2
JQ
105/**
106 * xbzrle_cache_resize: resize the xbzrle cache
107 *
108 * This function is called from qmp_migrate_set_cache_size in main
109 * thread, possibly while a migration is in progress. A running
110 * migration may be using the cache and might finish during this call,
111 * hence changes to the cache are protected by XBZRLE.lock().
112 *
113 * Returns the new_size or negative in case of error.
114 *
115 * @new_size: new cache size
56e93d26
JQ
116 */
117int64_t xbzrle_cache_resize(int64_t new_size)
118{
119 PageCache *new_cache;
120 int64_t ret;
121
122 if (new_size < TARGET_PAGE_SIZE) {
123 return -1;
124 }
125
126 XBZRLE_cache_lock();
127
128 if (XBZRLE.cache != NULL) {
129 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
130 goto out_new_size;
131 }
132 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
133 TARGET_PAGE_SIZE);
134 if (!new_cache) {
135 error_report("Error creating cache");
136 ret = -1;
137 goto out;
138 }
139
140 cache_fini(XBZRLE.cache);
141 XBZRLE.cache = new_cache;
142 }
143
144out_new_size:
145 ret = pow2floor(new_size);
146out:
147 XBZRLE_cache_unlock();
148 return ret;
149}
150
ec481c6c
JQ
151/*
152 * An outstanding page request, on the source, having been received
153 * and queued
154 */
155struct RAMSrcPageRequest {
156 RAMBlock *rb;
157 hwaddr offset;
158 hwaddr len;
159
160 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
161};
162
6f37bb8b
JQ
163/* State of RAM for migration */
164struct RAMState {
204b88b8
JQ
165 /* QEMUFile used for this migration */
166 QEMUFile *f;
6f37bb8b
JQ
167 /* Last block that we have visited searching for dirty pages */
168 RAMBlock *last_seen_block;
169 /* Last block from where we have sent data */
170 RAMBlock *last_sent_block;
269ace29
JQ
171 /* Last dirty target page we have sent */
172 ram_addr_t last_page;
6f37bb8b
JQ
173 /* last ram version we have seen */
174 uint32_t last_version;
175 /* We are in the first round */
176 bool ram_bulk_stage;
8d820d6f
JQ
177 /* How many times we have dirty too many pages */
178 int dirty_rate_high_cnt;
f664da80
JQ
179 /* these variables are used for bitmap sync */
180 /* last time we did a full bitmap_sync */
181 int64_t time_last_bitmap_sync;
eac74159 182 /* bytes transferred at start_time */
c4bdf0cf 183 uint64_t bytes_xfer_prev;
a66cd90c 184 /* number of dirty pages since start_time */
68908ed6 185 uint64_t num_dirty_pages_period;
b5833fde
JQ
186 /* xbzrle misses since the beginning of the period */
187 uint64_t xbzrle_cache_miss_prev;
36040d9c
JQ
188 /* number of iterations at the beginning of period */
189 uint64_t iterations_prev;
23b28c3c
JQ
190 /* Iterations since start */
191 uint64_t iterations;
9360447d 192 /* number of dirty bits in the bitmap */
2dfaf12e
PX
193 uint64_t migration_dirty_pages;
194 /* protects modification of the bitmap */
108cfae0 195 QemuMutex bitmap_mutex;
68a098f3
JQ
196 /* The RAMBlock used in the last src_page_requests */
197 RAMBlock *last_req_rb;
ec481c6c
JQ
198 /* Queue of outstanding page requests from the destination */
199 QemuMutex src_page_req_mutex;
200 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
201};
202typedef struct RAMState RAMState;
203
53518d94 204static RAMState *ram_state;
6f37bb8b 205
9edabd4d 206uint64_t ram_bytes_remaining(void)
2f4fde93 207{
53518d94 208 return ram_state->migration_dirty_pages * TARGET_PAGE_SIZE;
2f4fde93
JQ
209}
210
9360447d 211MigrationStats ram_counters;
96506894 212
b8fb8cb7
DDAG
213/* used by the search for pages to send */
214struct PageSearchStatus {
215 /* Current block being searched */
216 RAMBlock *block;
a935e30f
JQ
217 /* Current page to search from */
218 unsigned long page;
b8fb8cb7
DDAG
219 /* Set once we wrap around */
220 bool complete_round;
221};
222typedef struct PageSearchStatus PageSearchStatus;
223
56e93d26 224struct CompressParam {
56e93d26 225 bool done;
90e56fb4 226 bool quit;
56e93d26
JQ
227 QEMUFile *file;
228 QemuMutex mutex;
229 QemuCond cond;
230 RAMBlock *block;
231 ram_addr_t offset;
232};
233typedef struct CompressParam CompressParam;
234
235struct DecompressParam {
73a8912b 236 bool done;
90e56fb4 237 bool quit;
56e93d26
JQ
238 QemuMutex mutex;
239 QemuCond cond;
240 void *des;
d341d9f3 241 uint8_t *compbuf;
56e93d26
JQ
242 int len;
243};
244typedef struct DecompressParam DecompressParam;
245
246static CompressParam *comp_param;
247static QemuThread *compress_threads;
248/* comp_done_cond is used to wake up the migration thread when
249 * one of the compression threads has finished the compression.
250 * comp_done_lock is used to co-work with comp_done_cond.
251 */
0d9f9a5c
LL
252static QemuMutex comp_done_lock;
253static QemuCond comp_done_cond;
56e93d26
JQ
254/* The empty QEMUFileOps will be used by file in CompressParam */
255static const QEMUFileOps empty_ops = { };
256
56e93d26
JQ
257static DecompressParam *decomp_param;
258static QemuThread *decompress_threads;
73a8912b
LL
259static QemuMutex decomp_done_lock;
260static QemuCond decomp_done_cond;
56e93d26 261
a7a9a88f
LL
262static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
263 ram_addr_t offset);
56e93d26
JQ
264
265static void *do_data_compress(void *opaque)
266{
267 CompressParam *param = opaque;
a7a9a88f
LL
268 RAMBlock *block;
269 ram_addr_t offset;
56e93d26 270
a7a9a88f 271 qemu_mutex_lock(&param->mutex);
90e56fb4 272 while (!param->quit) {
a7a9a88f
LL
273 if (param->block) {
274 block = param->block;
275 offset = param->offset;
276 param->block = NULL;
277 qemu_mutex_unlock(&param->mutex);
278
279 do_compress_ram_page(param->file, block, offset);
280
0d9f9a5c 281 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 282 param->done = true;
0d9f9a5c
LL
283 qemu_cond_signal(&comp_done_cond);
284 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
285
286 qemu_mutex_lock(&param->mutex);
287 } else {
56e93d26
JQ
288 qemu_cond_wait(&param->cond, &param->mutex);
289 }
56e93d26 290 }
a7a9a88f 291 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
292
293 return NULL;
294}
295
296static inline void terminate_compression_threads(void)
297{
298 int idx, thread_count;
299
300 thread_count = migrate_compress_threads();
3d0684b2 301
56e93d26
JQ
302 for (idx = 0; idx < thread_count; idx++) {
303 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 304 comp_param[idx].quit = true;
56e93d26
JQ
305 qemu_cond_signal(&comp_param[idx].cond);
306 qemu_mutex_unlock(&comp_param[idx].mutex);
307 }
308}
309
f0afa331 310static void compress_threads_save_cleanup(void)
56e93d26
JQ
311{
312 int i, thread_count;
313
314 if (!migrate_use_compression()) {
315 return;
316 }
317 terminate_compression_threads();
318 thread_count = migrate_compress_threads();
319 for (i = 0; i < thread_count; i++) {
320 qemu_thread_join(compress_threads + i);
321 qemu_fclose(comp_param[i].file);
322 qemu_mutex_destroy(&comp_param[i].mutex);
323 qemu_cond_destroy(&comp_param[i].cond);
324 }
0d9f9a5c
LL
325 qemu_mutex_destroy(&comp_done_lock);
326 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
327 g_free(compress_threads);
328 g_free(comp_param);
56e93d26
JQ
329 compress_threads = NULL;
330 comp_param = NULL;
56e93d26
JQ
331}
332
f0afa331 333static void compress_threads_save_setup(void)
56e93d26
JQ
334{
335 int i, thread_count;
336
337 if (!migrate_use_compression()) {
338 return;
339 }
56e93d26
JQ
340 thread_count = migrate_compress_threads();
341 compress_threads = g_new0(QemuThread, thread_count);
342 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
343 qemu_cond_init(&comp_done_cond);
344 qemu_mutex_init(&comp_done_lock);
56e93d26 345 for (i = 0; i < thread_count; i++) {
e110aa91
C
346 /* comp_param[i].file is just used as a dummy buffer to save data,
347 * set its ops to empty.
56e93d26
JQ
348 */
349 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
350 comp_param[i].done = true;
90e56fb4 351 comp_param[i].quit = false;
56e93d26
JQ
352 qemu_mutex_init(&comp_param[i].mutex);
353 qemu_cond_init(&comp_param[i].cond);
354 qemu_thread_create(compress_threads + i, "compress",
355 do_data_compress, comp_param + i,
356 QEMU_THREAD_JOINABLE);
357 }
358}
359
f986c3d2
JQ
360/* Multiple fd's */
361
362struct MultiFDSendParams {
363 uint8_t id;
364 char *name;
365 QemuThread thread;
366 QemuSemaphore sem;
367 QemuMutex mutex;
368 bool quit;
369};
370typedef struct MultiFDSendParams MultiFDSendParams;
371
372struct {
373 MultiFDSendParams *params;
374 /* number of created threads */
375 int count;
376} *multifd_send_state;
377
378static void terminate_multifd_send_threads(Error *errp)
379{
380 int i;
381
382 for (i = 0; i < multifd_send_state->count; i++) {
383 MultiFDSendParams *p = &multifd_send_state->params[i];
384
385 qemu_mutex_lock(&p->mutex);
386 p->quit = true;
387 qemu_sem_post(&p->sem);
388 qemu_mutex_unlock(&p->mutex);
389 }
390}
391
392int multifd_save_cleanup(Error **errp)
393{
394 int i;
395 int ret = 0;
396
397 if (!migrate_use_multifd()) {
398 return 0;
399 }
400 terminate_multifd_send_threads(NULL);
401 for (i = 0; i < multifd_send_state->count; i++) {
402 MultiFDSendParams *p = &multifd_send_state->params[i];
403
404 qemu_thread_join(&p->thread);
405 qemu_mutex_destroy(&p->mutex);
406 qemu_sem_destroy(&p->sem);
407 g_free(p->name);
408 p->name = NULL;
409 }
410 g_free(multifd_send_state->params);
411 multifd_send_state->params = NULL;
412 g_free(multifd_send_state);
413 multifd_send_state = NULL;
414 return ret;
415}
416
417static void *multifd_send_thread(void *opaque)
418{
419 MultiFDSendParams *p = opaque;
420
421 while (true) {
422 qemu_mutex_lock(&p->mutex);
423 if (p->quit) {
424 qemu_mutex_unlock(&p->mutex);
425 break;
426 }
427 qemu_mutex_unlock(&p->mutex);
428 qemu_sem_wait(&p->sem);
429 }
430
431 return NULL;
432}
433
434int multifd_save_setup(void)
435{
436 int thread_count;
437 uint8_t i;
438
439 if (!migrate_use_multifd()) {
440 return 0;
441 }
442 thread_count = migrate_multifd_channels();
443 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
444 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
445 multifd_send_state->count = 0;
446 for (i = 0; i < thread_count; i++) {
447 MultiFDSendParams *p = &multifd_send_state->params[i];
448
449 qemu_mutex_init(&p->mutex);
450 qemu_sem_init(&p->sem, 0);
451 p->quit = false;
452 p->id = i;
453 p->name = g_strdup_printf("multifdsend_%d", i);
454 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
455 QEMU_THREAD_JOINABLE);
456
457 multifd_send_state->count++;
458 }
459 return 0;
460}
461
462struct MultiFDRecvParams {
463 uint8_t id;
464 char *name;
465 QemuThread thread;
466 QemuSemaphore sem;
467 QemuMutex mutex;
468 bool quit;
469};
470typedef struct MultiFDRecvParams MultiFDRecvParams;
471
472struct {
473 MultiFDRecvParams *params;
474 /* number of created threads */
475 int count;
476} *multifd_recv_state;
477
478static void terminate_multifd_recv_threads(Error *errp)
479{
480 int i;
481
482 for (i = 0; i < multifd_recv_state->count; i++) {
483 MultiFDRecvParams *p = &multifd_recv_state->params[i];
484
485 qemu_mutex_lock(&p->mutex);
486 p->quit = true;
487 qemu_sem_post(&p->sem);
488 qemu_mutex_unlock(&p->mutex);
489 }
490}
491
492int multifd_load_cleanup(Error **errp)
493{
494 int i;
495 int ret = 0;
496
497 if (!migrate_use_multifd()) {
498 return 0;
499 }
500 terminate_multifd_recv_threads(NULL);
501 for (i = 0; i < multifd_recv_state->count; i++) {
502 MultiFDRecvParams *p = &multifd_recv_state->params[i];
503
504 qemu_thread_join(&p->thread);
505 qemu_mutex_destroy(&p->mutex);
506 qemu_sem_destroy(&p->sem);
507 g_free(p->name);
508 p->name = NULL;
509 }
510 g_free(multifd_recv_state->params);
511 multifd_recv_state->params = NULL;
512 g_free(multifd_recv_state);
513 multifd_recv_state = NULL;
514
515 return ret;
516}
517
518static void *multifd_recv_thread(void *opaque)
519{
520 MultiFDRecvParams *p = opaque;
521
522 while (true) {
523 qemu_mutex_lock(&p->mutex);
524 if (p->quit) {
525 qemu_mutex_unlock(&p->mutex);
526 break;
527 }
528 qemu_mutex_unlock(&p->mutex);
529 qemu_sem_wait(&p->sem);
530 }
531
532 return NULL;
533}
534
535int multifd_load_setup(void)
536{
537 int thread_count;
538 uint8_t i;
539
540 if (!migrate_use_multifd()) {
541 return 0;
542 }
543 thread_count = migrate_multifd_channels();
544 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
545 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
546 multifd_recv_state->count = 0;
547 for (i = 0; i < thread_count; i++) {
548 MultiFDRecvParams *p = &multifd_recv_state->params[i];
549
550 qemu_mutex_init(&p->mutex);
551 qemu_sem_init(&p->sem, 0);
552 p->quit = false;
553 p->id = i;
554 p->name = g_strdup_printf("multifdrecv_%d", i);
555 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
556 QEMU_THREAD_JOINABLE);
557 multifd_recv_state->count++;
558 }
559 return 0;
560}
561
56e93d26 562/**
3d0684b2 563 * save_page_header: write page header to wire
56e93d26
JQ
564 *
565 * If this is the 1st block, it also writes the block identification
566 *
3d0684b2 567 * Returns the number of bytes written
56e93d26
JQ
568 *
569 * @f: QEMUFile where to send the data
570 * @block: block that contains the page we want to send
571 * @offset: offset inside the block for the page
572 * in the lower bits, it contains flags
573 */
2bf3aa85
JQ
574static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
575 ram_addr_t offset)
56e93d26 576{
9f5f380b 577 size_t size, len;
56e93d26 578
24795694
JQ
579 if (block == rs->last_sent_block) {
580 offset |= RAM_SAVE_FLAG_CONTINUE;
581 }
2bf3aa85 582 qemu_put_be64(f, offset);
56e93d26
JQ
583 size = 8;
584
585 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 586 len = strlen(block->idstr);
2bf3aa85
JQ
587 qemu_put_byte(f, len);
588 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 589 size += 1 + len;
24795694 590 rs->last_sent_block = block;
56e93d26
JQ
591 }
592 return size;
593}
594
3d0684b2
JQ
595/**
596 * mig_throttle_guest_down: throotle down the guest
597 *
598 * Reduce amount of guest cpu execution to hopefully slow down memory
599 * writes. If guest dirty memory rate is reduced below the rate at
600 * which we can transfer pages to the destination then we should be
601 * able to complete migration. Some workloads dirty memory way too
602 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
603 */
604static void mig_throttle_guest_down(void)
605{
606 MigrationState *s = migrate_get_current();
2594f56d
DB
607 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
608 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
070afca2
JH
609
610 /* We have not started throttling yet. Let's start it. */
611 if (!cpu_throttle_active()) {
612 cpu_throttle_set(pct_initial);
613 } else {
614 /* Throttling already on, just increase the rate */
615 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
616 }
617}
618
3d0684b2
JQ
619/**
620 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
621 *
6f37bb8b 622 * @rs: current RAM state
3d0684b2
JQ
623 * @current_addr: address for the zero page
624 *
625 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
626 * The important thing is that a stale (not-yet-0'd) page be replaced
627 * by the new data.
628 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 629 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 630 */
6f37bb8b 631static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 632{
6f37bb8b 633 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
634 return;
635 }
636
637 /* We don't care if this fails to allocate a new cache page
638 * as long as it updated an old one */
c00e0928 639 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 640 ram_counters.dirty_sync_count);
56e93d26
JQ
641}
642
643#define ENCODING_FLAG_XBZRLE 0x1
644
645/**
646 * save_xbzrle_page: compress and send current page
647 *
648 * Returns: 1 means that we wrote the page
649 * 0 means that page is identical to the one already sent
650 * -1 means that xbzrle would be longer than normal
651 *
5a987738 652 * @rs: current RAM state
3d0684b2
JQ
653 * @current_data: pointer to the address of the page contents
654 * @current_addr: addr of the page
56e93d26
JQ
655 * @block: block that contains the page we want to send
656 * @offset: offset inside the block for the page
657 * @last_stage: if we are at the completion stage
56e93d26 658 */
204b88b8 659static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 660 ram_addr_t current_addr, RAMBlock *block,
072c2511 661 ram_addr_t offset, bool last_stage)
56e93d26
JQ
662{
663 int encoded_len = 0, bytes_xbzrle;
664 uint8_t *prev_cached_page;
665
9360447d
JQ
666 if (!cache_is_cached(XBZRLE.cache, current_addr,
667 ram_counters.dirty_sync_count)) {
668 xbzrle_counters.cache_miss++;
56e93d26
JQ
669 if (!last_stage) {
670 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 671 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
672 return -1;
673 } else {
674 /* update *current_data when the page has been
675 inserted into cache */
676 *current_data = get_cached_data(XBZRLE.cache, current_addr);
677 }
678 }
679 return -1;
680 }
681
682 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
683
684 /* save current buffer into memory */
685 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
686
687 /* XBZRLE encoding (if there is no overflow) */
688 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
689 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
690 TARGET_PAGE_SIZE);
691 if (encoded_len == 0) {
55c4446b 692 trace_save_xbzrle_page_skipping();
56e93d26
JQ
693 return 0;
694 } else if (encoded_len == -1) {
55c4446b 695 trace_save_xbzrle_page_overflow();
9360447d 696 xbzrle_counters.overflow++;
56e93d26
JQ
697 /* update data in the cache */
698 if (!last_stage) {
699 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
700 *current_data = prev_cached_page;
701 }
702 return -1;
703 }
704
705 /* we need to update the data in the cache, in order to get the same data */
706 if (!last_stage) {
707 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
708 }
709
710 /* Send XBZRLE based compressed page */
2bf3aa85 711 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
712 offset | RAM_SAVE_FLAG_XBZRLE);
713 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
714 qemu_put_be16(rs->f, encoded_len);
715 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 716 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
717 xbzrle_counters.pages++;
718 xbzrle_counters.bytes += bytes_xbzrle;
719 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
720
721 return 1;
722}
723
3d0684b2
JQ
724/**
725 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 726 *
3d0684b2
JQ
727 * Called with rcu_read_lock() to protect migration_bitmap
728 *
729 * Returns the byte offset within memory region of the start of a dirty page
730 *
6f37bb8b 731 * @rs: current RAM state
3d0684b2 732 * @rb: RAMBlock where to search for dirty pages
a935e30f 733 * @start: page where we start the search
f3f491fc 734 */
56e93d26 735static inline
a935e30f 736unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 737 unsigned long start)
56e93d26 738{
6b6712ef
JQ
739 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
740 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
741 unsigned long next;
742
6b6712ef
JQ
743 if (rs->ram_bulk_stage && start > 0) {
744 next = start + 1;
56e93d26 745 } else {
6b6712ef 746 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
747 }
748
6b6712ef 749 return next;
56e93d26
JQ
750}
751
06b10688 752static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
753 RAMBlock *rb,
754 unsigned long page)
a82d593b
DDAG
755{
756 bool ret;
a82d593b 757
6b6712ef 758 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
759
760 if (ret) {
0d8ec885 761 rs->migration_dirty_pages--;
a82d593b
DDAG
762 }
763 return ret;
764}
765
15440dd5
JQ
766static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
767 ram_addr_t start, ram_addr_t length)
56e93d26 768{
0d8ec885 769 rs->migration_dirty_pages +=
6b6712ef 770 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
0d8ec885 771 &rs->num_dirty_pages_period);
56e93d26
JQ
772}
773
3d0684b2
JQ
774/**
775 * ram_pagesize_summary: calculate all the pagesizes of a VM
776 *
777 * Returns a summary bitmap of the page sizes of all RAMBlocks
778 *
779 * For VMs with just normal pages this is equivalent to the host page
780 * size. If it's got some huge pages then it's the OR of all the
781 * different page sizes.
e8ca1db2
DDAG
782 */
783uint64_t ram_pagesize_summary(void)
784{
785 RAMBlock *block;
786 uint64_t summary = 0;
787
99e15582 788 RAMBLOCK_FOREACH(block) {
e8ca1db2
DDAG
789 summary |= block->page_size;
790 }
791
792 return summary;
793}
794
8d820d6f 795static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
796{
797 RAMBlock *block;
56e93d26 798 int64_t end_time;
c4bdf0cf 799 uint64_t bytes_xfer_now;
56e93d26 800
9360447d 801 ram_counters.dirty_sync_count++;
56e93d26 802
f664da80
JQ
803 if (!rs->time_last_bitmap_sync) {
804 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
805 }
806
807 trace_migration_bitmap_sync_start();
9c1f8f44 808 memory_global_dirty_log_sync();
56e93d26 809
108cfae0 810 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 811 rcu_read_lock();
99e15582 812 RAMBLOCK_FOREACH(block) {
15440dd5 813 migration_bitmap_sync_range(rs, block, 0, block->used_length);
56e93d26
JQ
814 }
815 rcu_read_unlock();
108cfae0 816 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 817
a66cd90c 818 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 819
56e93d26
JQ
820 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
821
822 /* more than 1 second = 1000 millisecons */
f664da80 823 if (end_time > rs->time_last_bitmap_sync + 1000) {
d693c6f1 824 /* calculate period counters */
9360447d 825 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
d693c6f1 826 / (end_time - rs->time_last_bitmap_sync);
9360447d 827 bytes_xfer_now = ram_counters.transferred;
d693c6f1 828
9ac78b61
PL
829 /* During block migration the auto-converge logic incorrectly detects
830 * that ram migration makes no progress. Avoid this by disabling the
831 * throttling logic during the bulk phase of block migration. */
832 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
833 /* The following detection logic can be refined later. For now:
834 Check to see if the dirtied bytes is 50% more than the approx.
835 amount of bytes that just got transferred since the last time we
070afca2
JH
836 were in this routine. If that happens twice, start or increase
837 throttling */
070afca2 838
d693c6f1 839 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 840 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 841 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 842 trace_migration_throttle();
8d820d6f 843 rs->dirty_rate_high_cnt = 0;
070afca2 844 mig_throttle_guest_down();
d693c6f1 845 }
56e93d26 846 }
070afca2 847
56e93d26 848 if (migrate_use_xbzrle()) {
23b28c3c 849 if (rs->iterations_prev != rs->iterations) {
9360447d
JQ
850 xbzrle_counters.cache_miss_rate =
851 (double)(xbzrle_counters.cache_miss -
b5833fde 852 rs->xbzrle_cache_miss_prev) /
23b28c3c 853 (rs->iterations - rs->iterations_prev);
56e93d26 854 }
23b28c3c 855 rs->iterations_prev = rs->iterations;
9360447d 856 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
56e93d26 857 }
d693c6f1
FF
858
859 /* reset period counters */
f664da80 860 rs->time_last_bitmap_sync = end_time;
a66cd90c 861 rs->num_dirty_pages_period = 0;
d2a4d85a 862 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 863 }
4addcd4f 864 if (migrate_use_events()) {
9360447d 865 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL);
4addcd4f 866 }
56e93d26
JQ
867}
868
869/**
3d0684b2 870 * save_zero_page: send the zero page to the stream
56e93d26 871 *
3d0684b2 872 * Returns the number of pages written.
56e93d26 873 *
f7ccd61b 874 * @rs: current RAM state
56e93d26
JQ
875 * @block: block that contains the page we want to send
876 * @offset: offset inside the block for the page
877 * @p: pointer to the page
56e93d26 878 */
ce25d337
JQ
879static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
880 uint8_t *p)
56e93d26
JQ
881{
882 int pages = -1;
883
884 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
9360447d
JQ
885 ram_counters.duplicate++;
886 ram_counters.transferred +=
bb890ed5 887 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
ce25d337 888 qemu_put_byte(rs->f, 0);
9360447d 889 ram_counters.transferred += 1;
56e93d26
JQ
890 pages = 1;
891 }
892
893 return pages;
894}
895
5727309d 896static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 897{
5727309d 898 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
899 return;
900 }
901
aaa2064c 902 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
903}
904
56e93d26 905/**
3d0684b2 906 * ram_save_page: send the given page to the stream
56e93d26 907 *
3d0684b2 908 * Returns the number of pages written.
3fd3c4b3
DDAG
909 * < 0 - error
910 * >=0 - Number of pages written - this might legally be 0
911 * if xbzrle noticed the page was the same.
56e93d26 912 *
6f37bb8b 913 * @rs: current RAM state
56e93d26
JQ
914 * @block: block that contains the page we want to send
915 * @offset: offset inside the block for the page
916 * @last_stage: if we are at the completion stage
56e93d26 917 */
a0a8aa14 918static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
919{
920 int pages = -1;
921 uint64_t bytes_xmit;
922 ram_addr_t current_addr;
56e93d26
JQ
923 uint8_t *p;
924 int ret;
925 bool send_async = true;
a08f6890 926 RAMBlock *block = pss->block;
a935e30f 927 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
56e93d26 928
2f68e399 929 p = block->host + offset;
1db9d8e5 930 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26
JQ
931
932 /* In doubt sent page as normal */
933 bytes_xmit = 0;
ce25d337 934 ret = ram_control_save_page(rs->f, block->offset,
56e93d26
JQ
935 offset, TARGET_PAGE_SIZE, &bytes_xmit);
936 if (bytes_xmit) {
9360447d 937 ram_counters.transferred += bytes_xmit;
56e93d26
JQ
938 pages = 1;
939 }
940
941 XBZRLE_cache_lock();
942
943 current_addr = block->offset + offset;
944
56e93d26
JQ
945 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
946 if (ret != RAM_SAVE_CONTROL_DELAYED) {
947 if (bytes_xmit > 0) {
9360447d 948 ram_counters.normal++;
56e93d26 949 } else if (bytes_xmit == 0) {
9360447d 950 ram_counters.duplicate++;
56e93d26
JQ
951 }
952 }
953 } else {
ce25d337 954 pages = save_zero_page(rs, block, offset, p);
56e93d26
JQ
955 if (pages > 0) {
956 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
957 * page would be stale
958 */
6f37bb8b 959 xbzrle_cache_zero_page(rs, current_addr);
a935e30f 960 ram_release_pages(block->idstr, offset, pages);
6f37bb8b 961 } else if (!rs->ram_bulk_stage &&
5727309d 962 !migration_in_postcopy() && migrate_use_xbzrle()) {
204b88b8 963 pages = save_xbzrle_page(rs, &p, current_addr, block,
072c2511 964 offset, last_stage);
56e93d26
JQ
965 if (!last_stage) {
966 /* Can't send this cached data async, since the cache page
967 * might get updated before it gets to the wire
968 */
969 send_async = false;
970 }
971 }
972 }
973
974 /* XBZRLE overflow or normal page */
975 if (pages == -1) {
9360447d
JQ
976 ram_counters.transferred +=
977 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE);
56e93d26 978 if (send_async) {
ce25d337 979 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE,
53f09a10 980 migrate_release_ram() &
5727309d 981 migration_in_postcopy());
56e93d26 982 } else {
ce25d337 983 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE);
56e93d26 984 }
9360447d 985 ram_counters.transferred += TARGET_PAGE_SIZE;
56e93d26 986 pages = 1;
9360447d 987 ram_counters.normal++;
56e93d26
JQ
988 }
989
990 XBZRLE_cache_unlock();
991
992 return pages;
993}
994
a7a9a88f
LL
995static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
996 ram_addr_t offset)
56e93d26 997{
53518d94 998 RAMState *rs = ram_state;
56e93d26 999 int bytes_sent, blen;
a7a9a88f 1000 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
56e93d26 1001
2bf3aa85 1002 bytes_sent = save_page_header(rs, f, block, offset |
56e93d26 1003 RAM_SAVE_FLAG_COMPRESS_PAGE);
a7a9a88f 1004 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
56e93d26 1005 migrate_compress_level());
b3be2896
LL
1006 if (blen < 0) {
1007 bytes_sent = 0;
1008 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
1009 error_report("compressed data failed!");
1010 } else {
1011 bytes_sent += blen;
5727309d 1012 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
b3be2896 1013 }
56e93d26
JQ
1014
1015 return bytes_sent;
1016}
1017
ce25d337 1018static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
1019{
1020 int idx, len, thread_count;
1021
1022 if (!migrate_use_compression()) {
1023 return;
1024 }
1025 thread_count = migrate_compress_threads();
a7a9a88f 1026
0d9f9a5c 1027 qemu_mutex_lock(&comp_done_lock);
56e93d26 1028 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 1029 while (!comp_param[idx].done) {
0d9f9a5c 1030 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 1031 }
a7a9a88f 1032 }
0d9f9a5c 1033 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
1034
1035 for (idx = 0; idx < thread_count; idx++) {
1036 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 1037 if (!comp_param[idx].quit) {
ce25d337 1038 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
9360447d 1039 ram_counters.transferred += len;
56e93d26 1040 }
a7a9a88f 1041 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
1042 }
1043}
1044
1045static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1046 ram_addr_t offset)
1047{
1048 param->block = block;
1049 param->offset = offset;
1050}
1051
ce25d337
JQ
1052static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1053 ram_addr_t offset)
56e93d26
JQ
1054{
1055 int idx, thread_count, bytes_xmit = -1, pages = -1;
1056
1057 thread_count = migrate_compress_threads();
0d9f9a5c 1058 qemu_mutex_lock(&comp_done_lock);
56e93d26
JQ
1059 while (true) {
1060 for (idx = 0; idx < thread_count; idx++) {
1061 if (comp_param[idx].done) {
a7a9a88f 1062 comp_param[idx].done = false;
ce25d337 1063 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
a7a9a88f 1064 qemu_mutex_lock(&comp_param[idx].mutex);
56e93d26 1065 set_compress_params(&comp_param[idx], block, offset);
a7a9a88f
LL
1066 qemu_cond_signal(&comp_param[idx].cond);
1067 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26 1068 pages = 1;
9360447d
JQ
1069 ram_counters.normal++;
1070 ram_counters.transferred += bytes_xmit;
56e93d26
JQ
1071 break;
1072 }
1073 }
1074 if (pages > 0) {
1075 break;
1076 } else {
0d9f9a5c 1077 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26
JQ
1078 }
1079 }
0d9f9a5c 1080 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
1081
1082 return pages;
1083}
1084
1085/**
1086 * ram_save_compressed_page: compress the given page and send it to the stream
1087 *
3d0684b2 1088 * Returns the number of pages written.
56e93d26 1089 *
6f37bb8b 1090 * @rs: current RAM state
56e93d26
JQ
1091 * @block: block that contains the page we want to send
1092 * @offset: offset inside the block for the page
1093 * @last_stage: if we are at the completion stage
56e93d26 1094 */
a0a8aa14
JQ
1095static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss,
1096 bool last_stage)
56e93d26
JQ
1097{
1098 int pages = -1;
fc50438e 1099 uint64_t bytes_xmit = 0;
56e93d26 1100 uint8_t *p;
fc50438e 1101 int ret, blen;
a08f6890 1102 RAMBlock *block = pss->block;
a935e30f 1103 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
56e93d26 1104
2f68e399 1105 p = block->host + offset;
56e93d26 1106
ce25d337 1107 ret = ram_control_save_page(rs->f, block->offset,
56e93d26
JQ
1108 offset, TARGET_PAGE_SIZE, &bytes_xmit);
1109 if (bytes_xmit) {
9360447d 1110 ram_counters.transferred += bytes_xmit;
56e93d26
JQ
1111 pages = 1;
1112 }
56e93d26
JQ
1113 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
1114 if (ret != RAM_SAVE_CONTROL_DELAYED) {
1115 if (bytes_xmit > 0) {
9360447d 1116 ram_counters.normal++;
56e93d26 1117 } else if (bytes_xmit == 0) {
9360447d 1118 ram_counters.duplicate++;
56e93d26
JQ
1119 }
1120 }
1121 } else {
1122 /* When starting the process of a new block, the first page of
1123 * the block should be sent out before other pages in the same
1124 * block, and all the pages in last block should have been sent
1125 * out, keeping this order is important, because the 'cont' flag
1126 * is used to avoid resending the block name.
1127 */
6f37bb8b 1128 if (block != rs->last_sent_block) {
ce25d337
JQ
1129 flush_compressed_data(rs);
1130 pages = save_zero_page(rs, block, offset, p);
56e93d26 1131 if (pages == -1) {
fc50438e 1132 /* Make sure the first page is sent out before other pages */
2bf3aa85 1133 bytes_xmit = save_page_header(rs, rs->f, block, offset |
fc50438e 1134 RAM_SAVE_FLAG_COMPRESS_PAGE);
ce25d337 1135 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE,
fc50438e
LL
1136 migrate_compress_level());
1137 if (blen > 0) {
9360447d
JQ
1138 ram_counters.transferred += bytes_xmit + blen;
1139 ram_counters.normal++;
b3be2896 1140 pages = 1;
fc50438e 1141 } else {
ce25d337 1142 qemu_file_set_error(rs->f, blen);
fc50438e 1143 error_report("compressed data failed!");
b3be2896 1144 }
56e93d26 1145 }
53f09a10 1146 if (pages > 0) {
a935e30f 1147 ram_release_pages(block->idstr, offset, pages);
53f09a10 1148 }
56e93d26 1149 } else {
ce25d337 1150 pages = save_zero_page(rs, block, offset, p);
56e93d26 1151 if (pages == -1) {
ce25d337 1152 pages = compress_page_with_multi_thread(rs, block, offset);
53f09a10 1153 } else {
a935e30f 1154 ram_release_pages(block->idstr, offset, pages);
56e93d26
JQ
1155 }
1156 }
1157 }
1158
1159 return pages;
1160}
1161
3d0684b2
JQ
1162/**
1163 * find_dirty_block: find the next dirty page and update any state
1164 * associated with the search process.
b9e60928 1165 *
3d0684b2 1166 * Returns if a page is found
b9e60928 1167 *
6f37bb8b 1168 * @rs: current RAM state
3d0684b2
JQ
1169 * @pss: data about the state of the current dirty page scan
1170 * @again: set to false if the search has scanned the whole of RAM
b9e60928 1171 */
f20e2865 1172static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 1173{
f20e2865 1174 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 1175 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 1176 pss->page >= rs->last_page) {
b9e60928
DDAG
1177 /*
1178 * We've been once around the RAM and haven't found anything.
1179 * Give up.
1180 */
1181 *again = false;
1182 return false;
1183 }
a935e30f 1184 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 1185 /* Didn't find anything in this RAM Block */
a935e30f 1186 pss->page = 0;
b9e60928
DDAG
1187 pss->block = QLIST_NEXT_RCU(pss->block, next);
1188 if (!pss->block) {
1189 /* Hit the end of the list */
1190 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1191 /* Flag that we've looped */
1192 pss->complete_round = true;
6f37bb8b 1193 rs->ram_bulk_stage = false;
b9e60928
DDAG
1194 if (migrate_use_xbzrle()) {
1195 /* If xbzrle is on, stop using the data compression at this
1196 * point. In theory, xbzrle can do better than compression.
1197 */
ce25d337 1198 flush_compressed_data(rs);
b9e60928
DDAG
1199 }
1200 }
1201 /* Didn't find anything this time, but try again on the new block */
1202 *again = true;
1203 return false;
1204 } else {
1205 /* Can go around again, but... */
1206 *again = true;
1207 /* We've found something so probably don't need to */
1208 return true;
1209 }
1210}
1211
3d0684b2
JQ
1212/**
1213 * unqueue_page: gets a page of the queue
1214 *
a82d593b 1215 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 1216 *
3d0684b2
JQ
1217 * Returns the block of the page (or NULL if none available)
1218 *
ec481c6c 1219 * @rs: current RAM state
3d0684b2 1220 * @offset: used to return the offset within the RAMBlock
a82d593b 1221 */
f20e2865 1222static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
1223{
1224 RAMBlock *block = NULL;
1225
ec481c6c
JQ
1226 qemu_mutex_lock(&rs->src_page_req_mutex);
1227 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1228 struct RAMSrcPageRequest *entry =
1229 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
1230 block = entry->rb;
1231 *offset = entry->offset;
a82d593b
DDAG
1232
1233 if (entry->len > TARGET_PAGE_SIZE) {
1234 entry->len -= TARGET_PAGE_SIZE;
1235 entry->offset += TARGET_PAGE_SIZE;
1236 } else {
1237 memory_region_unref(block->mr);
ec481c6c 1238 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b
DDAG
1239 g_free(entry);
1240 }
1241 }
ec481c6c 1242 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
1243
1244 return block;
1245}
1246
3d0684b2
JQ
1247/**
1248 * get_queued_page: unqueue a page from the postocpy requests
1249 *
1250 * Skips pages that are already sent (!dirty)
a82d593b 1251 *
3d0684b2 1252 * Returns if a queued page is found
a82d593b 1253 *
6f37bb8b 1254 * @rs: current RAM state
3d0684b2 1255 * @pss: data about the state of the current dirty page scan
a82d593b 1256 */
f20e2865 1257static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
1258{
1259 RAMBlock *block;
1260 ram_addr_t offset;
1261 bool dirty;
1262
1263 do {
f20e2865 1264 block = unqueue_page(rs, &offset);
a82d593b
DDAG
1265 /*
1266 * We're sending this page, and since it's postcopy nothing else
1267 * will dirty it, and we must make sure it doesn't get sent again
1268 * even if this queue request was received after the background
1269 * search already sent it.
1270 */
1271 if (block) {
f20e2865
JQ
1272 unsigned long page;
1273
6b6712ef
JQ
1274 page = offset >> TARGET_PAGE_BITS;
1275 dirty = test_bit(page, block->bmap);
a82d593b 1276 if (!dirty) {
06b10688 1277 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 1278 page, test_bit(page, block->unsentmap));
a82d593b 1279 } else {
f20e2865 1280 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
1281 }
1282 }
1283
1284 } while (block && !dirty);
1285
1286 if (block) {
1287 /*
1288 * As soon as we start servicing pages out of order, then we have
1289 * to kill the bulk stage, since the bulk stage assumes
1290 * in (migration_bitmap_find_and_reset_dirty) that every page is
1291 * dirty, that's no longer true.
1292 */
6f37bb8b 1293 rs->ram_bulk_stage = false;
a82d593b
DDAG
1294
1295 /*
1296 * We want the background search to continue from the queued page
1297 * since the guest is likely to want other pages near to the page
1298 * it just requested.
1299 */
1300 pss->block = block;
a935e30f 1301 pss->page = offset >> TARGET_PAGE_BITS;
a82d593b
DDAG
1302 }
1303
1304 return !!block;
1305}
1306
6c595cde 1307/**
5e58f968
JQ
1308 * migration_page_queue_free: drop any remaining pages in the ram
1309 * request queue
6c595cde 1310 *
3d0684b2
JQ
1311 * It should be empty at the end anyway, but in error cases there may
1312 * be some left. in case that there is any page left, we drop it.
1313 *
6c595cde 1314 */
83c13382 1315static void migration_page_queue_free(RAMState *rs)
6c595cde 1316{
ec481c6c 1317 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
1318 /* This queue generally should be empty - but in the case of a failed
1319 * migration might have some droppings in.
1320 */
1321 rcu_read_lock();
ec481c6c 1322 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 1323 memory_region_unref(mspr->rb->mr);
ec481c6c 1324 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
1325 g_free(mspr);
1326 }
1327 rcu_read_unlock();
1328}
1329
1330/**
3d0684b2
JQ
1331 * ram_save_queue_pages: queue the page for transmission
1332 *
1333 * A request from postcopy destination for example.
1334 *
1335 * Returns zero on success or negative on error
1336 *
3d0684b2
JQ
1337 * @rbname: Name of the RAMBLock of the request. NULL means the
1338 * same that last one.
1339 * @start: starting address from the start of the RAMBlock
1340 * @len: length (in bytes) to send
6c595cde 1341 */
96506894 1342int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
1343{
1344 RAMBlock *ramblock;
53518d94 1345 RAMState *rs = ram_state;
6c595cde 1346
9360447d 1347 ram_counters.postcopy_requests++;
6c595cde
DDAG
1348 rcu_read_lock();
1349 if (!rbname) {
1350 /* Reuse last RAMBlock */
68a098f3 1351 ramblock = rs->last_req_rb;
6c595cde
DDAG
1352
1353 if (!ramblock) {
1354 /*
1355 * Shouldn't happen, we can't reuse the last RAMBlock if
1356 * it's the 1st request.
1357 */
1358 error_report("ram_save_queue_pages no previous block");
1359 goto err;
1360 }
1361 } else {
1362 ramblock = qemu_ram_block_by_name(rbname);
1363
1364 if (!ramblock) {
1365 /* We shouldn't be asked for a non-existent RAMBlock */
1366 error_report("ram_save_queue_pages no block '%s'", rbname);
1367 goto err;
1368 }
68a098f3 1369 rs->last_req_rb = ramblock;
6c595cde
DDAG
1370 }
1371 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1372 if (start+len > ramblock->used_length) {
9458ad6b
JQ
1373 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1374 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
1375 __func__, start, len, ramblock->used_length);
1376 goto err;
1377 }
1378
ec481c6c
JQ
1379 struct RAMSrcPageRequest *new_entry =
1380 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
1381 new_entry->rb = ramblock;
1382 new_entry->offset = start;
1383 new_entry->len = len;
1384
1385 memory_region_ref(ramblock->mr);
ec481c6c
JQ
1386 qemu_mutex_lock(&rs->src_page_req_mutex);
1387 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1388 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
1389 rcu_read_unlock();
1390
1391 return 0;
1392
1393err:
1394 rcu_read_unlock();
1395 return -1;
1396}
1397
a82d593b 1398/**
3d0684b2 1399 * ram_save_target_page: save one target page
a82d593b 1400 *
3d0684b2 1401 * Returns the number of pages written
a82d593b 1402 *
6f37bb8b 1403 * @rs: current RAM state
3d0684b2 1404 * @ms: current migration state
3d0684b2 1405 * @pss: data about the page we want to send
a82d593b 1406 * @last_stage: if we are at the completion stage
a82d593b 1407 */
a0a8aa14 1408static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 1409 bool last_stage)
a82d593b
DDAG
1410{
1411 int res = 0;
1412
1413 /* Check the pages is dirty and if it is send it */
f20e2865 1414 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
6d358d94
JQ
1415 /*
1416 * If xbzrle is on, stop using the data compression after first
1417 * round of migration even if compression is enabled. In theory,
1418 * xbzrle can do better than compression.
1419 */
6b6712ef
JQ
1420 if (migrate_use_compression() &&
1421 (rs->ram_bulk_stage || !migrate_use_xbzrle())) {
a0a8aa14 1422 res = ram_save_compressed_page(rs, pss, last_stage);
a82d593b 1423 } else {
a0a8aa14 1424 res = ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
1425 }
1426
1427 if (res < 0) {
1428 return res;
1429 }
6b6712ef
JQ
1430 if (pss->block->unsentmap) {
1431 clear_bit(pss->page, pss->block->unsentmap);
a82d593b
DDAG
1432 }
1433 }
1434
1435 return res;
1436}
1437
1438/**
3d0684b2 1439 * ram_save_host_page: save a whole host page
a82d593b 1440 *
3d0684b2
JQ
1441 * Starting at *offset send pages up to the end of the current host
1442 * page. It's valid for the initial offset to point into the middle of
1443 * a host page in which case the remainder of the hostpage is sent.
1444 * Only dirty target pages are sent. Note that the host page size may
1445 * be a huge page for this block.
1eb3fc0a
DDAG
1446 * The saving stops at the boundary of the used_length of the block
1447 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 1448 *
3d0684b2
JQ
1449 * Returns the number of pages written or negative on error
1450 *
6f37bb8b 1451 * @rs: current RAM state
3d0684b2 1452 * @ms: current migration state
3d0684b2 1453 * @pss: data about the page we want to send
a82d593b 1454 * @last_stage: if we are at the completion stage
a82d593b 1455 */
a0a8aa14 1456static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 1457 bool last_stage)
a82d593b
DDAG
1458{
1459 int tmppages, pages = 0;
a935e30f
JQ
1460 size_t pagesize_bits =
1461 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 1462
a82d593b 1463 do {
f20e2865 1464 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
1465 if (tmppages < 0) {
1466 return tmppages;
1467 }
1468
1469 pages += tmppages;
a935e30f 1470 pss->page++;
1eb3fc0a
DDAG
1471 } while ((pss->page & (pagesize_bits - 1)) &&
1472 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
1473
1474 /* The offset we leave with is the last one we looked at */
a935e30f 1475 pss->page--;
a82d593b
DDAG
1476 return pages;
1477}
6c595cde 1478
56e93d26 1479/**
3d0684b2 1480 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
1481 *
1482 * Called within an RCU critical section.
1483 *
3d0684b2 1484 * Returns the number of pages written where zero means no dirty pages
56e93d26 1485 *
6f37bb8b 1486 * @rs: current RAM state
56e93d26 1487 * @last_stage: if we are at the completion stage
a82d593b
DDAG
1488 *
1489 * On systems where host-page-size > target-page-size it will send all the
1490 * pages in a host page that are dirty.
56e93d26
JQ
1491 */
1492
ce25d337 1493static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 1494{
b8fb8cb7 1495 PageSearchStatus pss;
56e93d26 1496 int pages = 0;
b9e60928 1497 bool again, found;
56e93d26 1498
0827b9e9
AA
1499 /* No dirty page as there is zero RAM */
1500 if (!ram_bytes_total()) {
1501 return pages;
1502 }
1503
6f37bb8b 1504 pss.block = rs->last_seen_block;
a935e30f 1505 pss.page = rs->last_page;
b8fb8cb7
DDAG
1506 pss.complete_round = false;
1507
1508 if (!pss.block) {
1509 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1510 }
56e93d26 1511
b9e60928 1512 do {
a82d593b 1513 again = true;
f20e2865 1514 found = get_queued_page(rs, &pss);
b9e60928 1515
a82d593b
DDAG
1516 if (!found) {
1517 /* priority queue empty, so just search for something dirty */
f20e2865 1518 found = find_dirty_block(rs, &pss, &again);
a82d593b 1519 }
f3f491fc 1520
a82d593b 1521 if (found) {
f20e2865 1522 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 1523 }
b9e60928 1524 } while (!pages && again);
56e93d26 1525
6f37bb8b 1526 rs->last_seen_block = pss.block;
a935e30f 1527 rs->last_page = pss.page;
56e93d26
JQ
1528
1529 return pages;
1530}
1531
1532void acct_update_position(QEMUFile *f, size_t size, bool zero)
1533{
1534 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 1535
56e93d26 1536 if (zero) {
9360447d 1537 ram_counters.duplicate += pages;
56e93d26 1538 } else {
9360447d
JQ
1539 ram_counters.normal += pages;
1540 ram_counters.transferred += size;
56e93d26
JQ
1541 qemu_update_position(f, size);
1542 }
1543}
1544
56e93d26
JQ
1545uint64_t ram_bytes_total(void)
1546{
1547 RAMBlock *block;
1548 uint64_t total = 0;
1549
1550 rcu_read_lock();
99e15582 1551 RAMBLOCK_FOREACH(block) {
56e93d26 1552 total += block->used_length;
99e15582 1553 }
56e93d26
JQ
1554 rcu_read_unlock();
1555 return total;
1556}
1557
f265e0e4 1558static void xbzrle_load_setup(void)
56e93d26 1559{
f265e0e4 1560 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
1561}
1562
f265e0e4
JQ
1563static void xbzrle_load_cleanup(void)
1564{
1565 g_free(XBZRLE.decoded_buf);
1566 XBZRLE.decoded_buf = NULL;
1567}
1568
1569static void ram_save_cleanup(void *opaque)
56e93d26 1570{
53518d94 1571 RAMState **rsp = opaque;
6b6712ef 1572 RAMBlock *block;
eb859c53 1573
2ff64038
LZ
1574 /* caller have hold iothread lock or is in a bh, so there is
1575 * no writing race against this migration_bitmap
1576 */
6b6712ef
JQ
1577 memory_global_dirty_log_stop();
1578
1579 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1580 g_free(block->bmap);
1581 block->bmap = NULL;
1582 g_free(block->unsentmap);
1583 block->unsentmap = NULL;
56e93d26
JQ
1584 }
1585
1586 XBZRLE_cache_lock();
1587 if (XBZRLE.cache) {
1588 cache_fini(XBZRLE.cache);
1589 g_free(XBZRLE.encoded_buf);
1590 g_free(XBZRLE.current_buf);
c00e0928 1591 g_free(XBZRLE.zero_target_page);
56e93d26
JQ
1592 XBZRLE.cache = NULL;
1593 XBZRLE.encoded_buf = NULL;
1594 XBZRLE.current_buf = NULL;
c00e0928 1595 XBZRLE.zero_target_page = NULL;
56e93d26
JQ
1596 }
1597 XBZRLE_cache_unlock();
53518d94 1598 migration_page_queue_free(*rsp);
f0afa331 1599 compress_threads_save_cleanup();
53518d94
JQ
1600 g_free(*rsp);
1601 *rsp = NULL;
56e93d26
JQ
1602}
1603
6f37bb8b 1604static void ram_state_reset(RAMState *rs)
56e93d26 1605{
6f37bb8b
JQ
1606 rs->last_seen_block = NULL;
1607 rs->last_sent_block = NULL;
269ace29 1608 rs->last_page = 0;
6f37bb8b
JQ
1609 rs->last_version = ram_list.version;
1610 rs->ram_bulk_stage = true;
56e93d26
JQ
1611}
1612
1613#define MAX_WAIT 50 /* ms, half buffered_file limit */
1614
4f2e4252
DDAG
1615/*
1616 * 'expected' is the value you expect the bitmap mostly to be full
1617 * of; it won't bother printing lines that are all this value.
1618 * If 'todump' is null the migration bitmap is dumped.
1619 */
6b6712ef
JQ
1620void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
1621 unsigned long pages)
4f2e4252 1622{
4f2e4252
DDAG
1623 int64_t cur;
1624 int64_t linelen = 128;
1625 char linebuf[129];
1626
6b6712ef 1627 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
1628 int64_t curb;
1629 bool found = false;
1630 /*
1631 * Last line; catch the case where the line length
1632 * is longer than remaining ram
1633 */
6b6712ef
JQ
1634 if (cur + linelen > pages) {
1635 linelen = pages - cur;
4f2e4252
DDAG
1636 }
1637 for (curb = 0; curb < linelen; curb++) {
1638 bool thisbit = test_bit(cur + curb, todump);
1639 linebuf[curb] = thisbit ? '1' : '.';
1640 found = found || (thisbit != expected);
1641 }
1642 if (found) {
1643 linebuf[curb] = '\0';
1644 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1645 }
1646 }
1647}
1648
e0b266f0
DDAG
1649/* **** functions for postcopy ***** */
1650
ced1c616
PB
1651void ram_postcopy_migrated_memory_release(MigrationState *ms)
1652{
1653 struct RAMBlock *block;
ced1c616 1654
99e15582 1655 RAMBLOCK_FOREACH(block) {
6b6712ef
JQ
1656 unsigned long *bitmap = block->bmap;
1657 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
1658 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
1659
1660 while (run_start < range) {
1661 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 1662 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
1663 (run_end - run_start) << TARGET_PAGE_BITS);
1664 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1665 }
1666 }
1667}
1668
3d0684b2
JQ
1669/**
1670 * postcopy_send_discard_bm_ram: discard a RAMBlock
1671 *
1672 * Returns zero on success
1673 *
e0b266f0
DDAG
1674 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1675 * Note: At this point the 'unsentmap' is the processed bitmap combined
1676 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
1677 *
1678 * @ms: current migration state
1679 * @pds: state for postcopy
1680 * @start: RAMBlock starting page
1681 * @length: RAMBlock size
e0b266f0
DDAG
1682 */
1683static int postcopy_send_discard_bm_ram(MigrationState *ms,
1684 PostcopyDiscardState *pds,
6b6712ef 1685 RAMBlock *block)
e0b266f0 1686{
6b6712ef 1687 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 1688 unsigned long current;
6b6712ef 1689 unsigned long *unsentmap = block->unsentmap;
e0b266f0 1690
6b6712ef 1691 for (current = 0; current < end; ) {
e0b266f0
DDAG
1692 unsigned long one = find_next_bit(unsentmap, end, current);
1693
1694 if (one <= end) {
1695 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1696 unsigned long discard_length;
1697
1698 if (zero >= end) {
1699 discard_length = end - one;
1700 } else {
1701 discard_length = zero - one;
1702 }
d688c62d
DDAG
1703 if (discard_length) {
1704 postcopy_discard_send_range(ms, pds, one, discard_length);
1705 }
e0b266f0
DDAG
1706 current = one + discard_length;
1707 } else {
1708 current = one;
1709 }
1710 }
1711
1712 return 0;
1713}
1714
3d0684b2
JQ
1715/**
1716 * postcopy_each_ram_send_discard: discard all RAMBlocks
1717 *
1718 * Returns 0 for success or negative for error
1719 *
e0b266f0
DDAG
1720 * Utility for the outgoing postcopy code.
1721 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1722 * passing it bitmap indexes and name.
e0b266f0
DDAG
1723 * (qemu_ram_foreach_block ends up passing unscaled lengths
1724 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
1725 *
1726 * @ms: current migration state
e0b266f0
DDAG
1727 */
1728static int postcopy_each_ram_send_discard(MigrationState *ms)
1729{
1730 struct RAMBlock *block;
1731 int ret;
1732
99e15582 1733 RAMBLOCK_FOREACH(block) {
6b6712ef
JQ
1734 PostcopyDiscardState *pds =
1735 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
1736
1737 /*
1738 * Postcopy sends chunks of bitmap over the wire, but it
1739 * just needs indexes at this point, avoids it having
1740 * target page specific code.
1741 */
6b6712ef 1742 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
1743 postcopy_discard_send_finish(ms, pds);
1744 if (ret) {
1745 return ret;
1746 }
1747 }
1748
1749 return 0;
1750}
1751
3d0684b2
JQ
1752/**
1753 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
1754 *
1755 * Helper for postcopy_chunk_hostpages; it's called twice to
1756 * canonicalize the two bitmaps, that are similar, but one is
1757 * inverted.
99e314eb 1758 *
3d0684b2
JQ
1759 * Postcopy requires that all target pages in a hostpage are dirty or
1760 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 1761 *
3d0684b2
JQ
1762 * @ms: current migration state
1763 * @unsent_pass: if true we need to canonicalize partially unsent host pages
1764 * otherwise we need to canonicalize partially dirty host pages
1765 * @block: block that contains the page we want to canonicalize
1766 * @pds: state for postcopy
99e314eb
DDAG
1767 */
1768static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1769 RAMBlock *block,
1770 PostcopyDiscardState *pds)
1771{
53518d94 1772 RAMState *rs = ram_state;
6b6712ef
JQ
1773 unsigned long *bitmap = block->bmap;
1774 unsigned long *unsentmap = block->unsentmap;
29c59172 1775 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 1776 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
1777 unsigned long run_start;
1778
29c59172
DDAG
1779 if (block->page_size == TARGET_PAGE_SIZE) {
1780 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
1781 return;
1782 }
1783
99e314eb
DDAG
1784 if (unsent_pass) {
1785 /* Find a sent page */
6b6712ef 1786 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
1787 } else {
1788 /* Find a dirty page */
6b6712ef 1789 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
1790 }
1791
6b6712ef 1792 while (run_start < pages) {
99e314eb
DDAG
1793 bool do_fixup = false;
1794 unsigned long fixup_start_addr;
1795 unsigned long host_offset;
1796
1797 /*
1798 * If the start of this run of pages is in the middle of a host
1799 * page, then we need to fixup this host page.
1800 */
1801 host_offset = run_start % host_ratio;
1802 if (host_offset) {
1803 do_fixup = true;
1804 run_start -= host_offset;
1805 fixup_start_addr = run_start;
1806 /* For the next pass */
1807 run_start = run_start + host_ratio;
1808 } else {
1809 /* Find the end of this run */
1810 unsigned long run_end;
1811 if (unsent_pass) {
6b6712ef 1812 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 1813 } else {
6b6712ef 1814 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
1815 }
1816 /*
1817 * If the end isn't at the start of a host page, then the
1818 * run doesn't finish at the end of a host page
1819 * and we need to discard.
1820 */
1821 host_offset = run_end % host_ratio;
1822 if (host_offset) {
1823 do_fixup = true;
1824 fixup_start_addr = run_end - host_offset;
1825 /*
1826 * This host page has gone, the next loop iteration starts
1827 * from after the fixup
1828 */
1829 run_start = fixup_start_addr + host_ratio;
1830 } else {
1831 /*
1832 * No discards on this iteration, next loop starts from
1833 * next sent/dirty page
1834 */
1835 run_start = run_end + 1;
1836 }
1837 }
1838
1839 if (do_fixup) {
1840 unsigned long page;
1841
1842 /* Tell the destination to discard this page */
1843 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1844 /* For the unsent_pass we:
1845 * discard partially sent pages
1846 * For the !unsent_pass (dirty) we:
1847 * discard partially dirty pages that were sent
1848 * (any partially sent pages were already discarded
1849 * by the previous unsent_pass)
1850 */
1851 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1852 host_ratio);
1853 }
1854
1855 /* Clean up the bitmap */
1856 for (page = fixup_start_addr;
1857 page < fixup_start_addr + host_ratio; page++) {
1858 /* All pages in this host page are now not sent */
1859 set_bit(page, unsentmap);
1860
1861 /*
1862 * Remark them as dirty, updating the count for any pages
1863 * that weren't previously dirty.
1864 */
0d8ec885 1865 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
1866 }
1867 }
1868
1869 if (unsent_pass) {
1870 /* Find the next sent page for the next iteration */
6b6712ef 1871 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
1872 } else {
1873 /* Find the next dirty page for the next iteration */
6b6712ef 1874 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
1875 }
1876 }
1877}
1878
3d0684b2
JQ
1879/**
1880 * postcopy_chuck_hostpages: discrad any partially sent host page
1881 *
99e314eb
DDAG
1882 * Utility for the outgoing postcopy code.
1883 *
1884 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
1885 * dirty host-page size chunks as all dirty. In this case the host-page
1886 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 1887 *
3d0684b2
JQ
1888 * Returns zero on success
1889 *
1890 * @ms: current migration state
6b6712ef 1891 * @block: block we want to work with
99e314eb 1892 */
6b6712ef 1893static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 1894{
6b6712ef
JQ
1895 PostcopyDiscardState *pds =
1896 postcopy_discard_send_init(ms, block->idstr);
99e314eb 1897
6b6712ef
JQ
1898 /* First pass: Discard all partially sent host pages */
1899 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1900 /*
1901 * Second pass: Ensure that all partially dirty host pages are made
1902 * fully dirty.
1903 */
1904 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 1905
6b6712ef 1906 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
1907 return 0;
1908}
1909
3d0684b2
JQ
1910/**
1911 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
1912 *
1913 * Returns zero on success
1914 *
e0b266f0
DDAG
1915 * Transmit the set of pages to be discarded after precopy to the target
1916 * these are pages that:
1917 * a) Have been previously transmitted but are now dirty again
1918 * b) Pages that have never been transmitted, this ensures that
1919 * any pages on the destination that have been mapped by background
1920 * tasks get discarded (transparent huge pages is the specific concern)
1921 * Hopefully this is pretty sparse
3d0684b2
JQ
1922 *
1923 * @ms: current migration state
e0b266f0
DDAG
1924 */
1925int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1926{
53518d94 1927 RAMState *rs = ram_state;
6b6712ef 1928 RAMBlock *block;
e0b266f0 1929 int ret;
e0b266f0
DDAG
1930
1931 rcu_read_lock();
1932
1933 /* This should be our last sync, the src is now paused */
eb859c53 1934 migration_bitmap_sync(rs);
e0b266f0 1935
6b6712ef
JQ
1936 /* Easiest way to make sure we don't resume in the middle of a host-page */
1937 rs->last_seen_block = NULL;
1938 rs->last_sent_block = NULL;
1939 rs->last_page = 0;
e0b266f0 1940
6b6712ef
JQ
1941 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1942 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1943 unsigned long *bitmap = block->bmap;
1944 unsigned long *unsentmap = block->unsentmap;
1945
1946 if (!unsentmap) {
1947 /* We don't have a safe way to resize the sentmap, so
1948 * if the bitmap was resized it will be NULL at this
1949 * point.
1950 */
1951 error_report("migration ram resized during precopy phase");
1952 rcu_read_unlock();
1953 return -EINVAL;
1954 }
1955 /* Deal with TPS != HPS and huge pages */
1956 ret = postcopy_chunk_hostpages(ms, block);
1957 if (ret) {
1958 rcu_read_unlock();
1959 return ret;
1960 }
e0b266f0 1961
6b6712ef
JQ
1962 /*
1963 * Update the unsentmap to be unsentmap = unsentmap | dirty
1964 */
1965 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 1966#ifdef DEBUG_POSTCOPY
6b6712ef 1967 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 1968#endif
6b6712ef
JQ
1969 }
1970 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
1971
1972 ret = postcopy_each_ram_send_discard(ms);
1973 rcu_read_unlock();
1974
1975 return ret;
1976}
1977
3d0684b2
JQ
1978/**
1979 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 1980 *
3d0684b2 1981 * Returns zero on success
e0b266f0 1982 *
36449157
JQ
1983 * @rbname: name of the RAMBlock of the request. NULL means the
1984 * same that last one.
3d0684b2
JQ
1985 * @start: RAMBlock starting page
1986 * @length: RAMBlock size
e0b266f0 1987 */
aaa2064c 1988int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
1989{
1990 int ret = -1;
1991
36449157 1992 trace_ram_discard_range(rbname, start, length);
d3a5038c 1993
e0b266f0 1994 rcu_read_lock();
36449157 1995 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
1996
1997 if (!rb) {
36449157 1998 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
1999 goto err;
2000 }
2001
d3a5038c 2002 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
2003
2004err:
2005 rcu_read_unlock();
2006
2007 return ret;
2008}
2009
53518d94 2010static int ram_state_init(RAMState **rsp)
56e93d26 2011{
53518d94
JQ
2012 *rsp = g_new0(RAMState, 1);
2013
2014 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2015 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2016 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26
JQ
2017
2018 if (migrate_use_xbzrle()) {
2019 XBZRLE_cache_lock();
c00e0928 2020 XBZRLE.zero_target_page = g_malloc0(TARGET_PAGE_SIZE);
56e93d26
JQ
2021 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
2022 TARGET_PAGE_SIZE,
2023 TARGET_PAGE_SIZE);
2024 if (!XBZRLE.cache) {
2025 XBZRLE_cache_unlock();
2026 error_report("Error creating cache");
53518d94
JQ
2027 g_free(*rsp);
2028 *rsp = NULL;
56e93d26
JQ
2029 return -1;
2030 }
2031 XBZRLE_cache_unlock();
2032
2033 /* We prefer not to abort if there is no memory */
2034 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2035 if (!XBZRLE.encoded_buf) {
2036 error_report("Error allocating encoded_buf");
53518d94
JQ
2037 g_free(*rsp);
2038 *rsp = NULL;
56e93d26
JQ
2039 return -1;
2040 }
2041
2042 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2043 if (!XBZRLE.current_buf) {
2044 error_report("Error allocating current_buf");
2045 g_free(XBZRLE.encoded_buf);
2046 XBZRLE.encoded_buf = NULL;
53518d94
JQ
2047 g_free(*rsp);
2048 *rsp = NULL;
56e93d26
JQ
2049 return -1;
2050 }
56e93d26
JQ
2051 }
2052
49877834
PB
2053 /* For memory_global_dirty_log_start below. */
2054 qemu_mutex_lock_iothread();
2055
56e93d26
JQ
2056 qemu_mutex_lock_ramlist();
2057 rcu_read_lock();
53518d94 2058 ram_state_reset(*rsp);
56e93d26 2059
0827b9e9
AA
2060 /* Skip setting bitmap if there is no RAM */
2061 if (ram_bytes_total()) {
6b6712ef
JQ
2062 RAMBlock *block;
2063
2064 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2065 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
0827b9e9 2066
6b6712ef
JQ
2067 block->bmap = bitmap_new(pages);
2068 bitmap_set(block->bmap, 0, pages);
2069 if (migrate_postcopy_ram()) {
2070 block->unsentmap = bitmap_new(pages);
2071 bitmap_set(block->unsentmap, 0, pages);
2072 }
0827b9e9 2073 }
f3f491fc
DDAG
2074 }
2075
56e93d26
JQ
2076 /*
2077 * Count the total number of pages used by ram blocks not including any
2078 * gaps due to alignment or unplugs.
2079 */
53518d94 2080 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
56e93d26
JQ
2081
2082 memory_global_dirty_log_start();
53518d94 2083 migration_bitmap_sync(*rsp);
56e93d26 2084 qemu_mutex_unlock_ramlist();
49877834 2085 qemu_mutex_unlock_iothread();
a91246c9
HZ
2086 rcu_read_unlock();
2087
2088 return 0;
2089}
2090
3d0684b2
JQ
2091/*
2092 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
2093 * long-running RCU critical section. When rcu-reclaims in the code
2094 * start to become numerous it will be necessary to reduce the
2095 * granularity of these critical sections.
2096 */
2097
3d0684b2
JQ
2098/**
2099 * ram_save_setup: Setup RAM for migration
2100 *
2101 * Returns zero to indicate success and negative for error
2102 *
2103 * @f: QEMUFile where to send the data
2104 * @opaque: RAMState pointer
2105 */
a91246c9
HZ
2106static int ram_save_setup(QEMUFile *f, void *opaque)
2107{
53518d94 2108 RAMState **rsp = opaque;
a91246c9
HZ
2109 RAMBlock *block;
2110
2111 /* migration has already setup the bitmap, reuse it. */
2112 if (!migration_in_colo_state()) {
53518d94 2113 if (ram_state_init(rsp) != 0) {
a91246c9 2114 return -1;
53518d94 2115 }
a91246c9 2116 }
53518d94 2117 (*rsp)->f = f;
a91246c9
HZ
2118
2119 rcu_read_lock();
56e93d26
JQ
2120
2121 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
2122
99e15582 2123 RAMBLOCK_FOREACH(block) {
56e93d26
JQ
2124 qemu_put_byte(f, strlen(block->idstr));
2125 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2126 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
2127 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
2128 qemu_put_be64(f, block->page_size);
2129 }
56e93d26
JQ
2130 }
2131
2132 rcu_read_unlock();
f0afa331 2133 compress_threads_save_setup();
56e93d26
JQ
2134
2135 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2136 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2137
2138 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2139
2140 return 0;
2141}
2142
3d0684b2
JQ
2143/**
2144 * ram_save_iterate: iterative stage for migration
2145 *
2146 * Returns zero to indicate success and negative for error
2147 *
2148 * @f: QEMUFile where to send the data
2149 * @opaque: RAMState pointer
2150 */
56e93d26
JQ
2151static int ram_save_iterate(QEMUFile *f, void *opaque)
2152{
53518d94
JQ
2153 RAMState **temp = opaque;
2154 RAMState *rs = *temp;
56e93d26
JQ
2155 int ret;
2156 int i;
2157 int64_t t0;
5c90308f 2158 int done = 0;
56e93d26
JQ
2159
2160 rcu_read_lock();
6f37bb8b
JQ
2161 if (ram_list.version != rs->last_version) {
2162 ram_state_reset(rs);
56e93d26
JQ
2163 }
2164
2165 /* Read version before ram_list.blocks */
2166 smp_rmb();
2167
2168 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2169
2170 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2171 i = 0;
2172 while ((ret = qemu_file_rate_limit(f)) == 0) {
2173 int pages;
2174
ce25d337 2175 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
2176 /* no more pages to sent */
2177 if (pages == 0) {
5c90308f 2178 done = 1;
56e93d26
JQ
2179 break;
2180 }
23b28c3c 2181 rs->iterations++;
070afca2 2182
56e93d26
JQ
2183 /* we want to check in the 1st loop, just in case it was the 1st time
2184 and we had to sync the dirty bitmap.
2185 qemu_get_clock_ns() is a bit expensive, so we only check each some
2186 iterations
2187 */
2188 if ((i & 63) == 0) {
2189 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2190 if (t1 > MAX_WAIT) {
55c4446b 2191 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
2192 break;
2193 }
2194 }
2195 i++;
2196 }
ce25d337 2197 flush_compressed_data(rs);
56e93d26
JQ
2198 rcu_read_unlock();
2199
2200 /*
2201 * Must occur before EOS (or any QEMUFile operation)
2202 * because of RDMA protocol.
2203 */
2204 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2205
2206 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
9360447d 2207 ram_counters.transferred += 8;
56e93d26
JQ
2208
2209 ret = qemu_file_get_error(f);
2210 if (ret < 0) {
2211 return ret;
2212 }
2213
5c90308f 2214 return done;
56e93d26
JQ
2215}
2216
3d0684b2
JQ
2217/**
2218 * ram_save_complete: function called to send the remaining amount of ram
2219 *
2220 * Returns zero to indicate success
2221 *
2222 * Called with iothread lock
2223 *
2224 * @f: QEMUFile where to send the data
2225 * @opaque: RAMState pointer
2226 */
56e93d26
JQ
2227static int ram_save_complete(QEMUFile *f, void *opaque)
2228{
53518d94
JQ
2229 RAMState **temp = opaque;
2230 RAMState *rs = *temp;
6f37bb8b 2231
56e93d26
JQ
2232 rcu_read_lock();
2233
5727309d 2234 if (!migration_in_postcopy()) {
8d820d6f 2235 migration_bitmap_sync(rs);
663e6c1d 2236 }
56e93d26
JQ
2237
2238 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2239
2240 /* try transferring iterative blocks of memory */
2241
2242 /* flush all remaining blocks regardless of rate limiting */
2243 while (true) {
2244 int pages;
2245
ce25d337 2246 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
2247 /* no more blocks to sent */
2248 if (pages == 0) {
2249 break;
2250 }
2251 }
2252
ce25d337 2253 flush_compressed_data(rs);
56e93d26 2254 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
2255
2256 rcu_read_unlock();
d09a6fde 2257
56e93d26
JQ
2258 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2259
2260 return 0;
2261}
2262
c31b098f
DDAG
2263static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2264 uint64_t *non_postcopiable_pending,
2265 uint64_t *postcopiable_pending)
56e93d26 2266{
53518d94
JQ
2267 RAMState **temp = opaque;
2268 RAMState *rs = *temp;
56e93d26
JQ
2269 uint64_t remaining_size;
2270
9edabd4d 2271 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 2272
5727309d 2273 if (!migration_in_postcopy() &&
663e6c1d 2274 remaining_size < max_size) {
56e93d26
JQ
2275 qemu_mutex_lock_iothread();
2276 rcu_read_lock();
8d820d6f 2277 migration_bitmap_sync(rs);
56e93d26
JQ
2278 rcu_read_unlock();
2279 qemu_mutex_unlock_iothread();
9edabd4d 2280 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 2281 }
c31b098f 2282
86e1167e
VSO
2283 if (migrate_postcopy_ram()) {
2284 /* We can do postcopy, and all the data is postcopiable */
2285 *postcopiable_pending += remaining_size;
2286 } else {
2287 *non_postcopiable_pending += remaining_size;
2288 }
56e93d26
JQ
2289}
2290
2291static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2292{
2293 unsigned int xh_len;
2294 int xh_flags;
063e760a 2295 uint8_t *loaded_data;
56e93d26 2296
56e93d26
JQ
2297 /* extract RLE header */
2298 xh_flags = qemu_get_byte(f);
2299 xh_len = qemu_get_be16(f);
2300
2301 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2302 error_report("Failed to load XBZRLE page - wrong compression!");
2303 return -1;
2304 }
2305
2306 if (xh_len > TARGET_PAGE_SIZE) {
2307 error_report("Failed to load XBZRLE page - len overflow!");
2308 return -1;
2309 }
f265e0e4 2310 loaded_data = XBZRLE.decoded_buf;
56e93d26 2311 /* load data and decode */
f265e0e4 2312 /* it can change loaded_data to point to an internal buffer */
063e760a 2313 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
2314
2315 /* decode RLE */
063e760a 2316 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
2317 TARGET_PAGE_SIZE) == -1) {
2318 error_report("Failed to load XBZRLE page - decode error!");
2319 return -1;
2320 }
2321
2322 return 0;
2323}
2324
3d0684b2
JQ
2325/**
2326 * ram_block_from_stream: read a RAMBlock id from the migration stream
2327 *
2328 * Must be called from within a rcu critical section.
2329 *
56e93d26 2330 * Returns a pointer from within the RCU-protected ram_list.
a7180877 2331 *
3d0684b2
JQ
2332 * @f: QEMUFile where to read the data from
2333 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 2334 */
3d0684b2 2335static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
2336{
2337 static RAMBlock *block = NULL;
2338 char id[256];
2339 uint8_t len;
2340
2341 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 2342 if (!block) {
56e93d26
JQ
2343 error_report("Ack, bad migration stream!");
2344 return NULL;
2345 }
4c4bad48 2346 return block;
56e93d26
JQ
2347 }
2348
2349 len = qemu_get_byte(f);
2350 qemu_get_buffer(f, (uint8_t *)id, len);
2351 id[len] = 0;
2352
e3dd7493 2353 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
2354 if (!block) {
2355 error_report("Can't find block %s", id);
2356 return NULL;
56e93d26
JQ
2357 }
2358
4c4bad48
HZ
2359 return block;
2360}
2361
2362static inline void *host_from_ram_block_offset(RAMBlock *block,
2363 ram_addr_t offset)
2364{
2365 if (!offset_in_ramblock(block, offset)) {
2366 return NULL;
2367 }
2368
2369 return block->host + offset;
56e93d26
JQ
2370}
2371
3d0684b2
JQ
2372/**
2373 * ram_handle_compressed: handle the zero page case
2374 *
56e93d26
JQ
2375 * If a page (or a whole RDMA chunk) has been
2376 * determined to be zero, then zap it.
3d0684b2
JQ
2377 *
2378 * @host: host address for the zero page
2379 * @ch: what the page is filled from. We only support zero
2380 * @size: size of the zero page
56e93d26
JQ
2381 */
2382void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2383{
2384 if (ch != 0 || !is_zero_range(host, size)) {
2385 memset(host, ch, size);
2386 }
2387}
2388
2389static void *do_data_decompress(void *opaque)
2390{
2391 DecompressParam *param = opaque;
2392 unsigned long pagesize;
33d151f4
LL
2393 uint8_t *des;
2394 int len;
56e93d26 2395
33d151f4 2396 qemu_mutex_lock(&param->mutex);
90e56fb4 2397 while (!param->quit) {
33d151f4
LL
2398 if (param->des) {
2399 des = param->des;
2400 len = param->len;
2401 param->des = 0;
2402 qemu_mutex_unlock(&param->mutex);
2403
56e93d26 2404 pagesize = TARGET_PAGE_SIZE;
73a8912b
LL
2405 /* uncompress() will return failed in some case, especially
2406 * when the page is dirted when doing the compression, it's
2407 * not a problem because the dirty page will be retransferred
2408 * and uncompress() won't break the data in other pages.
2409 */
33d151f4
LL
2410 uncompress((Bytef *)des, &pagesize,
2411 (const Bytef *)param->compbuf, len);
73a8912b 2412
33d151f4
LL
2413 qemu_mutex_lock(&decomp_done_lock);
2414 param->done = true;
2415 qemu_cond_signal(&decomp_done_cond);
2416 qemu_mutex_unlock(&decomp_done_lock);
2417
2418 qemu_mutex_lock(&param->mutex);
2419 } else {
2420 qemu_cond_wait(&param->cond, &param->mutex);
2421 }
56e93d26 2422 }
33d151f4 2423 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
2424
2425 return NULL;
2426}
2427
5533b2e9
LL
2428static void wait_for_decompress_done(void)
2429{
2430 int idx, thread_count;
2431
2432 if (!migrate_use_compression()) {
2433 return;
2434 }
2435
2436 thread_count = migrate_decompress_threads();
2437 qemu_mutex_lock(&decomp_done_lock);
2438 for (idx = 0; idx < thread_count; idx++) {
2439 while (!decomp_param[idx].done) {
2440 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2441 }
2442 }
2443 qemu_mutex_unlock(&decomp_done_lock);
2444}
2445
f0afa331 2446static void compress_threads_load_setup(void)
56e93d26
JQ
2447{
2448 int i, thread_count;
2449
3416ab5b
JQ
2450 if (!migrate_use_compression()) {
2451 return;
2452 }
56e93d26
JQ
2453 thread_count = migrate_decompress_threads();
2454 decompress_threads = g_new0(QemuThread, thread_count);
2455 decomp_param = g_new0(DecompressParam, thread_count);
73a8912b
LL
2456 qemu_mutex_init(&decomp_done_lock);
2457 qemu_cond_init(&decomp_done_cond);
56e93d26
JQ
2458 for (i = 0; i < thread_count; i++) {
2459 qemu_mutex_init(&decomp_param[i].mutex);
2460 qemu_cond_init(&decomp_param[i].cond);
2461 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
73a8912b 2462 decomp_param[i].done = true;
90e56fb4 2463 decomp_param[i].quit = false;
56e93d26
JQ
2464 qemu_thread_create(decompress_threads + i, "decompress",
2465 do_data_decompress, decomp_param + i,
2466 QEMU_THREAD_JOINABLE);
2467 }
2468}
2469
f0afa331 2470static void compress_threads_load_cleanup(void)
56e93d26
JQ
2471{
2472 int i, thread_count;
2473
3416ab5b
JQ
2474 if (!migrate_use_compression()) {
2475 return;
2476 }
56e93d26
JQ
2477 thread_count = migrate_decompress_threads();
2478 for (i = 0; i < thread_count; i++) {
2479 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 2480 decomp_param[i].quit = true;
56e93d26
JQ
2481 qemu_cond_signal(&decomp_param[i].cond);
2482 qemu_mutex_unlock(&decomp_param[i].mutex);
2483 }
2484 for (i = 0; i < thread_count; i++) {
2485 qemu_thread_join(decompress_threads + i);
2486 qemu_mutex_destroy(&decomp_param[i].mutex);
2487 qemu_cond_destroy(&decomp_param[i].cond);
2488 g_free(decomp_param[i].compbuf);
2489 }
2490 g_free(decompress_threads);
2491 g_free(decomp_param);
56e93d26
JQ
2492 decompress_threads = NULL;
2493 decomp_param = NULL;
56e93d26
JQ
2494}
2495
c1bc6626 2496static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
2497 void *host, int len)
2498{
2499 int idx, thread_count;
2500
2501 thread_count = migrate_decompress_threads();
73a8912b 2502 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
2503 while (true) {
2504 for (idx = 0; idx < thread_count; idx++) {
73a8912b 2505 if (decomp_param[idx].done) {
33d151f4
LL
2506 decomp_param[idx].done = false;
2507 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 2508 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
2509 decomp_param[idx].des = host;
2510 decomp_param[idx].len = len;
33d151f4
LL
2511 qemu_cond_signal(&decomp_param[idx].cond);
2512 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
2513 break;
2514 }
2515 }
2516 if (idx < thread_count) {
2517 break;
73a8912b
LL
2518 } else {
2519 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
2520 }
2521 }
73a8912b 2522 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
2523}
2524
f265e0e4
JQ
2525/**
2526 * ram_load_setup: Setup RAM for migration incoming side
2527 *
2528 * Returns zero to indicate success and negative for error
2529 *
2530 * @f: QEMUFile where to receive the data
2531 * @opaque: RAMState pointer
2532 */
2533static int ram_load_setup(QEMUFile *f, void *opaque)
2534{
2535 xbzrle_load_setup();
f0afa331 2536 compress_threads_load_setup();
f265e0e4
JQ
2537 return 0;
2538}
2539
2540static int ram_load_cleanup(void *opaque)
2541{
2542 xbzrle_load_cleanup();
f0afa331 2543 compress_threads_load_cleanup();
f265e0e4
JQ
2544 return 0;
2545}
2546
3d0684b2
JQ
2547/**
2548 * ram_postcopy_incoming_init: allocate postcopy data structures
2549 *
2550 * Returns 0 for success and negative if there was one error
2551 *
2552 * @mis: current migration incoming state
2553 *
2554 * Allocate data structures etc needed by incoming migration with
2555 * postcopy-ram. postcopy-ram's similarly names
2556 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
2557 */
2558int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2559{
b8c48993 2560 unsigned long ram_pages = last_ram_page();
1caddf8a
DDAG
2561
2562 return postcopy_ram_incoming_init(mis, ram_pages);
2563}
2564
3d0684b2
JQ
2565/**
2566 * ram_load_postcopy: load a page in postcopy case
2567 *
2568 * Returns 0 for success or -errno in case of error
2569 *
a7180877
DDAG
2570 * Called in postcopy mode by ram_load().
2571 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
2572 *
2573 * @f: QEMUFile where to send the data
a7180877
DDAG
2574 */
2575static int ram_load_postcopy(QEMUFile *f)
2576{
2577 int flags = 0, ret = 0;
2578 bool place_needed = false;
28abd200 2579 bool matching_page_sizes = false;
a7180877
DDAG
2580 MigrationIncomingState *mis = migration_incoming_get_current();
2581 /* Temporary page that is later 'placed' */
2582 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 2583 void *last_host = NULL;
a3b6ff6d 2584 bool all_zero = false;
a7180877
DDAG
2585
2586 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2587 ram_addr_t addr;
2588 void *host = NULL;
2589 void *page_buffer = NULL;
2590 void *place_source = NULL;
df9ff5e1 2591 RAMBlock *block = NULL;
a7180877 2592 uint8_t ch;
a7180877
DDAG
2593
2594 addr = qemu_get_be64(f);
2595 flags = addr & ~TARGET_PAGE_MASK;
2596 addr &= TARGET_PAGE_MASK;
2597
2598 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2599 place_needed = false;
bb890ed5 2600 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 2601 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
2602
2603 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
2604 if (!host) {
2605 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2606 ret = -EINVAL;
2607 break;
2608 }
28abd200 2609 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE;
a7180877 2610 /*
28abd200
DDAG
2611 * Postcopy requires that we place whole host pages atomically;
2612 * these may be huge pages for RAMBlocks that are backed by
2613 * hugetlbfs.
a7180877
DDAG
2614 * To make it atomic, the data is read into a temporary page
2615 * that's moved into place later.
2616 * The migration protocol uses, possibly smaller, target-pages
2617 * however the source ensures it always sends all the components
2618 * of a host page in order.
2619 */
2620 page_buffer = postcopy_host_page +
28abd200 2621 ((uintptr_t)host & (block->page_size - 1));
a7180877 2622 /* If all TP are zero then we can optimise the place */
28abd200 2623 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 2624 all_zero = true;
c53b7ddc
DDAG
2625 } else {
2626 /* not the 1st TP within the HP */
2627 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 2628 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
2629 host, last_host);
2630 ret = -EINVAL;
2631 break;
2632 }
a7180877
DDAG
2633 }
2634
c53b7ddc 2635
a7180877
DDAG
2636 /*
2637 * If it's the last part of a host page then we place the host
2638 * page
2639 */
2640 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 2641 (block->page_size - 1)) == 0;
a7180877
DDAG
2642 place_source = postcopy_host_page;
2643 }
c53b7ddc 2644 last_host = host;
a7180877
DDAG
2645
2646 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 2647 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
2648 ch = qemu_get_byte(f);
2649 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2650 if (ch) {
2651 all_zero = false;
2652 }
2653 break;
2654
2655 case RAM_SAVE_FLAG_PAGE:
2656 all_zero = false;
2657 if (!place_needed || !matching_page_sizes) {
2658 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2659 } else {
2660 /* Avoids the qemu_file copy during postcopy, which is
2661 * going to do a copy later; can only do it when we
2662 * do this read in one go (matching page sizes)
2663 */
2664 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2665 TARGET_PAGE_SIZE);
2666 }
2667 break;
2668 case RAM_SAVE_FLAG_EOS:
2669 /* normal exit */
2670 break;
2671 default:
2672 error_report("Unknown combination of migration flags: %#x"
2673 " (postcopy mode)", flags);
2674 ret = -EINVAL;
2675 }
2676
2677 if (place_needed) {
2678 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
2679 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
2680
a7180877 2681 if (all_zero) {
df9ff5e1
DDAG
2682 ret = postcopy_place_page_zero(mis, place_dest,
2683 block->page_size);
a7180877 2684 } else {
df9ff5e1
DDAG
2685 ret = postcopy_place_page(mis, place_dest,
2686 place_source, block->page_size);
a7180877
DDAG
2687 }
2688 }
2689 if (!ret) {
2690 ret = qemu_file_get_error(f);
2691 }
2692 }
2693
2694 return ret;
2695}
2696
56e93d26
JQ
2697static int ram_load(QEMUFile *f, void *opaque, int version_id)
2698{
edc60127 2699 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
2700 static uint64_t seq_iter;
2701 int len = 0;
a7180877
DDAG
2702 /*
2703 * If system is running in postcopy mode, page inserts to host memory must
2704 * be atomic
2705 */
2706 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
ef08fb38
DDAG
2707 /* ADVISE is earlier, it shows the source has the postcopy capability on */
2708 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE;
56e93d26
JQ
2709
2710 seq_iter++;
2711
2712 if (version_id != 4) {
2713 ret = -EINVAL;
2714 }
2715
edc60127
JQ
2716 if (!migrate_use_compression()) {
2717 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
2718 }
56e93d26
JQ
2719 /* This RCU critical section can be very long running.
2720 * When RCU reclaims in the code start to become numerous,
2721 * it will be necessary to reduce the granularity of this
2722 * critical section.
2723 */
2724 rcu_read_lock();
a7180877
DDAG
2725
2726 if (postcopy_running) {
2727 ret = ram_load_postcopy(f);
2728 }
2729
2730 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 2731 ram_addr_t addr, total_ram_bytes;
a776aa15 2732 void *host = NULL;
56e93d26
JQ
2733 uint8_t ch;
2734
2735 addr = qemu_get_be64(f);
2736 flags = addr & ~TARGET_PAGE_MASK;
2737 addr &= TARGET_PAGE_MASK;
2738
edc60127
JQ
2739 if (flags & invalid_flags) {
2740 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
2741 error_report("Received an unexpected compressed page");
2742 }
2743
2744 ret = -EINVAL;
2745 break;
2746 }
2747
bb890ed5 2748 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 2749 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
2750 RAMBlock *block = ram_block_from_stream(f, flags);
2751
2752 host = host_from_ram_block_offset(block, addr);
a776aa15
DDAG
2753 if (!host) {
2754 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2755 ret = -EINVAL;
2756 break;
2757 }
1db9d8e5 2758 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
2759 }
2760
56e93d26
JQ
2761 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2762 case RAM_SAVE_FLAG_MEM_SIZE:
2763 /* Synchronize RAM block list */
2764 total_ram_bytes = addr;
2765 while (!ret && total_ram_bytes) {
2766 RAMBlock *block;
56e93d26
JQ
2767 char id[256];
2768 ram_addr_t length;
2769
2770 len = qemu_get_byte(f);
2771 qemu_get_buffer(f, (uint8_t *)id, len);
2772 id[len] = 0;
2773 length = qemu_get_be64(f);
2774
e3dd7493
DDAG
2775 block = qemu_ram_block_by_name(id);
2776 if (block) {
2777 if (length != block->used_length) {
2778 Error *local_err = NULL;
56e93d26 2779
fa53a0e5 2780 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
2781 &local_err);
2782 if (local_err) {
2783 error_report_err(local_err);
56e93d26 2784 }
56e93d26 2785 }
ef08fb38
DDAG
2786 /* For postcopy we need to check hugepage sizes match */
2787 if (postcopy_advised &&
2788 block->page_size != qemu_host_page_size) {
2789 uint64_t remote_page_size = qemu_get_be64(f);
2790 if (remote_page_size != block->page_size) {
2791 error_report("Mismatched RAM page size %s "
2792 "(local) %zd != %" PRId64,
2793 id, block->page_size,
2794 remote_page_size);
2795 ret = -EINVAL;
2796 }
2797 }
e3dd7493
DDAG
2798 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2799 block->idstr);
2800 } else {
56e93d26
JQ
2801 error_report("Unknown ramblock \"%s\", cannot "
2802 "accept migration", id);
2803 ret = -EINVAL;
2804 }
2805
2806 total_ram_bytes -= length;
2807 }
2808 break;
a776aa15 2809
bb890ed5 2810 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
2811 ch = qemu_get_byte(f);
2812 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2813 break;
a776aa15 2814
56e93d26 2815 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
2816 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2817 break;
56e93d26 2818
a776aa15 2819 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
2820 len = qemu_get_be32(f);
2821 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2822 error_report("Invalid compressed data length: %d", len);
2823 ret = -EINVAL;
2824 break;
2825 }
c1bc6626 2826 decompress_data_with_multi_threads(f, host, len);
56e93d26 2827 break;
a776aa15 2828
56e93d26 2829 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
2830 if (load_xbzrle(f, addr, host) < 0) {
2831 error_report("Failed to decompress XBZRLE page at "
2832 RAM_ADDR_FMT, addr);
2833 ret = -EINVAL;
2834 break;
2835 }
2836 break;
2837 case RAM_SAVE_FLAG_EOS:
2838 /* normal exit */
2839 break;
2840 default:
2841 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 2842 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
2843 } else {
2844 error_report("Unknown combination of migration flags: %#x",
2845 flags);
2846 ret = -EINVAL;
2847 }
2848 }
2849 if (!ret) {
2850 ret = qemu_file_get_error(f);
2851 }
2852 }
2853
5533b2e9 2854 wait_for_decompress_done();
56e93d26 2855 rcu_read_unlock();
55c4446b 2856 trace_ram_load_complete(ret, seq_iter);
56e93d26
JQ
2857 return ret;
2858}
2859
c6467627
VSO
2860static bool ram_has_postcopy(void *opaque)
2861{
2862 return migrate_postcopy_ram();
2863}
2864
56e93d26 2865static SaveVMHandlers savevm_ram_handlers = {
9907e842 2866 .save_setup = ram_save_setup,
56e93d26 2867 .save_live_iterate = ram_save_iterate,
763c906b 2868 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 2869 .save_live_complete_precopy = ram_save_complete,
c6467627 2870 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
2871 .save_live_pending = ram_save_pending,
2872 .load_state = ram_load,
f265e0e4
JQ
2873 .save_cleanup = ram_save_cleanup,
2874 .load_setup = ram_load_setup,
2875 .load_cleanup = ram_load_cleanup,
56e93d26
JQ
2876};
2877
2878void ram_mig_init(void)
2879{
2880 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 2881 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 2882}
This page took 0.635315 seconds and 4 git commands to generate.