]> Git Repo - qemu.git/blame - include/fpu/softfloat.h
target-arm: Add SPSR entries for EL2/HYP and EL3/MON
[qemu.git] / include / fpu / softfloat.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
158142c2
FB
7/*============================================================================
8
9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
38#ifndef SOFTFLOAT_H
39#define SOFTFLOAT_H
40
75b5a697 41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
42#include <sunmath.h>
43#endif
44
158142c2 45#include <inttypes.h>
789ec7ce 46#include "config-host.h"
1de7afc9 47#include "qemu/osdep.h"
158142c2
FB
48
49/*----------------------------------------------------------------------------
50| Each of the following `typedef's defines the most convenient type that holds
51| integers of at least as many bits as specified. For example, `uint8' should
52| be the most convenient type that can hold unsigned integers of as many as
53| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
54| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
55| to the same as `int'.
56*----------------------------------------------------------------------------*/
750afe93 57typedef uint8_t flag;
158142c2
FB
58typedef uint8_t uint8;
59typedef int8_t int8;
158142c2
FB
60typedef unsigned int uint32;
61typedef signed int int32;
62typedef uint64_t uint64;
63typedef int64_t int64;
64
158142c2
FB
65#define LIT64( a ) a##LL
66#define INLINE static inline
67
158142c2
FB
68#define STATUS_PARAM , float_status *status
69#define STATUS(field) status->field
70#define STATUS_VAR , status
71
1d6bda35
FB
72/*----------------------------------------------------------------------------
73| Software IEC/IEEE floating-point ordering relations
74*----------------------------------------------------------------------------*/
75enum {
76 float_relation_less = -1,
77 float_relation_equal = 0,
78 float_relation_greater = 1,
79 float_relation_unordered = 2
80};
81
158142c2
FB
82/*----------------------------------------------------------------------------
83| Software IEC/IEEE floating-point types.
84*----------------------------------------------------------------------------*/
f090c9d4
PB
85/* Use structures for soft-float types. This prevents accidentally mixing
86 them with native int/float types. A sufficiently clever compiler and
87 sane ABI should be able to see though these structs. However
88 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
89//#define USE_SOFTFLOAT_STRUCT_TYPES
90#ifdef USE_SOFTFLOAT_STRUCT_TYPES
bb4d4bb3
PM
91typedef struct {
92 uint16_t v;
93} float16;
94#define float16_val(x) (((float16)(x)).v)
95#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
d5138cf4 96#define const_float16(x) { x }
f090c9d4
PB
97typedef struct {
98 uint32_t v;
99} float32;
100/* The cast ensures an error if the wrong type is passed. */
101#define float32_val(x) (((float32)(x)).v)
102#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
d5138cf4 103#define const_float32(x) { x }
f090c9d4
PB
104typedef struct {
105 uint64_t v;
106} float64;
107#define float64_val(x) (((float64)(x)).v)
108#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
d5138cf4 109#define const_float64(x) { x }
f090c9d4 110#else
bb4d4bb3 111typedef uint16_t float16;
158142c2
FB
112typedef uint32_t float32;
113typedef uint64_t float64;
bb4d4bb3 114#define float16_val(x) (x)
f090c9d4
PB
115#define float32_val(x) (x)
116#define float64_val(x) (x)
bb4d4bb3 117#define make_float16(x) (x)
f090c9d4
PB
118#define make_float32(x) (x)
119#define make_float64(x) (x)
d5138cf4
PM
120#define const_float16(x) (x)
121#define const_float32(x) (x)
122#define const_float64(x) (x)
f090c9d4 123#endif
158142c2
FB
124typedef struct {
125 uint64_t low;
126 uint16_t high;
127} floatx80;
f3218a8d 128#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
3bf7e40a 129#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
158142c2 130typedef struct {
e2542fe2 131#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
132 uint64_t high, low;
133#else
134 uint64_t low, high;
135#endif
136} float128;
789ec7ce 137#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
3bf7e40a 138#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
158142c2
FB
139
140/*----------------------------------------------------------------------------
141| Software IEC/IEEE floating-point underflow tininess-detection mode.
142*----------------------------------------------------------------------------*/
143enum {
144 float_tininess_after_rounding = 0,
145 float_tininess_before_rounding = 1
146};
147
148/*----------------------------------------------------------------------------
149| Software IEC/IEEE floating-point rounding mode.
150*----------------------------------------------------------------------------*/
151enum {
152 float_round_nearest_even = 0,
153 float_round_down = 1,
154 float_round_up = 2,
f9288a76
PM
155 float_round_to_zero = 3,
156 float_round_ties_away = 4,
158142c2
FB
157};
158
159/*----------------------------------------------------------------------------
160| Software IEC/IEEE floating-point exception flags.
161*----------------------------------------------------------------------------*/
162enum {
163 float_flag_invalid = 1,
164 float_flag_divbyzero = 4,
165 float_flag_overflow = 8,
166 float_flag_underflow = 16,
37d18660 167 float_flag_inexact = 32,
e6afc87f
PM
168 float_flag_input_denormal = 64,
169 float_flag_output_denormal = 128
158142c2
FB
170};
171
172typedef struct float_status {
173 signed char float_detect_tininess;
174 signed char float_rounding_mode;
175 signed char float_exception_flags;
158142c2 176 signed char floatx80_rounding_precision;
37d18660 177 /* should denormalised results go to zero and set the inexact flag? */
fe76d976 178 flag flush_to_zero;
37d18660
PM
179 /* should denormalised inputs go to zero and set the input_denormal flag? */
180 flag flush_inputs_to_zero;
5c7908ed 181 flag default_nan_mode;
158142c2
FB
182} float_status;
183
c29aca44
PM
184INLINE void set_float_detect_tininess(int val STATUS_PARAM)
185{
186 STATUS(float_detect_tininess) = val;
187}
879d096b
PM
188INLINE void set_float_rounding_mode(int val STATUS_PARAM)
189{
190 STATUS(float_rounding_mode) = val;
191}
192INLINE void set_float_exception_flags(int val STATUS_PARAM)
193{
194 STATUS(float_exception_flags) = val;
195}
196INLINE void set_floatx80_rounding_precision(int val STATUS_PARAM)
197{
198 STATUS(floatx80_rounding_precision) = val;
199}
fe76d976
PB
200INLINE void set_flush_to_zero(flag val STATUS_PARAM)
201{
202 STATUS(flush_to_zero) = val;
203}
37d18660
PM
204INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
205{
206 STATUS(flush_inputs_to_zero) = val;
207}
5c7908ed
PB
208INLINE void set_default_nan_mode(flag val STATUS_PARAM)
209{
210 STATUS(default_nan_mode) = val;
211}
879d096b
PM
212INLINE int get_float_detect_tininess(float_status *status)
213{
214 return STATUS(float_detect_tininess);
215}
216INLINE int get_float_rounding_mode(float_status *status)
217{
218 return STATUS(float_rounding_mode);
219}
1d6bda35
FB
220INLINE int get_float_exception_flags(float_status *status)
221{
222 return STATUS(float_exception_flags);
223}
879d096b
PM
224INLINE int get_floatx80_rounding_precision(float_status *status)
225{
226 return STATUS(floatx80_rounding_precision);
227}
228INLINE flag get_flush_to_zero(float_status *status)
229{
230 return STATUS(flush_to_zero);
231}
232INLINE flag get_flush_inputs_to_zero(float_status *status)
233{
234 return STATUS(flush_inputs_to_zero);
235}
236INLINE flag get_default_nan_mode(float_status *status)
237{
238 return STATUS(default_nan_mode);
239}
158142c2
FB
240
241/*----------------------------------------------------------------------------
242| Routine to raise any or all of the software IEC/IEEE floating-point
243| exception flags.
244*----------------------------------------------------------------------------*/
ec530c81 245void float_raise( int8 flags STATUS_PARAM);
158142c2 246
7baeabce
AB
247/*----------------------------------------------------------------------------
248| If `a' is denormal and we are in flush-to-zero mode then set the
249| input-denormal exception and return zero. Otherwise just return the value.
250*----------------------------------------------------------------------------*/
251float32 float32_squash_input_denormal(float32 a STATUS_PARAM);
252float64 float64_squash_input_denormal(float64 a STATUS_PARAM);
253
369be8f6
PM
254/*----------------------------------------------------------------------------
255| Options to indicate which negations to perform in float*_muladd()
256| Using these differs from negating an input or output before calling
257| the muladd function in that this means that a NaN doesn't have its
258| sign bit inverted before it is propagated.
67d43538
PM
259| We also support halving the result before rounding, as a special
260| case to support the ARM fused-sqrt-step instruction FRSQRTS.
369be8f6
PM
261*----------------------------------------------------------------------------*/
262enum {
263 float_muladd_negate_c = 1,
264 float_muladd_negate_product = 2,
66176802 265 float_muladd_negate_result = 4,
67d43538 266 float_muladd_halve_result = 8,
369be8f6
PM
267};
268
158142c2
FB
269/*----------------------------------------------------------------------------
270| Software IEC/IEEE integer-to-floating-point conversion routines.
271*----------------------------------------------------------------------------*/
c4850f9e
PM
272float32 int32_to_float32(int32_t STATUS_PARAM);
273float64 int32_to_float64(int32_t STATUS_PARAM);
274float32 uint32_to_float32(uint32_t STATUS_PARAM);
275float64 uint32_to_float64(uint32_t STATUS_PARAM);
276floatx80 int32_to_floatx80(int32_t STATUS_PARAM);
277float128 int32_to_float128(int32_t STATUS_PARAM);
278float32 int64_to_float32(int64_t STATUS_PARAM);
279float32 uint64_to_float32(uint64_t STATUS_PARAM);
280float64 int64_to_float64(int64_t STATUS_PARAM);
281float64 uint64_to_float64(uint64_t STATUS_PARAM);
282floatx80 int64_to_floatx80(int64_t STATUS_PARAM);
283float128 int64_to_float128(int64_t STATUS_PARAM);
284float128 uint64_to_float128(uint64_t STATUS_PARAM);
158142c2 285
8afbdaba
PM
286/* We provide the int16 versions for symmetry of API with float-to-int */
287INLINE float32 int16_to_float32(int16_t v STATUS_PARAM)
288{
289 return int32_to_float32(v STATUS_VAR);
290}
291
292INLINE float32 uint16_to_float32(uint16_t v STATUS_PARAM)
293{
294 return uint32_to_float32(v STATUS_VAR);
295}
296
297INLINE float64 int16_to_float64(int16_t v STATUS_PARAM)
298{
299 return int32_to_float64(v STATUS_VAR);
300}
301
302INLINE float64 uint16_to_float64(uint16_t v STATUS_PARAM)
303{
304 return uint32_to_float64(v STATUS_VAR);
305}
306
60011498
PB
307/*----------------------------------------------------------------------------
308| Software half-precision conversion routines.
309*----------------------------------------------------------------------------*/
bb4d4bb3
PM
310float16 float32_to_float16( float32, flag STATUS_PARAM );
311float32 float16_to_float32( float16, flag STATUS_PARAM );
14c9a07e
PM
312float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM);
313float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM);
bb4d4bb3
PM
314
315/*----------------------------------------------------------------------------
316| Software half-precision operations.
317*----------------------------------------------------------------------------*/
318int float16_is_quiet_nan( float16 );
319int float16_is_signaling_nan( float16 );
320float16 float16_maybe_silence_nan( float16 );
60011498 321
213ff4e6
MF
322INLINE int float16_is_any_nan(float16 a)
323{
324 return ((float16_val(a) & ~0x8000) > 0x7c00);
325}
326
8559666d
CL
327/*----------------------------------------------------------------------------
328| The pattern for a default generated half-precision NaN.
329*----------------------------------------------------------------------------*/
789ec7ce 330extern const float16 float16_default_nan;
8559666d 331
158142c2
FB
332/*----------------------------------------------------------------------------
333| Software IEC/IEEE single-precision conversion routines.
334*----------------------------------------------------------------------------*/
f581bf54
WN
335int_fast16_t float32_to_int16(float32 STATUS_PARAM);
336uint_fast16_t float32_to_uint16(float32 STATUS_PARAM);
94a49d86 337int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
5aea4c58 338uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
87b8cc3c
AF
339int32 float32_to_int32( float32 STATUS_PARAM );
340int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
341uint32 float32_to_uint32( float32 STATUS_PARAM );
342uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
343int64 float32_to_int64( float32 STATUS_PARAM );
2f18bbf9 344uint64 float32_to_uint64(float32 STATUS_PARAM);
a13d4489 345uint64 float32_to_uint64_round_to_zero(float32 STATUS_PARAM);
87b8cc3c 346int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
158142c2 347float64 float32_to_float64( float32 STATUS_PARAM );
158142c2 348floatx80 float32_to_floatx80( float32 STATUS_PARAM );
158142c2 349float128 float32_to_float128( float32 STATUS_PARAM );
158142c2
FB
350
351/*----------------------------------------------------------------------------
352| Software IEC/IEEE single-precision operations.
353*----------------------------------------------------------------------------*/
354float32 float32_round_to_int( float32 STATUS_PARAM );
355float32 float32_add( float32, float32 STATUS_PARAM );
356float32 float32_sub( float32, float32 STATUS_PARAM );
357float32 float32_mul( float32, float32 STATUS_PARAM );
358float32 float32_div( float32, float32 STATUS_PARAM );
359float32 float32_rem( float32, float32 STATUS_PARAM );
369be8f6 360float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
158142c2 361float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 362float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 363float32 float32_log2( float32 STATUS_PARAM );
b689362d 364int float32_eq( float32, float32 STATUS_PARAM );
750afe93
FB
365int float32_le( float32, float32 STATUS_PARAM );
366int float32_lt( float32, float32 STATUS_PARAM );
67b7861d 367int float32_unordered( float32, float32 STATUS_PARAM );
b689362d 368int float32_eq_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
369int float32_le_quiet( float32, float32 STATUS_PARAM );
370int float32_lt_quiet( float32, float32 STATUS_PARAM );
67b7861d 371int float32_unordered_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
372int float32_compare( float32, float32 STATUS_PARAM );
373int float32_compare_quiet( float32, float32 STATUS_PARAM );
274f1b04
PM
374float32 float32_min(float32, float32 STATUS_PARAM);
375float32 float32_max(float32, float32 STATUS_PARAM);
e17ab310
WN
376float32 float32_minnum(float32, float32 STATUS_PARAM);
377float32 float32_maxnum(float32, float32 STATUS_PARAM);
18569871 378int float32_is_quiet_nan( float32 );
750afe93 379int float32_is_signaling_nan( float32 );
b408dbde 380float32 float32_maybe_silence_nan( float32 );
9ee6e8bb 381float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 382
1d6bda35
FB
383INLINE float32 float32_abs(float32 a)
384{
37d18660
PM
385 /* Note that abs does *not* handle NaN specially, nor does
386 * it flush denormal inputs to zero.
387 */
f090c9d4 388 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
389}
390
391INLINE float32 float32_chs(float32 a)
392{
37d18660
PM
393 /* Note that chs does *not* handle NaN specially, nor does
394 * it flush denormal inputs to zero.
395 */
f090c9d4 396 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
397}
398
c52ab6f5
AJ
399INLINE int float32_is_infinity(float32 a)
400{
dadd71a7 401 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
402}
403
404INLINE int float32_is_neg(float32 a)
405{
406 return float32_val(a) >> 31;
407}
408
409INLINE int float32_is_zero(float32 a)
410{
411 return (float32_val(a) & 0x7fffffff) == 0;
412}
413
21d6ebde
PM
414INLINE int float32_is_any_nan(float32 a)
415{
416 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
417}
418
6f3300ad
PM
419INLINE int float32_is_zero_or_denormal(float32 a)
420{
421 return (float32_val(a) & 0x7f800000) == 0;
422}
423
c30fe7df
CL
424INLINE float32 float32_set_sign(float32 a, int sign)
425{
426 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
427}
428
f090c9d4 429#define float32_zero make_float32(0)
196cfc89 430#define float32_one make_float32(0x3f800000)
8229c991 431#define float32_ln2 make_float32(0x3f317218)
c4b4c77a 432#define float32_pi make_float32(0x40490fdb)
c30fe7df
CL
433#define float32_half make_float32(0x3f000000)
434#define float32_infinity make_float32(0x7f800000)
f090c9d4 435
8559666d
CL
436
437/*----------------------------------------------------------------------------
438| The pattern for a default generated single-precision NaN.
439*----------------------------------------------------------------------------*/
789ec7ce 440extern const float32 float32_default_nan;
8559666d 441
158142c2
FB
442/*----------------------------------------------------------------------------
443| Software IEC/IEEE double-precision conversion routines.
444*----------------------------------------------------------------------------*/
f581bf54
WN
445int_fast16_t float64_to_int16(float64 STATUS_PARAM);
446uint_fast16_t float64_to_uint16(float64 STATUS_PARAM);
94a49d86 447int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
5aea4c58 448uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
87b8cc3c
AF
449int32 float64_to_int32( float64 STATUS_PARAM );
450int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
451uint32 float64_to_uint32( float64 STATUS_PARAM );
452uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
453int64 float64_to_int64( float64 STATUS_PARAM );
454int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
455uint64 float64_to_uint64 (float64 a STATUS_PARAM);
456uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2 457float32 float64_to_float32( float64 STATUS_PARAM );
158142c2 458floatx80 float64_to_floatx80( float64 STATUS_PARAM );
158142c2 459float128 float64_to_float128( float64 STATUS_PARAM );
158142c2
FB
460
461/*----------------------------------------------------------------------------
462| Software IEC/IEEE double-precision operations.
463*----------------------------------------------------------------------------*/
464float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 465float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
466float64 float64_add( float64, float64 STATUS_PARAM );
467float64 float64_sub( float64, float64 STATUS_PARAM );
468float64 float64_mul( float64, float64 STATUS_PARAM );
469float64 float64_div( float64, float64 STATUS_PARAM );
470float64 float64_rem( float64, float64 STATUS_PARAM );
369be8f6 471float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
158142c2 472float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 473float64 float64_log2( float64 STATUS_PARAM );
b689362d 474int float64_eq( float64, float64 STATUS_PARAM );
750afe93
FB
475int float64_le( float64, float64 STATUS_PARAM );
476int float64_lt( float64, float64 STATUS_PARAM );
67b7861d 477int float64_unordered( float64, float64 STATUS_PARAM );
b689362d 478int float64_eq_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
479int float64_le_quiet( float64, float64 STATUS_PARAM );
480int float64_lt_quiet( float64, float64 STATUS_PARAM );
67b7861d 481int float64_unordered_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
482int float64_compare( float64, float64 STATUS_PARAM );
483int float64_compare_quiet( float64, float64 STATUS_PARAM );
274f1b04
PM
484float64 float64_min(float64, float64 STATUS_PARAM);
485float64 float64_max(float64, float64 STATUS_PARAM);
e17ab310
WN
486float64 float64_minnum(float64, float64 STATUS_PARAM);
487float64 float64_maxnum(float64, float64 STATUS_PARAM);
18569871 488int float64_is_quiet_nan( float64 a );
750afe93 489int float64_is_signaling_nan( float64 );
b408dbde 490float64 float64_maybe_silence_nan( float64 );
9ee6e8bb 491float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 492
1d6bda35
FB
493INLINE float64 float64_abs(float64 a)
494{
37d18660
PM
495 /* Note that abs does *not* handle NaN specially, nor does
496 * it flush denormal inputs to zero.
497 */
f090c9d4 498 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
499}
500
501INLINE float64 float64_chs(float64 a)
502{
37d18660
PM
503 /* Note that chs does *not* handle NaN specially, nor does
504 * it flush denormal inputs to zero.
505 */
f090c9d4 506 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
507}
508
c52ab6f5
AJ
509INLINE int float64_is_infinity(float64 a)
510{
511 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
512}
513
514INLINE int float64_is_neg(float64 a)
515{
516 return float64_val(a) >> 63;
517}
518
519INLINE int float64_is_zero(float64 a)
520{
521 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
522}
523
21d6ebde
PM
524INLINE int float64_is_any_nan(float64 a)
525{
526 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
527}
528
587eabfa
AJ
529INLINE int float64_is_zero_or_denormal(float64 a)
530{
531 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
532}
533
c30fe7df
CL
534INLINE float64 float64_set_sign(float64 a, int sign)
535{
536 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
537 | ((int64_t)sign << 63));
538}
539
f090c9d4 540#define float64_zero make_float64(0)
196cfc89 541#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 542#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
c4b4c77a 543#define float64_pi make_float64(0x400921fb54442d18LL)
c30fe7df
CL
544#define float64_half make_float64(0x3fe0000000000000LL)
545#define float64_infinity make_float64(0x7ff0000000000000LL)
f090c9d4 546
8559666d
CL
547/*----------------------------------------------------------------------------
548| The pattern for a default generated double-precision NaN.
549*----------------------------------------------------------------------------*/
789ec7ce 550extern const float64 float64_default_nan;
8559666d 551
158142c2
FB
552/*----------------------------------------------------------------------------
553| Software IEC/IEEE extended double-precision conversion routines.
554*----------------------------------------------------------------------------*/
87b8cc3c
AF
555int32 floatx80_to_int32( floatx80 STATUS_PARAM );
556int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
557int64 floatx80_to_int64( floatx80 STATUS_PARAM );
558int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
158142c2
FB
559float32 floatx80_to_float32( floatx80 STATUS_PARAM );
560float64 floatx80_to_float64( floatx80 STATUS_PARAM );
158142c2 561float128 floatx80_to_float128( floatx80 STATUS_PARAM );
158142c2
FB
562
563/*----------------------------------------------------------------------------
564| Software IEC/IEEE extended double-precision operations.
565*----------------------------------------------------------------------------*/
566floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
567floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
568floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
569floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
570floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
571floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
572floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
b689362d 573int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
574int floatx80_le( floatx80, floatx80 STATUS_PARAM );
575int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
67b7861d 576int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
b689362d 577int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
578int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
579int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
67b7861d 580int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
f6714d36
AJ
581int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
582int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
18569871 583int floatx80_is_quiet_nan( floatx80 );
750afe93 584int floatx80_is_signaling_nan( floatx80 );
f6a7d92a 585floatx80 floatx80_maybe_silence_nan( floatx80 );
9ee6e8bb 586floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 587
1d6bda35
FB
588INLINE floatx80 floatx80_abs(floatx80 a)
589{
590 a.high &= 0x7fff;
591 return a;
592}
593
594INLINE floatx80 floatx80_chs(floatx80 a)
595{
596 a.high ^= 0x8000;
597 return a;
598}
599
c52ab6f5
AJ
600INLINE int floatx80_is_infinity(floatx80 a)
601{
b76235e4 602 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
c52ab6f5
AJ
603}
604
605INLINE int floatx80_is_neg(floatx80 a)
606{
607 return a.high >> 15;
608}
609
610INLINE int floatx80_is_zero(floatx80 a)
611{
612 return (a.high & 0x7fff) == 0 && a.low == 0;
613}
614
587eabfa
AJ
615INLINE int floatx80_is_zero_or_denormal(floatx80 a)
616{
617 return (a.high & 0x7fff) == 0;
618}
619
2bed652f
PM
620INLINE int floatx80_is_any_nan(floatx80 a)
621{
622 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
623}
624
f3218a8d
AJ
625#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
626#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
627#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
c4b4c77a 628#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
f3218a8d
AJ
629#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
630#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
631
8559666d 632/*----------------------------------------------------------------------------
789ec7ce 633| The pattern for a default generated extended double-precision NaN.
8559666d 634*----------------------------------------------------------------------------*/
789ec7ce 635extern const floatx80 floatx80_default_nan;
8559666d 636
158142c2
FB
637/*----------------------------------------------------------------------------
638| Software IEC/IEEE quadruple-precision conversion routines.
639*----------------------------------------------------------------------------*/
87b8cc3c
AF
640int32 float128_to_int32( float128 STATUS_PARAM );
641int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
642int64 float128_to_int64( float128 STATUS_PARAM );
643int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
158142c2
FB
644float32 float128_to_float32( float128 STATUS_PARAM );
645float64 float128_to_float64( float128 STATUS_PARAM );
158142c2 646floatx80 float128_to_floatx80( float128 STATUS_PARAM );
158142c2
FB
647
648/*----------------------------------------------------------------------------
649| Software IEC/IEEE quadruple-precision operations.
650*----------------------------------------------------------------------------*/
651float128 float128_round_to_int( float128 STATUS_PARAM );
652float128 float128_add( float128, float128 STATUS_PARAM );
653float128 float128_sub( float128, float128 STATUS_PARAM );
654float128 float128_mul( float128, float128 STATUS_PARAM );
655float128 float128_div( float128, float128 STATUS_PARAM );
656float128 float128_rem( float128, float128 STATUS_PARAM );
657float128 float128_sqrt( float128 STATUS_PARAM );
b689362d 658int float128_eq( float128, float128 STATUS_PARAM );
750afe93
FB
659int float128_le( float128, float128 STATUS_PARAM );
660int float128_lt( float128, float128 STATUS_PARAM );
67b7861d 661int float128_unordered( float128, float128 STATUS_PARAM );
b689362d 662int float128_eq_quiet( float128, float128 STATUS_PARAM );
750afe93
FB
663int float128_le_quiet( float128, float128 STATUS_PARAM );
664int float128_lt_quiet( float128, float128 STATUS_PARAM );
67b7861d 665int float128_unordered_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
666int float128_compare( float128, float128 STATUS_PARAM );
667int float128_compare_quiet( float128, float128 STATUS_PARAM );
18569871 668int float128_is_quiet_nan( float128 );
750afe93 669int float128_is_signaling_nan( float128 );
f6a7d92a 670float128 float128_maybe_silence_nan( float128 );
9ee6e8bb 671float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 672
1d6bda35
FB
673INLINE float128 float128_abs(float128 a)
674{
675 a.high &= 0x7fffffffffffffffLL;
676 return a;
677}
678
679INLINE float128 float128_chs(float128 a)
680{
681 a.high ^= 0x8000000000000000LL;
682 return a;
683}
684
c52ab6f5
AJ
685INLINE int float128_is_infinity(float128 a)
686{
687 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
688}
689
690INLINE int float128_is_neg(float128 a)
691{
692 return a.high >> 63;
693}
694
695INLINE int float128_is_zero(float128 a)
696{
697 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
698}
699
587eabfa
AJ
700INLINE int float128_is_zero_or_denormal(float128 a)
701{
702 return (a.high & 0x7fff000000000000LL) == 0;
703}
704
2bed652f
PM
705INLINE int float128_is_any_nan(float128 a)
706{
707 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
708 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
709}
710
1e397ead
RH
711#define float128_zero make_float128(0, 0)
712
8559666d 713/*----------------------------------------------------------------------------
789ec7ce 714| The pattern for a default generated quadruple-precision NaN.
8559666d 715*----------------------------------------------------------------------------*/
789ec7ce 716extern const float128 float128_default_nan;
8559666d 717
158142c2 718#endif /* !SOFTFLOAT_H */
This page took 0.652952 seconds and 4 git commands to generate.