]> Git Repo - qemu.git/blame - fpu/softfloat.h
softfloat: Prepend QEMU-style header with derivation notice
[qemu.git] / fpu / softfloat.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
158142c2
FB
7/*============================================================================
8
9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
38#ifndef SOFTFLOAT_H
39#define SOFTFLOAT_H
40
75b5a697 41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
42#include <sunmath.h>
43#endif
44
158142c2
FB
45#include <inttypes.h>
46#include "config.h"
47
48/*----------------------------------------------------------------------------
49| Each of the following `typedef's defines the most convenient type that holds
50| integers of at least as many bits as specified. For example, `uint8' should
51| be the most convenient type that can hold unsigned integers of as many as
52| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54| to the same as `int'.
55*----------------------------------------------------------------------------*/
750afe93 56typedef uint8_t flag;
158142c2
FB
57typedef uint8_t uint8;
58typedef int8_t int8;
b29fe3ed 59#ifndef _AIX
158142c2
FB
60typedef int uint16;
61typedef int int16;
b29fe3ed 62#endif
158142c2
FB
63typedef unsigned int uint32;
64typedef signed int int32;
65typedef uint64_t uint64;
66typedef int64_t int64;
67
68/*----------------------------------------------------------------------------
69| Each of the following `typedef's defines a type that holds integers
70| of _exactly_ the number of bits specified. For instance, for most
71| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
72| `unsigned short int' and `signed short int' (or `short int'), respectively.
73*----------------------------------------------------------------------------*/
74typedef uint8_t bits8;
75typedef int8_t sbits8;
76typedef uint16_t bits16;
77typedef int16_t sbits16;
78typedef uint32_t bits32;
79typedef int32_t sbits32;
80typedef uint64_t bits64;
81typedef int64_t sbits64;
82
83#define LIT64( a ) a##LL
84#define INLINE static inline
85
8559666d
CL
86#if defined(TARGET_MIPS) || defined(TARGET_SH4)
87#define SNAN_BIT_IS_ONE 1
88#else
89#define SNAN_BIT_IS_ONE 0
90#endif
91
158142c2
FB
92/*----------------------------------------------------------------------------
93| The macro `FLOATX80' must be defined to enable the extended double-precision
94| floating-point format `floatx80'. If this macro is not defined, the
95| `floatx80' type will not be defined, and none of the functions that either
96| input or output the `floatx80' type will be defined. The same applies to
97| the `FLOAT128' macro and the quadruple-precision format `float128'.
98*----------------------------------------------------------------------------*/
99#ifdef CONFIG_SOFTFLOAT
100/* bit exact soft float support */
101#define FLOATX80
102#define FLOAT128
103#else
104/* native float support */
71e72a19 105#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
158142c2
FB
106#define FLOATX80
107#endif
108#endif /* !CONFIG_SOFTFLOAT */
109
110#define STATUS_PARAM , float_status *status
111#define STATUS(field) status->field
112#define STATUS_VAR , status
113
1d6bda35
FB
114/*----------------------------------------------------------------------------
115| Software IEC/IEEE floating-point ordering relations
116*----------------------------------------------------------------------------*/
117enum {
118 float_relation_less = -1,
119 float_relation_equal = 0,
120 float_relation_greater = 1,
121 float_relation_unordered = 2
122};
123
158142c2
FB
124#ifdef CONFIG_SOFTFLOAT
125/*----------------------------------------------------------------------------
126| Software IEC/IEEE floating-point types.
127*----------------------------------------------------------------------------*/
f090c9d4
PB
128/* Use structures for soft-float types. This prevents accidentally mixing
129 them with native int/float types. A sufficiently clever compiler and
130 sane ABI should be able to see though these structs. However
131 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
132//#define USE_SOFTFLOAT_STRUCT_TYPES
133#ifdef USE_SOFTFLOAT_STRUCT_TYPES
bb4d4bb3
PM
134typedef struct {
135 uint16_t v;
136} float16;
137#define float16_val(x) (((float16)(x)).v)
138#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
d5138cf4 139#define const_float16(x) { x }
f090c9d4
PB
140typedef struct {
141 uint32_t v;
142} float32;
143/* The cast ensures an error if the wrong type is passed. */
144#define float32_val(x) (((float32)(x)).v)
145#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
d5138cf4 146#define const_float32(x) { x }
f090c9d4
PB
147typedef struct {
148 uint64_t v;
149} float64;
150#define float64_val(x) (((float64)(x)).v)
151#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
d5138cf4 152#define const_float64(x) { x }
f090c9d4 153#else
bb4d4bb3 154typedef uint16_t float16;
158142c2
FB
155typedef uint32_t float32;
156typedef uint64_t float64;
bb4d4bb3 157#define float16_val(x) (x)
f090c9d4
PB
158#define float32_val(x) (x)
159#define float64_val(x) (x)
bb4d4bb3 160#define make_float16(x) (x)
f090c9d4
PB
161#define make_float32(x) (x)
162#define make_float64(x) (x)
d5138cf4
PM
163#define const_float16(x) (x)
164#define const_float32(x) (x)
165#define const_float64(x) (x)
f090c9d4 166#endif
158142c2
FB
167#ifdef FLOATX80
168typedef struct {
169 uint64_t low;
170 uint16_t high;
171} floatx80;
172#endif
173#ifdef FLOAT128
174typedef struct {
e2542fe2 175#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
176 uint64_t high, low;
177#else
178 uint64_t low, high;
179#endif
180} float128;
181#endif
182
183/*----------------------------------------------------------------------------
184| Software IEC/IEEE floating-point underflow tininess-detection mode.
185*----------------------------------------------------------------------------*/
186enum {
187 float_tininess_after_rounding = 0,
188 float_tininess_before_rounding = 1
189};
190
191/*----------------------------------------------------------------------------
192| Software IEC/IEEE floating-point rounding mode.
193*----------------------------------------------------------------------------*/
194enum {
195 float_round_nearest_even = 0,
196 float_round_down = 1,
197 float_round_up = 2,
198 float_round_to_zero = 3
199};
200
201/*----------------------------------------------------------------------------
202| Software IEC/IEEE floating-point exception flags.
203*----------------------------------------------------------------------------*/
204enum {
205 float_flag_invalid = 1,
206 float_flag_divbyzero = 4,
207 float_flag_overflow = 8,
208 float_flag_underflow = 16,
37d18660
PM
209 float_flag_inexact = 32,
210 float_flag_input_denormal = 64
158142c2
FB
211};
212
213typedef struct float_status {
214 signed char float_detect_tininess;
215 signed char float_rounding_mode;
216 signed char float_exception_flags;
217#ifdef FLOATX80
218 signed char floatx80_rounding_precision;
219#endif
37d18660 220 /* should denormalised results go to zero and set the inexact flag? */
fe76d976 221 flag flush_to_zero;
37d18660
PM
222 /* should denormalised inputs go to zero and set the input_denormal flag? */
223 flag flush_inputs_to_zero;
5c7908ed 224 flag default_nan_mode;
158142c2
FB
225} float_status;
226
227void set_float_rounding_mode(int val STATUS_PARAM);
1d6bda35 228void set_float_exception_flags(int val STATUS_PARAM);
fe76d976
PB
229INLINE void set_flush_to_zero(flag val STATUS_PARAM)
230{
231 STATUS(flush_to_zero) = val;
232}
37d18660
PM
233INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
234{
235 STATUS(flush_inputs_to_zero) = val;
236}
5c7908ed
PB
237INLINE void set_default_nan_mode(flag val STATUS_PARAM)
238{
239 STATUS(default_nan_mode) = val;
240}
1d6bda35
FB
241INLINE int get_float_exception_flags(float_status *status)
242{
243 return STATUS(float_exception_flags);
244}
158142c2
FB
245#ifdef FLOATX80
246void set_floatx80_rounding_precision(int val STATUS_PARAM);
247#endif
248
249/*----------------------------------------------------------------------------
250| Routine to raise any or all of the software IEC/IEEE floating-point
251| exception flags.
252*----------------------------------------------------------------------------*/
ec530c81 253void float_raise( int8 flags STATUS_PARAM);
158142c2
FB
254
255/*----------------------------------------------------------------------------
256| Software IEC/IEEE integer-to-floating-point conversion routines.
257*----------------------------------------------------------------------------*/
258float32 int32_to_float32( int STATUS_PARAM );
259float64 int32_to_float64( int STATUS_PARAM );
1d6bda35
FB
260float32 uint32_to_float32( unsigned int STATUS_PARAM );
261float64 uint32_to_float64( unsigned int STATUS_PARAM );
158142c2
FB
262#ifdef FLOATX80
263floatx80 int32_to_floatx80( int STATUS_PARAM );
264#endif
265#ifdef FLOAT128
266float128 int32_to_float128( int STATUS_PARAM );
267#endif
268float32 int64_to_float32( int64_t STATUS_PARAM );
75d62a58 269float32 uint64_to_float32( uint64_t STATUS_PARAM );
158142c2 270float64 int64_to_float64( int64_t STATUS_PARAM );
75d62a58 271float64 uint64_to_float64( uint64_t STATUS_PARAM );
158142c2
FB
272#ifdef FLOATX80
273floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
274#endif
275#ifdef FLOAT128
276float128 int64_to_float128( int64_t STATUS_PARAM );
277#endif
278
60011498
PB
279/*----------------------------------------------------------------------------
280| Software half-precision conversion routines.
281*----------------------------------------------------------------------------*/
bb4d4bb3
PM
282float16 float32_to_float16( float32, flag STATUS_PARAM );
283float32 float16_to_float32( float16, flag STATUS_PARAM );
284
285/*----------------------------------------------------------------------------
286| Software half-precision operations.
287*----------------------------------------------------------------------------*/
288int float16_is_quiet_nan( float16 );
289int float16_is_signaling_nan( float16 );
290float16 float16_maybe_silence_nan( float16 );
60011498 291
8559666d
CL
292/*----------------------------------------------------------------------------
293| The pattern for a default generated half-precision NaN.
294*----------------------------------------------------------------------------*/
295#if defined(TARGET_ARM)
296#define float16_default_nan make_float16(0x7E00)
297#elif SNAN_BIT_IS_ONE
298#define float16_default_nan make_float16(0x7DFF)
299#else
300#define float16_default_nan make_float16(0xFE00)
301#endif
302
158142c2
FB
303/*----------------------------------------------------------------------------
304| Software IEC/IEEE single-precision conversion routines.
305*----------------------------------------------------------------------------*/
cbcef455
PM
306int float32_to_int16_round_to_zero( float32 STATUS_PARAM );
307unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
158142c2
FB
308int float32_to_int32( float32 STATUS_PARAM );
309int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
1d6bda35
FB
310unsigned int float32_to_uint32( float32 STATUS_PARAM );
311unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
158142c2
FB
312int64_t float32_to_int64( float32 STATUS_PARAM );
313int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
314float64 float32_to_float64( float32 STATUS_PARAM );
315#ifdef FLOATX80
316floatx80 float32_to_floatx80( float32 STATUS_PARAM );
317#endif
318#ifdef FLOAT128
319float128 float32_to_float128( float32 STATUS_PARAM );
320#endif
321
322/*----------------------------------------------------------------------------
323| Software IEC/IEEE single-precision operations.
324*----------------------------------------------------------------------------*/
325float32 float32_round_to_int( float32 STATUS_PARAM );
326float32 float32_add( float32, float32 STATUS_PARAM );
327float32 float32_sub( float32, float32 STATUS_PARAM );
328float32 float32_mul( float32, float32 STATUS_PARAM );
329float32 float32_div( float32, float32 STATUS_PARAM );
330float32 float32_rem( float32, float32 STATUS_PARAM );
331float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 332float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 333float32 float32_log2( float32 STATUS_PARAM );
750afe93
FB
334int float32_eq( float32, float32 STATUS_PARAM );
335int float32_le( float32, float32 STATUS_PARAM );
336int float32_lt( float32, float32 STATUS_PARAM );
337int float32_eq_signaling( float32, float32 STATUS_PARAM );
338int float32_le_quiet( float32, float32 STATUS_PARAM );
339int float32_lt_quiet( float32, float32 STATUS_PARAM );
340int float32_compare( float32, float32 STATUS_PARAM );
341int float32_compare_quiet( float32, float32 STATUS_PARAM );
18569871 342int float32_is_quiet_nan( float32 );
750afe93 343int float32_is_signaling_nan( float32 );
b408dbde 344float32 float32_maybe_silence_nan( float32 );
9ee6e8bb 345float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 346
1d6bda35
FB
347INLINE float32 float32_abs(float32 a)
348{
37d18660
PM
349 /* Note that abs does *not* handle NaN specially, nor does
350 * it flush denormal inputs to zero.
351 */
f090c9d4 352 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
353}
354
355INLINE float32 float32_chs(float32 a)
356{
37d18660
PM
357 /* Note that chs does *not* handle NaN specially, nor does
358 * it flush denormal inputs to zero.
359 */
f090c9d4 360 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
361}
362
c52ab6f5
AJ
363INLINE int float32_is_infinity(float32 a)
364{
dadd71a7 365 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
366}
367
368INLINE int float32_is_neg(float32 a)
369{
370 return float32_val(a) >> 31;
371}
372
373INLINE int float32_is_zero(float32 a)
374{
375 return (float32_val(a) & 0x7fffffff) == 0;
376}
377
21d6ebde
PM
378INLINE int float32_is_any_nan(float32 a)
379{
380 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
381}
382
6f3300ad
PM
383INLINE int float32_is_zero_or_denormal(float32 a)
384{
385 return (float32_val(a) & 0x7f800000) == 0;
386}
387
c30fe7df
CL
388INLINE float32 float32_set_sign(float32 a, int sign)
389{
390 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
391}
392
f090c9d4 393#define float32_zero make_float32(0)
196cfc89 394#define float32_one make_float32(0x3f800000)
8229c991 395#define float32_ln2 make_float32(0x3f317218)
c30fe7df
CL
396#define float32_half make_float32(0x3f000000)
397#define float32_infinity make_float32(0x7f800000)
f090c9d4 398
8559666d
CL
399
400/*----------------------------------------------------------------------------
401| The pattern for a default generated single-precision NaN.
402*----------------------------------------------------------------------------*/
403#if defined(TARGET_SPARC)
404#define float32_default_nan make_float32(0x7FFFFFFF)
405#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
406#define float32_default_nan make_float32(0x7FC00000)
407#elif SNAN_BIT_IS_ONE
408#define float32_default_nan make_float32(0x7FBFFFFF)
409#else
410#define float32_default_nan make_float32(0xFFC00000)
411#endif
412
158142c2
FB
413/*----------------------------------------------------------------------------
414| Software IEC/IEEE double-precision conversion routines.
415*----------------------------------------------------------------------------*/
cbcef455
PM
416int float64_to_int16_round_to_zero( float64 STATUS_PARAM );
417unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
158142c2
FB
418int float64_to_int32( float64 STATUS_PARAM );
419int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
1d6bda35
FB
420unsigned int float64_to_uint32( float64 STATUS_PARAM );
421unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
158142c2
FB
422int64_t float64_to_int64( float64 STATUS_PARAM );
423int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
75d62a58
JM
424uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
425uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2
FB
426float32 float64_to_float32( float64 STATUS_PARAM );
427#ifdef FLOATX80
428floatx80 float64_to_floatx80( float64 STATUS_PARAM );
429#endif
430#ifdef FLOAT128
431float128 float64_to_float128( float64 STATUS_PARAM );
432#endif
433
434/*----------------------------------------------------------------------------
435| Software IEC/IEEE double-precision operations.
436*----------------------------------------------------------------------------*/
437float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 438float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
439float64 float64_add( float64, float64 STATUS_PARAM );
440float64 float64_sub( float64, float64 STATUS_PARAM );
441float64 float64_mul( float64, float64 STATUS_PARAM );
442float64 float64_div( float64, float64 STATUS_PARAM );
443float64 float64_rem( float64, float64 STATUS_PARAM );
444float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 445float64 float64_log2( float64 STATUS_PARAM );
750afe93
FB
446int float64_eq( float64, float64 STATUS_PARAM );
447int float64_le( float64, float64 STATUS_PARAM );
448int float64_lt( float64, float64 STATUS_PARAM );
449int float64_eq_signaling( float64, float64 STATUS_PARAM );
450int float64_le_quiet( float64, float64 STATUS_PARAM );
451int float64_lt_quiet( float64, float64 STATUS_PARAM );
452int float64_compare( float64, float64 STATUS_PARAM );
453int float64_compare_quiet( float64, float64 STATUS_PARAM );
18569871 454int float64_is_quiet_nan( float64 a );
750afe93 455int float64_is_signaling_nan( float64 );
b408dbde 456float64 float64_maybe_silence_nan( float64 );
9ee6e8bb 457float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 458
1d6bda35
FB
459INLINE float64 float64_abs(float64 a)
460{
37d18660
PM
461 /* Note that abs does *not* handle NaN specially, nor does
462 * it flush denormal inputs to zero.
463 */
f090c9d4 464 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
465}
466
467INLINE float64 float64_chs(float64 a)
468{
37d18660
PM
469 /* Note that chs does *not* handle NaN specially, nor does
470 * it flush denormal inputs to zero.
471 */
f090c9d4 472 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
473}
474
c52ab6f5
AJ
475INLINE int float64_is_infinity(float64 a)
476{
477 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
478}
479
480INLINE int float64_is_neg(float64 a)
481{
482 return float64_val(a) >> 63;
483}
484
485INLINE int float64_is_zero(float64 a)
486{
487 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
488}
489
21d6ebde
PM
490INLINE int float64_is_any_nan(float64 a)
491{
492 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
493}
494
c30fe7df
CL
495INLINE float64 float64_set_sign(float64 a, int sign)
496{
497 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
498 | ((int64_t)sign << 63));
499}
500
f090c9d4 501#define float64_zero make_float64(0)
196cfc89 502#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 503#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
c30fe7df
CL
504#define float64_half make_float64(0x3fe0000000000000LL)
505#define float64_infinity make_float64(0x7ff0000000000000LL)
f090c9d4 506
8559666d
CL
507/*----------------------------------------------------------------------------
508| The pattern for a default generated double-precision NaN.
509*----------------------------------------------------------------------------*/
510#if defined(TARGET_SPARC)
511#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
512#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
513#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
514#elif SNAN_BIT_IS_ONE
515#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
516#else
517#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
518#endif
519
158142c2
FB
520#ifdef FLOATX80
521
522/*----------------------------------------------------------------------------
523| Software IEC/IEEE extended double-precision conversion routines.
524*----------------------------------------------------------------------------*/
525int floatx80_to_int32( floatx80 STATUS_PARAM );
526int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
527int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
528int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
529float32 floatx80_to_float32( floatx80 STATUS_PARAM );
530float64 floatx80_to_float64( floatx80 STATUS_PARAM );
531#ifdef FLOAT128
532float128 floatx80_to_float128( floatx80 STATUS_PARAM );
533#endif
534
535/*----------------------------------------------------------------------------
536| Software IEC/IEEE extended double-precision operations.
537*----------------------------------------------------------------------------*/
538floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
539floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
540floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
541floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
542floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
543floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
544floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
750afe93
FB
545int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
546int floatx80_le( floatx80, floatx80 STATUS_PARAM );
547int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
548int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
549int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
550int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
18569871 551int floatx80_is_quiet_nan( floatx80 );
750afe93 552int floatx80_is_signaling_nan( floatx80 );
f6a7d92a 553floatx80 floatx80_maybe_silence_nan( floatx80 );
9ee6e8bb 554floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 555
1d6bda35
FB
556INLINE floatx80 floatx80_abs(floatx80 a)
557{
558 a.high &= 0x7fff;
559 return a;
560}
561
562INLINE floatx80 floatx80_chs(floatx80 a)
563{
564 a.high ^= 0x8000;
565 return a;
566}
567
c52ab6f5
AJ
568INLINE int floatx80_is_infinity(floatx80 a)
569{
570 return (a.high & 0x7fff) == 0x7fff && a.low == 0;
571}
572
573INLINE int floatx80_is_neg(floatx80 a)
574{
575 return a.high >> 15;
576}
577
578INLINE int floatx80_is_zero(floatx80 a)
579{
580 return (a.high & 0x7fff) == 0 && a.low == 0;
581}
582
2bed652f
PM
583INLINE int floatx80_is_any_nan(floatx80 a)
584{
585 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
586}
587
8559666d
CL
588/*----------------------------------------------------------------------------
589| The pattern for a default generated extended double-precision NaN. The
590| `high' and `low' values hold the most- and least-significant bits,
591| respectively.
592*----------------------------------------------------------------------------*/
593#if SNAN_BIT_IS_ONE
594#define floatx80_default_nan_high 0x7FFF
595#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
596#else
597#define floatx80_default_nan_high 0xFFFF
598#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
599#endif
600
158142c2
FB
601#endif
602
603#ifdef FLOAT128
604
605/*----------------------------------------------------------------------------
606| Software IEC/IEEE quadruple-precision conversion routines.
607*----------------------------------------------------------------------------*/
608int float128_to_int32( float128 STATUS_PARAM );
609int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
610int64_t float128_to_int64( float128 STATUS_PARAM );
611int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
612float32 float128_to_float32( float128 STATUS_PARAM );
613float64 float128_to_float64( float128 STATUS_PARAM );
614#ifdef FLOATX80
615floatx80 float128_to_floatx80( float128 STATUS_PARAM );
616#endif
617
618/*----------------------------------------------------------------------------
619| Software IEC/IEEE quadruple-precision operations.
620*----------------------------------------------------------------------------*/
621float128 float128_round_to_int( float128 STATUS_PARAM );
622float128 float128_add( float128, float128 STATUS_PARAM );
623float128 float128_sub( float128, float128 STATUS_PARAM );
624float128 float128_mul( float128, float128 STATUS_PARAM );
625float128 float128_div( float128, float128 STATUS_PARAM );
626float128 float128_rem( float128, float128 STATUS_PARAM );
627float128 float128_sqrt( float128 STATUS_PARAM );
750afe93
FB
628int float128_eq( float128, float128 STATUS_PARAM );
629int float128_le( float128, float128 STATUS_PARAM );
630int float128_lt( float128, float128 STATUS_PARAM );
631int float128_eq_signaling( float128, float128 STATUS_PARAM );
632int float128_le_quiet( float128, float128 STATUS_PARAM );
633int float128_lt_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
634int float128_compare( float128, float128 STATUS_PARAM );
635int float128_compare_quiet( float128, float128 STATUS_PARAM );
18569871 636int float128_is_quiet_nan( float128 );
750afe93 637int float128_is_signaling_nan( float128 );
f6a7d92a 638float128 float128_maybe_silence_nan( float128 );
9ee6e8bb 639float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 640
1d6bda35
FB
641INLINE float128 float128_abs(float128 a)
642{
643 a.high &= 0x7fffffffffffffffLL;
644 return a;
645}
646
647INLINE float128 float128_chs(float128 a)
648{
649 a.high ^= 0x8000000000000000LL;
650 return a;
651}
652
c52ab6f5
AJ
653INLINE int float128_is_infinity(float128 a)
654{
655 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
656}
657
658INLINE int float128_is_neg(float128 a)
659{
660 return a.high >> 63;
661}
662
663INLINE int float128_is_zero(float128 a)
664{
665 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
666}
667
2bed652f
PM
668INLINE int float128_is_any_nan(float128 a)
669{
670 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
671 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
672}
673
8559666d
CL
674/*----------------------------------------------------------------------------
675| The pattern for a default generated quadruple-precision NaN. The `high' and
676| `low' values hold the most- and least-significant bits, respectively.
677*----------------------------------------------------------------------------*/
678#if SNAN_BIT_IS_ONE
679#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
680#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
681#else
682#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
683#define float128_default_nan_low LIT64( 0x0000000000000000 )
684#endif
685
158142c2
FB
686#endif
687
688#else /* CONFIG_SOFTFLOAT */
689
690#include "softfloat-native.h"
691
692#endif /* !CONFIG_SOFTFLOAT */
693
694#endif /* !SOFTFLOAT_H */
This page took 0.464361 seconds and 4 git commands to generate.