]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
fad6cb1a | 18 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA |
54936004 | 19 | */ |
67b915a5 | 20 | #include "config.h" |
d5a8f07c FB |
21 | #ifdef _WIN32 |
22 | #include <windows.h> | |
23 | #else | |
a98d49b1 | 24 | #include <sys/types.h> |
d5a8f07c FB |
25 | #include <sys/mman.h> |
26 | #endif | |
54936004 FB |
27 | #include <stdlib.h> |
28 | #include <stdio.h> | |
29 | #include <stdarg.h> | |
30 | #include <string.h> | |
31 | #include <errno.h> | |
32 | #include <unistd.h> | |
33 | #include <inttypes.h> | |
34 | ||
6180a181 FB |
35 | #include "cpu.h" |
36 | #include "exec-all.h" | |
ca10f867 | 37 | #include "qemu-common.h" |
b67d9a52 | 38 | #include "tcg.h" |
b3c7724c | 39 | #include "hw/hw.h" |
74576198 | 40 | #include "osdep.h" |
7ba1e619 | 41 | #include "kvm.h" |
53a5960a PB |
42 | #if defined(CONFIG_USER_ONLY) |
43 | #include <qemu.h> | |
44 | #endif | |
54936004 | 45 | |
fd6ce8f6 | 46 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 47 | //#define DEBUG_FLUSH |
9fa3e853 | 48 | //#define DEBUG_TLB |
67d3b957 | 49 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
50 | |
51 | /* make various TB consistency checks */ | |
5fafdf24 TS |
52 | //#define DEBUG_TB_CHECK |
53 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 54 | |
1196be37 | 55 | //#define DEBUG_IOPORT |
db7b5426 | 56 | //#define DEBUG_SUBPAGE |
1196be37 | 57 | |
99773bd4 PB |
58 | #if !defined(CONFIG_USER_ONLY) |
59 | /* TB consistency checks only implemented for usermode emulation. */ | |
60 | #undef DEBUG_TB_CHECK | |
61 | #endif | |
62 | ||
9fa3e853 FB |
63 | #define SMC_BITMAP_USE_THRESHOLD 10 |
64 | ||
108c49b8 FB |
65 | #if defined(TARGET_SPARC64) |
66 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
5dcb6b91 BS |
67 | #elif defined(TARGET_SPARC) |
68 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
bedb69ea JM |
69 | #elif defined(TARGET_ALPHA) |
70 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
71 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
108c49b8 FB |
72 | #elif defined(TARGET_PPC64) |
73 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
00f82b8a AJ |
74 | #elif defined(TARGET_X86_64) && !defined(USE_KQEMU) |
75 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
76 | #elif defined(TARGET_I386) && !defined(USE_KQEMU) | |
77 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
108c49b8 FB |
78 | #else |
79 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
80 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
81 | #endif | |
82 | ||
bdaf78e0 | 83 | static TranslationBlock *tbs; |
26a5f13b | 84 | int code_gen_max_blocks; |
9fa3e853 | 85 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
bdaf78e0 | 86 | static int nb_tbs; |
eb51d102 FB |
87 | /* any access to the tbs or the page table must use this lock */ |
88 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
fd6ce8f6 | 89 | |
141ac468 BS |
90 | #if defined(__arm__) || defined(__sparc_v9__) |
91 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
92 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
93 | section close to code segment. */ |
94 | #define code_gen_section \ | |
95 | __attribute__((__section__(".gen_code"))) \ | |
96 | __attribute__((aligned (32))) | |
97 | #else | |
98 | #define code_gen_section \ | |
99 | __attribute__((aligned (32))) | |
100 | #endif | |
101 | ||
102 | uint8_t code_gen_prologue[1024] code_gen_section; | |
bdaf78e0 BS |
103 | static uint8_t *code_gen_buffer; |
104 | static unsigned long code_gen_buffer_size; | |
26a5f13b | 105 | /* threshold to flush the translated code buffer */ |
bdaf78e0 | 106 | static unsigned long code_gen_buffer_max_size; |
fd6ce8f6 FB |
107 | uint8_t *code_gen_ptr; |
108 | ||
e2eef170 | 109 | #if !defined(CONFIG_USER_ONLY) |
9fa3e853 | 110 | int phys_ram_fd; |
1ccde1cb | 111 | uint8_t *phys_ram_dirty; |
74576198 | 112 | static int in_migration; |
94a6b54f PB |
113 | |
114 | typedef struct RAMBlock { | |
115 | uint8_t *host; | |
116 | ram_addr_t offset; | |
117 | ram_addr_t length; | |
118 | struct RAMBlock *next; | |
119 | } RAMBlock; | |
120 | ||
121 | static RAMBlock *ram_blocks; | |
122 | /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug) | |
123 | then we can no longet assume contiguous ram offsets, and external uses | |
124 | of this variable will break. */ | |
125 | ram_addr_t last_ram_offset; | |
e2eef170 | 126 | #endif |
9fa3e853 | 127 | |
6a00d601 FB |
128 | CPUState *first_cpu; |
129 | /* current CPU in the current thread. It is only valid inside | |
130 | cpu_exec() */ | |
5fafdf24 | 131 | CPUState *cpu_single_env; |
2e70f6ef | 132 | /* 0 = Do not count executed instructions. |
bf20dc07 | 133 | 1 = Precise instruction counting. |
2e70f6ef PB |
134 | 2 = Adaptive rate instruction counting. */ |
135 | int use_icount = 0; | |
136 | /* Current instruction counter. While executing translated code this may | |
137 | include some instructions that have not yet been executed. */ | |
138 | int64_t qemu_icount; | |
6a00d601 | 139 | |
54936004 | 140 | typedef struct PageDesc { |
92e873b9 | 141 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 142 | TranslationBlock *first_tb; |
9fa3e853 FB |
143 | /* in order to optimize self modifying code, we count the number |
144 | of lookups we do to a given page to use a bitmap */ | |
145 | unsigned int code_write_count; | |
146 | uint8_t *code_bitmap; | |
147 | #if defined(CONFIG_USER_ONLY) | |
148 | unsigned long flags; | |
149 | #endif | |
54936004 FB |
150 | } PageDesc; |
151 | ||
92e873b9 | 152 | typedef struct PhysPageDesc { |
0f459d16 | 153 | /* offset in host memory of the page + io_index in the low bits */ |
00f82b8a | 154 | ram_addr_t phys_offset; |
8da3ff18 | 155 | ram_addr_t region_offset; |
92e873b9 FB |
156 | } PhysPageDesc; |
157 | ||
54936004 | 158 | #define L2_BITS 10 |
bedb69ea JM |
159 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
160 | /* XXX: this is a temporary hack for alpha target. | |
161 | * In the future, this is to be replaced by a multi-level table | |
162 | * to actually be able to handle the complete 64 bits address space. | |
163 | */ | |
164 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
165 | #else | |
03875444 | 166 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
bedb69ea | 167 | #endif |
54936004 FB |
168 | |
169 | #define L1_SIZE (1 << L1_BITS) | |
170 | #define L2_SIZE (1 << L2_BITS) | |
171 | ||
83fb7adf FB |
172 | unsigned long qemu_real_host_page_size; |
173 | unsigned long qemu_host_page_bits; | |
174 | unsigned long qemu_host_page_size; | |
175 | unsigned long qemu_host_page_mask; | |
54936004 | 176 | |
92e873b9 | 177 | /* XXX: for system emulation, it could just be an array */ |
54936004 | 178 | static PageDesc *l1_map[L1_SIZE]; |
bdaf78e0 | 179 | static PhysPageDesc **l1_phys_map; |
54936004 | 180 | |
e2eef170 PB |
181 | #if !defined(CONFIG_USER_ONLY) |
182 | static void io_mem_init(void); | |
183 | ||
33417e70 | 184 | /* io memory support */ |
33417e70 FB |
185 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
186 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
a4193c8a | 187 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
511d2b14 | 188 | static char io_mem_used[IO_MEM_NB_ENTRIES]; |
6658ffb8 PB |
189 | static int io_mem_watch; |
190 | #endif | |
33417e70 | 191 | |
34865134 | 192 | /* log support */ |
d9b630fd | 193 | static const char *logfilename = "/tmp/qemu.log"; |
34865134 FB |
194 | FILE *logfile; |
195 | int loglevel; | |
e735b91c | 196 | static int log_append = 0; |
34865134 | 197 | |
e3db7226 FB |
198 | /* statistics */ |
199 | static int tlb_flush_count; | |
200 | static int tb_flush_count; | |
201 | static int tb_phys_invalidate_count; | |
202 | ||
db7b5426 BS |
203 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
204 | typedef struct subpage_t { | |
205 | target_phys_addr_t base; | |
3ee89922 BS |
206 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
207 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
208 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
8da3ff18 | 209 | ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4]; |
db7b5426 BS |
210 | } subpage_t; |
211 | ||
7cb69cae FB |
212 | #ifdef _WIN32 |
213 | static void map_exec(void *addr, long size) | |
214 | { | |
215 | DWORD old_protect; | |
216 | VirtualProtect(addr, size, | |
217 | PAGE_EXECUTE_READWRITE, &old_protect); | |
218 | ||
219 | } | |
220 | #else | |
221 | static void map_exec(void *addr, long size) | |
222 | { | |
4369415f | 223 | unsigned long start, end, page_size; |
7cb69cae | 224 | |
4369415f | 225 | page_size = getpagesize(); |
7cb69cae | 226 | start = (unsigned long)addr; |
4369415f | 227 | start &= ~(page_size - 1); |
7cb69cae FB |
228 | |
229 | end = (unsigned long)addr + size; | |
4369415f FB |
230 | end += page_size - 1; |
231 | end &= ~(page_size - 1); | |
7cb69cae FB |
232 | |
233 | mprotect((void *)start, end - start, | |
234 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
235 | } | |
236 | #endif | |
237 | ||
b346ff46 | 238 | static void page_init(void) |
54936004 | 239 | { |
83fb7adf | 240 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 241 | TARGET_PAGE_SIZE */ |
c2b48b69 AL |
242 | #ifdef _WIN32 |
243 | { | |
244 | SYSTEM_INFO system_info; | |
245 | ||
246 | GetSystemInfo(&system_info); | |
247 | qemu_real_host_page_size = system_info.dwPageSize; | |
248 | } | |
249 | #else | |
250 | qemu_real_host_page_size = getpagesize(); | |
251 | #endif | |
83fb7adf FB |
252 | if (qemu_host_page_size == 0) |
253 | qemu_host_page_size = qemu_real_host_page_size; | |
254 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
255 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
256 | qemu_host_page_bits = 0; | |
257 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
258 | qemu_host_page_bits++; | |
259 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
108c49b8 FB |
260 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
261 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
50a9569b AZ |
262 | |
263 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
264 | { | |
265 | long long startaddr, endaddr; | |
266 | FILE *f; | |
267 | int n; | |
268 | ||
c8a706fe | 269 | mmap_lock(); |
0776590d | 270 | last_brk = (unsigned long)sbrk(0); |
50a9569b AZ |
271 | f = fopen("/proc/self/maps", "r"); |
272 | if (f) { | |
273 | do { | |
274 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
275 | if (n == 2) { | |
e0b8d65a BS |
276 | startaddr = MIN(startaddr, |
277 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
278 | endaddr = MIN(endaddr, | |
279 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
b5fc909e | 280 | page_set_flags(startaddr & TARGET_PAGE_MASK, |
50a9569b AZ |
281 | TARGET_PAGE_ALIGN(endaddr), |
282 | PAGE_RESERVED); | |
283 | } | |
284 | } while (!feof(f)); | |
285 | fclose(f); | |
286 | } | |
c8a706fe | 287 | mmap_unlock(); |
50a9569b AZ |
288 | } |
289 | #endif | |
54936004 FB |
290 | } |
291 | ||
434929bf | 292 | static inline PageDesc **page_l1_map(target_ulong index) |
54936004 | 293 | { |
17e2377a PB |
294 | #if TARGET_LONG_BITS > 32 |
295 | /* Host memory outside guest VM. For 32-bit targets we have already | |
296 | excluded high addresses. */ | |
d8173e0f | 297 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) |
17e2377a PB |
298 | return NULL; |
299 | #endif | |
434929bf AL |
300 | return &l1_map[index >> L2_BITS]; |
301 | } | |
302 | ||
303 | static inline PageDesc *page_find_alloc(target_ulong index) | |
304 | { | |
305 | PageDesc **lp, *p; | |
306 | lp = page_l1_map(index); | |
307 | if (!lp) | |
308 | return NULL; | |
309 | ||
54936004 FB |
310 | p = *lp; |
311 | if (!p) { | |
312 | /* allocate if not found */ | |
17e2377a | 313 | #if defined(CONFIG_USER_ONLY) |
17e2377a PB |
314 | size_t len = sizeof(PageDesc) * L2_SIZE; |
315 | /* Don't use qemu_malloc because it may recurse. */ | |
316 | p = mmap(0, len, PROT_READ | PROT_WRITE, | |
317 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
54936004 | 318 | *lp = p; |
fb1c2cd7 AJ |
319 | if (h2g_valid(p)) { |
320 | unsigned long addr = h2g(p); | |
17e2377a PB |
321 | page_set_flags(addr & TARGET_PAGE_MASK, |
322 | TARGET_PAGE_ALIGN(addr + len), | |
323 | PAGE_RESERVED); | |
324 | } | |
325 | #else | |
326 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
327 | *lp = p; | |
328 | #endif | |
54936004 FB |
329 | } |
330 | return p + (index & (L2_SIZE - 1)); | |
331 | } | |
332 | ||
00f82b8a | 333 | static inline PageDesc *page_find(target_ulong index) |
54936004 | 334 | { |
434929bf AL |
335 | PageDesc **lp, *p; |
336 | lp = page_l1_map(index); | |
337 | if (!lp) | |
338 | return NULL; | |
54936004 | 339 | |
434929bf | 340 | p = *lp; |
54936004 FB |
341 | if (!p) |
342 | return 0; | |
fd6ce8f6 FB |
343 | return p + (index & (L2_SIZE - 1)); |
344 | } | |
345 | ||
108c49b8 | 346 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
92e873b9 | 347 | { |
108c49b8 | 348 | void **lp, **p; |
e3f4e2a4 | 349 | PhysPageDesc *pd; |
92e873b9 | 350 | |
108c49b8 FB |
351 | p = (void **)l1_phys_map; |
352 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
353 | ||
354 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
355 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
356 | #endif | |
357 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
92e873b9 FB |
358 | p = *lp; |
359 | if (!p) { | |
360 | /* allocate if not found */ | |
108c49b8 FB |
361 | if (!alloc) |
362 | return NULL; | |
363 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
364 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
365 | *lp = p; | |
366 | } | |
367 | #endif | |
368 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
e3f4e2a4 PB |
369 | pd = *lp; |
370 | if (!pd) { | |
371 | int i; | |
108c49b8 FB |
372 | /* allocate if not found */ |
373 | if (!alloc) | |
374 | return NULL; | |
e3f4e2a4 PB |
375 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
376 | *lp = pd; | |
67c4d23c | 377 | for (i = 0; i < L2_SIZE; i++) { |
e3f4e2a4 | 378 | pd[i].phys_offset = IO_MEM_UNASSIGNED; |
67c4d23c PB |
379 | pd[i].region_offset = (index + i) << TARGET_PAGE_BITS; |
380 | } | |
92e873b9 | 381 | } |
e3f4e2a4 | 382 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
92e873b9 FB |
383 | } |
384 | ||
108c49b8 | 385 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
92e873b9 | 386 | { |
108c49b8 | 387 | return phys_page_find_alloc(index, 0); |
92e873b9 FB |
388 | } |
389 | ||
9fa3e853 | 390 | #if !defined(CONFIG_USER_ONLY) |
6a00d601 | 391 | static void tlb_protect_code(ram_addr_t ram_addr); |
5fafdf24 | 392 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 393 | target_ulong vaddr); |
c8a706fe PB |
394 | #define mmap_lock() do { } while(0) |
395 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 396 | #endif |
fd6ce8f6 | 397 | |
4369415f FB |
398 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
399 | ||
400 | #if defined(CONFIG_USER_ONLY) | |
401 | /* Currently it is not recommanded to allocate big chunks of data in | |
402 | user mode. It will change when a dedicated libc will be used */ | |
403 | #define USE_STATIC_CODE_GEN_BUFFER | |
404 | #endif | |
405 | ||
406 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
407 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
408 | #endif | |
409 | ||
8fcd3692 | 410 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 411 | { |
4369415f FB |
412 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
413 | code_gen_buffer = static_code_gen_buffer; | |
414 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
415 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
416 | #else | |
26a5f13b FB |
417 | code_gen_buffer_size = tb_size; |
418 | if (code_gen_buffer_size == 0) { | |
4369415f FB |
419 | #if defined(CONFIG_USER_ONLY) |
420 | /* in user mode, phys_ram_size is not meaningful */ | |
421 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
422 | #else | |
26a5f13b | 423 | /* XXX: needs ajustments */ |
94a6b54f | 424 | code_gen_buffer_size = (unsigned long)(ram_size / 4); |
4369415f | 425 | #endif |
26a5f13b FB |
426 | } |
427 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
428 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
429 | /* The code gen buffer location may have constraints depending on | |
430 | the host cpu and OS */ | |
431 | #if defined(__linux__) | |
432 | { | |
433 | int flags; | |
141ac468 BS |
434 | void *start = NULL; |
435 | ||
26a5f13b FB |
436 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
437 | #if defined(__x86_64__) | |
438 | flags |= MAP_32BIT; | |
439 | /* Cannot map more than that */ | |
440 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
441 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
442 | #elif defined(__sparc_v9__) |
443 | // Map the buffer below 2G, so we can use direct calls and branches | |
444 | flags |= MAP_FIXED; | |
445 | start = (void *) 0x60000000UL; | |
446 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
447 | code_gen_buffer_size = (512 * 1024 * 1024); | |
1cb0661e | 448 | #elif defined(__arm__) |
63d41246 | 449 | /* Map the buffer below 32M, so we can use direct calls and branches */ |
1cb0661e AZ |
450 | flags |= MAP_FIXED; |
451 | start = (void *) 0x01000000UL; | |
452 | if (code_gen_buffer_size > 16 * 1024 * 1024) | |
453 | code_gen_buffer_size = 16 * 1024 * 1024; | |
26a5f13b | 454 | #endif |
141ac468 BS |
455 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
456 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
457 | flags, -1, 0); |
458 | if (code_gen_buffer == MAP_FAILED) { | |
459 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
460 | exit(1); | |
461 | } | |
462 | } | |
c5e97233 | 463 | #elif defined(__FreeBSD__) || defined(__DragonFly__) |
06e67a82 AL |
464 | { |
465 | int flags; | |
466 | void *addr = NULL; | |
467 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
468 | #if defined(__x86_64__) | |
469 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
470 | * 0x40000000 is free */ | |
471 | flags |= MAP_FIXED; | |
472 | addr = (void *)0x40000000; | |
473 | /* Cannot map more than that */ | |
474 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
475 | code_gen_buffer_size = (800 * 1024 * 1024); | |
476 | #endif | |
477 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
478 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
479 | flags, -1, 0); | |
480 | if (code_gen_buffer == MAP_FAILED) { | |
481 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
482 | exit(1); | |
483 | } | |
484 | } | |
26a5f13b FB |
485 | #else |
486 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
26a5f13b FB |
487 | map_exec(code_gen_buffer, code_gen_buffer_size); |
488 | #endif | |
4369415f | 489 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b FB |
490 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
491 | code_gen_buffer_max_size = code_gen_buffer_size - | |
492 | code_gen_max_block_size(); | |
493 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
494 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
495 | } | |
496 | ||
497 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
498 | (in bytes) allocated to the translation buffer. Zero means default | |
499 | size. */ | |
500 | void cpu_exec_init_all(unsigned long tb_size) | |
501 | { | |
26a5f13b FB |
502 | cpu_gen_init(); |
503 | code_gen_alloc(tb_size); | |
504 | code_gen_ptr = code_gen_buffer; | |
4369415f | 505 | page_init(); |
e2eef170 | 506 | #if !defined(CONFIG_USER_ONLY) |
26a5f13b | 507 | io_mem_init(); |
e2eef170 | 508 | #endif |
26a5f13b FB |
509 | } |
510 | ||
9656f324 PB |
511 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
512 | ||
513 | #define CPU_COMMON_SAVE_VERSION 1 | |
514 | ||
515 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
516 | { | |
517 | CPUState *env = opaque; | |
518 | ||
519 | qemu_put_be32s(f, &env->halted); | |
520 | qemu_put_be32s(f, &env->interrupt_request); | |
521 | } | |
522 | ||
523 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
524 | { | |
525 | CPUState *env = opaque; | |
526 | ||
527 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
528 | return -EINVAL; | |
529 | ||
530 | qemu_get_be32s(f, &env->halted); | |
75f482ae | 531 | qemu_get_be32s(f, &env->interrupt_request); |
3098dba0 AJ |
532 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
533 | version_id is increased. */ | |
534 | env->interrupt_request &= ~0x01; | |
9656f324 PB |
535 | tlb_flush(env, 1); |
536 | ||
537 | return 0; | |
538 | } | |
539 | #endif | |
540 | ||
6a00d601 | 541 | void cpu_exec_init(CPUState *env) |
fd6ce8f6 | 542 | { |
6a00d601 FB |
543 | CPUState **penv; |
544 | int cpu_index; | |
545 | ||
c2764719 PB |
546 | #if defined(CONFIG_USER_ONLY) |
547 | cpu_list_lock(); | |
548 | #endif | |
6a00d601 FB |
549 | env->next_cpu = NULL; |
550 | penv = &first_cpu; | |
551 | cpu_index = 0; | |
552 | while (*penv != NULL) { | |
553 | penv = (CPUState **)&(*penv)->next_cpu; | |
554 | cpu_index++; | |
555 | } | |
556 | env->cpu_index = cpu_index; | |
c0ce998e AL |
557 | TAILQ_INIT(&env->breakpoints); |
558 | TAILQ_INIT(&env->watchpoints); | |
6a00d601 | 559 | *penv = env; |
c2764719 PB |
560 | #if defined(CONFIG_USER_ONLY) |
561 | cpu_list_unlock(); | |
562 | #endif | |
b3c7724c | 563 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
9656f324 PB |
564 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
565 | cpu_common_save, cpu_common_load, env); | |
b3c7724c PB |
566 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
567 | cpu_save, cpu_load, env); | |
568 | #endif | |
fd6ce8f6 FB |
569 | } |
570 | ||
9fa3e853 FB |
571 | static inline void invalidate_page_bitmap(PageDesc *p) |
572 | { | |
573 | if (p->code_bitmap) { | |
59817ccb | 574 | qemu_free(p->code_bitmap); |
9fa3e853 FB |
575 | p->code_bitmap = NULL; |
576 | } | |
577 | p->code_write_count = 0; | |
578 | } | |
579 | ||
fd6ce8f6 FB |
580 | /* set to NULL all the 'first_tb' fields in all PageDescs */ |
581 | static void page_flush_tb(void) | |
582 | { | |
583 | int i, j; | |
584 | PageDesc *p; | |
585 | ||
586 | for(i = 0; i < L1_SIZE; i++) { | |
587 | p = l1_map[i]; | |
588 | if (p) { | |
9fa3e853 FB |
589 | for(j = 0; j < L2_SIZE; j++) { |
590 | p->first_tb = NULL; | |
591 | invalidate_page_bitmap(p); | |
592 | p++; | |
593 | } | |
fd6ce8f6 FB |
594 | } |
595 | } | |
596 | } | |
597 | ||
598 | /* flush all the translation blocks */ | |
d4e8164f | 599 | /* XXX: tb_flush is currently not thread safe */ |
6a00d601 | 600 | void tb_flush(CPUState *env1) |
fd6ce8f6 | 601 | { |
6a00d601 | 602 | CPUState *env; |
0124311e | 603 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
604 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
605 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
606 | nb_tbs, nb_tbs > 0 ? | |
607 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 608 | #endif |
26a5f13b | 609 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
610 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
611 | ||
fd6ce8f6 | 612 | nb_tbs = 0; |
3b46e624 | 613 | |
6a00d601 FB |
614 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
615 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
616 | } | |
9fa3e853 | 617 | |
8a8a608f | 618 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 619 | page_flush_tb(); |
9fa3e853 | 620 | |
fd6ce8f6 | 621 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
622 | /* XXX: flush processor icache at this point if cache flush is |
623 | expensive */ | |
e3db7226 | 624 | tb_flush_count++; |
fd6ce8f6 FB |
625 | } |
626 | ||
627 | #ifdef DEBUG_TB_CHECK | |
628 | ||
bc98a7ef | 629 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
630 | { |
631 | TranslationBlock *tb; | |
632 | int i; | |
633 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
634 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
635 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
636 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
637 | address >= tb->pc + tb->size)) { | |
638 | printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n", | |
99773bd4 | 639 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
640 | } |
641 | } | |
642 | } | |
643 | } | |
644 | ||
645 | /* verify that all the pages have correct rights for code */ | |
646 | static void tb_page_check(void) | |
647 | { | |
648 | TranslationBlock *tb; | |
649 | int i, flags1, flags2; | |
3b46e624 | 650 | |
99773bd4 PB |
651 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
652 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
653 | flags1 = page_get_flags(tb->pc); |
654 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
655 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
656 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 657 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
658 | } |
659 | } | |
660 | } | |
661 | } | |
662 | ||
bdaf78e0 | 663 | static void tb_jmp_check(TranslationBlock *tb) |
d4e8164f FB |
664 | { |
665 | TranslationBlock *tb1; | |
666 | unsigned int n1; | |
667 | ||
668 | /* suppress any remaining jumps to this TB */ | |
669 | tb1 = tb->jmp_first; | |
670 | for(;;) { | |
671 | n1 = (long)tb1 & 3; | |
672 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
673 | if (n1 == 2) | |
674 | break; | |
675 | tb1 = tb1->jmp_next[n1]; | |
676 | } | |
677 | /* check end of list */ | |
678 | if (tb1 != tb) { | |
679 | printf("ERROR: jmp_list from 0x%08lx\n", (long)tb); | |
680 | } | |
681 | } | |
682 | ||
fd6ce8f6 FB |
683 | #endif |
684 | ||
685 | /* invalidate one TB */ | |
686 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
687 | int next_offset) | |
688 | { | |
689 | TranslationBlock *tb1; | |
690 | for(;;) { | |
691 | tb1 = *ptb; | |
692 | if (tb1 == tb) { | |
693 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
694 | break; | |
695 | } | |
696 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
697 | } | |
698 | } | |
699 | ||
9fa3e853 FB |
700 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
701 | { | |
702 | TranslationBlock *tb1; | |
703 | unsigned int n1; | |
704 | ||
705 | for(;;) { | |
706 | tb1 = *ptb; | |
707 | n1 = (long)tb1 & 3; | |
708 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
709 | if (tb1 == tb) { | |
710 | *ptb = tb1->page_next[n1]; | |
711 | break; | |
712 | } | |
713 | ptb = &tb1->page_next[n1]; | |
714 | } | |
715 | } | |
716 | ||
d4e8164f FB |
717 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
718 | { | |
719 | TranslationBlock *tb1, **ptb; | |
720 | unsigned int n1; | |
721 | ||
722 | ptb = &tb->jmp_next[n]; | |
723 | tb1 = *ptb; | |
724 | if (tb1) { | |
725 | /* find tb(n) in circular list */ | |
726 | for(;;) { | |
727 | tb1 = *ptb; | |
728 | n1 = (long)tb1 & 3; | |
729 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
730 | if (n1 == n && tb1 == tb) | |
731 | break; | |
732 | if (n1 == 2) { | |
733 | ptb = &tb1->jmp_first; | |
734 | } else { | |
735 | ptb = &tb1->jmp_next[n1]; | |
736 | } | |
737 | } | |
738 | /* now we can suppress tb(n) from the list */ | |
739 | *ptb = tb->jmp_next[n]; | |
740 | ||
741 | tb->jmp_next[n] = NULL; | |
742 | } | |
743 | } | |
744 | ||
745 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
746 | another TB */ | |
747 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
748 | { | |
749 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
750 | } | |
751 | ||
2e70f6ef | 752 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
fd6ce8f6 | 753 | { |
6a00d601 | 754 | CPUState *env; |
8a40a180 | 755 | PageDesc *p; |
d4e8164f | 756 | unsigned int h, n1; |
00f82b8a | 757 | target_phys_addr_t phys_pc; |
8a40a180 | 758 | TranslationBlock *tb1, *tb2; |
3b46e624 | 759 | |
8a40a180 FB |
760 | /* remove the TB from the hash list */ |
761 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
762 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 763 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
764 | offsetof(TranslationBlock, phys_hash_next)); |
765 | ||
766 | /* remove the TB from the page list */ | |
767 | if (tb->page_addr[0] != page_addr) { | |
768 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
769 | tb_page_remove(&p->first_tb, tb); | |
770 | invalidate_page_bitmap(p); | |
771 | } | |
772 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
773 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
774 | tb_page_remove(&p->first_tb, tb); | |
775 | invalidate_page_bitmap(p); | |
776 | } | |
777 | ||
36bdbe54 | 778 | tb_invalidated_flag = 1; |
59817ccb | 779 | |
fd6ce8f6 | 780 | /* remove the TB from the hash list */ |
8a40a180 | 781 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
782 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
783 | if (env->tb_jmp_cache[h] == tb) | |
784 | env->tb_jmp_cache[h] = NULL; | |
785 | } | |
d4e8164f FB |
786 | |
787 | /* suppress this TB from the two jump lists */ | |
788 | tb_jmp_remove(tb, 0); | |
789 | tb_jmp_remove(tb, 1); | |
790 | ||
791 | /* suppress any remaining jumps to this TB */ | |
792 | tb1 = tb->jmp_first; | |
793 | for(;;) { | |
794 | n1 = (long)tb1 & 3; | |
795 | if (n1 == 2) | |
796 | break; | |
797 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
798 | tb2 = tb1->jmp_next[n1]; | |
799 | tb_reset_jump(tb1, n1); | |
800 | tb1->jmp_next[n1] = NULL; | |
801 | tb1 = tb2; | |
802 | } | |
803 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 804 | |
e3db7226 | 805 | tb_phys_invalidate_count++; |
9fa3e853 FB |
806 | } |
807 | ||
808 | static inline void set_bits(uint8_t *tab, int start, int len) | |
809 | { | |
810 | int end, mask, end1; | |
811 | ||
812 | end = start + len; | |
813 | tab += start >> 3; | |
814 | mask = 0xff << (start & 7); | |
815 | if ((start & ~7) == (end & ~7)) { | |
816 | if (start < end) { | |
817 | mask &= ~(0xff << (end & 7)); | |
818 | *tab |= mask; | |
819 | } | |
820 | } else { | |
821 | *tab++ |= mask; | |
822 | start = (start + 8) & ~7; | |
823 | end1 = end & ~7; | |
824 | while (start < end1) { | |
825 | *tab++ = 0xff; | |
826 | start += 8; | |
827 | } | |
828 | if (start < end) { | |
829 | mask = ~(0xff << (end & 7)); | |
830 | *tab |= mask; | |
831 | } | |
832 | } | |
833 | } | |
834 | ||
835 | static void build_page_bitmap(PageDesc *p) | |
836 | { | |
837 | int n, tb_start, tb_end; | |
838 | TranslationBlock *tb; | |
3b46e624 | 839 | |
b2a7081a | 840 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
841 | |
842 | tb = p->first_tb; | |
843 | while (tb != NULL) { | |
844 | n = (long)tb & 3; | |
845 | tb = (TranslationBlock *)((long)tb & ~3); | |
846 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
847 | if (n == 0) { | |
848 | /* NOTE: tb_end may be after the end of the page, but | |
849 | it is not a problem */ | |
850 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
851 | tb_end = tb_start + tb->size; | |
852 | if (tb_end > TARGET_PAGE_SIZE) | |
853 | tb_end = TARGET_PAGE_SIZE; | |
854 | } else { | |
855 | tb_start = 0; | |
856 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
857 | } | |
858 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
859 | tb = tb->page_next[n]; | |
860 | } | |
861 | } | |
862 | ||
2e70f6ef PB |
863 | TranslationBlock *tb_gen_code(CPUState *env, |
864 | target_ulong pc, target_ulong cs_base, | |
865 | int flags, int cflags) | |
d720b93d FB |
866 | { |
867 | TranslationBlock *tb; | |
868 | uint8_t *tc_ptr; | |
869 | target_ulong phys_pc, phys_page2, virt_page2; | |
870 | int code_gen_size; | |
871 | ||
c27004ec FB |
872 | phys_pc = get_phys_addr_code(env, pc); |
873 | tb = tb_alloc(pc); | |
d720b93d FB |
874 | if (!tb) { |
875 | /* flush must be done */ | |
876 | tb_flush(env); | |
877 | /* cannot fail at this point */ | |
c27004ec | 878 | tb = tb_alloc(pc); |
2e70f6ef PB |
879 | /* Don't forget to invalidate previous TB info. */ |
880 | tb_invalidated_flag = 1; | |
d720b93d FB |
881 | } |
882 | tc_ptr = code_gen_ptr; | |
883 | tb->tc_ptr = tc_ptr; | |
884 | tb->cs_base = cs_base; | |
885 | tb->flags = flags; | |
886 | tb->cflags = cflags; | |
d07bde88 | 887 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 888 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 889 | |
d720b93d | 890 | /* check next page if needed */ |
c27004ec | 891 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 892 | phys_page2 = -1; |
c27004ec | 893 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
d720b93d FB |
894 | phys_page2 = get_phys_addr_code(env, virt_page2); |
895 | } | |
896 | tb_link_phys(tb, phys_pc, phys_page2); | |
2e70f6ef | 897 | return tb; |
d720b93d | 898 | } |
3b46e624 | 899 | |
9fa3e853 FB |
900 | /* invalidate all TBs which intersect with the target physical page |
901 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
902 | the same physical page. 'is_cpu_write_access' should be true if called |
903 | from a real cpu write access: the virtual CPU will exit the current | |
904 | TB if code is modified inside this TB. */ | |
00f82b8a | 905 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
d720b93d FB |
906 | int is_cpu_write_access) |
907 | { | |
6b917547 | 908 | TranslationBlock *tb, *tb_next, *saved_tb; |
d720b93d | 909 | CPUState *env = cpu_single_env; |
9fa3e853 | 910 | target_ulong tb_start, tb_end; |
6b917547 AL |
911 | PageDesc *p; |
912 | int n; | |
913 | #ifdef TARGET_HAS_PRECISE_SMC | |
914 | int current_tb_not_found = is_cpu_write_access; | |
915 | TranslationBlock *current_tb = NULL; | |
916 | int current_tb_modified = 0; | |
917 | target_ulong current_pc = 0; | |
918 | target_ulong current_cs_base = 0; | |
919 | int current_flags = 0; | |
920 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
921 | |
922 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 923 | if (!p) |
9fa3e853 | 924 | return; |
5fafdf24 | 925 | if (!p->code_bitmap && |
d720b93d FB |
926 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
927 | is_cpu_write_access) { | |
9fa3e853 FB |
928 | /* build code bitmap */ |
929 | build_page_bitmap(p); | |
930 | } | |
931 | ||
932 | /* we remove all the TBs in the range [start, end[ */ | |
933 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
934 | tb = p->first_tb; | |
935 | while (tb != NULL) { | |
936 | n = (long)tb & 3; | |
937 | tb = (TranslationBlock *)((long)tb & ~3); | |
938 | tb_next = tb->page_next[n]; | |
939 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
940 | if (n == 0) { | |
941 | /* NOTE: tb_end may be after the end of the page, but | |
942 | it is not a problem */ | |
943 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
944 | tb_end = tb_start + tb->size; | |
945 | } else { | |
946 | tb_start = tb->page_addr[1]; | |
947 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
948 | } | |
949 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
950 | #ifdef TARGET_HAS_PRECISE_SMC |
951 | if (current_tb_not_found) { | |
952 | current_tb_not_found = 0; | |
953 | current_tb = NULL; | |
2e70f6ef | 954 | if (env->mem_io_pc) { |
d720b93d | 955 | /* now we have a real cpu fault */ |
2e70f6ef | 956 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
957 | } |
958 | } | |
959 | if (current_tb == tb && | |
2e70f6ef | 960 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
961 | /* If we are modifying the current TB, we must stop |
962 | its execution. We could be more precise by checking | |
963 | that the modification is after the current PC, but it | |
964 | would require a specialized function to partially | |
965 | restore the CPU state */ | |
3b46e624 | 966 | |
d720b93d | 967 | current_tb_modified = 1; |
5fafdf24 | 968 | cpu_restore_state(current_tb, env, |
2e70f6ef | 969 | env->mem_io_pc, NULL); |
6b917547 AL |
970 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
971 | ¤t_flags); | |
d720b93d FB |
972 | } |
973 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
974 | /* we need to do that to handle the case where a signal |
975 | occurs while doing tb_phys_invalidate() */ | |
976 | saved_tb = NULL; | |
977 | if (env) { | |
978 | saved_tb = env->current_tb; | |
979 | env->current_tb = NULL; | |
980 | } | |
9fa3e853 | 981 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
982 | if (env) { |
983 | env->current_tb = saved_tb; | |
984 | if (env->interrupt_request && env->current_tb) | |
985 | cpu_interrupt(env, env->interrupt_request); | |
986 | } | |
9fa3e853 FB |
987 | } |
988 | tb = tb_next; | |
989 | } | |
990 | #if !defined(CONFIG_USER_ONLY) | |
991 | /* if no code remaining, no need to continue to use slow writes */ | |
992 | if (!p->first_tb) { | |
993 | invalidate_page_bitmap(p); | |
d720b93d | 994 | if (is_cpu_write_access) { |
2e70f6ef | 995 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
996 | } |
997 | } | |
998 | #endif | |
999 | #ifdef TARGET_HAS_PRECISE_SMC | |
1000 | if (current_tb_modified) { | |
1001 | /* we generate a block containing just the instruction | |
1002 | modifying the memory. It will ensure that it cannot modify | |
1003 | itself */ | |
ea1c1802 | 1004 | env->current_tb = NULL; |
2e70f6ef | 1005 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 1006 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 1007 | } |
fd6ce8f6 | 1008 | #endif |
9fa3e853 | 1009 | } |
fd6ce8f6 | 1010 | |
9fa3e853 | 1011 | /* len must be <= 8 and start must be a multiple of len */ |
00f82b8a | 1012 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
9fa3e853 FB |
1013 | { |
1014 | PageDesc *p; | |
1015 | int offset, b; | |
59817ccb | 1016 | #if 0 |
a4193c8a | 1017 | if (1) { |
93fcfe39 AL |
1018 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
1019 | cpu_single_env->mem_io_vaddr, len, | |
1020 | cpu_single_env->eip, | |
1021 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); | |
59817ccb FB |
1022 | } |
1023 | #endif | |
9fa3e853 | 1024 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1025 | if (!p) |
9fa3e853 FB |
1026 | return; |
1027 | if (p->code_bitmap) { | |
1028 | offset = start & ~TARGET_PAGE_MASK; | |
1029 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1030 | if (b & ((1 << len) - 1)) | |
1031 | goto do_invalidate; | |
1032 | } else { | |
1033 | do_invalidate: | |
d720b93d | 1034 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1035 | } |
1036 | } | |
1037 | ||
9fa3e853 | 1038 | #if !defined(CONFIG_SOFTMMU) |
00f82b8a | 1039 | static void tb_invalidate_phys_page(target_phys_addr_t addr, |
d720b93d | 1040 | unsigned long pc, void *puc) |
9fa3e853 | 1041 | { |
6b917547 | 1042 | TranslationBlock *tb; |
9fa3e853 | 1043 | PageDesc *p; |
6b917547 | 1044 | int n; |
d720b93d | 1045 | #ifdef TARGET_HAS_PRECISE_SMC |
6b917547 | 1046 | TranslationBlock *current_tb = NULL; |
d720b93d | 1047 | CPUState *env = cpu_single_env; |
6b917547 AL |
1048 | int current_tb_modified = 0; |
1049 | target_ulong current_pc = 0; | |
1050 | target_ulong current_cs_base = 0; | |
1051 | int current_flags = 0; | |
d720b93d | 1052 | #endif |
9fa3e853 FB |
1053 | |
1054 | addr &= TARGET_PAGE_MASK; | |
1055 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1056 | if (!p) |
9fa3e853 FB |
1057 | return; |
1058 | tb = p->first_tb; | |
d720b93d FB |
1059 | #ifdef TARGET_HAS_PRECISE_SMC |
1060 | if (tb && pc != 0) { | |
1061 | current_tb = tb_find_pc(pc); | |
1062 | } | |
1063 | #endif | |
9fa3e853 FB |
1064 | while (tb != NULL) { |
1065 | n = (long)tb & 3; | |
1066 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1067 | #ifdef TARGET_HAS_PRECISE_SMC |
1068 | if (current_tb == tb && | |
2e70f6ef | 1069 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1070 | /* If we are modifying the current TB, we must stop |
1071 | its execution. We could be more precise by checking | |
1072 | that the modification is after the current PC, but it | |
1073 | would require a specialized function to partially | |
1074 | restore the CPU state */ | |
3b46e624 | 1075 | |
d720b93d FB |
1076 | current_tb_modified = 1; |
1077 | cpu_restore_state(current_tb, env, pc, puc); | |
6b917547 AL |
1078 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1079 | ¤t_flags); | |
d720b93d FB |
1080 | } |
1081 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1082 | tb_phys_invalidate(tb, addr); |
1083 | tb = tb->page_next[n]; | |
1084 | } | |
fd6ce8f6 | 1085 | p->first_tb = NULL; |
d720b93d FB |
1086 | #ifdef TARGET_HAS_PRECISE_SMC |
1087 | if (current_tb_modified) { | |
1088 | /* we generate a block containing just the instruction | |
1089 | modifying the memory. It will ensure that it cannot modify | |
1090 | itself */ | |
ea1c1802 | 1091 | env->current_tb = NULL; |
2e70f6ef | 1092 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1093 | cpu_resume_from_signal(env, puc); |
1094 | } | |
1095 | #endif | |
fd6ce8f6 | 1096 | } |
9fa3e853 | 1097 | #endif |
fd6ce8f6 FB |
1098 | |
1099 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1100 | static inline void tb_alloc_page(TranslationBlock *tb, |
53a5960a | 1101 | unsigned int n, target_ulong page_addr) |
fd6ce8f6 FB |
1102 | { |
1103 | PageDesc *p; | |
9fa3e853 FB |
1104 | TranslationBlock *last_first_tb; |
1105 | ||
1106 | tb->page_addr[n] = page_addr; | |
3a7d929e | 1107 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1108 | tb->page_next[n] = p->first_tb; |
1109 | last_first_tb = p->first_tb; | |
1110 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1111 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1112 | |
107db443 | 1113 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1114 | |
9fa3e853 | 1115 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1116 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1117 | target_ulong addr; |
1118 | PageDesc *p2; | |
9fa3e853 FB |
1119 | int prot; |
1120 | ||
fd6ce8f6 FB |
1121 | /* force the host page as non writable (writes will have a |
1122 | page fault + mprotect overhead) */ | |
53a5960a | 1123 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1124 | prot = 0; |
53a5960a PB |
1125 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1126 | addr += TARGET_PAGE_SIZE) { | |
1127 | ||
1128 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1129 | if (!p2) | |
1130 | continue; | |
1131 | prot |= p2->flags; | |
1132 | p2->flags &= ~PAGE_WRITE; | |
1133 | page_get_flags(addr); | |
1134 | } | |
5fafdf24 | 1135 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1136 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1137 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1138 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1139 | page_addr); |
fd6ce8f6 | 1140 | #endif |
fd6ce8f6 | 1141 | } |
9fa3e853 FB |
1142 | #else |
1143 | /* if some code is already present, then the pages are already | |
1144 | protected. So we handle the case where only the first TB is | |
1145 | allocated in a physical page */ | |
1146 | if (!last_first_tb) { | |
6a00d601 | 1147 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1148 | } |
1149 | #endif | |
d720b93d FB |
1150 | |
1151 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1152 | } |
1153 | ||
1154 | /* Allocate a new translation block. Flush the translation buffer if | |
1155 | too many translation blocks or too much generated code. */ | |
c27004ec | 1156 | TranslationBlock *tb_alloc(target_ulong pc) |
fd6ce8f6 FB |
1157 | { |
1158 | TranslationBlock *tb; | |
fd6ce8f6 | 1159 | |
26a5f13b FB |
1160 | if (nb_tbs >= code_gen_max_blocks || |
1161 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
d4e8164f | 1162 | return NULL; |
fd6ce8f6 FB |
1163 | tb = &tbs[nb_tbs++]; |
1164 | tb->pc = pc; | |
b448f2f3 | 1165 | tb->cflags = 0; |
d4e8164f FB |
1166 | return tb; |
1167 | } | |
1168 | ||
2e70f6ef PB |
1169 | void tb_free(TranslationBlock *tb) |
1170 | { | |
bf20dc07 | 1171 | /* In practice this is mostly used for single use temporary TB |
2e70f6ef PB |
1172 | Ignore the hard cases and just back up if this TB happens to |
1173 | be the last one generated. */ | |
1174 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1175 | code_gen_ptr = tb->tc_ptr; | |
1176 | nb_tbs--; | |
1177 | } | |
1178 | } | |
1179 | ||
9fa3e853 FB |
1180 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1181 | (-1) to indicate that only one page contains the TB. */ | |
5fafdf24 | 1182 | void tb_link_phys(TranslationBlock *tb, |
9fa3e853 | 1183 | target_ulong phys_pc, target_ulong phys_page2) |
d4e8164f | 1184 | { |
9fa3e853 FB |
1185 | unsigned int h; |
1186 | TranslationBlock **ptb; | |
1187 | ||
c8a706fe PB |
1188 | /* Grab the mmap lock to stop another thread invalidating this TB |
1189 | before we are done. */ | |
1190 | mmap_lock(); | |
9fa3e853 FB |
1191 | /* add in the physical hash table */ |
1192 | h = tb_phys_hash_func(phys_pc); | |
1193 | ptb = &tb_phys_hash[h]; | |
1194 | tb->phys_hash_next = *ptb; | |
1195 | *ptb = tb; | |
fd6ce8f6 FB |
1196 | |
1197 | /* add in the page list */ | |
9fa3e853 FB |
1198 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1199 | if (phys_page2 != -1) | |
1200 | tb_alloc_page(tb, 1, phys_page2); | |
1201 | else | |
1202 | tb->page_addr[1] = -1; | |
9fa3e853 | 1203 | |
d4e8164f FB |
1204 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1205 | tb->jmp_next[0] = NULL; | |
1206 | tb->jmp_next[1] = NULL; | |
1207 | ||
1208 | /* init original jump addresses */ | |
1209 | if (tb->tb_next_offset[0] != 0xffff) | |
1210 | tb_reset_jump(tb, 0); | |
1211 | if (tb->tb_next_offset[1] != 0xffff) | |
1212 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1213 | |
1214 | #ifdef DEBUG_TB_CHECK | |
1215 | tb_page_check(); | |
1216 | #endif | |
c8a706fe | 1217 | mmap_unlock(); |
fd6ce8f6 FB |
1218 | } |
1219 | ||
9fa3e853 FB |
1220 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1221 | tb[1].tc_ptr. Return NULL if not found */ | |
1222 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
fd6ce8f6 | 1223 | { |
9fa3e853 FB |
1224 | int m_min, m_max, m; |
1225 | unsigned long v; | |
1226 | TranslationBlock *tb; | |
a513fe19 FB |
1227 | |
1228 | if (nb_tbs <= 0) | |
1229 | return NULL; | |
1230 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1231 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1232 | return NULL; | |
1233 | /* binary search (cf Knuth) */ | |
1234 | m_min = 0; | |
1235 | m_max = nb_tbs - 1; | |
1236 | while (m_min <= m_max) { | |
1237 | m = (m_min + m_max) >> 1; | |
1238 | tb = &tbs[m]; | |
1239 | v = (unsigned long)tb->tc_ptr; | |
1240 | if (v == tc_ptr) | |
1241 | return tb; | |
1242 | else if (tc_ptr < v) { | |
1243 | m_max = m - 1; | |
1244 | } else { | |
1245 | m_min = m + 1; | |
1246 | } | |
5fafdf24 | 1247 | } |
a513fe19 FB |
1248 | return &tbs[m_max]; |
1249 | } | |
7501267e | 1250 | |
ea041c0e FB |
1251 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1252 | ||
1253 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1254 | { | |
1255 | TranslationBlock *tb1, *tb_next, **ptb; | |
1256 | unsigned int n1; | |
1257 | ||
1258 | tb1 = tb->jmp_next[n]; | |
1259 | if (tb1 != NULL) { | |
1260 | /* find head of list */ | |
1261 | for(;;) { | |
1262 | n1 = (long)tb1 & 3; | |
1263 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1264 | if (n1 == 2) | |
1265 | break; | |
1266 | tb1 = tb1->jmp_next[n1]; | |
1267 | } | |
1268 | /* we are now sure now that tb jumps to tb1 */ | |
1269 | tb_next = tb1; | |
1270 | ||
1271 | /* remove tb from the jmp_first list */ | |
1272 | ptb = &tb_next->jmp_first; | |
1273 | for(;;) { | |
1274 | tb1 = *ptb; | |
1275 | n1 = (long)tb1 & 3; | |
1276 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1277 | if (n1 == n && tb1 == tb) | |
1278 | break; | |
1279 | ptb = &tb1->jmp_next[n1]; | |
1280 | } | |
1281 | *ptb = tb->jmp_next[n]; | |
1282 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1283 | |
ea041c0e FB |
1284 | /* suppress the jump to next tb in generated code */ |
1285 | tb_reset_jump(tb, n); | |
1286 | ||
0124311e | 1287 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1288 | tb_reset_jump_recursive(tb_next); |
1289 | } | |
1290 | } | |
1291 | ||
1292 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1293 | { | |
1294 | tb_reset_jump_recursive2(tb, 0); | |
1295 | tb_reset_jump_recursive2(tb, 1); | |
1296 | } | |
1297 | ||
1fddef4b | 1298 | #if defined(TARGET_HAS_ICE) |
d720b93d FB |
1299 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
1300 | { | |
9b3c35e0 JM |
1301 | target_phys_addr_t addr; |
1302 | target_ulong pd; | |
c2f07f81 PB |
1303 | ram_addr_t ram_addr; |
1304 | PhysPageDesc *p; | |
d720b93d | 1305 | |
c2f07f81 PB |
1306 | addr = cpu_get_phys_page_debug(env, pc); |
1307 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1308 | if (!p) { | |
1309 | pd = IO_MEM_UNASSIGNED; | |
1310 | } else { | |
1311 | pd = p->phys_offset; | |
1312 | } | |
1313 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
706cd4b5 | 1314 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1315 | } |
c27004ec | 1316 | #endif |
d720b93d | 1317 | |
6658ffb8 | 1318 | /* Add a watchpoint. */ |
a1d1bb31 AL |
1319 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, |
1320 | int flags, CPUWatchpoint **watchpoint) | |
6658ffb8 | 1321 | { |
b4051334 | 1322 | target_ulong len_mask = ~(len - 1); |
c0ce998e | 1323 | CPUWatchpoint *wp; |
6658ffb8 | 1324 | |
b4051334 AL |
1325 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ |
1326 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { | |
1327 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
1328 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1329 | return -EINVAL; | |
1330 | } | |
a1d1bb31 | 1331 | wp = qemu_malloc(sizeof(*wp)); |
a1d1bb31 AL |
1332 | |
1333 | wp->vaddr = addr; | |
b4051334 | 1334 | wp->len_mask = len_mask; |
a1d1bb31 AL |
1335 | wp->flags = flags; |
1336 | ||
2dc9f411 | 1337 | /* keep all GDB-injected watchpoints in front */ |
c0ce998e AL |
1338 | if (flags & BP_GDB) |
1339 | TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
1340 | else | |
1341 | TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
6658ffb8 | 1342 | |
6658ffb8 | 1343 | tlb_flush_page(env, addr); |
a1d1bb31 AL |
1344 | |
1345 | if (watchpoint) | |
1346 | *watchpoint = wp; | |
1347 | return 0; | |
6658ffb8 PB |
1348 | } |
1349 | ||
a1d1bb31 AL |
1350 | /* Remove a specific watchpoint. */ |
1351 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, | |
1352 | int flags) | |
6658ffb8 | 1353 | { |
b4051334 | 1354 | target_ulong len_mask = ~(len - 1); |
a1d1bb31 | 1355 | CPUWatchpoint *wp; |
6658ffb8 | 1356 | |
c0ce998e | 1357 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 | 1358 | if (addr == wp->vaddr && len_mask == wp->len_mask |
6e140f28 | 1359 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
a1d1bb31 | 1360 | cpu_watchpoint_remove_by_ref(env, wp); |
6658ffb8 PB |
1361 | return 0; |
1362 | } | |
1363 | } | |
a1d1bb31 | 1364 | return -ENOENT; |
6658ffb8 PB |
1365 | } |
1366 | ||
a1d1bb31 AL |
1367 | /* Remove a specific watchpoint by reference. */ |
1368 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) | |
1369 | { | |
c0ce998e | 1370 | TAILQ_REMOVE(&env->watchpoints, watchpoint, entry); |
7d03f82f | 1371 | |
a1d1bb31 AL |
1372 | tlb_flush_page(env, watchpoint->vaddr); |
1373 | ||
1374 | qemu_free(watchpoint); | |
1375 | } | |
1376 | ||
1377 | /* Remove all matching watchpoints. */ | |
1378 | void cpu_watchpoint_remove_all(CPUState *env, int mask) | |
1379 | { | |
c0ce998e | 1380 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1381 | |
c0ce998e | 1382 | TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { |
a1d1bb31 AL |
1383 | if (wp->flags & mask) |
1384 | cpu_watchpoint_remove_by_ref(env, wp); | |
c0ce998e | 1385 | } |
7d03f82f EI |
1386 | } |
1387 | ||
a1d1bb31 AL |
1388 | /* Add a breakpoint. */ |
1389 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | |
1390 | CPUBreakpoint **breakpoint) | |
4c3a88a2 | 1391 | { |
1fddef4b | 1392 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1393 | CPUBreakpoint *bp; |
3b46e624 | 1394 | |
a1d1bb31 | 1395 | bp = qemu_malloc(sizeof(*bp)); |
4c3a88a2 | 1396 | |
a1d1bb31 AL |
1397 | bp->pc = pc; |
1398 | bp->flags = flags; | |
1399 | ||
2dc9f411 | 1400 | /* keep all GDB-injected breakpoints in front */ |
c0ce998e AL |
1401 | if (flags & BP_GDB) |
1402 | TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
1403 | else | |
1404 | TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
3b46e624 | 1405 | |
d720b93d | 1406 | breakpoint_invalidate(env, pc); |
a1d1bb31 AL |
1407 | |
1408 | if (breakpoint) | |
1409 | *breakpoint = bp; | |
4c3a88a2 FB |
1410 | return 0; |
1411 | #else | |
a1d1bb31 | 1412 | return -ENOSYS; |
4c3a88a2 FB |
1413 | #endif |
1414 | } | |
1415 | ||
a1d1bb31 AL |
1416 | /* Remove a specific breakpoint. */ |
1417 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) | |
1418 | { | |
7d03f82f | 1419 | #if defined(TARGET_HAS_ICE) |
a1d1bb31 AL |
1420 | CPUBreakpoint *bp; |
1421 | ||
c0ce998e | 1422 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { |
a1d1bb31 AL |
1423 | if (bp->pc == pc && bp->flags == flags) { |
1424 | cpu_breakpoint_remove_by_ref(env, bp); | |
1425 | return 0; | |
1426 | } | |
7d03f82f | 1427 | } |
a1d1bb31 AL |
1428 | return -ENOENT; |
1429 | #else | |
1430 | return -ENOSYS; | |
7d03f82f EI |
1431 | #endif |
1432 | } | |
1433 | ||
a1d1bb31 AL |
1434 | /* Remove a specific breakpoint by reference. */ |
1435 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) | |
4c3a88a2 | 1436 | { |
1fddef4b | 1437 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1438 | TAILQ_REMOVE(&env->breakpoints, breakpoint, entry); |
d720b93d | 1439 | |
a1d1bb31 AL |
1440 | breakpoint_invalidate(env, breakpoint->pc); |
1441 | ||
1442 | qemu_free(breakpoint); | |
1443 | #endif | |
1444 | } | |
1445 | ||
1446 | /* Remove all matching breakpoints. */ | |
1447 | void cpu_breakpoint_remove_all(CPUState *env, int mask) | |
1448 | { | |
1449 | #if defined(TARGET_HAS_ICE) | |
c0ce998e | 1450 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1451 | |
c0ce998e | 1452 | TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { |
a1d1bb31 AL |
1453 | if (bp->flags & mask) |
1454 | cpu_breakpoint_remove_by_ref(env, bp); | |
c0ce998e | 1455 | } |
4c3a88a2 FB |
1456 | #endif |
1457 | } | |
1458 | ||
c33a346e FB |
1459 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1460 | CPU loop after each instruction */ | |
1461 | void cpu_single_step(CPUState *env, int enabled) | |
1462 | { | |
1fddef4b | 1463 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1464 | if (env->singlestep_enabled != enabled) { |
1465 | env->singlestep_enabled = enabled; | |
e22a25c9 AL |
1466 | if (kvm_enabled()) |
1467 | kvm_update_guest_debug(env, 0); | |
1468 | else { | |
1469 | /* must flush all the translated code to avoid inconsistancies */ | |
1470 | /* XXX: only flush what is necessary */ | |
1471 | tb_flush(env); | |
1472 | } | |
c33a346e FB |
1473 | } |
1474 | #endif | |
1475 | } | |
1476 | ||
34865134 FB |
1477 | /* enable or disable low levels log */ |
1478 | void cpu_set_log(int log_flags) | |
1479 | { | |
1480 | loglevel = log_flags; | |
1481 | if (loglevel && !logfile) { | |
11fcfab4 | 1482 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1483 | if (!logfile) { |
1484 | perror(logfilename); | |
1485 | _exit(1); | |
1486 | } | |
9fa3e853 FB |
1487 | #if !defined(CONFIG_SOFTMMU) |
1488 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1489 | { | |
b55266b5 | 1490 | static char logfile_buf[4096]; |
9fa3e853 FB |
1491 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1492 | } | |
1493 | #else | |
34865134 | 1494 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1495 | #endif |
e735b91c PB |
1496 | log_append = 1; |
1497 | } | |
1498 | if (!loglevel && logfile) { | |
1499 | fclose(logfile); | |
1500 | logfile = NULL; | |
34865134 FB |
1501 | } |
1502 | } | |
1503 | ||
1504 | void cpu_set_log_filename(const char *filename) | |
1505 | { | |
1506 | logfilename = strdup(filename); | |
e735b91c PB |
1507 | if (logfile) { |
1508 | fclose(logfile); | |
1509 | logfile = NULL; | |
1510 | } | |
1511 | cpu_set_log(loglevel); | |
34865134 | 1512 | } |
c33a346e | 1513 | |
3098dba0 | 1514 | static void cpu_unlink_tb(CPUState *env) |
ea041c0e | 1515 | { |
3098dba0 AJ |
1516 | #if defined(USE_NPTL) |
1517 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1518 | problem and hope the cpu will stop of its own accord. For userspace | |
1519 | emulation this often isn't actually as bad as it sounds. Often | |
1520 | signals are used primarily to interrupt blocking syscalls. */ | |
1521 | #else | |
ea041c0e | 1522 | TranslationBlock *tb; |
15a51156 | 1523 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
59817ccb | 1524 | |
3098dba0 AJ |
1525 | tb = env->current_tb; |
1526 | /* if the cpu is currently executing code, we must unlink it and | |
1527 | all the potentially executing TB */ | |
1528 | if (tb && !testandset(&interrupt_lock)) { | |
1529 | env->current_tb = NULL; | |
1530 | tb_reset_jump_recursive(tb); | |
1531 | resetlock(&interrupt_lock); | |
be214e6c | 1532 | } |
3098dba0 AJ |
1533 | #endif |
1534 | } | |
1535 | ||
1536 | /* mask must never be zero, except for A20 change call */ | |
1537 | void cpu_interrupt(CPUState *env, int mask) | |
1538 | { | |
1539 | int old_mask; | |
be214e6c | 1540 | |
2e70f6ef | 1541 | old_mask = env->interrupt_request; |
68a79315 | 1542 | env->interrupt_request |= mask; |
3098dba0 | 1543 | |
2e70f6ef | 1544 | if (use_icount) { |
266910c4 | 1545 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef | 1546 | #ifndef CONFIG_USER_ONLY |
2e70f6ef | 1547 | if (!can_do_io(env) |
be214e6c | 1548 | && (mask & ~old_mask) != 0) { |
2e70f6ef PB |
1549 | cpu_abort(env, "Raised interrupt while not in I/O function"); |
1550 | } | |
1551 | #endif | |
1552 | } else { | |
3098dba0 | 1553 | cpu_unlink_tb(env); |
ea041c0e FB |
1554 | } |
1555 | } | |
1556 | ||
b54ad049 FB |
1557 | void cpu_reset_interrupt(CPUState *env, int mask) |
1558 | { | |
1559 | env->interrupt_request &= ~mask; | |
1560 | } | |
1561 | ||
3098dba0 AJ |
1562 | void cpu_exit(CPUState *env) |
1563 | { | |
1564 | env->exit_request = 1; | |
1565 | cpu_unlink_tb(env); | |
1566 | } | |
1567 | ||
c7cd6a37 | 1568 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1569 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1570 | "show generated host assembly code for each compiled TB" }, |
1571 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1572 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1573 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1574 | "show micro ops for each compiled TB" }, |
f193c797 | 1575 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1576 | "show micro ops " |
1577 | #ifdef TARGET_I386 | |
1578 | "before eflags optimization and " | |
f193c797 | 1579 | #endif |
e01a1157 | 1580 | "after liveness analysis" }, |
f193c797 FB |
1581 | { CPU_LOG_INT, "int", |
1582 | "show interrupts/exceptions in short format" }, | |
1583 | { CPU_LOG_EXEC, "exec", | |
1584 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1585 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1586 | "show CPU state before block translation" }, |
f193c797 FB |
1587 | #ifdef TARGET_I386 |
1588 | { CPU_LOG_PCALL, "pcall", | |
1589 | "show protected mode far calls/returns/exceptions" }, | |
eca1bdf4 AL |
1590 | { CPU_LOG_RESET, "cpu_reset", |
1591 | "show CPU state before CPU resets" }, | |
f193c797 | 1592 | #endif |
8e3a9fd2 | 1593 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1594 | { CPU_LOG_IOPORT, "ioport", |
1595 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1596 | #endif |
f193c797 FB |
1597 | { 0, NULL, NULL }, |
1598 | }; | |
1599 | ||
1600 | static int cmp1(const char *s1, int n, const char *s2) | |
1601 | { | |
1602 | if (strlen(s2) != n) | |
1603 | return 0; | |
1604 | return memcmp(s1, s2, n) == 0; | |
1605 | } | |
3b46e624 | 1606 | |
f193c797 FB |
1607 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1608 | int cpu_str_to_log_mask(const char *str) | |
1609 | { | |
c7cd6a37 | 1610 | const CPULogItem *item; |
f193c797 FB |
1611 | int mask; |
1612 | const char *p, *p1; | |
1613 | ||
1614 | p = str; | |
1615 | mask = 0; | |
1616 | for(;;) { | |
1617 | p1 = strchr(p, ','); | |
1618 | if (!p1) | |
1619 | p1 = p + strlen(p); | |
8e3a9fd2 FB |
1620 | if(cmp1(p,p1-p,"all")) { |
1621 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1622 | mask |= item->mask; | |
1623 | } | |
1624 | } else { | |
f193c797 FB |
1625 | for(item = cpu_log_items; item->mask != 0; item++) { |
1626 | if (cmp1(p, p1 - p, item->name)) | |
1627 | goto found; | |
1628 | } | |
1629 | return 0; | |
8e3a9fd2 | 1630 | } |
f193c797 FB |
1631 | found: |
1632 | mask |= item->mask; | |
1633 | if (*p1 != ',') | |
1634 | break; | |
1635 | p = p1 + 1; | |
1636 | } | |
1637 | return mask; | |
1638 | } | |
ea041c0e | 1639 | |
7501267e FB |
1640 | void cpu_abort(CPUState *env, const char *fmt, ...) |
1641 | { | |
1642 | va_list ap; | |
493ae1f0 | 1643 | va_list ap2; |
7501267e FB |
1644 | |
1645 | va_start(ap, fmt); | |
493ae1f0 | 1646 | va_copy(ap2, ap); |
7501267e FB |
1647 | fprintf(stderr, "qemu: fatal: "); |
1648 | vfprintf(stderr, fmt, ap); | |
1649 | fprintf(stderr, "\n"); | |
1650 | #ifdef TARGET_I386 | |
7fe48483 FB |
1651 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1652 | #else | |
1653 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1654 | #endif |
93fcfe39 AL |
1655 | if (qemu_log_enabled()) { |
1656 | qemu_log("qemu: fatal: "); | |
1657 | qemu_log_vprintf(fmt, ap2); | |
1658 | qemu_log("\n"); | |
f9373291 | 1659 | #ifdef TARGET_I386 |
93fcfe39 | 1660 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); |
f9373291 | 1661 | #else |
93fcfe39 | 1662 | log_cpu_state(env, 0); |
f9373291 | 1663 | #endif |
31b1a7b4 | 1664 | qemu_log_flush(); |
93fcfe39 | 1665 | qemu_log_close(); |
924edcae | 1666 | } |
493ae1f0 | 1667 | va_end(ap2); |
f9373291 | 1668 | va_end(ap); |
7501267e FB |
1669 | abort(); |
1670 | } | |
1671 | ||
c5be9f08 TS |
1672 | CPUState *cpu_copy(CPUState *env) |
1673 | { | |
01ba9816 | 1674 | CPUState *new_env = cpu_init(env->cpu_model_str); |
c5be9f08 TS |
1675 | CPUState *next_cpu = new_env->next_cpu; |
1676 | int cpu_index = new_env->cpu_index; | |
5a38f081 AL |
1677 | #if defined(TARGET_HAS_ICE) |
1678 | CPUBreakpoint *bp; | |
1679 | CPUWatchpoint *wp; | |
1680 | #endif | |
1681 | ||
c5be9f08 | 1682 | memcpy(new_env, env, sizeof(CPUState)); |
5a38f081 AL |
1683 | |
1684 | /* Preserve chaining and index. */ | |
c5be9f08 TS |
1685 | new_env->next_cpu = next_cpu; |
1686 | new_env->cpu_index = cpu_index; | |
5a38f081 AL |
1687 | |
1688 | /* Clone all break/watchpoints. | |
1689 | Note: Once we support ptrace with hw-debug register access, make sure | |
1690 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
1691 | TAILQ_INIT(&env->breakpoints); | |
1692 | TAILQ_INIT(&env->watchpoints); | |
1693 | #if defined(TARGET_HAS_ICE) | |
1694 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
1695 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | |
1696 | } | |
1697 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1698 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | |
1699 | wp->flags, NULL); | |
1700 | } | |
1701 | #endif | |
1702 | ||
c5be9f08 TS |
1703 | return new_env; |
1704 | } | |
1705 | ||
0124311e FB |
1706 | #if !defined(CONFIG_USER_ONLY) |
1707 | ||
5c751e99 EI |
1708 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
1709 | { | |
1710 | unsigned int i; | |
1711 | ||
1712 | /* Discard jump cache entries for any tb which might potentially | |
1713 | overlap the flushed page. */ | |
1714 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1715 | memset (&env->tb_jmp_cache[i], 0, | |
1716 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1717 | ||
1718 | i = tb_jmp_cache_hash_page(addr); | |
1719 | memset (&env->tb_jmp_cache[i], 0, | |
1720 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1721 | } | |
1722 | ||
ee8b7021 FB |
1723 | /* NOTE: if flush_global is true, also flush global entries (not |
1724 | implemented yet) */ | |
1725 | void tlb_flush(CPUState *env, int flush_global) | |
33417e70 | 1726 | { |
33417e70 | 1727 | int i; |
0124311e | 1728 | |
9fa3e853 FB |
1729 | #if defined(DEBUG_TLB) |
1730 | printf("tlb_flush:\n"); | |
1731 | #endif | |
0124311e FB |
1732 | /* must reset current TB so that interrupts cannot modify the |
1733 | links while we are modifying them */ | |
1734 | env->current_tb = NULL; | |
1735 | ||
33417e70 | 1736 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
84b7b8e7 FB |
1737 | env->tlb_table[0][i].addr_read = -1; |
1738 | env->tlb_table[0][i].addr_write = -1; | |
1739 | env->tlb_table[0][i].addr_code = -1; | |
1740 | env->tlb_table[1][i].addr_read = -1; | |
1741 | env->tlb_table[1][i].addr_write = -1; | |
1742 | env->tlb_table[1][i].addr_code = -1; | |
6fa4cea9 JM |
1743 | #if (NB_MMU_MODES >= 3) |
1744 | env->tlb_table[2][i].addr_read = -1; | |
1745 | env->tlb_table[2][i].addr_write = -1; | |
1746 | env->tlb_table[2][i].addr_code = -1; | |
e37e6ee6 AJ |
1747 | #endif |
1748 | #if (NB_MMU_MODES >= 4) | |
6fa4cea9 JM |
1749 | env->tlb_table[3][i].addr_read = -1; |
1750 | env->tlb_table[3][i].addr_write = -1; | |
1751 | env->tlb_table[3][i].addr_code = -1; | |
1752 | #endif | |
e37e6ee6 AJ |
1753 | #if (NB_MMU_MODES >= 5) |
1754 | env->tlb_table[4][i].addr_read = -1; | |
1755 | env->tlb_table[4][i].addr_write = -1; | |
1756 | env->tlb_table[4][i].addr_code = -1; | |
6fa4cea9 | 1757 | #endif |
e37e6ee6 | 1758 | |
33417e70 | 1759 | } |
9fa3e853 | 1760 | |
8a40a180 | 1761 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1762 | |
0a962c02 FB |
1763 | #ifdef USE_KQEMU |
1764 | if (env->kqemu_enabled) { | |
1765 | kqemu_flush(env, flush_global); | |
1766 | } | |
9fa3e853 | 1767 | #endif |
e3db7226 | 1768 | tlb_flush_count++; |
33417e70 FB |
1769 | } |
1770 | ||
274da6b2 | 1771 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1772 | { |
5fafdf24 | 1773 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1774 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1775 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1776 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1777 | addr == (tlb_entry->addr_code & |
84b7b8e7 FB |
1778 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
1779 | tlb_entry->addr_read = -1; | |
1780 | tlb_entry->addr_write = -1; | |
1781 | tlb_entry->addr_code = -1; | |
1782 | } | |
61382a50 FB |
1783 | } |
1784 | ||
2e12669a | 1785 | void tlb_flush_page(CPUState *env, target_ulong addr) |
33417e70 | 1786 | { |
8a40a180 | 1787 | int i; |
0124311e | 1788 | |
9fa3e853 | 1789 | #if defined(DEBUG_TLB) |
108c49b8 | 1790 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1791 | #endif |
0124311e FB |
1792 | /* must reset current TB so that interrupts cannot modify the |
1793 | links while we are modifying them */ | |
1794 | env->current_tb = NULL; | |
61382a50 FB |
1795 | |
1796 | addr &= TARGET_PAGE_MASK; | |
1797 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
84b7b8e7 FB |
1798 | tlb_flush_entry(&env->tlb_table[0][i], addr); |
1799 | tlb_flush_entry(&env->tlb_table[1][i], addr); | |
6fa4cea9 JM |
1800 | #if (NB_MMU_MODES >= 3) |
1801 | tlb_flush_entry(&env->tlb_table[2][i], addr); | |
e37e6ee6 AJ |
1802 | #endif |
1803 | #if (NB_MMU_MODES >= 4) | |
6fa4cea9 JM |
1804 | tlb_flush_entry(&env->tlb_table[3][i], addr); |
1805 | #endif | |
e37e6ee6 AJ |
1806 | #if (NB_MMU_MODES >= 5) |
1807 | tlb_flush_entry(&env->tlb_table[4][i], addr); | |
6fa4cea9 | 1808 | #endif |
0124311e | 1809 | |
5c751e99 | 1810 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 | 1811 | |
0a962c02 FB |
1812 | #ifdef USE_KQEMU |
1813 | if (env->kqemu_enabled) { | |
1814 | kqemu_flush_page(env, addr); | |
1815 | } | |
1816 | #endif | |
9fa3e853 FB |
1817 | } |
1818 | ||
9fa3e853 FB |
1819 | /* update the TLBs so that writes to code in the virtual page 'addr' |
1820 | can be detected */ | |
6a00d601 | 1821 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 1822 | { |
5fafdf24 | 1823 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
1824 | ram_addr + TARGET_PAGE_SIZE, |
1825 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
1826 | } |
1827 | ||
9fa3e853 | 1828 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 1829 | tested for self modifying code */ |
5fafdf24 | 1830 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 1831 | target_ulong vaddr) |
9fa3e853 | 1832 | { |
3a7d929e | 1833 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
1ccde1cb FB |
1834 | } |
1835 | ||
5fafdf24 | 1836 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
1837 | unsigned long start, unsigned long length) |
1838 | { | |
1839 | unsigned long addr; | |
84b7b8e7 FB |
1840 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
1841 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1ccde1cb | 1842 | if ((addr - start) < length) { |
0f459d16 | 1843 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
1ccde1cb FB |
1844 | } |
1845 | } | |
1846 | } | |
1847 | ||
5579c7f3 | 1848 | /* Note: start and end must be within the same ram block. */ |
3a7d929e | 1849 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 1850 | int dirty_flags) |
1ccde1cb FB |
1851 | { |
1852 | CPUState *env; | |
4f2ac237 | 1853 | unsigned long length, start1; |
0a962c02 FB |
1854 | int i, mask, len; |
1855 | uint8_t *p; | |
1ccde1cb FB |
1856 | |
1857 | start &= TARGET_PAGE_MASK; | |
1858 | end = TARGET_PAGE_ALIGN(end); | |
1859 | ||
1860 | length = end - start; | |
1861 | if (length == 0) | |
1862 | return; | |
0a962c02 | 1863 | len = length >> TARGET_PAGE_BITS; |
3a7d929e | 1864 | #ifdef USE_KQEMU |
6a00d601 FB |
1865 | /* XXX: should not depend on cpu context */ |
1866 | env = first_cpu; | |
3a7d929e | 1867 | if (env->kqemu_enabled) { |
f23db169 FB |
1868 | ram_addr_t addr; |
1869 | addr = start; | |
1870 | for(i = 0; i < len; i++) { | |
1871 | kqemu_set_notdirty(env, addr); | |
1872 | addr += TARGET_PAGE_SIZE; | |
1873 | } | |
3a7d929e FB |
1874 | } |
1875 | #endif | |
f23db169 FB |
1876 | mask = ~dirty_flags; |
1877 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1878 | for(i = 0; i < len; i++) | |
1879 | p[i] &= mask; | |
1880 | ||
1ccde1cb FB |
1881 | /* we modify the TLB cache so that the dirty bit will be set again |
1882 | when accessing the range */ | |
5579c7f3 PB |
1883 | start1 = (unsigned long)qemu_get_ram_ptr(start); |
1884 | /* Chek that we don't span multiple blocks - this breaks the | |
1885 | address comparisons below. */ | |
1886 | if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1 | |
1887 | != (end - 1) - start) { | |
1888 | abort(); | |
1889 | } | |
1890 | ||
6a00d601 FB |
1891 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
1892 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1893 | tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length); |
6a00d601 | 1894 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1895 | tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length); |
6fa4cea9 JM |
1896 | #if (NB_MMU_MODES >= 3) |
1897 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1898 | tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length); | |
e37e6ee6 AJ |
1899 | #endif |
1900 | #if (NB_MMU_MODES >= 4) | |
6fa4cea9 JM |
1901 | for(i = 0; i < CPU_TLB_SIZE; i++) |
1902 | tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length); | |
1903 | #endif | |
e37e6ee6 AJ |
1904 | #if (NB_MMU_MODES >= 5) |
1905 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1906 | tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length); | |
6fa4cea9 | 1907 | #endif |
6a00d601 | 1908 | } |
1ccde1cb FB |
1909 | } |
1910 | ||
74576198 AL |
1911 | int cpu_physical_memory_set_dirty_tracking(int enable) |
1912 | { | |
1913 | in_migration = enable; | |
1914 | return 0; | |
1915 | } | |
1916 | ||
1917 | int cpu_physical_memory_get_dirty_tracking(void) | |
1918 | { | |
1919 | return in_migration; | |
1920 | } | |
1921 | ||
2bec46dc AL |
1922 | void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) |
1923 | { | |
1924 | if (kvm_enabled()) | |
1925 | kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
1926 | } | |
1927 | ||
3a7d929e FB |
1928 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
1929 | { | |
1930 | ram_addr_t ram_addr; | |
5579c7f3 | 1931 | void *p; |
3a7d929e | 1932 | |
84b7b8e7 | 1933 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
5579c7f3 PB |
1934 | p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK) |
1935 | + tlb_entry->addend); | |
1936 | ram_addr = qemu_ram_addr_from_host(p); | |
3a7d929e | 1937 | if (!cpu_physical_memory_is_dirty(ram_addr)) { |
0f459d16 | 1938 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
1939 | } |
1940 | } | |
1941 | } | |
1942 | ||
1943 | /* update the TLB according to the current state of the dirty bits */ | |
1944 | void cpu_tlb_update_dirty(CPUState *env) | |
1945 | { | |
1946 | int i; | |
1947 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1948 | tlb_update_dirty(&env->tlb_table[0][i]); |
3a7d929e | 1949 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1950 | tlb_update_dirty(&env->tlb_table[1][i]); |
6fa4cea9 JM |
1951 | #if (NB_MMU_MODES >= 3) |
1952 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1953 | tlb_update_dirty(&env->tlb_table[2][i]); | |
e37e6ee6 AJ |
1954 | #endif |
1955 | #if (NB_MMU_MODES >= 4) | |
6fa4cea9 JM |
1956 | for(i = 0; i < CPU_TLB_SIZE; i++) |
1957 | tlb_update_dirty(&env->tlb_table[3][i]); | |
1958 | #endif | |
e37e6ee6 AJ |
1959 | #if (NB_MMU_MODES >= 5) |
1960 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1961 | tlb_update_dirty(&env->tlb_table[4][i]); | |
6fa4cea9 | 1962 | #endif |
3a7d929e FB |
1963 | } |
1964 | ||
0f459d16 | 1965 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 1966 | { |
0f459d16 PB |
1967 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
1968 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
1969 | } |
1970 | ||
0f459d16 PB |
1971 | /* update the TLB corresponding to virtual page vaddr |
1972 | so that it is no longer dirty */ | |
1973 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1ccde1cb | 1974 | { |
1ccde1cb FB |
1975 | int i; |
1976 | ||
0f459d16 | 1977 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 1978 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
0f459d16 PB |
1979 | tlb_set_dirty1(&env->tlb_table[0][i], vaddr); |
1980 | tlb_set_dirty1(&env->tlb_table[1][i], vaddr); | |
6fa4cea9 | 1981 | #if (NB_MMU_MODES >= 3) |
0f459d16 | 1982 | tlb_set_dirty1(&env->tlb_table[2][i], vaddr); |
e37e6ee6 AJ |
1983 | #endif |
1984 | #if (NB_MMU_MODES >= 4) | |
0f459d16 | 1985 | tlb_set_dirty1(&env->tlb_table[3][i], vaddr); |
6fa4cea9 | 1986 | #endif |
e37e6ee6 AJ |
1987 | #if (NB_MMU_MODES >= 5) |
1988 | tlb_set_dirty1(&env->tlb_table[4][i], vaddr); | |
6fa4cea9 | 1989 | #endif |
9fa3e853 FB |
1990 | } |
1991 | ||
59817ccb FB |
1992 | /* add a new TLB entry. At most one entry for a given virtual address |
1993 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1994 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1995 | conflicting with the host address space). */ | |
5fafdf24 TS |
1996 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1997 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1998 | int mmu_idx, int is_softmmu) |
9fa3e853 | 1999 | { |
92e873b9 | 2000 | PhysPageDesc *p; |
4f2ac237 | 2001 | unsigned long pd; |
9fa3e853 | 2002 | unsigned int index; |
4f2ac237 | 2003 | target_ulong address; |
0f459d16 | 2004 | target_ulong code_address; |
108c49b8 | 2005 | target_phys_addr_t addend; |
9fa3e853 | 2006 | int ret; |
84b7b8e7 | 2007 | CPUTLBEntry *te; |
a1d1bb31 | 2008 | CPUWatchpoint *wp; |
0f459d16 | 2009 | target_phys_addr_t iotlb; |
9fa3e853 | 2010 | |
92e873b9 | 2011 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
2012 | if (!p) { |
2013 | pd = IO_MEM_UNASSIGNED; | |
9fa3e853 FB |
2014 | } else { |
2015 | pd = p->phys_offset; | |
9fa3e853 FB |
2016 | } |
2017 | #if defined(DEBUG_TLB) | |
6ebbf390 JM |
2018 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
2019 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
9fa3e853 FB |
2020 | #endif |
2021 | ||
2022 | ret = 0; | |
0f459d16 PB |
2023 | address = vaddr; |
2024 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
2025 | /* IO memory case (romd handled later) */ | |
2026 | address |= TLB_MMIO; | |
2027 | } | |
5579c7f3 | 2028 | addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK); |
0f459d16 PB |
2029 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { |
2030 | /* Normal RAM. */ | |
2031 | iotlb = pd & TARGET_PAGE_MASK; | |
2032 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
2033 | iotlb |= IO_MEM_NOTDIRTY; | |
2034 | else | |
2035 | iotlb |= IO_MEM_ROM; | |
2036 | } else { | |
2037 | /* IO handlers are currently passed a phsical address. | |
2038 | It would be nice to pass an offset from the base address | |
2039 | of that region. This would avoid having to special case RAM, | |
2040 | and avoid full address decoding in every device. | |
2041 | We can't use the high bits of pd for this because | |
2042 | IO_MEM_ROMD uses these as a ram address. */ | |
8da3ff18 PB |
2043 | iotlb = (pd & ~TARGET_PAGE_MASK); |
2044 | if (p) { | |
8da3ff18 PB |
2045 | iotlb += p->region_offset; |
2046 | } else { | |
2047 | iotlb += paddr; | |
2048 | } | |
0f459d16 PB |
2049 | } |
2050 | ||
2051 | code_address = address; | |
2052 | /* Make accesses to pages with watchpoints go via the | |
2053 | watchpoint trap routines. */ | |
c0ce998e | 2054 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
a1d1bb31 | 2055 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { |
0f459d16 PB |
2056 | iotlb = io_mem_watch + paddr; |
2057 | /* TODO: The memory case can be optimized by not trapping | |
2058 | reads of pages with a write breakpoint. */ | |
2059 | address |= TLB_MMIO; | |
6658ffb8 | 2060 | } |
0f459d16 | 2061 | } |
d79acba4 | 2062 | |
0f459d16 PB |
2063 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
2064 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
2065 | te = &env->tlb_table[mmu_idx][index]; | |
2066 | te->addend = addend - vaddr; | |
2067 | if (prot & PAGE_READ) { | |
2068 | te->addr_read = address; | |
2069 | } else { | |
2070 | te->addr_read = -1; | |
2071 | } | |
5c751e99 | 2072 | |
0f459d16 PB |
2073 | if (prot & PAGE_EXEC) { |
2074 | te->addr_code = code_address; | |
2075 | } else { | |
2076 | te->addr_code = -1; | |
2077 | } | |
2078 | if (prot & PAGE_WRITE) { | |
2079 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
2080 | (pd & IO_MEM_ROMD)) { | |
2081 | /* Write access calls the I/O callback. */ | |
2082 | te->addr_write = address | TLB_MMIO; | |
2083 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
2084 | !cpu_physical_memory_is_dirty(pd)) { | |
2085 | te->addr_write = address | TLB_NOTDIRTY; | |
9fa3e853 | 2086 | } else { |
0f459d16 | 2087 | te->addr_write = address; |
9fa3e853 | 2088 | } |
0f459d16 PB |
2089 | } else { |
2090 | te->addr_write = -1; | |
9fa3e853 | 2091 | } |
9fa3e853 FB |
2092 | return ret; |
2093 | } | |
2094 | ||
0124311e FB |
2095 | #else |
2096 | ||
ee8b7021 | 2097 | void tlb_flush(CPUState *env, int flush_global) |
0124311e FB |
2098 | { |
2099 | } | |
2100 | ||
2e12669a | 2101 | void tlb_flush_page(CPUState *env, target_ulong addr) |
0124311e FB |
2102 | { |
2103 | } | |
2104 | ||
5fafdf24 TS |
2105 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
2106 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 2107 | int mmu_idx, int is_softmmu) |
9fa3e853 FB |
2108 | { |
2109 | return 0; | |
2110 | } | |
0124311e | 2111 | |
9fa3e853 FB |
2112 | /* dump memory mappings */ |
2113 | void page_dump(FILE *f) | |
33417e70 | 2114 | { |
9fa3e853 FB |
2115 | unsigned long start, end; |
2116 | int i, j, prot, prot1; | |
2117 | PageDesc *p; | |
33417e70 | 2118 | |
9fa3e853 FB |
2119 | fprintf(f, "%-8s %-8s %-8s %s\n", |
2120 | "start", "end", "size", "prot"); | |
2121 | start = -1; | |
2122 | end = -1; | |
2123 | prot = 0; | |
2124 | for(i = 0; i <= L1_SIZE; i++) { | |
2125 | if (i < L1_SIZE) | |
2126 | p = l1_map[i]; | |
2127 | else | |
2128 | p = NULL; | |
2129 | for(j = 0;j < L2_SIZE; j++) { | |
2130 | if (!p) | |
2131 | prot1 = 0; | |
2132 | else | |
2133 | prot1 = p[j].flags; | |
2134 | if (prot1 != prot) { | |
2135 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2136 | if (start != -1) { | |
2137 | fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
5fafdf24 | 2138 | start, end, end - start, |
9fa3e853 FB |
2139 | prot & PAGE_READ ? 'r' : '-', |
2140 | prot & PAGE_WRITE ? 'w' : '-', | |
2141 | prot & PAGE_EXEC ? 'x' : '-'); | |
2142 | } | |
2143 | if (prot1 != 0) | |
2144 | start = end; | |
2145 | else | |
2146 | start = -1; | |
2147 | prot = prot1; | |
2148 | } | |
2149 | if (!p) | |
2150 | break; | |
2151 | } | |
33417e70 | 2152 | } |
33417e70 FB |
2153 | } |
2154 | ||
53a5960a | 2155 | int page_get_flags(target_ulong address) |
33417e70 | 2156 | { |
9fa3e853 FB |
2157 | PageDesc *p; |
2158 | ||
2159 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2160 | if (!p) |
9fa3e853 FB |
2161 | return 0; |
2162 | return p->flags; | |
2163 | } | |
2164 | ||
2165 | /* modify the flags of a page and invalidate the code if | |
2166 | necessary. The flag PAGE_WRITE_ORG is positionned automatically | |
2167 | depending on PAGE_WRITE */ | |
53a5960a | 2168 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 FB |
2169 | { |
2170 | PageDesc *p; | |
53a5960a | 2171 | target_ulong addr; |
9fa3e853 | 2172 | |
c8a706fe | 2173 | /* mmap_lock should already be held. */ |
9fa3e853 FB |
2174 | start = start & TARGET_PAGE_MASK; |
2175 | end = TARGET_PAGE_ALIGN(end); | |
2176 | if (flags & PAGE_WRITE) | |
2177 | flags |= PAGE_WRITE_ORG; | |
9fa3e853 FB |
2178 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2179 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
17e2377a PB |
2180 | /* We may be called for host regions that are outside guest |
2181 | address space. */ | |
2182 | if (!p) | |
2183 | return; | |
9fa3e853 FB |
2184 | /* if the write protection is set, then we invalidate the code |
2185 | inside */ | |
5fafdf24 | 2186 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2187 | (flags & PAGE_WRITE) && |
2188 | p->first_tb) { | |
d720b93d | 2189 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2190 | } |
2191 | p->flags = flags; | |
2192 | } | |
33417e70 FB |
2193 | } |
2194 | ||
3d97b40b TS |
2195 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2196 | { | |
2197 | PageDesc *p; | |
2198 | target_ulong end; | |
2199 | target_ulong addr; | |
2200 | ||
55f280c9 AZ |
2201 | if (start + len < start) |
2202 | /* we've wrapped around */ | |
2203 | return -1; | |
2204 | ||
3d97b40b TS |
2205 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ |
2206 | start = start & TARGET_PAGE_MASK; | |
2207 | ||
3d97b40b TS |
2208 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2209 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2210 | if( !p ) | |
2211 | return -1; | |
2212 | if( !(p->flags & PAGE_VALID) ) | |
2213 | return -1; | |
2214 | ||
dae3270c | 2215 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2216 | return -1; |
dae3270c FB |
2217 | if (flags & PAGE_WRITE) { |
2218 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2219 | return -1; | |
2220 | /* unprotect the page if it was put read-only because it | |
2221 | contains translated code */ | |
2222 | if (!(p->flags & PAGE_WRITE)) { | |
2223 | if (!page_unprotect(addr, 0, NULL)) | |
2224 | return -1; | |
2225 | } | |
2226 | return 0; | |
2227 | } | |
3d97b40b TS |
2228 | } |
2229 | return 0; | |
2230 | } | |
2231 | ||
9fa3e853 FB |
2232 | /* called from signal handler: invalidate the code and unprotect the |
2233 | page. Return TRUE if the fault was succesfully handled. */ | |
53a5960a | 2234 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
9fa3e853 FB |
2235 | { |
2236 | unsigned int page_index, prot, pindex; | |
2237 | PageDesc *p, *p1; | |
53a5960a | 2238 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2239 | |
c8a706fe PB |
2240 | /* Technically this isn't safe inside a signal handler. However we |
2241 | know this only ever happens in a synchronous SEGV handler, so in | |
2242 | practice it seems to be ok. */ | |
2243 | mmap_lock(); | |
2244 | ||
83fb7adf | 2245 | host_start = address & qemu_host_page_mask; |
9fa3e853 FB |
2246 | page_index = host_start >> TARGET_PAGE_BITS; |
2247 | p1 = page_find(page_index); | |
c8a706fe PB |
2248 | if (!p1) { |
2249 | mmap_unlock(); | |
9fa3e853 | 2250 | return 0; |
c8a706fe | 2251 | } |
83fb7adf | 2252 | host_end = host_start + qemu_host_page_size; |
9fa3e853 FB |
2253 | p = p1; |
2254 | prot = 0; | |
2255 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2256 | prot |= p->flags; | |
2257 | p++; | |
2258 | } | |
2259 | /* if the page was really writable, then we change its | |
2260 | protection back to writable */ | |
2261 | if (prot & PAGE_WRITE_ORG) { | |
2262 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2263 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
5fafdf24 | 2264 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
9fa3e853 FB |
2265 | (prot & PAGE_BITS) | PAGE_WRITE); |
2266 | p1[pindex].flags |= PAGE_WRITE; | |
2267 | /* and since the content will be modified, we must invalidate | |
2268 | the corresponding translated code. */ | |
d720b93d | 2269 | tb_invalidate_phys_page(address, pc, puc); |
9fa3e853 FB |
2270 | #ifdef DEBUG_TB_CHECK |
2271 | tb_invalidate_check(address); | |
2272 | #endif | |
c8a706fe | 2273 | mmap_unlock(); |
9fa3e853 FB |
2274 | return 1; |
2275 | } | |
2276 | } | |
c8a706fe | 2277 | mmap_unlock(); |
9fa3e853 FB |
2278 | return 0; |
2279 | } | |
2280 | ||
6a00d601 FB |
2281 | static inline void tlb_set_dirty(CPUState *env, |
2282 | unsigned long addr, target_ulong vaddr) | |
1ccde1cb FB |
2283 | { |
2284 | } | |
9fa3e853 FB |
2285 | #endif /* defined(CONFIG_USER_ONLY) */ |
2286 | ||
e2eef170 | 2287 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 2288 | |
db7b5426 | 2289 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
8da3ff18 | 2290 | ram_addr_t memory, ram_addr_t region_offset); |
00f82b8a | 2291 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2292 | ram_addr_t orig_memory, ram_addr_t region_offset); |
db7b5426 BS |
2293 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
2294 | need_subpage) \ | |
2295 | do { \ | |
2296 | if (addr > start_addr) \ | |
2297 | start_addr2 = 0; \ | |
2298 | else { \ | |
2299 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2300 | if (start_addr2 > 0) \ | |
2301 | need_subpage = 1; \ | |
2302 | } \ | |
2303 | \ | |
49e9fba2 | 2304 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
db7b5426 BS |
2305 | end_addr2 = TARGET_PAGE_SIZE - 1; \ |
2306 | else { \ | |
2307 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2308 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2309 | need_subpage = 1; \ | |
2310 | } \ | |
2311 | } while (0) | |
2312 | ||
33417e70 FB |
2313 | /* register physical memory. 'size' must be a multiple of the target |
2314 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
8da3ff18 PB |
2315 | io memory page. The address used when calling the IO function is |
2316 | the offset from the start of the region, plus region_offset. Both | |
2317 | start_region and regon_offset are rounded down to a page boundary | |
2318 | before calculating this offset. This should not be a problem unless | |
2319 | the low bits of start_addr and region_offset differ. */ | |
2320 | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr, | |
2321 | ram_addr_t size, | |
2322 | ram_addr_t phys_offset, | |
2323 | ram_addr_t region_offset) | |
33417e70 | 2324 | { |
108c49b8 | 2325 | target_phys_addr_t addr, end_addr; |
92e873b9 | 2326 | PhysPageDesc *p; |
9d42037b | 2327 | CPUState *env; |
00f82b8a | 2328 | ram_addr_t orig_size = size; |
db7b5426 | 2329 | void *subpage; |
33417e70 | 2330 | |
da260249 FB |
2331 | #ifdef USE_KQEMU |
2332 | /* XXX: should not depend on cpu context */ | |
2333 | env = first_cpu; | |
2334 | if (env->kqemu_enabled) { | |
2335 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2336 | } | |
2337 | #endif | |
7ba1e619 AL |
2338 | if (kvm_enabled()) |
2339 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
2340 | ||
67c4d23c PB |
2341 | if (phys_offset == IO_MEM_UNASSIGNED) { |
2342 | region_offset = start_addr; | |
2343 | } | |
8da3ff18 | 2344 | region_offset &= TARGET_PAGE_MASK; |
5fd386f6 | 2345 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
49e9fba2 BS |
2346 | end_addr = start_addr + (target_phys_addr_t)size; |
2347 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
db7b5426 BS |
2348 | p = phys_page_find(addr >> TARGET_PAGE_BITS); |
2349 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
00f82b8a | 2350 | ram_addr_t orig_memory = p->phys_offset; |
db7b5426 BS |
2351 | target_phys_addr_t start_addr2, end_addr2; |
2352 | int need_subpage = 0; | |
2353 | ||
2354 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2355 | need_subpage); | |
4254fab8 | 2356 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2357 | if (!(orig_memory & IO_MEM_SUBPAGE)) { |
2358 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
8da3ff18 PB |
2359 | &p->phys_offset, orig_memory, |
2360 | p->region_offset); | |
db7b5426 BS |
2361 | } else { |
2362 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2363 | >> IO_MEM_SHIFT]; | |
2364 | } | |
8da3ff18 PB |
2365 | subpage_register(subpage, start_addr2, end_addr2, phys_offset, |
2366 | region_offset); | |
2367 | p->region_offset = 0; | |
db7b5426 BS |
2368 | } else { |
2369 | p->phys_offset = phys_offset; | |
2370 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2371 | (phys_offset & IO_MEM_ROMD)) | |
2372 | phys_offset += TARGET_PAGE_SIZE; | |
2373 | } | |
2374 | } else { | |
2375 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2376 | p->phys_offset = phys_offset; | |
8da3ff18 | 2377 | p->region_offset = region_offset; |
db7b5426 | 2378 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || |
8da3ff18 | 2379 | (phys_offset & IO_MEM_ROMD)) { |
db7b5426 | 2380 | phys_offset += TARGET_PAGE_SIZE; |
0e8f0967 | 2381 | } else { |
db7b5426 BS |
2382 | target_phys_addr_t start_addr2, end_addr2; |
2383 | int need_subpage = 0; | |
2384 | ||
2385 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2386 | end_addr2, need_subpage); | |
2387 | ||
4254fab8 | 2388 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 | 2389 | subpage = subpage_init((addr & TARGET_PAGE_MASK), |
8da3ff18 | 2390 | &p->phys_offset, IO_MEM_UNASSIGNED, |
67c4d23c | 2391 | addr & TARGET_PAGE_MASK); |
db7b5426 | 2392 | subpage_register(subpage, start_addr2, end_addr2, |
8da3ff18 PB |
2393 | phys_offset, region_offset); |
2394 | p->region_offset = 0; | |
db7b5426 BS |
2395 | } |
2396 | } | |
2397 | } | |
8da3ff18 | 2398 | region_offset += TARGET_PAGE_SIZE; |
33417e70 | 2399 | } |
3b46e624 | 2400 | |
9d42037b FB |
2401 | /* since each CPU stores ram addresses in its TLB cache, we must |
2402 | reset the modified entries */ | |
2403 | /* XXX: slow ! */ | |
2404 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2405 | tlb_flush(env, 1); | |
2406 | } | |
33417e70 FB |
2407 | } |
2408 | ||
ba863458 | 2409 | /* XXX: temporary until new memory mapping API */ |
00f82b8a | 2410 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
ba863458 FB |
2411 | { |
2412 | PhysPageDesc *p; | |
2413 | ||
2414 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2415 | if (!p) | |
2416 | return IO_MEM_UNASSIGNED; | |
2417 | return p->phys_offset; | |
2418 | } | |
2419 | ||
f65ed4c1 AL |
2420 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) |
2421 | { | |
2422 | if (kvm_enabled()) | |
2423 | kvm_coalesce_mmio_region(addr, size); | |
2424 | } | |
2425 | ||
2426 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) | |
2427 | { | |
2428 | if (kvm_enabled()) | |
2429 | kvm_uncoalesce_mmio_region(addr, size); | |
2430 | } | |
2431 | ||
94a6b54f | 2432 | #ifdef USE_KQEMU |
e9a1ab19 | 2433 | /* XXX: better than nothing */ |
94a6b54f | 2434 | static ram_addr_t kqemu_ram_alloc(ram_addr_t size) |
e9a1ab19 FB |
2435 | { |
2436 | ram_addr_t addr; | |
94a6b54f | 2437 | if ((last_ram_offset + size) > kqemu_phys_ram_size) { |
012a7045 | 2438 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", |
94a6b54f | 2439 | (uint64_t)size, (uint64_t)kqemu_phys_ram_size); |
e9a1ab19 FB |
2440 | abort(); |
2441 | } | |
94a6b54f PB |
2442 | addr = last_ram_offset; |
2443 | last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size); | |
e9a1ab19 FB |
2444 | return addr; |
2445 | } | |
94a6b54f PB |
2446 | #endif |
2447 | ||
2448 | ram_addr_t qemu_ram_alloc(ram_addr_t size) | |
2449 | { | |
2450 | RAMBlock *new_block; | |
2451 | ||
2452 | #ifdef USE_KQEMU | |
2453 | if (kqemu_phys_ram_base) { | |
2454 | return kqemu_ram_alloc(size); | |
2455 | } | |
2456 | #endif | |
2457 | ||
2458 | size = TARGET_PAGE_ALIGN(size); | |
2459 | new_block = qemu_malloc(sizeof(*new_block)); | |
2460 | ||
2461 | new_block->host = qemu_vmalloc(size); | |
2462 | new_block->offset = last_ram_offset; | |
2463 | new_block->length = size; | |
2464 | ||
2465 | new_block->next = ram_blocks; | |
2466 | ram_blocks = new_block; | |
2467 | ||
2468 | phys_ram_dirty = qemu_realloc(phys_ram_dirty, | |
2469 | (last_ram_offset + size) >> TARGET_PAGE_BITS); | |
2470 | memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS), | |
2471 | 0xff, size >> TARGET_PAGE_BITS); | |
2472 | ||
2473 | last_ram_offset += size; | |
2474 | ||
2475 | return new_block->offset; | |
2476 | } | |
e9a1ab19 FB |
2477 | |
2478 | void qemu_ram_free(ram_addr_t addr) | |
2479 | { | |
94a6b54f | 2480 | /* TODO: implement this. */ |
e9a1ab19 FB |
2481 | } |
2482 | ||
dc828ca1 | 2483 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
5579c7f3 PB |
2484 | With the exception of the softmmu code in this file, this should |
2485 | only be used for local memory (e.g. video ram) that the device owns, | |
2486 | and knows it isn't going to access beyond the end of the block. | |
2487 | ||
2488 | It should not be used for general purpose DMA. | |
2489 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | |
2490 | */ | |
dc828ca1 PB |
2491 | void *qemu_get_ram_ptr(ram_addr_t addr) |
2492 | { | |
94a6b54f PB |
2493 | RAMBlock *prev; |
2494 | RAMBlock **prevp; | |
2495 | RAMBlock *block; | |
2496 | ||
2497 | #ifdef USE_KQEMU | |
2498 | if (kqemu_phys_ram_base) { | |
2499 | return kqemu_phys_ram_base + addr; | |
2500 | } | |
2501 | #endif | |
2502 | ||
2503 | prev = NULL; | |
2504 | prevp = &ram_blocks; | |
2505 | block = ram_blocks; | |
2506 | while (block && (block->offset > addr | |
2507 | || block->offset + block->length <= addr)) { | |
2508 | if (prev) | |
2509 | prevp = &prev->next; | |
2510 | prev = block; | |
2511 | block = block->next; | |
2512 | } | |
2513 | if (!block) { | |
2514 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
2515 | abort(); | |
2516 | } | |
2517 | /* Move this entry to to start of the list. */ | |
2518 | if (prev) { | |
2519 | prev->next = block->next; | |
2520 | block->next = *prevp; | |
2521 | *prevp = block; | |
2522 | } | |
2523 | return block->host + (addr - block->offset); | |
dc828ca1 PB |
2524 | } |
2525 | ||
5579c7f3 PB |
2526 | /* Some of the softmmu routines need to translate from a host pointer |
2527 | (typically a TLB entry) back to a ram offset. */ | |
2528 | ram_addr_t qemu_ram_addr_from_host(void *ptr) | |
2529 | { | |
94a6b54f PB |
2530 | RAMBlock *prev; |
2531 | RAMBlock **prevp; | |
2532 | RAMBlock *block; | |
2533 | uint8_t *host = ptr; | |
2534 | ||
2535 | #ifdef USE_KQEMU | |
2536 | if (kqemu_phys_ram_base) { | |
2537 | return host - kqemu_phys_ram_base; | |
2538 | } | |
2539 | #endif | |
2540 | ||
2541 | prev = NULL; | |
2542 | prevp = &ram_blocks; | |
2543 | block = ram_blocks; | |
2544 | while (block && (block->host > host | |
2545 | || block->host + block->length <= host)) { | |
2546 | if (prev) | |
2547 | prevp = &prev->next; | |
2548 | prev = block; | |
2549 | block = block->next; | |
2550 | } | |
2551 | if (!block) { | |
2552 | fprintf(stderr, "Bad ram pointer %p\n", ptr); | |
2553 | abort(); | |
2554 | } | |
2555 | return block->offset + (host - block->host); | |
5579c7f3 PB |
2556 | } |
2557 | ||
a4193c8a | 2558 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
33417e70 | 2559 | { |
67d3b957 | 2560 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2561 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
b4f0a316 | 2562 | #endif |
0a6f8a6d | 2563 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2564 | do_unassigned_access(addr, 0, 0, 0, 1); |
2565 | #endif | |
2566 | return 0; | |
2567 | } | |
2568 | ||
2569 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | |
2570 | { | |
2571 | #ifdef DEBUG_UNASSIGNED | |
2572 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2573 | #endif | |
0a6f8a6d | 2574 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2575 | do_unassigned_access(addr, 0, 0, 0, 2); |
2576 | #endif | |
2577 | return 0; | |
2578 | } | |
2579 | ||
2580 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | |
2581 | { | |
2582 | #ifdef DEBUG_UNASSIGNED | |
2583 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2584 | #endif | |
0a6f8a6d | 2585 | #if defined(TARGET_SPARC) |
e18231a3 | 2586 | do_unassigned_access(addr, 0, 0, 0, 4); |
67d3b957 | 2587 | #endif |
33417e70 FB |
2588 | return 0; |
2589 | } | |
2590 | ||
a4193c8a | 2591 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
33417e70 | 2592 | { |
67d3b957 | 2593 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2594 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
67d3b957 | 2595 | #endif |
0a6f8a6d | 2596 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2597 | do_unassigned_access(addr, 1, 0, 0, 1); |
2598 | #endif | |
2599 | } | |
2600 | ||
2601 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2602 | { | |
2603 | #ifdef DEBUG_UNASSIGNED | |
2604 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2605 | #endif | |
0a6f8a6d | 2606 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2607 | do_unassigned_access(addr, 1, 0, 0, 2); |
2608 | #endif | |
2609 | } | |
2610 | ||
2611 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2612 | { | |
2613 | #ifdef DEBUG_UNASSIGNED | |
2614 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2615 | #endif | |
0a6f8a6d | 2616 | #if defined(TARGET_SPARC) |
e18231a3 | 2617 | do_unassigned_access(addr, 1, 0, 0, 4); |
b4f0a316 | 2618 | #endif |
33417e70 FB |
2619 | } |
2620 | ||
2621 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2622 | unassigned_mem_readb, | |
e18231a3 BS |
2623 | unassigned_mem_readw, |
2624 | unassigned_mem_readl, | |
33417e70 FB |
2625 | }; |
2626 | ||
2627 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2628 | unassigned_mem_writeb, | |
e18231a3 BS |
2629 | unassigned_mem_writew, |
2630 | unassigned_mem_writel, | |
33417e70 FB |
2631 | }; |
2632 | ||
0f459d16 PB |
2633 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
2634 | uint32_t val) | |
9fa3e853 | 2635 | { |
3a7d929e | 2636 | int dirty_flags; |
3a7d929e FB |
2637 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2638 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2639 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2640 | tb_invalidate_phys_page_fast(ram_addr, 1); |
2641 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2642 | #endif |
3a7d929e | 2643 | } |
5579c7f3 | 2644 | stb_p(qemu_get_ram_ptr(ram_addr), val); |
f32fc648 FB |
2645 | #ifdef USE_KQEMU |
2646 | if (cpu_single_env->kqemu_enabled && | |
2647 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2648 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2649 | #endif | |
f23db169 FB |
2650 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2651 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2652 | /* we remove the notdirty callback only if the code has been | |
2653 | flushed */ | |
2654 | if (dirty_flags == 0xff) | |
2e70f6ef | 2655 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2656 | } |
2657 | ||
0f459d16 PB |
2658 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
2659 | uint32_t val) | |
9fa3e853 | 2660 | { |
3a7d929e | 2661 | int dirty_flags; |
3a7d929e FB |
2662 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2663 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2664 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2665 | tb_invalidate_phys_page_fast(ram_addr, 2); |
2666 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2667 | #endif |
3a7d929e | 2668 | } |
5579c7f3 | 2669 | stw_p(qemu_get_ram_ptr(ram_addr), val); |
f32fc648 FB |
2670 | #ifdef USE_KQEMU |
2671 | if (cpu_single_env->kqemu_enabled && | |
2672 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2673 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2674 | #endif | |
f23db169 FB |
2675 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2676 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2677 | /* we remove the notdirty callback only if the code has been | |
2678 | flushed */ | |
2679 | if (dirty_flags == 0xff) | |
2e70f6ef | 2680 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2681 | } |
2682 | ||
0f459d16 PB |
2683 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
2684 | uint32_t val) | |
9fa3e853 | 2685 | { |
3a7d929e | 2686 | int dirty_flags; |
3a7d929e FB |
2687 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2688 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2689 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2690 | tb_invalidate_phys_page_fast(ram_addr, 4); |
2691 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2692 | #endif |
3a7d929e | 2693 | } |
5579c7f3 | 2694 | stl_p(qemu_get_ram_ptr(ram_addr), val); |
f32fc648 FB |
2695 | #ifdef USE_KQEMU |
2696 | if (cpu_single_env->kqemu_enabled && | |
2697 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2698 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2699 | #endif | |
f23db169 FB |
2700 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2701 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2702 | /* we remove the notdirty callback only if the code has been | |
2703 | flushed */ | |
2704 | if (dirty_flags == 0xff) | |
2e70f6ef | 2705 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2706 | } |
2707 | ||
3a7d929e | 2708 | static CPUReadMemoryFunc *error_mem_read[3] = { |
9fa3e853 FB |
2709 | NULL, /* never used */ |
2710 | NULL, /* never used */ | |
2711 | NULL, /* never used */ | |
2712 | }; | |
2713 | ||
1ccde1cb FB |
2714 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
2715 | notdirty_mem_writeb, | |
2716 | notdirty_mem_writew, | |
2717 | notdirty_mem_writel, | |
2718 | }; | |
2719 | ||
0f459d16 | 2720 | /* Generate a debug exception if a watchpoint has been hit. */ |
b4051334 | 2721 | static void check_watchpoint(int offset, int len_mask, int flags) |
0f459d16 PB |
2722 | { |
2723 | CPUState *env = cpu_single_env; | |
06d55cc1 AL |
2724 | target_ulong pc, cs_base; |
2725 | TranslationBlock *tb; | |
0f459d16 | 2726 | target_ulong vaddr; |
a1d1bb31 | 2727 | CPUWatchpoint *wp; |
06d55cc1 | 2728 | int cpu_flags; |
0f459d16 | 2729 | |
06d55cc1 AL |
2730 | if (env->watchpoint_hit) { |
2731 | /* We re-entered the check after replacing the TB. Now raise | |
2732 | * the debug interrupt so that is will trigger after the | |
2733 | * current instruction. */ | |
2734 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2735 | return; | |
2736 | } | |
2e70f6ef | 2737 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
c0ce998e | 2738 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 AL |
2739 | if ((vaddr == (wp->vaddr & len_mask) || |
2740 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
6e140f28 AL |
2741 | wp->flags |= BP_WATCHPOINT_HIT; |
2742 | if (!env->watchpoint_hit) { | |
2743 | env->watchpoint_hit = wp; | |
2744 | tb = tb_find_pc(env->mem_io_pc); | |
2745 | if (!tb) { | |
2746 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
2747 | "pc=%p", (void *)env->mem_io_pc); | |
2748 | } | |
2749 | cpu_restore_state(tb, env, env->mem_io_pc, NULL); | |
2750 | tb_phys_invalidate(tb, -1); | |
2751 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2752 | env->exception_index = EXCP_DEBUG; | |
2753 | } else { | |
2754 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2755 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
2756 | } | |
2757 | cpu_resume_from_signal(env, NULL); | |
06d55cc1 | 2758 | } |
6e140f28 AL |
2759 | } else { |
2760 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2761 | } |
2762 | } | |
2763 | } | |
2764 | ||
6658ffb8 PB |
2765 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2766 | so these check for a hit then pass through to the normal out-of-line | |
2767 | phys routines. */ | |
2768 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2769 | { | |
b4051334 | 2770 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); |
6658ffb8 PB |
2771 | return ldub_phys(addr); |
2772 | } | |
2773 | ||
2774 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2775 | { | |
b4051334 | 2776 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); |
6658ffb8 PB |
2777 | return lduw_phys(addr); |
2778 | } | |
2779 | ||
2780 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2781 | { | |
b4051334 | 2782 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); |
6658ffb8 PB |
2783 | return ldl_phys(addr); |
2784 | } | |
2785 | ||
6658ffb8 PB |
2786 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
2787 | uint32_t val) | |
2788 | { | |
b4051334 | 2789 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); |
6658ffb8 PB |
2790 | stb_phys(addr, val); |
2791 | } | |
2792 | ||
2793 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2794 | uint32_t val) | |
2795 | { | |
b4051334 | 2796 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); |
6658ffb8 PB |
2797 | stw_phys(addr, val); |
2798 | } | |
2799 | ||
2800 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2801 | uint32_t val) | |
2802 | { | |
b4051334 | 2803 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); |
6658ffb8 PB |
2804 | stl_phys(addr, val); |
2805 | } | |
2806 | ||
2807 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2808 | watch_mem_readb, | |
2809 | watch_mem_readw, | |
2810 | watch_mem_readl, | |
2811 | }; | |
2812 | ||
2813 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2814 | watch_mem_writeb, | |
2815 | watch_mem_writew, | |
2816 | watch_mem_writel, | |
2817 | }; | |
6658ffb8 | 2818 | |
db7b5426 BS |
2819 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
2820 | unsigned int len) | |
2821 | { | |
db7b5426 BS |
2822 | uint32_t ret; |
2823 | unsigned int idx; | |
2824 | ||
8da3ff18 | 2825 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2826 | #if defined(DEBUG_SUBPAGE) |
2827 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2828 | mmio, len, addr, idx); | |
2829 | #endif | |
8da3ff18 PB |
2830 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], |
2831 | addr + mmio->region_offset[idx][0][len]); | |
db7b5426 BS |
2832 | |
2833 | return ret; | |
2834 | } | |
2835 | ||
2836 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2837 | uint32_t value, unsigned int len) | |
2838 | { | |
db7b5426 BS |
2839 | unsigned int idx; |
2840 | ||
8da3ff18 | 2841 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2842 | #if defined(DEBUG_SUBPAGE) |
2843 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2844 | mmio, len, addr, idx, value); | |
2845 | #endif | |
8da3ff18 PB |
2846 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], |
2847 | addr + mmio->region_offset[idx][1][len], | |
2848 | value); | |
db7b5426 BS |
2849 | } |
2850 | ||
2851 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2852 | { | |
2853 | #if defined(DEBUG_SUBPAGE) | |
2854 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2855 | #endif | |
2856 | ||
2857 | return subpage_readlen(opaque, addr, 0); | |
2858 | } | |
2859 | ||
2860 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2861 | uint32_t value) | |
2862 | { | |
2863 | #if defined(DEBUG_SUBPAGE) | |
2864 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2865 | #endif | |
2866 | subpage_writelen(opaque, addr, value, 0); | |
2867 | } | |
2868 | ||
2869 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2870 | { | |
2871 | #if defined(DEBUG_SUBPAGE) | |
2872 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2873 | #endif | |
2874 | ||
2875 | return subpage_readlen(opaque, addr, 1); | |
2876 | } | |
2877 | ||
2878 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2879 | uint32_t value) | |
2880 | { | |
2881 | #if defined(DEBUG_SUBPAGE) | |
2882 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2883 | #endif | |
2884 | subpage_writelen(opaque, addr, value, 1); | |
2885 | } | |
2886 | ||
2887 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2888 | { | |
2889 | #if defined(DEBUG_SUBPAGE) | |
2890 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2891 | #endif | |
2892 | ||
2893 | return subpage_readlen(opaque, addr, 2); | |
2894 | } | |
2895 | ||
2896 | static void subpage_writel (void *opaque, | |
2897 | target_phys_addr_t addr, uint32_t value) | |
2898 | { | |
2899 | #if defined(DEBUG_SUBPAGE) | |
2900 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2901 | #endif | |
2902 | subpage_writelen(opaque, addr, value, 2); | |
2903 | } | |
2904 | ||
2905 | static CPUReadMemoryFunc *subpage_read[] = { | |
2906 | &subpage_readb, | |
2907 | &subpage_readw, | |
2908 | &subpage_readl, | |
2909 | }; | |
2910 | ||
2911 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2912 | &subpage_writeb, | |
2913 | &subpage_writew, | |
2914 | &subpage_writel, | |
2915 | }; | |
2916 | ||
2917 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
8da3ff18 | 2918 | ram_addr_t memory, ram_addr_t region_offset) |
db7b5426 BS |
2919 | { |
2920 | int idx, eidx; | |
4254fab8 | 2921 | unsigned int i; |
db7b5426 BS |
2922 | |
2923 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2924 | return -1; | |
2925 | idx = SUBPAGE_IDX(start); | |
2926 | eidx = SUBPAGE_IDX(end); | |
2927 | #if defined(DEBUG_SUBPAGE) | |
2928 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__, | |
2929 | mmio, start, end, idx, eidx, memory); | |
2930 | #endif | |
2931 | memory >>= IO_MEM_SHIFT; | |
2932 | for (; idx <= eidx; idx++) { | |
4254fab8 | 2933 | for (i = 0; i < 4; i++) { |
3ee89922 BS |
2934 | if (io_mem_read[memory][i]) { |
2935 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2936 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2937 | mmio->region_offset[idx][0][i] = region_offset; |
3ee89922 BS |
2938 | } |
2939 | if (io_mem_write[memory][i]) { | |
2940 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2941 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2942 | mmio->region_offset[idx][1][i] = region_offset; |
3ee89922 | 2943 | } |
4254fab8 | 2944 | } |
db7b5426 BS |
2945 | } |
2946 | ||
2947 | return 0; | |
2948 | } | |
2949 | ||
00f82b8a | 2950 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2951 | ram_addr_t orig_memory, ram_addr_t region_offset) |
db7b5426 BS |
2952 | { |
2953 | subpage_t *mmio; | |
2954 | int subpage_memory; | |
2955 | ||
2956 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
1eec614b AL |
2957 | |
2958 | mmio->base = base; | |
2959 | subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio); | |
db7b5426 | 2960 | #if defined(DEBUG_SUBPAGE) |
1eec614b AL |
2961 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, |
2962 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
db7b5426 | 2963 | #endif |
1eec614b AL |
2964 | *phys = subpage_memory | IO_MEM_SUBPAGE; |
2965 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory, | |
8da3ff18 | 2966 | region_offset); |
db7b5426 BS |
2967 | |
2968 | return mmio; | |
2969 | } | |
2970 | ||
88715657 AL |
2971 | static int get_free_io_mem_idx(void) |
2972 | { | |
2973 | int i; | |
2974 | ||
2975 | for (i = 0; i<IO_MEM_NB_ENTRIES; i++) | |
2976 | if (!io_mem_used[i]) { | |
2977 | io_mem_used[i] = 1; | |
2978 | return i; | |
2979 | } | |
2980 | ||
2981 | return -1; | |
2982 | } | |
2983 | ||
33417e70 FB |
2984 | static void io_mem_init(void) |
2985 | { | |
88715657 AL |
2986 | int i; |
2987 | ||
3a7d929e | 2988 | cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL); |
a4193c8a | 2989 | cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL); |
3a7d929e | 2990 | cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL); |
88715657 AL |
2991 | for (i=0; i<5; i++) |
2992 | io_mem_used[i] = 1; | |
1ccde1cb | 2993 | |
0f459d16 | 2994 | io_mem_watch = cpu_register_io_memory(0, watch_mem_read, |
6658ffb8 | 2995 | watch_mem_write, NULL); |
94a6b54f PB |
2996 | #ifdef USE_KQEMU |
2997 | if (kqemu_phys_ram_base) { | |
2998 | /* alloc dirty bits array */ | |
2999 | phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS); | |
3000 | memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS); | |
3001 | } | |
3002 | #endif | |
33417e70 FB |
3003 | } |
3004 | ||
3005 | /* mem_read and mem_write are arrays of functions containing the | |
3006 | function to access byte (index 0), word (index 1) and dword (index | |
3ee89922 BS |
3007 | 2). Functions can be omitted with a NULL function pointer. The |
3008 | registered functions may be modified dynamically later. | |
3009 | If io_index is non zero, the corresponding io zone is | |
4254fab8 BS |
3010 | modified. If it is zero, a new io zone is allocated. The return |
3011 | value can be used with cpu_register_physical_memory(). (-1) is | |
3012 | returned if error. */ | |
33417e70 FB |
3013 | int cpu_register_io_memory(int io_index, |
3014 | CPUReadMemoryFunc **mem_read, | |
a4193c8a FB |
3015 | CPUWriteMemoryFunc **mem_write, |
3016 | void *opaque) | |
33417e70 | 3017 | { |
4254fab8 | 3018 | int i, subwidth = 0; |
33417e70 FB |
3019 | |
3020 | if (io_index <= 0) { | |
88715657 AL |
3021 | io_index = get_free_io_mem_idx(); |
3022 | if (io_index == -1) | |
3023 | return io_index; | |
33417e70 FB |
3024 | } else { |
3025 | if (io_index >= IO_MEM_NB_ENTRIES) | |
3026 | return -1; | |
3027 | } | |
b5ff1b31 | 3028 | |
33417e70 | 3029 | for(i = 0;i < 3; i++) { |
4254fab8 BS |
3030 | if (!mem_read[i] || !mem_write[i]) |
3031 | subwidth = IO_MEM_SUBWIDTH; | |
33417e70 FB |
3032 | io_mem_read[io_index][i] = mem_read[i]; |
3033 | io_mem_write[io_index][i] = mem_write[i]; | |
3034 | } | |
a4193c8a | 3035 | io_mem_opaque[io_index] = opaque; |
4254fab8 | 3036 | return (io_index << IO_MEM_SHIFT) | subwidth; |
33417e70 | 3037 | } |
61382a50 | 3038 | |
88715657 AL |
3039 | void cpu_unregister_io_memory(int io_table_address) |
3040 | { | |
3041 | int i; | |
3042 | int io_index = io_table_address >> IO_MEM_SHIFT; | |
3043 | ||
3044 | for (i=0;i < 3; i++) { | |
3045 | io_mem_read[io_index][i] = unassigned_mem_read[i]; | |
3046 | io_mem_write[io_index][i] = unassigned_mem_write[i]; | |
3047 | } | |
3048 | io_mem_opaque[io_index] = NULL; | |
3049 | io_mem_used[io_index] = 0; | |
3050 | } | |
3051 | ||
8926b517 FB |
3052 | CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index) |
3053 | { | |
3054 | return io_mem_write[io_index >> IO_MEM_SHIFT]; | |
3055 | } | |
3056 | ||
3057 | CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index) | |
3058 | { | |
3059 | return io_mem_read[io_index >> IO_MEM_SHIFT]; | |
3060 | } | |
3061 | ||
e2eef170 PB |
3062 | #endif /* !defined(CONFIG_USER_ONLY) */ |
3063 | ||
13eb76e0 FB |
3064 | /* physical memory access (slow version, mainly for debug) */ |
3065 | #if defined(CONFIG_USER_ONLY) | |
5fafdf24 | 3066 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
3067 | int len, int is_write) |
3068 | { | |
3069 | int l, flags; | |
3070 | target_ulong page; | |
53a5960a | 3071 | void * p; |
13eb76e0 FB |
3072 | |
3073 | while (len > 0) { | |
3074 | page = addr & TARGET_PAGE_MASK; | |
3075 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3076 | if (l > len) | |
3077 | l = len; | |
3078 | flags = page_get_flags(page); | |
3079 | if (!(flags & PAGE_VALID)) | |
3080 | return; | |
3081 | if (is_write) { | |
3082 | if (!(flags & PAGE_WRITE)) | |
3083 | return; | |
579a97f7 | 3084 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3085 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
579a97f7 FB |
3086 | /* FIXME - should this return an error rather than just fail? */ |
3087 | return; | |
72fb7daa AJ |
3088 | memcpy(p, buf, l); |
3089 | unlock_user(p, addr, l); | |
13eb76e0 FB |
3090 | } else { |
3091 | if (!(flags & PAGE_READ)) | |
3092 | return; | |
579a97f7 | 3093 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3094 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
579a97f7 FB |
3095 | /* FIXME - should this return an error rather than just fail? */ |
3096 | return; | |
72fb7daa | 3097 | memcpy(buf, p, l); |
5b257578 | 3098 | unlock_user(p, addr, 0); |
13eb76e0 FB |
3099 | } |
3100 | len -= l; | |
3101 | buf += l; | |
3102 | addr += l; | |
3103 | } | |
3104 | } | |
8df1cd07 | 3105 | |
13eb76e0 | 3106 | #else |
5fafdf24 | 3107 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
3108 | int len, int is_write) |
3109 | { | |
3110 | int l, io_index; | |
3111 | uint8_t *ptr; | |
3112 | uint32_t val; | |
2e12669a FB |
3113 | target_phys_addr_t page; |
3114 | unsigned long pd; | |
92e873b9 | 3115 | PhysPageDesc *p; |
3b46e624 | 3116 | |
13eb76e0 FB |
3117 | while (len > 0) { |
3118 | page = addr & TARGET_PAGE_MASK; | |
3119 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3120 | if (l > len) | |
3121 | l = len; | |
92e873b9 | 3122 | p = phys_page_find(page >> TARGET_PAGE_BITS); |
13eb76e0 FB |
3123 | if (!p) { |
3124 | pd = IO_MEM_UNASSIGNED; | |
3125 | } else { | |
3126 | pd = p->phys_offset; | |
3127 | } | |
3b46e624 | 3128 | |
13eb76e0 | 3129 | if (is_write) { |
3a7d929e | 3130 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
6c2934db | 3131 | target_phys_addr_t addr1 = addr; |
13eb76e0 | 3132 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 | 3133 | if (p) |
6c2934db | 3134 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
6a00d601 FB |
3135 | /* XXX: could force cpu_single_env to NULL to avoid |
3136 | potential bugs */ | |
6c2934db | 3137 | if (l >= 4 && ((addr1 & 3) == 0)) { |
1c213d19 | 3138 | /* 32 bit write access */ |
c27004ec | 3139 | val = ldl_p(buf); |
6c2934db | 3140 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val); |
13eb76e0 | 3141 | l = 4; |
6c2934db | 3142 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
1c213d19 | 3143 | /* 16 bit write access */ |
c27004ec | 3144 | val = lduw_p(buf); |
6c2934db | 3145 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val); |
13eb76e0 FB |
3146 | l = 2; |
3147 | } else { | |
1c213d19 | 3148 | /* 8 bit write access */ |
c27004ec | 3149 | val = ldub_p(buf); |
6c2934db | 3150 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val); |
13eb76e0 FB |
3151 | l = 1; |
3152 | } | |
3153 | } else { | |
b448f2f3 FB |
3154 | unsigned long addr1; |
3155 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
13eb76e0 | 3156 | /* RAM case */ |
5579c7f3 | 3157 | ptr = qemu_get_ram_ptr(addr1); |
13eb76e0 | 3158 | memcpy(ptr, buf, l); |
3a7d929e FB |
3159 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3160 | /* invalidate code */ | |
3161 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3162 | /* set dirty bit */ | |
5fafdf24 | 3163 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
f23db169 | 3164 | (0xff & ~CODE_DIRTY_FLAG); |
3a7d929e | 3165 | } |
13eb76e0 FB |
3166 | } |
3167 | } else { | |
5fafdf24 | 3168 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3169 | !(pd & IO_MEM_ROMD)) { |
6c2934db | 3170 | target_phys_addr_t addr1 = addr; |
13eb76e0 FB |
3171 | /* I/O case */ |
3172 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 | 3173 | if (p) |
6c2934db AJ |
3174 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
3175 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
13eb76e0 | 3176 | /* 32 bit read access */ |
6c2934db | 3177 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1); |
c27004ec | 3178 | stl_p(buf, val); |
13eb76e0 | 3179 | l = 4; |
6c2934db | 3180 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
13eb76e0 | 3181 | /* 16 bit read access */ |
6c2934db | 3182 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1); |
c27004ec | 3183 | stw_p(buf, val); |
13eb76e0 FB |
3184 | l = 2; |
3185 | } else { | |
1c213d19 | 3186 | /* 8 bit read access */ |
6c2934db | 3187 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1); |
c27004ec | 3188 | stb_p(buf, val); |
13eb76e0 FB |
3189 | l = 1; |
3190 | } | |
3191 | } else { | |
3192 | /* RAM case */ | |
5579c7f3 | 3193 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
13eb76e0 FB |
3194 | (addr & ~TARGET_PAGE_MASK); |
3195 | memcpy(buf, ptr, l); | |
3196 | } | |
3197 | } | |
3198 | len -= l; | |
3199 | buf += l; | |
3200 | addr += l; | |
3201 | } | |
3202 | } | |
8df1cd07 | 3203 | |
d0ecd2aa | 3204 | /* used for ROM loading : can write in RAM and ROM */ |
5fafdf24 | 3205 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
3206 | const uint8_t *buf, int len) |
3207 | { | |
3208 | int l; | |
3209 | uint8_t *ptr; | |
3210 | target_phys_addr_t page; | |
3211 | unsigned long pd; | |
3212 | PhysPageDesc *p; | |
3b46e624 | 3213 | |
d0ecd2aa FB |
3214 | while (len > 0) { |
3215 | page = addr & TARGET_PAGE_MASK; | |
3216 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3217 | if (l > len) | |
3218 | l = len; | |
3219 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3220 | if (!p) { | |
3221 | pd = IO_MEM_UNASSIGNED; | |
3222 | } else { | |
3223 | pd = p->phys_offset; | |
3224 | } | |
3b46e624 | 3225 | |
d0ecd2aa | 3226 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
2a4188a3 FB |
3227 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
3228 | !(pd & IO_MEM_ROMD)) { | |
d0ecd2aa FB |
3229 | /* do nothing */ |
3230 | } else { | |
3231 | unsigned long addr1; | |
3232 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3233 | /* ROM/RAM case */ | |
5579c7f3 | 3234 | ptr = qemu_get_ram_ptr(addr1); |
d0ecd2aa FB |
3235 | memcpy(ptr, buf, l); |
3236 | } | |
3237 | len -= l; | |
3238 | buf += l; | |
3239 | addr += l; | |
3240 | } | |
3241 | } | |
3242 | ||
6d16c2f8 AL |
3243 | typedef struct { |
3244 | void *buffer; | |
3245 | target_phys_addr_t addr; | |
3246 | target_phys_addr_t len; | |
3247 | } BounceBuffer; | |
3248 | ||
3249 | static BounceBuffer bounce; | |
3250 | ||
ba223c29 AL |
3251 | typedef struct MapClient { |
3252 | void *opaque; | |
3253 | void (*callback)(void *opaque); | |
3254 | LIST_ENTRY(MapClient) link; | |
3255 | } MapClient; | |
3256 | ||
3257 | static LIST_HEAD(map_client_list, MapClient) map_client_list | |
3258 | = LIST_HEAD_INITIALIZER(map_client_list); | |
3259 | ||
3260 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
3261 | { | |
3262 | MapClient *client = qemu_malloc(sizeof(*client)); | |
3263 | ||
3264 | client->opaque = opaque; | |
3265 | client->callback = callback; | |
3266 | LIST_INSERT_HEAD(&map_client_list, client, link); | |
3267 | return client; | |
3268 | } | |
3269 | ||
3270 | void cpu_unregister_map_client(void *_client) | |
3271 | { | |
3272 | MapClient *client = (MapClient *)_client; | |
3273 | ||
3274 | LIST_REMOVE(client, link); | |
3275 | } | |
3276 | ||
3277 | static void cpu_notify_map_clients(void) | |
3278 | { | |
3279 | MapClient *client; | |
3280 | ||
3281 | while (!LIST_EMPTY(&map_client_list)) { | |
3282 | client = LIST_FIRST(&map_client_list); | |
3283 | client->callback(client->opaque); | |
3284 | LIST_REMOVE(client, link); | |
3285 | } | |
3286 | } | |
3287 | ||
6d16c2f8 AL |
3288 | /* Map a physical memory region into a host virtual address. |
3289 | * May map a subset of the requested range, given by and returned in *plen. | |
3290 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3291 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3292 | * Use cpu_register_map_client() to know when retrying the map operation is |
3293 | * likely to succeed. | |
6d16c2f8 AL |
3294 | */ |
3295 | void *cpu_physical_memory_map(target_phys_addr_t addr, | |
3296 | target_phys_addr_t *plen, | |
3297 | int is_write) | |
3298 | { | |
3299 | target_phys_addr_t len = *plen; | |
3300 | target_phys_addr_t done = 0; | |
3301 | int l; | |
3302 | uint8_t *ret = NULL; | |
3303 | uint8_t *ptr; | |
3304 | target_phys_addr_t page; | |
3305 | unsigned long pd; | |
3306 | PhysPageDesc *p; | |
3307 | unsigned long addr1; | |
3308 | ||
3309 | while (len > 0) { | |
3310 | page = addr & TARGET_PAGE_MASK; | |
3311 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3312 | if (l > len) | |
3313 | l = len; | |
3314 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3315 | if (!p) { | |
3316 | pd = IO_MEM_UNASSIGNED; | |
3317 | } else { | |
3318 | pd = p->phys_offset; | |
3319 | } | |
3320 | ||
3321 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3322 | if (done || bounce.buffer) { | |
3323 | break; | |
3324 | } | |
3325 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
3326 | bounce.addr = addr; | |
3327 | bounce.len = l; | |
3328 | if (!is_write) { | |
3329 | cpu_physical_memory_rw(addr, bounce.buffer, l, 0); | |
3330 | } | |
3331 | ptr = bounce.buffer; | |
3332 | } else { | |
3333 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
5579c7f3 | 3334 | ptr = qemu_get_ram_ptr(addr1); |
6d16c2f8 AL |
3335 | } |
3336 | if (!done) { | |
3337 | ret = ptr; | |
3338 | } else if (ret + done != ptr) { | |
3339 | break; | |
3340 | } | |
3341 | ||
3342 | len -= l; | |
3343 | addr += l; | |
3344 | done += l; | |
3345 | } | |
3346 | *plen = done; | |
3347 | return ret; | |
3348 | } | |
3349 | ||
3350 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map(). | |
3351 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
3352 | * the amount of memory that was actually read or written by the caller. | |
3353 | */ | |
3354 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, | |
3355 | int is_write, target_phys_addr_t access_len) | |
3356 | { | |
3357 | if (buffer != bounce.buffer) { | |
3358 | if (is_write) { | |
5579c7f3 | 3359 | ram_addr_t addr1 = qemu_ram_addr_from_host(buffer); |
6d16c2f8 AL |
3360 | while (access_len) { |
3361 | unsigned l; | |
3362 | l = TARGET_PAGE_SIZE; | |
3363 | if (l > access_len) | |
3364 | l = access_len; | |
3365 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3366 | /* invalidate code */ | |
3367 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3368 | /* set dirty bit */ | |
3369 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3370 | (0xff & ~CODE_DIRTY_FLAG); | |
3371 | } | |
3372 | addr1 += l; | |
3373 | access_len -= l; | |
3374 | } | |
3375 | } | |
3376 | return; | |
3377 | } | |
3378 | if (is_write) { | |
3379 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); | |
3380 | } | |
3381 | qemu_free(bounce.buffer); | |
3382 | bounce.buffer = NULL; | |
ba223c29 | 3383 | cpu_notify_map_clients(); |
6d16c2f8 | 3384 | } |
d0ecd2aa | 3385 | |
8df1cd07 FB |
3386 | /* warning: addr must be aligned */ |
3387 | uint32_t ldl_phys(target_phys_addr_t addr) | |
3388 | { | |
3389 | int io_index; | |
3390 | uint8_t *ptr; | |
3391 | uint32_t val; | |
3392 | unsigned long pd; | |
3393 | PhysPageDesc *p; | |
3394 | ||
3395 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3396 | if (!p) { | |
3397 | pd = IO_MEM_UNASSIGNED; | |
3398 | } else { | |
3399 | pd = p->phys_offset; | |
3400 | } | |
3b46e624 | 3401 | |
5fafdf24 | 3402 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3403 | !(pd & IO_MEM_ROMD)) { |
8df1cd07 FB |
3404 | /* I/O case */ |
3405 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3406 | if (p) |
3407 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3408 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
3409 | } else { | |
3410 | /* RAM case */ | |
5579c7f3 | 3411 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
3412 | (addr & ~TARGET_PAGE_MASK); |
3413 | val = ldl_p(ptr); | |
3414 | } | |
3415 | return val; | |
3416 | } | |
3417 | ||
84b7b8e7 FB |
3418 | /* warning: addr must be aligned */ |
3419 | uint64_t ldq_phys(target_phys_addr_t addr) | |
3420 | { | |
3421 | int io_index; | |
3422 | uint8_t *ptr; | |
3423 | uint64_t val; | |
3424 | unsigned long pd; | |
3425 | PhysPageDesc *p; | |
3426 | ||
3427 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3428 | if (!p) { | |
3429 | pd = IO_MEM_UNASSIGNED; | |
3430 | } else { | |
3431 | pd = p->phys_offset; | |
3432 | } | |
3b46e624 | 3433 | |
2a4188a3 FB |
3434 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
3435 | !(pd & IO_MEM_ROMD)) { | |
84b7b8e7 FB |
3436 | /* I/O case */ |
3437 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3438 | if (p) |
3439 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
84b7b8e7 FB |
3440 | #ifdef TARGET_WORDS_BIGENDIAN |
3441 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
3442 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
3443 | #else | |
3444 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3445 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
3446 | #endif | |
3447 | } else { | |
3448 | /* RAM case */ | |
5579c7f3 | 3449 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
84b7b8e7 FB |
3450 | (addr & ~TARGET_PAGE_MASK); |
3451 | val = ldq_p(ptr); | |
3452 | } | |
3453 | return val; | |
3454 | } | |
3455 | ||
aab33094 FB |
3456 | /* XXX: optimize */ |
3457 | uint32_t ldub_phys(target_phys_addr_t addr) | |
3458 | { | |
3459 | uint8_t val; | |
3460 | cpu_physical_memory_read(addr, &val, 1); | |
3461 | return val; | |
3462 | } | |
3463 | ||
3464 | /* XXX: optimize */ | |
3465 | uint32_t lduw_phys(target_phys_addr_t addr) | |
3466 | { | |
3467 | uint16_t val; | |
3468 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
3469 | return tswap16(val); | |
3470 | } | |
3471 | ||
8df1cd07 FB |
3472 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3473 | and the code inside is not invalidated. It is useful if the dirty | |
3474 | bits are used to track modified PTEs */ | |
3475 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
3476 | { | |
3477 | int io_index; | |
3478 | uint8_t *ptr; | |
3479 | unsigned long pd; | |
3480 | PhysPageDesc *p; | |
3481 | ||
3482 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3483 | if (!p) { | |
3484 | pd = IO_MEM_UNASSIGNED; | |
3485 | } else { | |
3486 | pd = p->phys_offset; | |
3487 | } | |
3b46e624 | 3488 | |
3a7d929e | 3489 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3490 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3491 | if (p) |
3492 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3493 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3494 | } else { | |
74576198 | 3495 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
5579c7f3 | 3496 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 3497 | stl_p(ptr, val); |
74576198 AL |
3498 | |
3499 | if (unlikely(in_migration)) { | |
3500 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3501 | /* invalidate code */ | |
3502 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3503 | /* set dirty bit */ | |
3504 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3505 | (0xff & ~CODE_DIRTY_FLAG); | |
3506 | } | |
3507 | } | |
8df1cd07 FB |
3508 | } |
3509 | } | |
3510 | ||
bc98a7ef JM |
3511 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
3512 | { | |
3513 | int io_index; | |
3514 | uint8_t *ptr; | |
3515 | unsigned long pd; | |
3516 | PhysPageDesc *p; | |
3517 | ||
3518 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3519 | if (!p) { | |
3520 | pd = IO_MEM_UNASSIGNED; | |
3521 | } else { | |
3522 | pd = p->phys_offset; | |
3523 | } | |
3b46e624 | 3524 | |
bc98a7ef JM |
3525 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
3526 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3527 | if (p) |
3528 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
bc98a7ef JM |
3529 | #ifdef TARGET_WORDS_BIGENDIAN |
3530 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
3531 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
3532 | #else | |
3533 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3534 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
3535 | #endif | |
3536 | } else { | |
5579c7f3 | 3537 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
bc98a7ef JM |
3538 | (addr & ~TARGET_PAGE_MASK); |
3539 | stq_p(ptr, val); | |
3540 | } | |
3541 | } | |
3542 | ||
8df1cd07 | 3543 | /* warning: addr must be aligned */ |
8df1cd07 FB |
3544 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
3545 | { | |
3546 | int io_index; | |
3547 | uint8_t *ptr; | |
3548 | unsigned long pd; | |
3549 | PhysPageDesc *p; | |
3550 | ||
3551 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3552 | if (!p) { | |
3553 | pd = IO_MEM_UNASSIGNED; | |
3554 | } else { | |
3555 | pd = p->phys_offset; | |
3556 | } | |
3b46e624 | 3557 | |
3a7d929e | 3558 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3559 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3560 | if (p) |
3561 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3562 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3563 | } else { | |
3564 | unsigned long addr1; | |
3565 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3566 | /* RAM case */ | |
5579c7f3 | 3567 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 3568 | stl_p(ptr, val); |
3a7d929e FB |
3569 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3570 | /* invalidate code */ | |
3571 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3572 | /* set dirty bit */ | |
f23db169 FB |
3573 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
3574 | (0xff & ~CODE_DIRTY_FLAG); | |
3a7d929e | 3575 | } |
8df1cd07 FB |
3576 | } |
3577 | } | |
3578 | ||
aab33094 FB |
3579 | /* XXX: optimize */ |
3580 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3581 | { | |
3582 | uint8_t v = val; | |
3583 | cpu_physical_memory_write(addr, &v, 1); | |
3584 | } | |
3585 | ||
3586 | /* XXX: optimize */ | |
3587 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3588 | { | |
3589 | uint16_t v = tswap16(val); | |
3590 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3591 | } | |
3592 | ||
3593 | /* XXX: optimize */ | |
3594 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3595 | { | |
3596 | val = tswap64(val); | |
3597 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3598 | } | |
3599 | ||
13eb76e0 FB |
3600 | #endif |
3601 | ||
5e2972fd | 3602 | /* virtual memory access for debug (includes writing to ROM) */ |
5fafdf24 | 3603 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
b448f2f3 | 3604 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3605 | { |
3606 | int l; | |
9b3c35e0 JM |
3607 | target_phys_addr_t phys_addr; |
3608 | target_ulong page; | |
13eb76e0 FB |
3609 | |
3610 | while (len > 0) { | |
3611 | page = addr & TARGET_PAGE_MASK; | |
3612 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3613 | /* if no physical page mapped, return an error */ | |
3614 | if (phys_addr == -1) | |
3615 | return -1; | |
3616 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3617 | if (l > len) | |
3618 | l = len; | |
5e2972fd AL |
3619 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
3620 | #if !defined(CONFIG_USER_ONLY) | |
3621 | if (is_write) | |
3622 | cpu_physical_memory_write_rom(phys_addr, buf, l); | |
3623 | else | |
3624 | #endif | |
3625 | cpu_physical_memory_rw(phys_addr, buf, l, is_write); | |
13eb76e0 FB |
3626 | len -= l; |
3627 | buf += l; | |
3628 | addr += l; | |
3629 | } | |
3630 | return 0; | |
3631 | } | |
3632 | ||
2e70f6ef PB |
3633 | /* in deterministic execution mode, instructions doing device I/Os |
3634 | must be at the end of the TB */ | |
3635 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3636 | { | |
3637 | TranslationBlock *tb; | |
3638 | uint32_t n, cflags; | |
3639 | target_ulong pc, cs_base; | |
3640 | uint64_t flags; | |
3641 | ||
3642 | tb = tb_find_pc((unsigned long)retaddr); | |
3643 | if (!tb) { | |
3644 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3645 | retaddr); | |
3646 | } | |
3647 | n = env->icount_decr.u16.low + tb->icount; | |
3648 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3649 | /* Calculate how many instructions had been executed before the fault | |
bf20dc07 | 3650 | occurred. */ |
2e70f6ef PB |
3651 | n = n - env->icount_decr.u16.low; |
3652 | /* Generate a new TB ending on the I/O insn. */ | |
3653 | n++; | |
3654 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3655 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 3656 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
3657 | branch. */ |
3658 | #if defined(TARGET_MIPS) | |
3659 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3660 | env->active_tc.PC -= 4; | |
3661 | env->icount_decr.u16.low++; | |
3662 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3663 | } | |
3664 | #elif defined(TARGET_SH4) | |
3665 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3666 | && n > 1) { | |
3667 | env->pc -= 2; | |
3668 | env->icount_decr.u16.low++; | |
3669 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3670 | } | |
3671 | #endif | |
3672 | /* This should never happen. */ | |
3673 | if (n > CF_COUNT_MASK) | |
3674 | cpu_abort(env, "TB too big during recompile"); | |
3675 | ||
3676 | cflags = n | CF_LAST_IO; | |
3677 | pc = tb->pc; | |
3678 | cs_base = tb->cs_base; | |
3679 | flags = tb->flags; | |
3680 | tb_phys_invalidate(tb, -1); | |
3681 | /* FIXME: In theory this could raise an exception. In practice | |
3682 | we have already translated the block once so it's probably ok. */ | |
3683 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 3684 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
3685 | the first in the TB) then we end up generating a whole new TB and |
3686 | repeating the fault, which is horribly inefficient. | |
3687 | Better would be to execute just this insn uncached, or generate a | |
3688 | second new TB. */ | |
3689 | cpu_resume_from_signal(env, NULL); | |
3690 | } | |
3691 | ||
e3db7226 FB |
3692 | void dump_exec_info(FILE *f, |
3693 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3694 | { | |
3695 | int i, target_code_size, max_target_code_size; | |
3696 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3697 | TranslationBlock *tb; | |
3b46e624 | 3698 | |
e3db7226 FB |
3699 | target_code_size = 0; |
3700 | max_target_code_size = 0; | |
3701 | cross_page = 0; | |
3702 | direct_jmp_count = 0; | |
3703 | direct_jmp2_count = 0; | |
3704 | for(i = 0; i < nb_tbs; i++) { | |
3705 | tb = &tbs[i]; | |
3706 | target_code_size += tb->size; | |
3707 | if (tb->size > max_target_code_size) | |
3708 | max_target_code_size = tb->size; | |
3709 | if (tb->page_addr[1] != -1) | |
3710 | cross_page++; | |
3711 | if (tb->tb_next_offset[0] != 0xffff) { | |
3712 | direct_jmp_count++; | |
3713 | if (tb->tb_next_offset[1] != 0xffff) { | |
3714 | direct_jmp2_count++; | |
3715 | } | |
3716 | } | |
3717 | } | |
3718 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 3719 | cpu_fprintf(f, "Translation buffer state:\n"); |
26a5f13b FB |
3720 | cpu_fprintf(f, "gen code size %ld/%ld\n", |
3721 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3722 | cpu_fprintf(f, "TB count %d/%d\n", | |
3723 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 3724 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
3725 | nb_tbs ? target_code_size / nb_tbs : 0, |
3726 | max_target_code_size); | |
5fafdf24 | 3727 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
3728 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
3729 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
3730 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
3731 | cross_page, | |
e3db7226 FB |
3732 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
3733 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 3734 | direct_jmp_count, |
e3db7226 FB |
3735 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
3736 | direct_jmp2_count, | |
3737 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 3738 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
3739 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
3740 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3741 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 3742 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
3743 | } |
3744 | ||
5fafdf24 | 3745 | #if !defined(CONFIG_USER_ONLY) |
61382a50 FB |
3746 | |
3747 | #define MMUSUFFIX _cmmu | |
3748 | #define GETPC() NULL | |
3749 | #define env cpu_single_env | |
b769d8fe | 3750 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
3751 | |
3752 | #define SHIFT 0 | |
3753 | #include "softmmu_template.h" | |
3754 | ||
3755 | #define SHIFT 1 | |
3756 | #include "softmmu_template.h" | |
3757 | ||
3758 | #define SHIFT 2 | |
3759 | #include "softmmu_template.h" | |
3760 | ||
3761 | #define SHIFT 3 | |
3762 | #include "softmmu_template.h" | |
3763 | ||
3764 | #undef env | |
3765 | ||
3766 | #endif |