]>
Commit | Line | Data |
---|---|---|
8d725fac AF |
1 | /* |
2 | * QEMU float support | |
3 | * | |
4 | * Derived from SoftFloat. | |
5 | */ | |
6 | ||
158142c2 FB |
7 | /*============================================================================ |
8 | ||
9 | This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic | |
10 | Package, Release 2b. | |
11 | ||
12 | Written by John R. Hauser. This work was made possible in part by the | |
13 | International Computer Science Institute, located at Suite 600, 1947 Center | |
14 | Street, Berkeley, California 94704. Funding was partially provided by the | |
15 | National Science Foundation under grant MIP-9311980. The original version | |
16 | of this code was written as part of a project to build a fixed-point vector | |
17 | processor in collaboration with the University of California at Berkeley, | |
18 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
19 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | |
20 | arithmetic/SoftFloat.html'. | |
21 | ||
22 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has | |
23 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | |
24 | RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | |
25 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | |
26 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | |
27 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | |
28 | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | |
29 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | |
30 | ||
31 | Derivative works are acceptable, even for commercial purposes, so long as | |
32 | (1) the source code for the derivative work includes prominent notice that | |
33 | the work is derivative, and (2) the source code includes prominent notice with | |
34 | these four paragraphs for those parts of this code that are retained. | |
35 | ||
36 | =============================================================================*/ | |
37 | ||
38 | #ifndef SOFTFLOAT_H | |
39 | #define SOFTFLOAT_H | |
40 | ||
75b5a697 | 41 | #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH) |
0475a5ca TS |
42 | #include <sunmath.h> |
43 | #endif | |
44 | ||
158142c2 | 45 | #include <inttypes.h> |
789ec7ce | 46 | #include "config-host.h" |
1de7afc9 | 47 | #include "qemu/osdep.h" |
158142c2 FB |
48 | |
49 | /*---------------------------------------------------------------------------- | |
50 | | Each of the following `typedef's defines the most convenient type that holds | |
51 | | integers of at least as many bits as specified. For example, `uint8' should | |
52 | | be the most convenient type that can hold unsigned integers of as many as | |
53 | | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most | |
54 | | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed | |
55 | | to the same as `int'. | |
56 | *----------------------------------------------------------------------------*/ | |
750afe93 | 57 | typedef uint8_t flag; |
158142c2 FB |
58 | typedef uint8_t uint8; |
59 | typedef int8_t int8; | |
158142c2 FB |
60 | typedef unsigned int uint32; |
61 | typedef signed int int32; | |
62 | typedef uint64_t uint64; | |
63 | typedef int64_t int64; | |
64 | ||
158142c2 FB |
65 | #define LIT64( a ) a##LL |
66 | #define INLINE static inline | |
67 | ||
158142c2 FB |
68 | #define STATUS_PARAM , float_status *status |
69 | #define STATUS(field) status->field | |
70 | #define STATUS_VAR , status | |
71 | ||
1d6bda35 FB |
72 | /*---------------------------------------------------------------------------- |
73 | | Software IEC/IEEE floating-point ordering relations | |
74 | *----------------------------------------------------------------------------*/ | |
75 | enum { | |
76 | float_relation_less = -1, | |
77 | float_relation_equal = 0, | |
78 | float_relation_greater = 1, | |
79 | float_relation_unordered = 2 | |
80 | }; | |
81 | ||
158142c2 FB |
82 | /*---------------------------------------------------------------------------- |
83 | | Software IEC/IEEE floating-point types. | |
84 | *----------------------------------------------------------------------------*/ | |
f090c9d4 PB |
85 | /* Use structures for soft-float types. This prevents accidentally mixing |
86 | them with native int/float types. A sufficiently clever compiler and | |
87 | sane ABI should be able to see though these structs. However | |
88 | x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */ | |
89 | //#define USE_SOFTFLOAT_STRUCT_TYPES | |
90 | #ifdef USE_SOFTFLOAT_STRUCT_TYPES | |
bb4d4bb3 PM |
91 | typedef struct { |
92 | uint16_t v; | |
93 | } float16; | |
94 | #define float16_val(x) (((float16)(x)).v) | |
95 | #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; }) | |
d5138cf4 | 96 | #define const_float16(x) { x } |
f090c9d4 PB |
97 | typedef struct { |
98 | uint32_t v; | |
99 | } float32; | |
100 | /* The cast ensures an error if the wrong type is passed. */ | |
101 | #define float32_val(x) (((float32)(x)).v) | |
102 | #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; }) | |
d5138cf4 | 103 | #define const_float32(x) { x } |
f090c9d4 PB |
104 | typedef struct { |
105 | uint64_t v; | |
106 | } float64; | |
107 | #define float64_val(x) (((float64)(x)).v) | |
108 | #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; }) | |
d5138cf4 | 109 | #define const_float64(x) { x } |
f090c9d4 | 110 | #else |
bb4d4bb3 | 111 | typedef uint16_t float16; |
158142c2 FB |
112 | typedef uint32_t float32; |
113 | typedef uint64_t float64; | |
bb4d4bb3 | 114 | #define float16_val(x) (x) |
f090c9d4 PB |
115 | #define float32_val(x) (x) |
116 | #define float64_val(x) (x) | |
bb4d4bb3 | 117 | #define make_float16(x) (x) |
f090c9d4 PB |
118 | #define make_float32(x) (x) |
119 | #define make_float64(x) (x) | |
d5138cf4 PM |
120 | #define const_float16(x) (x) |
121 | #define const_float32(x) (x) | |
122 | #define const_float64(x) (x) | |
f090c9d4 | 123 | #endif |
158142c2 FB |
124 | typedef struct { |
125 | uint64_t low; | |
126 | uint16_t high; | |
127 | } floatx80; | |
f3218a8d | 128 | #define make_floatx80(exp, mant) ((floatx80) { mant, exp }) |
3bf7e40a | 129 | #define make_floatx80_init(exp, mant) { .low = mant, .high = exp } |
158142c2 | 130 | typedef struct { |
e2542fe2 | 131 | #ifdef HOST_WORDS_BIGENDIAN |
158142c2 FB |
132 | uint64_t high, low; |
133 | #else | |
134 | uint64_t low, high; | |
135 | #endif | |
136 | } float128; | |
789ec7ce | 137 | #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ }) |
3bf7e40a | 138 | #define make_float128_init(high_, low_) { .high = high_, .low = low_ } |
158142c2 FB |
139 | |
140 | /*---------------------------------------------------------------------------- | |
141 | | Software IEC/IEEE floating-point underflow tininess-detection mode. | |
142 | *----------------------------------------------------------------------------*/ | |
143 | enum { | |
144 | float_tininess_after_rounding = 0, | |
145 | float_tininess_before_rounding = 1 | |
146 | }; | |
147 | ||
148 | /*---------------------------------------------------------------------------- | |
149 | | Software IEC/IEEE floating-point rounding mode. | |
150 | *----------------------------------------------------------------------------*/ | |
151 | enum { | |
152 | float_round_nearest_even = 0, | |
153 | float_round_down = 1, | |
154 | float_round_up = 2, | |
f9288a76 PM |
155 | float_round_to_zero = 3, |
156 | float_round_ties_away = 4, | |
158142c2 FB |
157 | }; |
158 | ||
159 | /*---------------------------------------------------------------------------- | |
160 | | Software IEC/IEEE floating-point exception flags. | |
161 | *----------------------------------------------------------------------------*/ | |
162 | enum { | |
163 | float_flag_invalid = 1, | |
164 | float_flag_divbyzero = 4, | |
165 | float_flag_overflow = 8, | |
166 | float_flag_underflow = 16, | |
37d18660 | 167 | float_flag_inexact = 32, |
e6afc87f PM |
168 | float_flag_input_denormal = 64, |
169 | float_flag_output_denormal = 128 | |
158142c2 FB |
170 | }; |
171 | ||
172 | typedef struct float_status { | |
173 | signed char float_detect_tininess; | |
174 | signed char float_rounding_mode; | |
175 | signed char float_exception_flags; | |
158142c2 | 176 | signed char floatx80_rounding_precision; |
37d18660 | 177 | /* should denormalised results go to zero and set the inexact flag? */ |
fe76d976 | 178 | flag flush_to_zero; |
37d18660 PM |
179 | /* should denormalised inputs go to zero and set the input_denormal flag? */ |
180 | flag flush_inputs_to_zero; | |
5c7908ed | 181 | flag default_nan_mode; |
158142c2 FB |
182 | } float_status; |
183 | ||
c29aca44 PM |
184 | INLINE void set_float_detect_tininess(int val STATUS_PARAM) |
185 | { | |
186 | STATUS(float_detect_tininess) = val; | |
187 | } | |
879d096b PM |
188 | INLINE void set_float_rounding_mode(int val STATUS_PARAM) |
189 | { | |
190 | STATUS(float_rounding_mode) = val; | |
191 | } | |
192 | INLINE void set_float_exception_flags(int val STATUS_PARAM) | |
193 | { | |
194 | STATUS(float_exception_flags) = val; | |
195 | } | |
196 | INLINE void set_floatx80_rounding_precision(int val STATUS_PARAM) | |
197 | { | |
198 | STATUS(floatx80_rounding_precision) = val; | |
199 | } | |
fe76d976 PB |
200 | INLINE void set_flush_to_zero(flag val STATUS_PARAM) |
201 | { | |
202 | STATUS(flush_to_zero) = val; | |
203 | } | |
37d18660 PM |
204 | INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM) |
205 | { | |
206 | STATUS(flush_inputs_to_zero) = val; | |
207 | } | |
5c7908ed PB |
208 | INLINE void set_default_nan_mode(flag val STATUS_PARAM) |
209 | { | |
210 | STATUS(default_nan_mode) = val; | |
211 | } | |
879d096b PM |
212 | INLINE int get_float_detect_tininess(float_status *status) |
213 | { | |
214 | return STATUS(float_detect_tininess); | |
215 | } | |
216 | INLINE int get_float_rounding_mode(float_status *status) | |
217 | { | |
218 | return STATUS(float_rounding_mode); | |
219 | } | |
1d6bda35 FB |
220 | INLINE int get_float_exception_flags(float_status *status) |
221 | { | |
222 | return STATUS(float_exception_flags); | |
223 | } | |
879d096b PM |
224 | INLINE int get_floatx80_rounding_precision(float_status *status) |
225 | { | |
226 | return STATUS(floatx80_rounding_precision); | |
227 | } | |
228 | INLINE flag get_flush_to_zero(float_status *status) | |
229 | { | |
230 | return STATUS(flush_to_zero); | |
231 | } | |
232 | INLINE flag get_flush_inputs_to_zero(float_status *status) | |
233 | { | |
234 | return STATUS(flush_inputs_to_zero); | |
235 | } | |
236 | INLINE flag get_default_nan_mode(float_status *status) | |
237 | { | |
238 | return STATUS(default_nan_mode); | |
239 | } | |
158142c2 FB |
240 | |
241 | /*---------------------------------------------------------------------------- | |
242 | | Routine to raise any or all of the software IEC/IEEE floating-point | |
243 | | exception flags. | |
244 | *----------------------------------------------------------------------------*/ | |
ec530c81 | 245 | void float_raise( int8 flags STATUS_PARAM); |
158142c2 | 246 | |
7baeabce AB |
247 | /*---------------------------------------------------------------------------- |
248 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
249 | | input-denormal exception and return zero. Otherwise just return the value. | |
250 | *----------------------------------------------------------------------------*/ | |
251 | float32 float32_squash_input_denormal(float32 a STATUS_PARAM); | |
252 | float64 float64_squash_input_denormal(float64 a STATUS_PARAM); | |
253 | ||
369be8f6 PM |
254 | /*---------------------------------------------------------------------------- |
255 | | Options to indicate which negations to perform in float*_muladd() | |
256 | | Using these differs from negating an input or output before calling | |
257 | | the muladd function in that this means that a NaN doesn't have its | |
258 | | sign bit inverted before it is propagated. | |
67d43538 PM |
259 | | We also support halving the result before rounding, as a special |
260 | | case to support the ARM fused-sqrt-step instruction FRSQRTS. | |
369be8f6 PM |
261 | *----------------------------------------------------------------------------*/ |
262 | enum { | |
263 | float_muladd_negate_c = 1, | |
264 | float_muladd_negate_product = 2, | |
66176802 | 265 | float_muladd_negate_result = 4, |
67d43538 | 266 | float_muladd_halve_result = 8, |
369be8f6 PM |
267 | }; |
268 | ||
158142c2 FB |
269 | /*---------------------------------------------------------------------------- |
270 | | Software IEC/IEEE integer-to-floating-point conversion routines. | |
271 | *----------------------------------------------------------------------------*/ | |
c4850f9e PM |
272 | float32 int32_to_float32(int32_t STATUS_PARAM); |
273 | float64 int32_to_float64(int32_t STATUS_PARAM); | |
274 | float32 uint32_to_float32(uint32_t STATUS_PARAM); | |
275 | float64 uint32_to_float64(uint32_t STATUS_PARAM); | |
276 | floatx80 int32_to_floatx80(int32_t STATUS_PARAM); | |
277 | float128 int32_to_float128(int32_t STATUS_PARAM); | |
278 | float32 int64_to_float32(int64_t STATUS_PARAM); | |
279 | float32 uint64_to_float32(uint64_t STATUS_PARAM); | |
280 | float64 int64_to_float64(int64_t STATUS_PARAM); | |
281 | float64 uint64_to_float64(uint64_t STATUS_PARAM); | |
282 | floatx80 int64_to_floatx80(int64_t STATUS_PARAM); | |
283 | float128 int64_to_float128(int64_t STATUS_PARAM); | |
284 | float128 uint64_to_float128(uint64_t STATUS_PARAM); | |
158142c2 | 285 | |
8afbdaba PM |
286 | /* We provide the int16 versions for symmetry of API with float-to-int */ |
287 | INLINE float32 int16_to_float32(int16_t v STATUS_PARAM) | |
288 | { | |
289 | return int32_to_float32(v STATUS_VAR); | |
290 | } | |
291 | ||
292 | INLINE float32 uint16_to_float32(uint16_t v STATUS_PARAM) | |
293 | { | |
294 | return uint32_to_float32(v STATUS_VAR); | |
295 | } | |
296 | ||
297 | INLINE float64 int16_to_float64(int16_t v STATUS_PARAM) | |
298 | { | |
299 | return int32_to_float64(v STATUS_VAR); | |
300 | } | |
301 | ||
302 | INLINE float64 uint16_to_float64(uint16_t v STATUS_PARAM) | |
303 | { | |
304 | return uint32_to_float64(v STATUS_VAR); | |
305 | } | |
306 | ||
60011498 PB |
307 | /*---------------------------------------------------------------------------- |
308 | | Software half-precision conversion routines. | |
309 | *----------------------------------------------------------------------------*/ | |
bb4d4bb3 PM |
310 | float16 float32_to_float16( float32, flag STATUS_PARAM ); |
311 | float32 float16_to_float32( float16, flag STATUS_PARAM ); | |
14c9a07e PM |
312 | float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM); |
313 | float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM); | |
bb4d4bb3 PM |
314 | |
315 | /*---------------------------------------------------------------------------- | |
316 | | Software half-precision operations. | |
317 | *----------------------------------------------------------------------------*/ | |
318 | int float16_is_quiet_nan( float16 ); | |
319 | int float16_is_signaling_nan( float16 ); | |
320 | float16 float16_maybe_silence_nan( float16 ); | |
60011498 | 321 | |
213ff4e6 MF |
322 | INLINE int float16_is_any_nan(float16 a) |
323 | { | |
324 | return ((float16_val(a) & ~0x8000) > 0x7c00); | |
325 | } | |
326 | ||
8559666d CL |
327 | /*---------------------------------------------------------------------------- |
328 | | The pattern for a default generated half-precision NaN. | |
329 | *----------------------------------------------------------------------------*/ | |
789ec7ce | 330 | extern const float16 float16_default_nan; |
8559666d | 331 | |
158142c2 FB |
332 | /*---------------------------------------------------------------------------- |
333 | | Software IEC/IEEE single-precision conversion routines. | |
334 | *----------------------------------------------------------------------------*/ | |
f581bf54 WN |
335 | int_fast16_t float32_to_int16(float32 STATUS_PARAM); |
336 | uint_fast16_t float32_to_uint16(float32 STATUS_PARAM); | |
94a49d86 | 337 | int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM); |
5aea4c58 | 338 | uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM); |
87b8cc3c AF |
339 | int32 float32_to_int32( float32 STATUS_PARAM ); |
340 | int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM ); | |
341 | uint32 float32_to_uint32( float32 STATUS_PARAM ); | |
342 | uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM ); | |
343 | int64 float32_to_int64( float32 STATUS_PARAM ); | |
2f18bbf9 | 344 | uint64 float32_to_uint64(float32 STATUS_PARAM); |
a13d4489 | 345 | uint64 float32_to_uint64_round_to_zero(float32 STATUS_PARAM); |
87b8cc3c | 346 | int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM ); |
158142c2 | 347 | float64 float32_to_float64( float32 STATUS_PARAM ); |
158142c2 | 348 | floatx80 float32_to_floatx80( float32 STATUS_PARAM ); |
158142c2 | 349 | float128 float32_to_float128( float32 STATUS_PARAM ); |
158142c2 FB |
350 | |
351 | /*---------------------------------------------------------------------------- | |
352 | | Software IEC/IEEE single-precision operations. | |
353 | *----------------------------------------------------------------------------*/ | |
354 | float32 float32_round_to_int( float32 STATUS_PARAM ); | |
355 | float32 float32_add( float32, float32 STATUS_PARAM ); | |
356 | float32 float32_sub( float32, float32 STATUS_PARAM ); | |
357 | float32 float32_mul( float32, float32 STATUS_PARAM ); | |
358 | float32 float32_div( float32, float32 STATUS_PARAM ); | |
359 | float32 float32_rem( float32, float32 STATUS_PARAM ); | |
369be8f6 | 360 | float32 float32_muladd(float32, float32, float32, int STATUS_PARAM); |
158142c2 | 361 | float32 float32_sqrt( float32 STATUS_PARAM ); |
8229c991 | 362 | float32 float32_exp2( float32 STATUS_PARAM ); |
374dfc33 | 363 | float32 float32_log2( float32 STATUS_PARAM ); |
b689362d | 364 | int float32_eq( float32, float32 STATUS_PARAM ); |
750afe93 FB |
365 | int float32_le( float32, float32 STATUS_PARAM ); |
366 | int float32_lt( float32, float32 STATUS_PARAM ); | |
67b7861d | 367 | int float32_unordered( float32, float32 STATUS_PARAM ); |
b689362d | 368 | int float32_eq_quiet( float32, float32 STATUS_PARAM ); |
750afe93 FB |
369 | int float32_le_quiet( float32, float32 STATUS_PARAM ); |
370 | int float32_lt_quiet( float32, float32 STATUS_PARAM ); | |
67b7861d | 371 | int float32_unordered_quiet( float32, float32 STATUS_PARAM ); |
750afe93 FB |
372 | int float32_compare( float32, float32 STATUS_PARAM ); |
373 | int float32_compare_quiet( float32, float32 STATUS_PARAM ); | |
274f1b04 PM |
374 | float32 float32_min(float32, float32 STATUS_PARAM); |
375 | float32 float32_max(float32, float32 STATUS_PARAM); | |
e17ab310 WN |
376 | float32 float32_minnum(float32, float32 STATUS_PARAM); |
377 | float32 float32_maxnum(float32, float32 STATUS_PARAM); | |
18569871 | 378 | int float32_is_quiet_nan( float32 ); |
750afe93 | 379 | int float32_is_signaling_nan( float32 ); |
b408dbde | 380 | float32 float32_maybe_silence_nan( float32 ); |
9ee6e8bb | 381 | float32 float32_scalbn( float32, int STATUS_PARAM ); |
158142c2 | 382 | |
1d6bda35 FB |
383 | INLINE float32 float32_abs(float32 a) |
384 | { | |
37d18660 PM |
385 | /* Note that abs does *not* handle NaN specially, nor does |
386 | * it flush denormal inputs to zero. | |
387 | */ | |
f090c9d4 | 388 | return make_float32(float32_val(a) & 0x7fffffff); |
1d6bda35 FB |
389 | } |
390 | ||
391 | INLINE float32 float32_chs(float32 a) | |
392 | { | |
37d18660 PM |
393 | /* Note that chs does *not* handle NaN specially, nor does |
394 | * it flush denormal inputs to zero. | |
395 | */ | |
f090c9d4 | 396 | return make_float32(float32_val(a) ^ 0x80000000); |
1d6bda35 FB |
397 | } |
398 | ||
c52ab6f5 AJ |
399 | INLINE int float32_is_infinity(float32 a) |
400 | { | |
dadd71a7 | 401 | return (float32_val(a) & 0x7fffffff) == 0x7f800000; |
c52ab6f5 AJ |
402 | } |
403 | ||
404 | INLINE int float32_is_neg(float32 a) | |
405 | { | |
406 | return float32_val(a) >> 31; | |
407 | } | |
408 | ||
409 | INLINE int float32_is_zero(float32 a) | |
410 | { | |
411 | return (float32_val(a) & 0x7fffffff) == 0; | |
412 | } | |
413 | ||
21d6ebde PM |
414 | INLINE int float32_is_any_nan(float32 a) |
415 | { | |
416 | return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); | |
417 | } | |
418 | ||
6f3300ad PM |
419 | INLINE int float32_is_zero_or_denormal(float32 a) |
420 | { | |
421 | return (float32_val(a) & 0x7f800000) == 0; | |
422 | } | |
423 | ||
c30fe7df CL |
424 | INLINE float32 float32_set_sign(float32 a, int sign) |
425 | { | |
426 | return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31)); | |
427 | } | |
428 | ||
f090c9d4 | 429 | #define float32_zero make_float32(0) |
196cfc89 | 430 | #define float32_one make_float32(0x3f800000) |
8229c991 | 431 | #define float32_ln2 make_float32(0x3f317218) |
c4b4c77a | 432 | #define float32_pi make_float32(0x40490fdb) |
c30fe7df CL |
433 | #define float32_half make_float32(0x3f000000) |
434 | #define float32_infinity make_float32(0x7f800000) | |
f090c9d4 | 435 | |
8559666d CL |
436 | |
437 | /*---------------------------------------------------------------------------- | |
438 | | The pattern for a default generated single-precision NaN. | |
439 | *----------------------------------------------------------------------------*/ | |
789ec7ce | 440 | extern const float32 float32_default_nan; |
8559666d | 441 | |
158142c2 FB |
442 | /*---------------------------------------------------------------------------- |
443 | | Software IEC/IEEE double-precision conversion routines. | |
444 | *----------------------------------------------------------------------------*/ | |
f581bf54 WN |
445 | int_fast16_t float64_to_int16(float64 STATUS_PARAM); |
446 | uint_fast16_t float64_to_uint16(float64 STATUS_PARAM); | |
94a49d86 | 447 | int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM); |
5aea4c58 | 448 | uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM); |
87b8cc3c AF |
449 | int32 float64_to_int32( float64 STATUS_PARAM ); |
450 | int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM ); | |
451 | uint32 float64_to_uint32( float64 STATUS_PARAM ); | |
452 | uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); | |
453 | int64 float64_to_int64( float64 STATUS_PARAM ); | |
454 | int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM ); | |
455 | uint64 float64_to_uint64 (float64 a STATUS_PARAM); | |
456 | uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM); | |
158142c2 | 457 | float32 float64_to_float32( float64 STATUS_PARAM ); |
158142c2 | 458 | floatx80 float64_to_floatx80( float64 STATUS_PARAM ); |
158142c2 | 459 | float128 float64_to_float128( float64 STATUS_PARAM ); |
158142c2 FB |
460 | |
461 | /*---------------------------------------------------------------------------- | |
462 | | Software IEC/IEEE double-precision operations. | |
463 | *----------------------------------------------------------------------------*/ | |
464 | float64 float64_round_to_int( float64 STATUS_PARAM ); | |
e6e5906b | 465 | float64 float64_trunc_to_int( float64 STATUS_PARAM ); |
158142c2 FB |
466 | float64 float64_add( float64, float64 STATUS_PARAM ); |
467 | float64 float64_sub( float64, float64 STATUS_PARAM ); | |
468 | float64 float64_mul( float64, float64 STATUS_PARAM ); | |
469 | float64 float64_div( float64, float64 STATUS_PARAM ); | |
470 | float64 float64_rem( float64, float64 STATUS_PARAM ); | |
369be8f6 | 471 | float64 float64_muladd(float64, float64, float64, int STATUS_PARAM); |
158142c2 | 472 | float64 float64_sqrt( float64 STATUS_PARAM ); |
374dfc33 | 473 | float64 float64_log2( float64 STATUS_PARAM ); |
b689362d | 474 | int float64_eq( float64, float64 STATUS_PARAM ); |
750afe93 FB |
475 | int float64_le( float64, float64 STATUS_PARAM ); |
476 | int float64_lt( float64, float64 STATUS_PARAM ); | |
67b7861d | 477 | int float64_unordered( float64, float64 STATUS_PARAM ); |
b689362d | 478 | int float64_eq_quiet( float64, float64 STATUS_PARAM ); |
750afe93 FB |
479 | int float64_le_quiet( float64, float64 STATUS_PARAM ); |
480 | int float64_lt_quiet( float64, float64 STATUS_PARAM ); | |
67b7861d | 481 | int float64_unordered_quiet( float64, float64 STATUS_PARAM ); |
750afe93 FB |
482 | int float64_compare( float64, float64 STATUS_PARAM ); |
483 | int float64_compare_quiet( float64, float64 STATUS_PARAM ); | |
274f1b04 PM |
484 | float64 float64_min(float64, float64 STATUS_PARAM); |
485 | float64 float64_max(float64, float64 STATUS_PARAM); | |
e17ab310 WN |
486 | float64 float64_minnum(float64, float64 STATUS_PARAM); |
487 | float64 float64_maxnum(float64, float64 STATUS_PARAM); | |
18569871 | 488 | int float64_is_quiet_nan( float64 a ); |
750afe93 | 489 | int float64_is_signaling_nan( float64 ); |
b408dbde | 490 | float64 float64_maybe_silence_nan( float64 ); |
9ee6e8bb | 491 | float64 float64_scalbn( float64, int STATUS_PARAM ); |
158142c2 | 492 | |
1d6bda35 FB |
493 | INLINE float64 float64_abs(float64 a) |
494 | { | |
37d18660 PM |
495 | /* Note that abs does *not* handle NaN specially, nor does |
496 | * it flush denormal inputs to zero. | |
497 | */ | |
f090c9d4 | 498 | return make_float64(float64_val(a) & 0x7fffffffffffffffLL); |
1d6bda35 FB |
499 | } |
500 | ||
501 | INLINE float64 float64_chs(float64 a) | |
502 | { | |
37d18660 PM |
503 | /* Note that chs does *not* handle NaN specially, nor does |
504 | * it flush denormal inputs to zero. | |
505 | */ | |
f090c9d4 | 506 | return make_float64(float64_val(a) ^ 0x8000000000000000LL); |
1d6bda35 FB |
507 | } |
508 | ||
c52ab6f5 AJ |
509 | INLINE int float64_is_infinity(float64 a) |
510 | { | |
511 | return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL; | |
512 | } | |
513 | ||
514 | INLINE int float64_is_neg(float64 a) | |
515 | { | |
516 | return float64_val(a) >> 63; | |
517 | } | |
518 | ||
519 | INLINE int float64_is_zero(float64 a) | |
520 | { | |
521 | return (float64_val(a) & 0x7fffffffffffffffLL) == 0; | |
522 | } | |
523 | ||
21d6ebde PM |
524 | INLINE int float64_is_any_nan(float64 a) |
525 | { | |
526 | return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); | |
527 | } | |
528 | ||
587eabfa AJ |
529 | INLINE int float64_is_zero_or_denormal(float64 a) |
530 | { | |
531 | return (float64_val(a) & 0x7ff0000000000000LL) == 0; | |
532 | } | |
533 | ||
c30fe7df CL |
534 | INLINE float64 float64_set_sign(float64 a, int sign) |
535 | { | |
536 | return make_float64((float64_val(a) & 0x7fffffffffffffffULL) | |
537 | | ((int64_t)sign << 63)); | |
538 | } | |
539 | ||
f090c9d4 | 540 | #define float64_zero make_float64(0) |
196cfc89 | 541 | #define float64_one make_float64(0x3ff0000000000000LL) |
8229c991 | 542 | #define float64_ln2 make_float64(0x3fe62e42fefa39efLL) |
c4b4c77a | 543 | #define float64_pi make_float64(0x400921fb54442d18LL) |
c30fe7df CL |
544 | #define float64_half make_float64(0x3fe0000000000000LL) |
545 | #define float64_infinity make_float64(0x7ff0000000000000LL) | |
f090c9d4 | 546 | |
8559666d CL |
547 | /*---------------------------------------------------------------------------- |
548 | | The pattern for a default generated double-precision NaN. | |
549 | *----------------------------------------------------------------------------*/ | |
789ec7ce | 550 | extern const float64 float64_default_nan; |
8559666d | 551 | |
158142c2 FB |
552 | /*---------------------------------------------------------------------------- |
553 | | Software IEC/IEEE extended double-precision conversion routines. | |
554 | *----------------------------------------------------------------------------*/ | |
87b8cc3c AF |
555 | int32 floatx80_to_int32( floatx80 STATUS_PARAM ); |
556 | int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); | |
557 | int64 floatx80_to_int64( floatx80 STATUS_PARAM ); | |
558 | int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM ); | |
158142c2 FB |
559 | float32 floatx80_to_float32( floatx80 STATUS_PARAM ); |
560 | float64 floatx80_to_float64( floatx80 STATUS_PARAM ); | |
158142c2 | 561 | float128 floatx80_to_float128( floatx80 STATUS_PARAM ); |
158142c2 FB |
562 | |
563 | /*---------------------------------------------------------------------------- | |
564 | | Software IEC/IEEE extended double-precision operations. | |
565 | *----------------------------------------------------------------------------*/ | |
566 | floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); | |
567 | floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM ); | |
568 | floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM ); | |
569 | floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM ); | |
570 | floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM ); | |
571 | floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); | |
572 | floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); | |
b689362d | 573 | int floatx80_eq( floatx80, floatx80 STATUS_PARAM ); |
750afe93 FB |
574 | int floatx80_le( floatx80, floatx80 STATUS_PARAM ); |
575 | int floatx80_lt( floatx80, floatx80 STATUS_PARAM ); | |
67b7861d | 576 | int floatx80_unordered( floatx80, floatx80 STATUS_PARAM ); |
b689362d | 577 | int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM ); |
750afe93 FB |
578 | int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM ); |
579 | int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM ); | |
67b7861d | 580 | int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM ); |
f6714d36 AJ |
581 | int floatx80_compare( floatx80, floatx80 STATUS_PARAM ); |
582 | int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM ); | |
18569871 | 583 | int floatx80_is_quiet_nan( floatx80 ); |
750afe93 | 584 | int floatx80_is_signaling_nan( floatx80 ); |
f6a7d92a | 585 | floatx80 floatx80_maybe_silence_nan( floatx80 ); |
9ee6e8bb | 586 | floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM ); |
158142c2 | 587 | |
1d6bda35 FB |
588 | INLINE floatx80 floatx80_abs(floatx80 a) |
589 | { | |
590 | a.high &= 0x7fff; | |
591 | return a; | |
592 | } | |
593 | ||
594 | INLINE floatx80 floatx80_chs(floatx80 a) | |
595 | { | |
596 | a.high ^= 0x8000; | |
597 | return a; | |
598 | } | |
599 | ||
c52ab6f5 AJ |
600 | INLINE int floatx80_is_infinity(floatx80 a) |
601 | { | |
b76235e4 | 602 | return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL; |
c52ab6f5 AJ |
603 | } |
604 | ||
605 | INLINE int floatx80_is_neg(floatx80 a) | |
606 | { | |
607 | return a.high >> 15; | |
608 | } | |
609 | ||
610 | INLINE int floatx80_is_zero(floatx80 a) | |
611 | { | |
612 | return (a.high & 0x7fff) == 0 && a.low == 0; | |
613 | } | |
614 | ||
587eabfa AJ |
615 | INLINE int floatx80_is_zero_or_denormal(floatx80 a) |
616 | { | |
617 | return (a.high & 0x7fff) == 0; | |
618 | } | |
619 | ||
2bed652f PM |
620 | INLINE int floatx80_is_any_nan(floatx80 a) |
621 | { | |
622 | return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); | |
623 | } | |
624 | ||
f3218a8d AJ |
625 | #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL) |
626 | #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL) | |
627 | #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL) | |
c4b4c77a | 628 | #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL) |
f3218a8d AJ |
629 | #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL) |
630 | #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL) | |
631 | ||
8559666d | 632 | /*---------------------------------------------------------------------------- |
789ec7ce | 633 | | The pattern for a default generated extended double-precision NaN. |
8559666d | 634 | *----------------------------------------------------------------------------*/ |
789ec7ce | 635 | extern const floatx80 floatx80_default_nan; |
8559666d | 636 | |
158142c2 FB |
637 | /*---------------------------------------------------------------------------- |
638 | | Software IEC/IEEE quadruple-precision conversion routines. | |
639 | *----------------------------------------------------------------------------*/ | |
87b8cc3c AF |
640 | int32 float128_to_int32( float128 STATUS_PARAM ); |
641 | int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM ); | |
642 | int64 float128_to_int64( float128 STATUS_PARAM ); | |
643 | int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM ); | |
158142c2 FB |
644 | float32 float128_to_float32( float128 STATUS_PARAM ); |
645 | float64 float128_to_float64( float128 STATUS_PARAM ); | |
158142c2 | 646 | floatx80 float128_to_floatx80( float128 STATUS_PARAM ); |
158142c2 FB |
647 | |
648 | /*---------------------------------------------------------------------------- | |
649 | | Software IEC/IEEE quadruple-precision operations. | |
650 | *----------------------------------------------------------------------------*/ | |
651 | float128 float128_round_to_int( float128 STATUS_PARAM ); | |
652 | float128 float128_add( float128, float128 STATUS_PARAM ); | |
653 | float128 float128_sub( float128, float128 STATUS_PARAM ); | |
654 | float128 float128_mul( float128, float128 STATUS_PARAM ); | |
655 | float128 float128_div( float128, float128 STATUS_PARAM ); | |
656 | float128 float128_rem( float128, float128 STATUS_PARAM ); | |
657 | float128 float128_sqrt( float128 STATUS_PARAM ); | |
b689362d | 658 | int float128_eq( float128, float128 STATUS_PARAM ); |
750afe93 FB |
659 | int float128_le( float128, float128 STATUS_PARAM ); |
660 | int float128_lt( float128, float128 STATUS_PARAM ); | |
67b7861d | 661 | int float128_unordered( float128, float128 STATUS_PARAM ); |
b689362d | 662 | int float128_eq_quiet( float128, float128 STATUS_PARAM ); |
750afe93 FB |
663 | int float128_le_quiet( float128, float128 STATUS_PARAM ); |
664 | int float128_lt_quiet( float128, float128 STATUS_PARAM ); | |
67b7861d | 665 | int float128_unordered_quiet( float128, float128 STATUS_PARAM ); |
1f587329 BS |
666 | int float128_compare( float128, float128 STATUS_PARAM ); |
667 | int float128_compare_quiet( float128, float128 STATUS_PARAM ); | |
18569871 | 668 | int float128_is_quiet_nan( float128 ); |
750afe93 | 669 | int float128_is_signaling_nan( float128 ); |
f6a7d92a | 670 | float128 float128_maybe_silence_nan( float128 ); |
9ee6e8bb | 671 | float128 float128_scalbn( float128, int STATUS_PARAM ); |
158142c2 | 672 | |
1d6bda35 FB |
673 | INLINE float128 float128_abs(float128 a) |
674 | { | |
675 | a.high &= 0x7fffffffffffffffLL; | |
676 | return a; | |
677 | } | |
678 | ||
679 | INLINE float128 float128_chs(float128 a) | |
680 | { | |
681 | a.high ^= 0x8000000000000000LL; | |
682 | return a; | |
683 | } | |
684 | ||
c52ab6f5 AJ |
685 | INLINE int float128_is_infinity(float128 a) |
686 | { | |
687 | return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0; | |
688 | } | |
689 | ||
690 | INLINE int float128_is_neg(float128 a) | |
691 | { | |
692 | return a.high >> 63; | |
693 | } | |
694 | ||
695 | INLINE int float128_is_zero(float128 a) | |
696 | { | |
697 | return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; | |
698 | } | |
699 | ||
587eabfa AJ |
700 | INLINE int float128_is_zero_or_denormal(float128 a) |
701 | { | |
702 | return (a.high & 0x7fff000000000000LL) == 0; | |
703 | } | |
704 | ||
2bed652f PM |
705 | INLINE int float128_is_any_nan(float128 a) |
706 | { | |
707 | return ((a.high >> 48) & 0x7fff) == 0x7fff && | |
708 | ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); | |
709 | } | |
710 | ||
1e397ead RH |
711 | #define float128_zero make_float128(0, 0) |
712 | ||
8559666d | 713 | /*---------------------------------------------------------------------------- |
789ec7ce | 714 | | The pattern for a default generated quadruple-precision NaN. |
8559666d | 715 | *----------------------------------------------------------------------------*/ |
789ec7ce | 716 | extern const float128 float128_default_nan; |
8559666d | 717 | |
158142c2 | 718 | #endif /* !SOFTFLOAT_H */ |