]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
67b915a5 | 19 | #include "config.h" |
d5a8f07c FB |
20 | #ifdef _WIN32 |
21 | #include <windows.h> | |
22 | #else | |
a98d49b1 | 23 | #include <sys/types.h> |
d5a8f07c FB |
24 | #include <sys/mman.h> |
25 | #endif | |
54936004 | 26 | |
055403b2 | 27 | #include "qemu-common.h" |
6180a181 | 28 | #include "cpu.h" |
b67d9a52 | 29 | #include "tcg.h" |
b3c7724c | 30 | #include "hw/hw.h" |
cc9e98cb | 31 | #include "hw/qdev.h" |
74576198 | 32 | #include "osdep.h" |
7ba1e619 | 33 | #include "kvm.h" |
432d268c | 34 | #include "hw/xen.h" |
29e922b6 | 35 | #include "qemu-timer.h" |
62152b8a AK |
36 | #include "memory.h" |
37 | #include "exec-memory.h" | |
53a5960a PB |
38 | #if defined(CONFIG_USER_ONLY) |
39 | #include <qemu.h> | |
f01576f1 JL |
40 | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) |
41 | #include <sys/param.h> | |
42 | #if __FreeBSD_version >= 700104 | |
43 | #define HAVE_KINFO_GETVMMAP | |
44 | #define sigqueue sigqueue_freebsd /* avoid redefinition */ | |
45 | #include <sys/time.h> | |
46 | #include <sys/proc.h> | |
47 | #include <machine/profile.h> | |
48 | #define _KERNEL | |
49 | #include <sys/user.h> | |
50 | #undef _KERNEL | |
51 | #undef sigqueue | |
52 | #include <libutil.h> | |
53 | #endif | |
54 | #endif | |
432d268c JN |
55 | #else /* !CONFIG_USER_ONLY */ |
56 | #include "xen-mapcache.h" | |
6506e4f9 | 57 | #include "trace.h" |
53a5960a | 58 | #endif |
54936004 | 59 | |
67d95c15 AK |
60 | #define WANT_EXEC_OBSOLETE |
61 | #include "exec-obsolete.h" | |
62 | ||
fd6ce8f6 | 63 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 64 | //#define DEBUG_FLUSH |
9fa3e853 | 65 | //#define DEBUG_TLB |
67d3b957 | 66 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
67 | |
68 | /* make various TB consistency checks */ | |
5fafdf24 TS |
69 | //#define DEBUG_TB_CHECK |
70 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 71 | |
1196be37 | 72 | //#define DEBUG_IOPORT |
db7b5426 | 73 | //#define DEBUG_SUBPAGE |
1196be37 | 74 | |
99773bd4 PB |
75 | #if !defined(CONFIG_USER_ONLY) |
76 | /* TB consistency checks only implemented for usermode emulation. */ | |
77 | #undef DEBUG_TB_CHECK | |
78 | #endif | |
79 | ||
9fa3e853 FB |
80 | #define SMC_BITMAP_USE_THRESHOLD 10 |
81 | ||
bdaf78e0 | 82 | static TranslationBlock *tbs; |
24ab68ac | 83 | static int code_gen_max_blocks; |
9fa3e853 | 84 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
bdaf78e0 | 85 | static int nb_tbs; |
eb51d102 | 86 | /* any access to the tbs or the page table must use this lock */ |
c227f099 | 87 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; |
fd6ce8f6 | 88 | |
141ac468 BS |
89 | #if defined(__arm__) || defined(__sparc_v9__) |
90 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
91 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
92 | section close to code segment. */ |
93 | #define code_gen_section \ | |
94 | __attribute__((__section__(".gen_code"))) \ | |
95 | __attribute__((aligned (32))) | |
f8e2af11 SW |
96 | #elif defined(_WIN32) |
97 | /* Maximum alignment for Win32 is 16. */ | |
98 | #define code_gen_section \ | |
99 | __attribute__((aligned (16))) | |
d03d860b BS |
100 | #else |
101 | #define code_gen_section \ | |
102 | __attribute__((aligned (32))) | |
103 | #endif | |
104 | ||
105 | uint8_t code_gen_prologue[1024] code_gen_section; | |
bdaf78e0 BS |
106 | static uint8_t *code_gen_buffer; |
107 | static unsigned long code_gen_buffer_size; | |
26a5f13b | 108 | /* threshold to flush the translated code buffer */ |
bdaf78e0 | 109 | static unsigned long code_gen_buffer_max_size; |
24ab68ac | 110 | static uint8_t *code_gen_ptr; |
fd6ce8f6 | 111 | |
e2eef170 | 112 | #if !defined(CONFIG_USER_ONLY) |
9fa3e853 | 113 | int phys_ram_fd; |
74576198 | 114 | static int in_migration; |
94a6b54f | 115 | |
85d59fef | 116 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
117 | |
118 | static MemoryRegion *system_memory; | |
309cb471 | 119 | static MemoryRegion *system_io; |
62152b8a | 120 | |
0e0df1e2 | 121 | MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty; |
de712f94 | 122 | static MemoryRegion io_mem_subpage_ram; |
0e0df1e2 | 123 | |
e2eef170 | 124 | #endif |
9fa3e853 | 125 | |
9349b4f9 | 126 | CPUArchState *first_cpu; |
6a00d601 FB |
127 | /* current CPU in the current thread. It is only valid inside |
128 | cpu_exec() */ | |
9349b4f9 | 129 | DEFINE_TLS(CPUArchState *,cpu_single_env); |
2e70f6ef | 130 | /* 0 = Do not count executed instructions. |
bf20dc07 | 131 | 1 = Precise instruction counting. |
2e70f6ef PB |
132 | 2 = Adaptive rate instruction counting. */ |
133 | int use_icount = 0; | |
6a00d601 | 134 | |
54936004 | 135 | typedef struct PageDesc { |
92e873b9 | 136 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 137 | TranslationBlock *first_tb; |
9fa3e853 FB |
138 | /* in order to optimize self modifying code, we count the number |
139 | of lookups we do to a given page to use a bitmap */ | |
140 | unsigned int code_write_count; | |
141 | uint8_t *code_bitmap; | |
142 | #if defined(CONFIG_USER_ONLY) | |
143 | unsigned long flags; | |
144 | #endif | |
54936004 FB |
145 | } PageDesc; |
146 | ||
41c1b1c9 | 147 | /* In system mode we want L1_MAP to be based on ram offsets, |
5cd2c5b6 RH |
148 | while in user mode we want it to be based on virtual addresses. */ |
149 | #if !defined(CONFIG_USER_ONLY) | |
41c1b1c9 PB |
150 | #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS |
151 | # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS | |
152 | #else | |
5cd2c5b6 | 153 | # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS |
41c1b1c9 | 154 | #endif |
bedb69ea | 155 | #else |
5cd2c5b6 | 156 | # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS |
bedb69ea | 157 | #endif |
54936004 | 158 | |
5cd2c5b6 RH |
159 | /* Size of the L2 (and L3, etc) page tables. */ |
160 | #define L2_BITS 10 | |
54936004 FB |
161 | #define L2_SIZE (1 << L2_BITS) |
162 | ||
3eef53df AK |
163 | #define P_L2_LEVELS \ |
164 | (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1) | |
165 | ||
5cd2c5b6 | 166 | /* The bits remaining after N lower levels of page tables. */ |
5cd2c5b6 RH |
167 | #define V_L1_BITS_REM \ |
168 | ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS) | |
169 | ||
5cd2c5b6 RH |
170 | #if V_L1_BITS_REM < 4 |
171 | #define V_L1_BITS (V_L1_BITS_REM + L2_BITS) | |
172 | #else | |
173 | #define V_L1_BITS V_L1_BITS_REM | |
174 | #endif | |
175 | ||
5cd2c5b6 RH |
176 | #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS) |
177 | ||
5cd2c5b6 RH |
178 | #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS) |
179 | ||
83fb7adf | 180 | unsigned long qemu_real_host_page_size; |
83fb7adf FB |
181 | unsigned long qemu_host_page_size; |
182 | unsigned long qemu_host_page_mask; | |
54936004 | 183 | |
5cd2c5b6 RH |
184 | /* This is a multi-level map on the virtual address space. |
185 | The bottom level has pointers to PageDesc. */ | |
186 | static void *l1_map[V_L1_SIZE]; | |
54936004 | 187 | |
e2eef170 | 188 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e AK |
189 | typedef struct PhysPageEntry PhysPageEntry; |
190 | ||
5312bd8b AK |
191 | static MemoryRegionSection *phys_sections; |
192 | static unsigned phys_sections_nb, phys_sections_nb_alloc; | |
193 | static uint16_t phys_section_unassigned; | |
aa102231 AK |
194 | static uint16_t phys_section_notdirty; |
195 | static uint16_t phys_section_rom; | |
196 | static uint16_t phys_section_watch; | |
5312bd8b | 197 | |
4346ae3e | 198 | struct PhysPageEntry { |
07f07b31 AK |
199 | uint16_t is_leaf : 1; |
200 | /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */ | |
201 | uint16_t ptr : 15; | |
4346ae3e AK |
202 | }; |
203 | ||
d6f2ea22 AK |
204 | /* Simple allocator for PhysPageEntry nodes */ |
205 | static PhysPageEntry (*phys_map_nodes)[L2_SIZE]; | |
206 | static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc; | |
207 | ||
07f07b31 | 208 | #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1) |
d6f2ea22 | 209 | |
5cd2c5b6 | 210 | /* This is a multi-level map on the physical address space. |
06ef3525 | 211 | The bottom level has pointers to MemoryRegionSections. */ |
07f07b31 | 212 | static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 }; |
6d9a1304 | 213 | |
e2eef170 | 214 | static void io_mem_init(void); |
62152b8a | 215 | static void memory_map_init(void); |
e2eef170 | 216 | |
1ec9b909 | 217 | static MemoryRegion io_mem_watch; |
6658ffb8 | 218 | #endif |
33417e70 | 219 | |
34865134 | 220 | /* log support */ |
1e8b27ca JR |
221 | #ifdef WIN32 |
222 | static const char *logfilename = "qemu.log"; | |
223 | #else | |
d9b630fd | 224 | static const char *logfilename = "/tmp/qemu.log"; |
1e8b27ca | 225 | #endif |
34865134 FB |
226 | FILE *logfile; |
227 | int loglevel; | |
e735b91c | 228 | static int log_append = 0; |
34865134 | 229 | |
e3db7226 | 230 | /* statistics */ |
b3755a91 | 231 | #if !defined(CONFIG_USER_ONLY) |
e3db7226 | 232 | static int tlb_flush_count; |
b3755a91 | 233 | #endif |
e3db7226 FB |
234 | static int tb_flush_count; |
235 | static int tb_phys_invalidate_count; | |
236 | ||
7cb69cae FB |
237 | #ifdef _WIN32 |
238 | static void map_exec(void *addr, long size) | |
239 | { | |
240 | DWORD old_protect; | |
241 | VirtualProtect(addr, size, | |
242 | PAGE_EXECUTE_READWRITE, &old_protect); | |
243 | ||
244 | } | |
245 | #else | |
246 | static void map_exec(void *addr, long size) | |
247 | { | |
4369415f | 248 | unsigned long start, end, page_size; |
7cb69cae | 249 | |
4369415f | 250 | page_size = getpagesize(); |
7cb69cae | 251 | start = (unsigned long)addr; |
4369415f | 252 | start &= ~(page_size - 1); |
7cb69cae FB |
253 | |
254 | end = (unsigned long)addr + size; | |
4369415f FB |
255 | end += page_size - 1; |
256 | end &= ~(page_size - 1); | |
7cb69cae FB |
257 | |
258 | mprotect((void *)start, end - start, | |
259 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
260 | } | |
261 | #endif | |
262 | ||
b346ff46 | 263 | static void page_init(void) |
54936004 | 264 | { |
83fb7adf | 265 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 266 | TARGET_PAGE_SIZE */ |
c2b48b69 AL |
267 | #ifdef _WIN32 |
268 | { | |
269 | SYSTEM_INFO system_info; | |
270 | ||
271 | GetSystemInfo(&system_info); | |
272 | qemu_real_host_page_size = system_info.dwPageSize; | |
273 | } | |
274 | #else | |
275 | qemu_real_host_page_size = getpagesize(); | |
276 | #endif | |
83fb7adf FB |
277 | if (qemu_host_page_size == 0) |
278 | qemu_host_page_size = qemu_real_host_page_size; | |
279 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
280 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
83fb7adf | 281 | qemu_host_page_mask = ~(qemu_host_page_size - 1); |
50a9569b | 282 | |
2e9a5713 | 283 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) |
50a9569b | 284 | { |
f01576f1 JL |
285 | #ifdef HAVE_KINFO_GETVMMAP |
286 | struct kinfo_vmentry *freep; | |
287 | int i, cnt; | |
288 | ||
289 | freep = kinfo_getvmmap(getpid(), &cnt); | |
290 | if (freep) { | |
291 | mmap_lock(); | |
292 | for (i = 0; i < cnt; i++) { | |
293 | unsigned long startaddr, endaddr; | |
294 | ||
295 | startaddr = freep[i].kve_start; | |
296 | endaddr = freep[i].kve_end; | |
297 | if (h2g_valid(startaddr)) { | |
298 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
299 | ||
300 | if (h2g_valid(endaddr)) { | |
301 | endaddr = h2g(endaddr); | |
fd436907 | 302 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); |
f01576f1 JL |
303 | } else { |
304 | #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS | |
305 | endaddr = ~0ul; | |
fd436907 | 306 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); |
f01576f1 JL |
307 | #endif |
308 | } | |
309 | } | |
310 | } | |
311 | free(freep); | |
312 | mmap_unlock(); | |
313 | } | |
314 | #else | |
50a9569b | 315 | FILE *f; |
50a9569b | 316 | |
0776590d | 317 | last_brk = (unsigned long)sbrk(0); |
5cd2c5b6 | 318 | |
fd436907 | 319 | f = fopen("/compat/linux/proc/self/maps", "r"); |
50a9569b | 320 | if (f) { |
5cd2c5b6 RH |
321 | mmap_lock(); |
322 | ||
50a9569b | 323 | do { |
5cd2c5b6 RH |
324 | unsigned long startaddr, endaddr; |
325 | int n; | |
326 | ||
327 | n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | |
328 | ||
329 | if (n == 2 && h2g_valid(startaddr)) { | |
330 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
331 | ||
332 | if (h2g_valid(endaddr)) { | |
333 | endaddr = h2g(endaddr); | |
334 | } else { | |
335 | endaddr = ~0ul; | |
336 | } | |
337 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
50a9569b AZ |
338 | } |
339 | } while (!feof(f)); | |
5cd2c5b6 | 340 | |
50a9569b | 341 | fclose(f); |
5cd2c5b6 | 342 | mmap_unlock(); |
50a9569b | 343 | } |
f01576f1 | 344 | #endif |
50a9569b AZ |
345 | } |
346 | #endif | |
54936004 FB |
347 | } |
348 | ||
41c1b1c9 | 349 | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) |
54936004 | 350 | { |
41c1b1c9 PB |
351 | PageDesc *pd; |
352 | void **lp; | |
353 | int i; | |
354 | ||
5cd2c5b6 | 355 | #if defined(CONFIG_USER_ONLY) |
7267c094 | 356 | /* We can't use g_malloc because it may recurse into a locked mutex. */ |
5cd2c5b6 RH |
357 | # define ALLOC(P, SIZE) \ |
358 | do { \ | |
359 | P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \ | |
360 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \ | |
5cd2c5b6 RH |
361 | } while (0) |
362 | #else | |
363 | # define ALLOC(P, SIZE) \ | |
7267c094 | 364 | do { P = g_malloc0(SIZE); } while (0) |
17e2377a | 365 | #endif |
434929bf | 366 | |
5cd2c5b6 RH |
367 | /* Level 1. Always allocated. */ |
368 | lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1)); | |
369 | ||
370 | /* Level 2..N-1. */ | |
371 | for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) { | |
372 | void **p = *lp; | |
373 | ||
374 | if (p == NULL) { | |
375 | if (!alloc) { | |
376 | return NULL; | |
377 | } | |
378 | ALLOC(p, sizeof(void *) * L2_SIZE); | |
379 | *lp = p; | |
17e2377a | 380 | } |
5cd2c5b6 RH |
381 | |
382 | lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1)); | |
383 | } | |
384 | ||
385 | pd = *lp; | |
386 | if (pd == NULL) { | |
387 | if (!alloc) { | |
388 | return NULL; | |
389 | } | |
390 | ALLOC(pd, sizeof(PageDesc) * L2_SIZE); | |
391 | *lp = pd; | |
54936004 | 392 | } |
5cd2c5b6 RH |
393 | |
394 | #undef ALLOC | |
5cd2c5b6 RH |
395 | |
396 | return pd + (index & (L2_SIZE - 1)); | |
54936004 FB |
397 | } |
398 | ||
41c1b1c9 | 399 | static inline PageDesc *page_find(tb_page_addr_t index) |
54936004 | 400 | { |
5cd2c5b6 | 401 | return page_find_alloc(index, 0); |
fd6ce8f6 FB |
402 | } |
403 | ||
6d9a1304 | 404 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 405 | |
f7bf5461 | 406 | static void phys_map_node_reserve(unsigned nodes) |
d6f2ea22 | 407 | { |
f7bf5461 | 408 | if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) { |
d6f2ea22 AK |
409 | typedef PhysPageEntry Node[L2_SIZE]; |
410 | phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16); | |
f7bf5461 AK |
411 | phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc, |
412 | phys_map_nodes_nb + nodes); | |
d6f2ea22 AK |
413 | phys_map_nodes = g_renew(Node, phys_map_nodes, |
414 | phys_map_nodes_nb_alloc); | |
415 | } | |
f7bf5461 AK |
416 | } |
417 | ||
418 | static uint16_t phys_map_node_alloc(void) | |
419 | { | |
420 | unsigned i; | |
421 | uint16_t ret; | |
422 | ||
423 | ret = phys_map_nodes_nb++; | |
424 | assert(ret != PHYS_MAP_NODE_NIL); | |
425 | assert(ret != phys_map_nodes_nb_alloc); | |
d6f2ea22 | 426 | for (i = 0; i < L2_SIZE; ++i) { |
07f07b31 | 427 | phys_map_nodes[ret][i].is_leaf = 0; |
c19e8800 | 428 | phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL; |
d6f2ea22 | 429 | } |
f7bf5461 | 430 | return ret; |
d6f2ea22 AK |
431 | } |
432 | ||
433 | static void phys_map_nodes_reset(void) | |
434 | { | |
435 | phys_map_nodes_nb = 0; | |
436 | } | |
437 | ||
92e873b9 | 438 | |
2999097b AK |
439 | static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index, |
440 | target_phys_addr_t *nb, uint16_t leaf, | |
441 | int level) | |
f7bf5461 AK |
442 | { |
443 | PhysPageEntry *p; | |
444 | int i; | |
07f07b31 | 445 | target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS); |
108c49b8 | 446 | |
07f07b31 | 447 | if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) { |
c19e8800 AK |
448 | lp->ptr = phys_map_node_alloc(); |
449 | p = phys_map_nodes[lp->ptr]; | |
f7bf5461 AK |
450 | if (level == 0) { |
451 | for (i = 0; i < L2_SIZE; i++) { | |
07f07b31 | 452 | p[i].is_leaf = 1; |
c19e8800 | 453 | p[i].ptr = phys_section_unassigned; |
4346ae3e | 454 | } |
67c4d23c | 455 | } |
f7bf5461 | 456 | } else { |
c19e8800 | 457 | p = phys_map_nodes[lp->ptr]; |
92e873b9 | 458 | } |
2999097b | 459 | lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)]; |
f7bf5461 | 460 | |
2999097b | 461 | while (*nb && lp < &p[L2_SIZE]) { |
07f07b31 AK |
462 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
463 | lp->is_leaf = true; | |
c19e8800 | 464 | lp->ptr = leaf; |
07f07b31 AK |
465 | *index += step; |
466 | *nb -= step; | |
2999097b AK |
467 | } else { |
468 | phys_page_set_level(lp, index, nb, leaf, level - 1); | |
469 | } | |
470 | ++lp; | |
f7bf5461 AK |
471 | } |
472 | } | |
473 | ||
2999097b AK |
474 | static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb, |
475 | uint16_t leaf) | |
f7bf5461 | 476 | { |
2999097b | 477 | /* Wildly overreserve - it doesn't matter much. */ |
07f07b31 | 478 | phys_map_node_reserve(3 * P_L2_LEVELS); |
5cd2c5b6 | 479 | |
2999097b | 480 | phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
481 | } |
482 | ||
f3705d53 | 483 | static MemoryRegionSection *phys_page_find(target_phys_addr_t index) |
92e873b9 | 484 | { |
31ab2b4a AK |
485 | PhysPageEntry lp = phys_map; |
486 | PhysPageEntry *p; | |
487 | int i; | |
31ab2b4a | 488 | uint16_t s_index = phys_section_unassigned; |
f1f6e3b8 | 489 | |
07f07b31 | 490 | for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) { |
c19e8800 | 491 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
31ab2b4a AK |
492 | goto not_found; |
493 | } | |
c19e8800 | 494 | p = phys_map_nodes[lp.ptr]; |
31ab2b4a | 495 | lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)]; |
5312bd8b | 496 | } |
31ab2b4a | 497 | |
c19e8800 | 498 | s_index = lp.ptr; |
31ab2b4a | 499 | not_found: |
f3705d53 AK |
500 | return &phys_sections[s_index]; |
501 | } | |
502 | ||
503 | static target_phys_addr_t section_addr(MemoryRegionSection *section, | |
504 | target_phys_addr_t addr) | |
505 | { | |
506 | addr -= section->offset_within_address_space; | |
507 | addr += section->offset_within_region; | |
508 | return addr; | |
92e873b9 FB |
509 | } |
510 | ||
c227f099 | 511 | static void tlb_protect_code(ram_addr_t ram_addr); |
9349b4f9 | 512 | static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr, |
3a7d929e | 513 | target_ulong vaddr); |
c8a706fe PB |
514 | #define mmap_lock() do { } while(0) |
515 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 516 | #endif |
fd6ce8f6 | 517 | |
4369415f FB |
518 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
519 | ||
520 | #if defined(CONFIG_USER_ONLY) | |
ccbb4d44 | 521 | /* Currently it is not recommended to allocate big chunks of data in |
4369415f FB |
522 | user mode. It will change when a dedicated libc will be used */ |
523 | #define USE_STATIC_CODE_GEN_BUFFER | |
524 | #endif | |
525 | ||
526 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
ebf50fb3 AJ |
527 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] |
528 | __attribute__((aligned (CODE_GEN_ALIGN))); | |
4369415f FB |
529 | #endif |
530 | ||
8fcd3692 | 531 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 532 | { |
4369415f FB |
533 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
534 | code_gen_buffer = static_code_gen_buffer; | |
535 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
536 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
537 | #else | |
26a5f13b FB |
538 | code_gen_buffer_size = tb_size; |
539 | if (code_gen_buffer_size == 0) { | |
4369415f | 540 | #if defined(CONFIG_USER_ONLY) |
4369415f FB |
541 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; |
542 | #else | |
ccbb4d44 | 543 | /* XXX: needs adjustments */ |
94a6b54f | 544 | code_gen_buffer_size = (unsigned long)(ram_size / 4); |
4369415f | 545 | #endif |
26a5f13b FB |
546 | } |
547 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
548 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
549 | /* The code gen buffer location may have constraints depending on | |
550 | the host cpu and OS */ | |
551 | #if defined(__linux__) | |
552 | { | |
553 | int flags; | |
141ac468 BS |
554 | void *start = NULL; |
555 | ||
26a5f13b FB |
556 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
557 | #if defined(__x86_64__) | |
558 | flags |= MAP_32BIT; | |
559 | /* Cannot map more than that */ | |
560 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
561 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
562 | #elif defined(__sparc_v9__) |
563 | // Map the buffer below 2G, so we can use direct calls and branches | |
564 | flags |= MAP_FIXED; | |
565 | start = (void *) 0x60000000UL; | |
566 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
567 | code_gen_buffer_size = (512 * 1024 * 1024); | |
1cb0661e | 568 | #elif defined(__arm__) |
5c84bd90 | 569 | /* Keep the buffer no bigger than 16MB to branch between blocks */ |
1cb0661e AZ |
570 | if (code_gen_buffer_size > 16 * 1024 * 1024) |
571 | code_gen_buffer_size = 16 * 1024 * 1024; | |
eba0b893 RH |
572 | #elif defined(__s390x__) |
573 | /* Map the buffer so that we can use direct calls and branches. */ | |
574 | /* We have a +- 4GB range on the branches; leave some slop. */ | |
575 | if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) { | |
576 | code_gen_buffer_size = 3ul * 1024 * 1024 * 1024; | |
577 | } | |
578 | start = (void *)0x90000000UL; | |
26a5f13b | 579 | #endif |
141ac468 BS |
580 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
581 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
582 | flags, -1, 0); |
583 | if (code_gen_buffer == MAP_FAILED) { | |
584 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
585 | exit(1); | |
586 | } | |
587 | } | |
cbb608a5 | 588 | #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \ |
9f4b09a4 TN |
589 | || defined(__DragonFly__) || defined(__OpenBSD__) \ |
590 | || defined(__NetBSD__) | |
06e67a82 AL |
591 | { |
592 | int flags; | |
593 | void *addr = NULL; | |
594 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
595 | #if defined(__x86_64__) | |
596 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
597 | * 0x40000000 is free */ | |
598 | flags |= MAP_FIXED; | |
599 | addr = (void *)0x40000000; | |
600 | /* Cannot map more than that */ | |
601 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
602 | code_gen_buffer_size = (800 * 1024 * 1024); | |
4cd31ad2 BS |
603 | #elif defined(__sparc_v9__) |
604 | // Map the buffer below 2G, so we can use direct calls and branches | |
605 | flags |= MAP_FIXED; | |
606 | addr = (void *) 0x60000000UL; | |
607 | if (code_gen_buffer_size > (512 * 1024 * 1024)) { | |
608 | code_gen_buffer_size = (512 * 1024 * 1024); | |
609 | } | |
06e67a82 AL |
610 | #endif |
611 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
612 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
613 | flags, -1, 0); | |
614 | if (code_gen_buffer == MAP_FAILED) { | |
615 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
616 | exit(1); | |
617 | } | |
618 | } | |
26a5f13b | 619 | #else |
7267c094 | 620 | code_gen_buffer = g_malloc(code_gen_buffer_size); |
26a5f13b FB |
621 | map_exec(code_gen_buffer, code_gen_buffer_size); |
622 | #endif | |
4369415f | 623 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b | 624 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
a884da8a PM |
625 | code_gen_buffer_max_size = code_gen_buffer_size - |
626 | (TCG_MAX_OP_SIZE * OPC_BUF_SIZE); | |
26a5f13b | 627 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; |
7267c094 | 628 | tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); |
26a5f13b FB |
629 | } |
630 | ||
631 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
632 | (in bytes) allocated to the translation buffer. Zero means default | |
633 | size. */ | |
d5ab9713 | 634 | void tcg_exec_init(unsigned long tb_size) |
26a5f13b | 635 | { |
26a5f13b FB |
636 | cpu_gen_init(); |
637 | code_gen_alloc(tb_size); | |
638 | code_gen_ptr = code_gen_buffer; | |
813da627 | 639 | tcg_register_jit(code_gen_buffer, code_gen_buffer_size); |
4369415f | 640 | page_init(); |
9002ec79 RH |
641 | #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE) |
642 | /* There's no guest base to take into account, so go ahead and | |
643 | initialize the prologue now. */ | |
644 | tcg_prologue_init(&tcg_ctx); | |
645 | #endif | |
26a5f13b FB |
646 | } |
647 | ||
d5ab9713 JK |
648 | bool tcg_enabled(void) |
649 | { | |
650 | return code_gen_buffer != NULL; | |
651 | } | |
652 | ||
653 | void cpu_exec_init_all(void) | |
654 | { | |
655 | #if !defined(CONFIG_USER_ONLY) | |
656 | memory_map_init(); | |
657 | io_mem_init(); | |
658 | #endif | |
659 | } | |
660 | ||
9656f324 PB |
661 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
662 | ||
e59fb374 | 663 | static int cpu_common_post_load(void *opaque, int version_id) |
e7f4eff7 | 664 | { |
9349b4f9 | 665 | CPUArchState *env = opaque; |
9656f324 | 666 | |
3098dba0 AJ |
667 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
668 | version_id is increased. */ | |
669 | env->interrupt_request &= ~0x01; | |
9656f324 PB |
670 | tlb_flush(env, 1); |
671 | ||
672 | return 0; | |
673 | } | |
e7f4eff7 JQ |
674 | |
675 | static const VMStateDescription vmstate_cpu_common = { | |
676 | .name = "cpu_common", | |
677 | .version_id = 1, | |
678 | .minimum_version_id = 1, | |
679 | .minimum_version_id_old = 1, | |
e7f4eff7 JQ |
680 | .post_load = cpu_common_post_load, |
681 | .fields = (VMStateField []) { | |
9349b4f9 AF |
682 | VMSTATE_UINT32(halted, CPUArchState), |
683 | VMSTATE_UINT32(interrupt_request, CPUArchState), | |
e7f4eff7 JQ |
684 | VMSTATE_END_OF_LIST() |
685 | } | |
686 | }; | |
9656f324 PB |
687 | #endif |
688 | ||
9349b4f9 | 689 | CPUArchState *qemu_get_cpu(int cpu) |
950f1472 | 690 | { |
9349b4f9 | 691 | CPUArchState *env = first_cpu; |
950f1472 GC |
692 | |
693 | while (env) { | |
694 | if (env->cpu_index == cpu) | |
695 | break; | |
696 | env = env->next_cpu; | |
697 | } | |
698 | ||
699 | return env; | |
700 | } | |
701 | ||
9349b4f9 | 702 | void cpu_exec_init(CPUArchState *env) |
fd6ce8f6 | 703 | { |
9349b4f9 | 704 | CPUArchState **penv; |
6a00d601 FB |
705 | int cpu_index; |
706 | ||
c2764719 PB |
707 | #if defined(CONFIG_USER_ONLY) |
708 | cpu_list_lock(); | |
709 | #endif | |
6a00d601 FB |
710 | env->next_cpu = NULL; |
711 | penv = &first_cpu; | |
712 | cpu_index = 0; | |
713 | while (*penv != NULL) { | |
1e9fa730 | 714 | penv = &(*penv)->next_cpu; |
6a00d601 FB |
715 | cpu_index++; |
716 | } | |
717 | env->cpu_index = cpu_index; | |
268a362c | 718 | env->numa_node = 0; |
72cf2d4f BS |
719 | QTAILQ_INIT(&env->breakpoints); |
720 | QTAILQ_INIT(&env->watchpoints); | |
dc7a09cf JK |
721 | #ifndef CONFIG_USER_ONLY |
722 | env->thread_id = qemu_get_thread_id(); | |
723 | #endif | |
6a00d601 | 724 | *penv = env; |
c2764719 PB |
725 | #if defined(CONFIG_USER_ONLY) |
726 | cpu_list_unlock(); | |
727 | #endif | |
b3c7724c | 728 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
0be71e32 AW |
729 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env); |
730 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, | |
b3c7724c PB |
731 | cpu_save, cpu_load, env); |
732 | #endif | |
fd6ce8f6 FB |
733 | } |
734 | ||
d1a1eb74 TG |
735 | /* Allocate a new translation block. Flush the translation buffer if |
736 | too many translation blocks or too much generated code. */ | |
737 | static TranslationBlock *tb_alloc(target_ulong pc) | |
738 | { | |
739 | TranslationBlock *tb; | |
740 | ||
741 | if (nb_tbs >= code_gen_max_blocks || | |
742 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
743 | return NULL; | |
744 | tb = &tbs[nb_tbs++]; | |
745 | tb->pc = pc; | |
746 | tb->cflags = 0; | |
747 | return tb; | |
748 | } | |
749 | ||
750 | void tb_free(TranslationBlock *tb) | |
751 | { | |
752 | /* In practice this is mostly used for single use temporary TB | |
753 | Ignore the hard cases and just back up if this TB happens to | |
754 | be the last one generated. */ | |
755 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
756 | code_gen_ptr = tb->tc_ptr; | |
757 | nb_tbs--; | |
758 | } | |
759 | } | |
760 | ||
9fa3e853 FB |
761 | static inline void invalidate_page_bitmap(PageDesc *p) |
762 | { | |
763 | if (p->code_bitmap) { | |
7267c094 | 764 | g_free(p->code_bitmap); |
9fa3e853 FB |
765 | p->code_bitmap = NULL; |
766 | } | |
767 | p->code_write_count = 0; | |
768 | } | |
769 | ||
5cd2c5b6 RH |
770 | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ |
771 | ||
772 | static void page_flush_tb_1 (int level, void **lp) | |
fd6ce8f6 | 773 | { |
5cd2c5b6 | 774 | int i; |
fd6ce8f6 | 775 | |
5cd2c5b6 RH |
776 | if (*lp == NULL) { |
777 | return; | |
778 | } | |
779 | if (level == 0) { | |
780 | PageDesc *pd = *lp; | |
7296abac | 781 | for (i = 0; i < L2_SIZE; ++i) { |
5cd2c5b6 RH |
782 | pd[i].first_tb = NULL; |
783 | invalidate_page_bitmap(pd + i); | |
fd6ce8f6 | 784 | } |
5cd2c5b6 RH |
785 | } else { |
786 | void **pp = *lp; | |
7296abac | 787 | for (i = 0; i < L2_SIZE; ++i) { |
5cd2c5b6 RH |
788 | page_flush_tb_1 (level - 1, pp + i); |
789 | } | |
790 | } | |
791 | } | |
792 | ||
793 | static void page_flush_tb(void) | |
794 | { | |
795 | int i; | |
796 | for (i = 0; i < V_L1_SIZE; i++) { | |
797 | page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i); | |
fd6ce8f6 FB |
798 | } |
799 | } | |
800 | ||
801 | /* flush all the translation blocks */ | |
d4e8164f | 802 | /* XXX: tb_flush is currently not thread safe */ |
9349b4f9 | 803 | void tb_flush(CPUArchState *env1) |
fd6ce8f6 | 804 | { |
9349b4f9 | 805 | CPUArchState *env; |
0124311e | 806 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
807 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
808 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
809 | nb_tbs, nb_tbs > 0 ? | |
810 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 811 | #endif |
26a5f13b | 812 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
813 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
814 | ||
fd6ce8f6 | 815 | nb_tbs = 0; |
3b46e624 | 816 | |
6a00d601 FB |
817 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
818 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
819 | } | |
9fa3e853 | 820 | |
8a8a608f | 821 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 822 | page_flush_tb(); |
9fa3e853 | 823 | |
fd6ce8f6 | 824 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
825 | /* XXX: flush processor icache at this point if cache flush is |
826 | expensive */ | |
e3db7226 | 827 | tb_flush_count++; |
fd6ce8f6 FB |
828 | } |
829 | ||
830 | #ifdef DEBUG_TB_CHECK | |
831 | ||
bc98a7ef | 832 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
833 | { |
834 | TranslationBlock *tb; | |
835 | int i; | |
836 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
837 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
838 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
839 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
840 | address >= tb->pc + tb->size)) { | |
0bf9e31a BS |
841 | printf("ERROR invalidate: address=" TARGET_FMT_lx |
842 | " PC=%08lx size=%04x\n", | |
99773bd4 | 843 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
844 | } |
845 | } | |
846 | } | |
847 | } | |
848 | ||
849 | /* verify that all the pages have correct rights for code */ | |
850 | static void tb_page_check(void) | |
851 | { | |
852 | TranslationBlock *tb; | |
853 | int i, flags1, flags2; | |
3b46e624 | 854 | |
99773bd4 PB |
855 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
856 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
857 | flags1 = page_get_flags(tb->pc); |
858 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
859 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
860 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 861 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
862 | } |
863 | } | |
864 | } | |
865 | } | |
866 | ||
867 | #endif | |
868 | ||
869 | /* invalidate one TB */ | |
870 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
871 | int next_offset) | |
872 | { | |
873 | TranslationBlock *tb1; | |
874 | for(;;) { | |
875 | tb1 = *ptb; | |
876 | if (tb1 == tb) { | |
877 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
878 | break; | |
879 | } | |
880 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
881 | } | |
882 | } | |
883 | ||
9fa3e853 FB |
884 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
885 | { | |
886 | TranslationBlock *tb1; | |
887 | unsigned int n1; | |
888 | ||
889 | for(;;) { | |
890 | tb1 = *ptb; | |
891 | n1 = (long)tb1 & 3; | |
892 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
893 | if (tb1 == tb) { | |
894 | *ptb = tb1->page_next[n1]; | |
895 | break; | |
896 | } | |
897 | ptb = &tb1->page_next[n1]; | |
898 | } | |
899 | } | |
900 | ||
d4e8164f FB |
901 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
902 | { | |
903 | TranslationBlock *tb1, **ptb; | |
904 | unsigned int n1; | |
905 | ||
906 | ptb = &tb->jmp_next[n]; | |
907 | tb1 = *ptb; | |
908 | if (tb1) { | |
909 | /* find tb(n) in circular list */ | |
910 | for(;;) { | |
911 | tb1 = *ptb; | |
912 | n1 = (long)tb1 & 3; | |
913 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
914 | if (n1 == n && tb1 == tb) | |
915 | break; | |
916 | if (n1 == 2) { | |
917 | ptb = &tb1->jmp_first; | |
918 | } else { | |
919 | ptb = &tb1->jmp_next[n1]; | |
920 | } | |
921 | } | |
922 | /* now we can suppress tb(n) from the list */ | |
923 | *ptb = tb->jmp_next[n]; | |
924 | ||
925 | tb->jmp_next[n] = NULL; | |
926 | } | |
927 | } | |
928 | ||
929 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
930 | another TB */ | |
931 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
932 | { | |
933 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
934 | } | |
935 | ||
41c1b1c9 | 936 | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) |
fd6ce8f6 | 937 | { |
9349b4f9 | 938 | CPUArchState *env; |
8a40a180 | 939 | PageDesc *p; |
d4e8164f | 940 | unsigned int h, n1; |
41c1b1c9 | 941 | tb_page_addr_t phys_pc; |
8a40a180 | 942 | TranslationBlock *tb1, *tb2; |
3b46e624 | 943 | |
8a40a180 FB |
944 | /* remove the TB from the hash list */ |
945 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
946 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 947 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
948 | offsetof(TranslationBlock, phys_hash_next)); |
949 | ||
950 | /* remove the TB from the page list */ | |
951 | if (tb->page_addr[0] != page_addr) { | |
952 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
953 | tb_page_remove(&p->first_tb, tb); | |
954 | invalidate_page_bitmap(p); | |
955 | } | |
956 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
957 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
958 | tb_page_remove(&p->first_tb, tb); | |
959 | invalidate_page_bitmap(p); | |
960 | } | |
961 | ||
36bdbe54 | 962 | tb_invalidated_flag = 1; |
59817ccb | 963 | |
fd6ce8f6 | 964 | /* remove the TB from the hash list */ |
8a40a180 | 965 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
966 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
967 | if (env->tb_jmp_cache[h] == tb) | |
968 | env->tb_jmp_cache[h] = NULL; | |
969 | } | |
d4e8164f FB |
970 | |
971 | /* suppress this TB from the two jump lists */ | |
972 | tb_jmp_remove(tb, 0); | |
973 | tb_jmp_remove(tb, 1); | |
974 | ||
975 | /* suppress any remaining jumps to this TB */ | |
976 | tb1 = tb->jmp_first; | |
977 | for(;;) { | |
978 | n1 = (long)tb1 & 3; | |
979 | if (n1 == 2) | |
980 | break; | |
981 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
982 | tb2 = tb1->jmp_next[n1]; | |
983 | tb_reset_jump(tb1, n1); | |
984 | tb1->jmp_next[n1] = NULL; | |
985 | tb1 = tb2; | |
986 | } | |
987 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 988 | |
e3db7226 | 989 | tb_phys_invalidate_count++; |
9fa3e853 FB |
990 | } |
991 | ||
992 | static inline void set_bits(uint8_t *tab, int start, int len) | |
993 | { | |
994 | int end, mask, end1; | |
995 | ||
996 | end = start + len; | |
997 | tab += start >> 3; | |
998 | mask = 0xff << (start & 7); | |
999 | if ((start & ~7) == (end & ~7)) { | |
1000 | if (start < end) { | |
1001 | mask &= ~(0xff << (end & 7)); | |
1002 | *tab |= mask; | |
1003 | } | |
1004 | } else { | |
1005 | *tab++ |= mask; | |
1006 | start = (start + 8) & ~7; | |
1007 | end1 = end & ~7; | |
1008 | while (start < end1) { | |
1009 | *tab++ = 0xff; | |
1010 | start += 8; | |
1011 | } | |
1012 | if (start < end) { | |
1013 | mask = ~(0xff << (end & 7)); | |
1014 | *tab |= mask; | |
1015 | } | |
1016 | } | |
1017 | } | |
1018 | ||
1019 | static void build_page_bitmap(PageDesc *p) | |
1020 | { | |
1021 | int n, tb_start, tb_end; | |
1022 | TranslationBlock *tb; | |
3b46e624 | 1023 | |
7267c094 | 1024 | p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
1025 | |
1026 | tb = p->first_tb; | |
1027 | while (tb != NULL) { | |
1028 | n = (long)tb & 3; | |
1029 | tb = (TranslationBlock *)((long)tb & ~3); | |
1030 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1031 | if (n == 0) { | |
1032 | /* NOTE: tb_end may be after the end of the page, but | |
1033 | it is not a problem */ | |
1034 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
1035 | tb_end = tb_start + tb->size; | |
1036 | if (tb_end > TARGET_PAGE_SIZE) | |
1037 | tb_end = TARGET_PAGE_SIZE; | |
1038 | } else { | |
1039 | tb_start = 0; | |
1040 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1041 | } | |
1042 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
1043 | tb = tb->page_next[n]; | |
1044 | } | |
1045 | } | |
1046 | ||
9349b4f9 | 1047 | TranslationBlock *tb_gen_code(CPUArchState *env, |
2e70f6ef PB |
1048 | target_ulong pc, target_ulong cs_base, |
1049 | int flags, int cflags) | |
d720b93d FB |
1050 | { |
1051 | TranslationBlock *tb; | |
1052 | uint8_t *tc_ptr; | |
41c1b1c9 PB |
1053 | tb_page_addr_t phys_pc, phys_page2; |
1054 | target_ulong virt_page2; | |
d720b93d FB |
1055 | int code_gen_size; |
1056 | ||
41c1b1c9 | 1057 | phys_pc = get_page_addr_code(env, pc); |
c27004ec | 1058 | tb = tb_alloc(pc); |
d720b93d FB |
1059 | if (!tb) { |
1060 | /* flush must be done */ | |
1061 | tb_flush(env); | |
1062 | /* cannot fail at this point */ | |
c27004ec | 1063 | tb = tb_alloc(pc); |
2e70f6ef PB |
1064 | /* Don't forget to invalidate previous TB info. */ |
1065 | tb_invalidated_flag = 1; | |
d720b93d FB |
1066 | } |
1067 | tc_ptr = code_gen_ptr; | |
1068 | tb->tc_ptr = tc_ptr; | |
1069 | tb->cs_base = cs_base; | |
1070 | tb->flags = flags; | |
1071 | tb->cflags = cflags; | |
d07bde88 | 1072 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 1073 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 1074 | |
d720b93d | 1075 | /* check next page if needed */ |
c27004ec | 1076 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 1077 | phys_page2 = -1; |
c27004ec | 1078 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
41c1b1c9 | 1079 | phys_page2 = get_page_addr_code(env, virt_page2); |
d720b93d | 1080 | } |
41c1b1c9 | 1081 | tb_link_page(tb, phys_pc, phys_page2); |
2e70f6ef | 1082 | return tb; |
d720b93d | 1083 | } |
3b46e624 | 1084 | |
9fa3e853 FB |
1085 | /* invalidate all TBs which intersect with the target physical page |
1086 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
1087 | the same physical page. 'is_cpu_write_access' should be true if called |
1088 | from a real cpu write access: the virtual CPU will exit the current | |
1089 | TB if code is modified inside this TB. */ | |
41c1b1c9 | 1090 | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, |
d720b93d FB |
1091 | int is_cpu_write_access) |
1092 | { | |
6b917547 | 1093 | TranslationBlock *tb, *tb_next, *saved_tb; |
9349b4f9 | 1094 | CPUArchState *env = cpu_single_env; |
41c1b1c9 | 1095 | tb_page_addr_t tb_start, tb_end; |
6b917547 AL |
1096 | PageDesc *p; |
1097 | int n; | |
1098 | #ifdef TARGET_HAS_PRECISE_SMC | |
1099 | int current_tb_not_found = is_cpu_write_access; | |
1100 | TranslationBlock *current_tb = NULL; | |
1101 | int current_tb_modified = 0; | |
1102 | target_ulong current_pc = 0; | |
1103 | target_ulong current_cs_base = 0; | |
1104 | int current_flags = 0; | |
1105 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1106 | |
1107 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 1108 | if (!p) |
9fa3e853 | 1109 | return; |
5fafdf24 | 1110 | if (!p->code_bitmap && |
d720b93d FB |
1111 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
1112 | is_cpu_write_access) { | |
9fa3e853 FB |
1113 | /* build code bitmap */ |
1114 | build_page_bitmap(p); | |
1115 | } | |
1116 | ||
1117 | /* we remove all the TBs in the range [start, end[ */ | |
1118 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
1119 | tb = p->first_tb; | |
1120 | while (tb != NULL) { | |
1121 | n = (long)tb & 3; | |
1122 | tb = (TranslationBlock *)((long)tb & ~3); | |
1123 | tb_next = tb->page_next[n]; | |
1124 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1125 | if (n == 0) { | |
1126 | /* NOTE: tb_end may be after the end of the page, but | |
1127 | it is not a problem */ | |
1128 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
1129 | tb_end = tb_start + tb->size; | |
1130 | } else { | |
1131 | tb_start = tb->page_addr[1]; | |
1132 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1133 | } | |
1134 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
1135 | #ifdef TARGET_HAS_PRECISE_SMC |
1136 | if (current_tb_not_found) { | |
1137 | current_tb_not_found = 0; | |
1138 | current_tb = NULL; | |
2e70f6ef | 1139 | if (env->mem_io_pc) { |
d720b93d | 1140 | /* now we have a real cpu fault */ |
2e70f6ef | 1141 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
1142 | } |
1143 | } | |
1144 | if (current_tb == tb && | |
2e70f6ef | 1145 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1146 | /* If we are modifying the current TB, we must stop |
1147 | its execution. We could be more precise by checking | |
1148 | that the modification is after the current PC, but it | |
1149 | would require a specialized function to partially | |
1150 | restore the CPU state */ | |
3b46e624 | 1151 | |
d720b93d | 1152 | current_tb_modified = 1; |
618ba8e6 | 1153 | cpu_restore_state(current_tb, env, env->mem_io_pc); |
6b917547 AL |
1154 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1155 | ¤t_flags); | |
d720b93d FB |
1156 | } |
1157 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
1158 | /* we need to do that to handle the case where a signal |
1159 | occurs while doing tb_phys_invalidate() */ | |
1160 | saved_tb = NULL; | |
1161 | if (env) { | |
1162 | saved_tb = env->current_tb; | |
1163 | env->current_tb = NULL; | |
1164 | } | |
9fa3e853 | 1165 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
1166 | if (env) { |
1167 | env->current_tb = saved_tb; | |
1168 | if (env->interrupt_request && env->current_tb) | |
1169 | cpu_interrupt(env, env->interrupt_request); | |
1170 | } | |
9fa3e853 FB |
1171 | } |
1172 | tb = tb_next; | |
1173 | } | |
1174 | #if !defined(CONFIG_USER_ONLY) | |
1175 | /* if no code remaining, no need to continue to use slow writes */ | |
1176 | if (!p->first_tb) { | |
1177 | invalidate_page_bitmap(p); | |
d720b93d | 1178 | if (is_cpu_write_access) { |
2e70f6ef | 1179 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
1180 | } |
1181 | } | |
1182 | #endif | |
1183 | #ifdef TARGET_HAS_PRECISE_SMC | |
1184 | if (current_tb_modified) { | |
1185 | /* we generate a block containing just the instruction | |
1186 | modifying the memory. It will ensure that it cannot modify | |
1187 | itself */ | |
ea1c1802 | 1188 | env->current_tb = NULL; |
2e70f6ef | 1189 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 1190 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 1191 | } |
fd6ce8f6 | 1192 | #endif |
9fa3e853 | 1193 | } |
fd6ce8f6 | 1194 | |
9fa3e853 | 1195 | /* len must be <= 8 and start must be a multiple of len */ |
41c1b1c9 | 1196 | static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) |
9fa3e853 FB |
1197 | { |
1198 | PageDesc *p; | |
1199 | int offset, b; | |
59817ccb | 1200 | #if 0 |
a4193c8a | 1201 | if (1) { |
93fcfe39 AL |
1202 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
1203 | cpu_single_env->mem_io_vaddr, len, | |
1204 | cpu_single_env->eip, | |
1205 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); | |
59817ccb FB |
1206 | } |
1207 | #endif | |
9fa3e853 | 1208 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1209 | if (!p) |
9fa3e853 FB |
1210 | return; |
1211 | if (p->code_bitmap) { | |
1212 | offset = start & ~TARGET_PAGE_MASK; | |
1213 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1214 | if (b & ((1 << len) - 1)) | |
1215 | goto do_invalidate; | |
1216 | } else { | |
1217 | do_invalidate: | |
d720b93d | 1218 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1219 | } |
1220 | } | |
1221 | ||
9fa3e853 | 1222 | #if !defined(CONFIG_SOFTMMU) |
41c1b1c9 | 1223 | static void tb_invalidate_phys_page(tb_page_addr_t addr, |
20503968 | 1224 | uintptr_t pc, void *puc) |
9fa3e853 | 1225 | { |
6b917547 | 1226 | TranslationBlock *tb; |
9fa3e853 | 1227 | PageDesc *p; |
6b917547 | 1228 | int n; |
d720b93d | 1229 | #ifdef TARGET_HAS_PRECISE_SMC |
6b917547 | 1230 | TranslationBlock *current_tb = NULL; |
9349b4f9 | 1231 | CPUArchState *env = cpu_single_env; |
6b917547 AL |
1232 | int current_tb_modified = 0; |
1233 | target_ulong current_pc = 0; | |
1234 | target_ulong current_cs_base = 0; | |
1235 | int current_flags = 0; | |
d720b93d | 1236 | #endif |
9fa3e853 FB |
1237 | |
1238 | addr &= TARGET_PAGE_MASK; | |
1239 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1240 | if (!p) |
9fa3e853 FB |
1241 | return; |
1242 | tb = p->first_tb; | |
d720b93d FB |
1243 | #ifdef TARGET_HAS_PRECISE_SMC |
1244 | if (tb && pc != 0) { | |
1245 | current_tb = tb_find_pc(pc); | |
1246 | } | |
1247 | #endif | |
9fa3e853 FB |
1248 | while (tb != NULL) { |
1249 | n = (long)tb & 3; | |
1250 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1251 | #ifdef TARGET_HAS_PRECISE_SMC |
1252 | if (current_tb == tb && | |
2e70f6ef | 1253 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1254 | /* If we are modifying the current TB, we must stop |
1255 | its execution. We could be more precise by checking | |
1256 | that the modification is after the current PC, but it | |
1257 | would require a specialized function to partially | |
1258 | restore the CPU state */ | |
3b46e624 | 1259 | |
d720b93d | 1260 | current_tb_modified = 1; |
618ba8e6 | 1261 | cpu_restore_state(current_tb, env, pc); |
6b917547 AL |
1262 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1263 | ¤t_flags); | |
d720b93d FB |
1264 | } |
1265 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1266 | tb_phys_invalidate(tb, addr); |
1267 | tb = tb->page_next[n]; | |
1268 | } | |
fd6ce8f6 | 1269 | p->first_tb = NULL; |
d720b93d FB |
1270 | #ifdef TARGET_HAS_PRECISE_SMC |
1271 | if (current_tb_modified) { | |
1272 | /* we generate a block containing just the instruction | |
1273 | modifying the memory. It will ensure that it cannot modify | |
1274 | itself */ | |
ea1c1802 | 1275 | env->current_tb = NULL; |
2e70f6ef | 1276 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1277 | cpu_resume_from_signal(env, puc); |
1278 | } | |
1279 | #endif | |
fd6ce8f6 | 1280 | } |
9fa3e853 | 1281 | #endif |
fd6ce8f6 FB |
1282 | |
1283 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1284 | static inline void tb_alloc_page(TranslationBlock *tb, |
41c1b1c9 | 1285 | unsigned int n, tb_page_addr_t page_addr) |
fd6ce8f6 FB |
1286 | { |
1287 | PageDesc *p; | |
4429ab44 JQ |
1288 | #ifndef CONFIG_USER_ONLY |
1289 | bool page_already_protected; | |
1290 | #endif | |
9fa3e853 FB |
1291 | |
1292 | tb->page_addr[n] = page_addr; | |
5cd2c5b6 | 1293 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); |
9fa3e853 | 1294 | tb->page_next[n] = p->first_tb; |
4429ab44 JQ |
1295 | #ifndef CONFIG_USER_ONLY |
1296 | page_already_protected = p->first_tb != NULL; | |
1297 | #endif | |
9fa3e853 FB |
1298 | p->first_tb = (TranslationBlock *)((long)tb | n); |
1299 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1300 | |
107db443 | 1301 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1302 | |
9fa3e853 | 1303 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1304 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1305 | target_ulong addr; |
1306 | PageDesc *p2; | |
9fa3e853 FB |
1307 | int prot; |
1308 | ||
fd6ce8f6 FB |
1309 | /* force the host page as non writable (writes will have a |
1310 | page fault + mprotect overhead) */ | |
53a5960a | 1311 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1312 | prot = 0; |
53a5960a PB |
1313 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1314 | addr += TARGET_PAGE_SIZE) { | |
1315 | ||
1316 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1317 | if (!p2) | |
1318 | continue; | |
1319 | prot |= p2->flags; | |
1320 | p2->flags &= ~PAGE_WRITE; | |
53a5960a | 1321 | } |
5fafdf24 | 1322 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1323 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1324 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1325 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1326 | page_addr); |
fd6ce8f6 | 1327 | #endif |
fd6ce8f6 | 1328 | } |
9fa3e853 FB |
1329 | #else |
1330 | /* if some code is already present, then the pages are already | |
1331 | protected. So we handle the case where only the first TB is | |
1332 | allocated in a physical page */ | |
4429ab44 | 1333 | if (!page_already_protected) { |
6a00d601 | 1334 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1335 | } |
1336 | #endif | |
d720b93d FB |
1337 | |
1338 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1339 | } |
1340 | ||
9fa3e853 FB |
1341 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1342 | (-1) to indicate that only one page contains the TB. */ | |
41c1b1c9 PB |
1343 | void tb_link_page(TranslationBlock *tb, |
1344 | tb_page_addr_t phys_pc, tb_page_addr_t phys_page2) | |
d4e8164f | 1345 | { |
9fa3e853 FB |
1346 | unsigned int h; |
1347 | TranslationBlock **ptb; | |
1348 | ||
c8a706fe PB |
1349 | /* Grab the mmap lock to stop another thread invalidating this TB |
1350 | before we are done. */ | |
1351 | mmap_lock(); | |
9fa3e853 FB |
1352 | /* add in the physical hash table */ |
1353 | h = tb_phys_hash_func(phys_pc); | |
1354 | ptb = &tb_phys_hash[h]; | |
1355 | tb->phys_hash_next = *ptb; | |
1356 | *ptb = tb; | |
fd6ce8f6 FB |
1357 | |
1358 | /* add in the page list */ | |
9fa3e853 FB |
1359 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1360 | if (phys_page2 != -1) | |
1361 | tb_alloc_page(tb, 1, phys_page2); | |
1362 | else | |
1363 | tb->page_addr[1] = -1; | |
9fa3e853 | 1364 | |
d4e8164f FB |
1365 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1366 | tb->jmp_next[0] = NULL; | |
1367 | tb->jmp_next[1] = NULL; | |
1368 | ||
1369 | /* init original jump addresses */ | |
1370 | if (tb->tb_next_offset[0] != 0xffff) | |
1371 | tb_reset_jump(tb, 0); | |
1372 | if (tb->tb_next_offset[1] != 0xffff) | |
1373 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1374 | |
1375 | #ifdef DEBUG_TB_CHECK | |
1376 | tb_page_check(); | |
1377 | #endif | |
c8a706fe | 1378 | mmap_unlock(); |
fd6ce8f6 FB |
1379 | } |
1380 | ||
9fa3e853 FB |
1381 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1382 | tb[1].tc_ptr. Return NULL if not found */ | |
6375e09e | 1383 | TranslationBlock *tb_find_pc(uintptr_t tc_ptr) |
fd6ce8f6 | 1384 | { |
9fa3e853 FB |
1385 | int m_min, m_max, m; |
1386 | unsigned long v; | |
1387 | TranslationBlock *tb; | |
a513fe19 FB |
1388 | |
1389 | if (nb_tbs <= 0) | |
1390 | return NULL; | |
1391 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1392 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1393 | return NULL; | |
1394 | /* binary search (cf Knuth) */ | |
1395 | m_min = 0; | |
1396 | m_max = nb_tbs - 1; | |
1397 | while (m_min <= m_max) { | |
1398 | m = (m_min + m_max) >> 1; | |
1399 | tb = &tbs[m]; | |
1400 | v = (unsigned long)tb->tc_ptr; | |
1401 | if (v == tc_ptr) | |
1402 | return tb; | |
1403 | else if (tc_ptr < v) { | |
1404 | m_max = m - 1; | |
1405 | } else { | |
1406 | m_min = m + 1; | |
1407 | } | |
5fafdf24 | 1408 | } |
a513fe19 FB |
1409 | return &tbs[m_max]; |
1410 | } | |
7501267e | 1411 | |
ea041c0e FB |
1412 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1413 | ||
1414 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1415 | { | |
1416 | TranslationBlock *tb1, *tb_next, **ptb; | |
1417 | unsigned int n1; | |
1418 | ||
1419 | tb1 = tb->jmp_next[n]; | |
1420 | if (tb1 != NULL) { | |
1421 | /* find head of list */ | |
1422 | for(;;) { | |
1423 | n1 = (long)tb1 & 3; | |
1424 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1425 | if (n1 == 2) | |
1426 | break; | |
1427 | tb1 = tb1->jmp_next[n1]; | |
1428 | } | |
1429 | /* we are now sure now that tb jumps to tb1 */ | |
1430 | tb_next = tb1; | |
1431 | ||
1432 | /* remove tb from the jmp_first list */ | |
1433 | ptb = &tb_next->jmp_first; | |
1434 | for(;;) { | |
1435 | tb1 = *ptb; | |
1436 | n1 = (long)tb1 & 3; | |
1437 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1438 | if (n1 == n && tb1 == tb) | |
1439 | break; | |
1440 | ptb = &tb1->jmp_next[n1]; | |
1441 | } | |
1442 | *ptb = tb->jmp_next[n]; | |
1443 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1444 | |
ea041c0e FB |
1445 | /* suppress the jump to next tb in generated code */ |
1446 | tb_reset_jump(tb, n); | |
1447 | ||
0124311e | 1448 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1449 | tb_reset_jump_recursive(tb_next); |
1450 | } | |
1451 | } | |
1452 | ||
1453 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1454 | { | |
1455 | tb_reset_jump_recursive2(tb, 0); | |
1456 | tb_reset_jump_recursive2(tb, 1); | |
1457 | } | |
1458 | ||
1fddef4b | 1459 | #if defined(TARGET_HAS_ICE) |
94df27fd | 1460 | #if defined(CONFIG_USER_ONLY) |
9349b4f9 | 1461 | static void breakpoint_invalidate(CPUArchState *env, target_ulong pc) |
94df27fd PB |
1462 | { |
1463 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
1464 | } | |
1465 | #else | |
1e7855a5 | 1466 | void tb_invalidate_phys_addr(target_phys_addr_t addr) |
d720b93d | 1467 | { |
c227f099 | 1468 | ram_addr_t ram_addr; |
f3705d53 | 1469 | MemoryRegionSection *section; |
d720b93d | 1470 | |
06ef3525 | 1471 | section = phys_page_find(addr >> TARGET_PAGE_BITS); |
f3705d53 AK |
1472 | if (!(memory_region_is_ram(section->mr) |
1473 | || (section->mr->rom_device && section->mr->readable))) { | |
06ef3525 AK |
1474 | return; |
1475 | } | |
f3705d53 AK |
1476 | ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) |
1477 | + section_addr(section, addr); | |
706cd4b5 | 1478 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1479 | } |
1e7855a5 MF |
1480 | |
1481 | static void breakpoint_invalidate(CPUArchState *env, target_ulong pc) | |
1482 | { | |
1483 | tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc)); | |
1484 | } | |
c27004ec | 1485 | #endif |
94df27fd | 1486 | #endif /* TARGET_HAS_ICE */ |
d720b93d | 1487 | |
c527ee8f | 1488 | #if defined(CONFIG_USER_ONLY) |
9349b4f9 | 1489 | void cpu_watchpoint_remove_all(CPUArchState *env, int mask) |
c527ee8f PB |
1490 | |
1491 | { | |
1492 | } | |
1493 | ||
9349b4f9 | 1494 | int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, |
c527ee8f PB |
1495 | int flags, CPUWatchpoint **watchpoint) |
1496 | { | |
1497 | return -ENOSYS; | |
1498 | } | |
1499 | #else | |
6658ffb8 | 1500 | /* Add a watchpoint. */ |
9349b4f9 | 1501 | int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, |
a1d1bb31 | 1502 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 1503 | { |
b4051334 | 1504 | target_ulong len_mask = ~(len - 1); |
c0ce998e | 1505 | CPUWatchpoint *wp; |
6658ffb8 | 1506 | |
b4051334 | 1507 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ |
0dc23828 MF |
1508 | if ((len & (len - 1)) || (addr & ~len_mask) || |
1509 | len == 0 || len > TARGET_PAGE_SIZE) { | |
b4051334 AL |
1510 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " |
1511 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1512 | return -EINVAL; | |
1513 | } | |
7267c094 | 1514 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
1515 | |
1516 | wp->vaddr = addr; | |
b4051334 | 1517 | wp->len_mask = len_mask; |
a1d1bb31 AL |
1518 | wp->flags = flags; |
1519 | ||
2dc9f411 | 1520 | /* keep all GDB-injected watchpoints in front */ |
c0ce998e | 1521 | if (flags & BP_GDB) |
72cf2d4f | 1522 | QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); |
c0ce998e | 1523 | else |
72cf2d4f | 1524 | QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); |
6658ffb8 | 1525 | |
6658ffb8 | 1526 | tlb_flush_page(env, addr); |
a1d1bb31 AL |
1527 | |
1528 | if (watchpoint) | |
1529 | *watchpoint = wp; | |
1530 | return 0; | |
6658ffb8 PB |
1531 | } |
1532 | ||
a1d1bb31 | 1533 | /* Remove a specific watchpoint. */ |
9349b4f9 | 1534 | int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len, |
a1d1bb31 | 1535 | int flags) |
6658ffb8 | 1536 | { |
b4051334 | 1537 | target_ulong len_mask = ~(len - 1); |
a1d1bb31 | 1538 | CPUWatchpoint *wp; |
6658ffb8 | 1539 | |
72cf2d4f | 1540 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 | 1541 | if (addr == wp->vaddr && len_mask == wp->len_mask |
6e140f28 | 1542 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
a1d1bb31 | 1543 | cpu_watchpoint_remove_by_ref(env, wp); |
6658ffb8 PB |
1544 | return 0; |
1545 | } | |
1546 | } | |
a1d1bb31 | 1547 | return -ENOENT; |
6658ffb8 PB |
1548 | } |
1549 | ||
a1d1bb31 | 1550 | /* Remove a specific watchpoint by reference. */ |
9349b4f9 | 1551 | void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint) |
a1d1bb31 | 1552 | { |
72cf2d4f | 1553 | QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry); |
7d03f82f | 1554 | |
a1d1bb31 AL |
1555 | tlb_flush_page(env, watchpoint->vaddr); |
1556 | ||
7267c094 | 1557 | g_free(watchpoint); |
a1d1bb31 AL |
1558 | } |
1559 | ||
1560 | /* Remove all matching watchpoints. */ | |
9349b4f9 | 1561 | void cpu_watchpoint_remove_all(CPUArchState *env, int mask) |
a1d1bb31 | 1562 | { |
c0ce998e | 1563 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1564 | |
72cf2d4f | 1565 | QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { |
a1d1bb31 AL |
1566 | if (wp->flags & mask) |
1567 | cpu_watchpoint_remove_by_ref(env, wp); | |
c0ce998e | 1568 | } |
7d03f82f | 1569 | } |
c527ee8f | 1570 | #endif |
7d03f82f | 1571 | |
a1d1bb31 | 1572 | /* Add a breakpoint. */ |
9349b4f9 | 1573 | int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags, |
a1d1bb31 | 1574 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 1575 | { |
1fddef4b | 1576 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1577 | CPUBreakpoint *bp; |
3b46e624 | 1578 | |
7267c094 | 1579 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 1580 | |
a1d1bb31 AL |
1581 | bp->pc = pc; |
1582 | bp->flags = flags; | |
1583 | ||
2dc9f411 | 1584 | /* keep all GDB-injected breakpoints in front */ |
c0ce998e | 1585 | if (flags & BP_GDB) |
72cf2d4f | 1586 | QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); |
c0ce998e | 1587 | else |
72cf2d4f | 1588 | QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); |
3b46e624 | 1589 | |
d720b93d | 1590 | breakpoint_invalidate(env, pc); |
a1d1bb31 AL |
1591 | |
1592 | if (breakpoint) | |
1593 | *breakpoint = bp; | |
4c3a88a2 FB |
1594 | return 0; |
1595 | #else | |
a1d1bb31 | 1596 | return -ENOSYS; |
4c3a88a2 FB |
1597 | #endif |
1598 | } | |
1599 | ||
a1d1bb31 | 1600 | /* Remove a specific breakpoint. */ |
9349b4f9 | 1601 | int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags) |
a1d1bb31 | 1602 | { |
7d03f82f | 1603 | #if defined(TARGET_HAS_ICE) |
a1d1bb31 AL |
1604 | CPUBreakpoint *bp; |
1605 | ||
72cf2d4f | 1606 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) { |
a1d1bb31 AL |
1607 | if (bp->pc == pc && bp->flags == flags) { |
1608 | cpu_breakpoint_remove_by_ref(env, bp); | |
1609 | return 0; | |
1610 | } | |
7d03f82f | 1611 | } |
a1d1bb31 AL |
1612 | return -ENOENT; |
1613 | #else | |
1614 | return -ENOSYS; | |
7d03f82f EI |
1615 | #endif |
1616 | } | |
1617 | ||
a1d1bb31 | 1618 | /* Remove a specific breakpoint by reference. */ |
9349b4f9 | 1619 | void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint) |
4c3a88a2 | 1620 | { |
1fddef4b | 1621 | #if defined(TARGET_HAS_ICE) |
72cf2d4f | 1622 | QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry); |
d720b93d | 1623 | |
a1d1bb31 AL |
1624 | breakpoint_invalidate(env, breakpoint->pc); |
1625 | ||
7267c094 | 1626 | g_free(breakpoint); |
a1d1bb31 AL |
1627 | #endif |
1628 | } | |
1629 | ||
1630 | /* Remove all matching breakpoints. */ | |
9349b4f9 | 1631 | void cpu_breakpoint_remove_all(CPUArchState *env, int mask) |
a1d1bb31 AL |
1632 | { |
1633 | #if defined(TARGET_HAS_ICE) | |
c0ce998e | 1634 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1635 | |
72cf2d4f | 1636 | QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { |
a1d1bb31 AL |
1637 | if (bp->flags & mask) |
1638 | cpu_breakpoint_remove_by_ref(env, bp); | |
c0ce998e | 1639 | } |
4c3a88a2 FB |
1640 | #endif |
1641 | } | |
1642 | ||
c33a346e FB |
1643 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1644 | CPU loop after each instruction */ | |
9349b4f9 | 1645 | void cpu_single_step(CPUArchState *env, int enabled) |
c33a346e | 1646 | { |
1fddef4b | 1647 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1648 | if (env->singlestep_enabled != enabled) { |
1649 | env->singlestep_enabled = enabled; | |
e22a25c9 AL |
1650 | if (kvm_enabled()) |
1651 | kvm_update_guest_debug(env, 0); | |
1652 | else { | |
ccbb4d44 | 1653 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 AL |
1654 | /* XXX: only flush what is necessary */ |
1655 | tb_flush(env); | |
1656 | } | |
c33a346e FB |
1657 | } |
1658 | #endif | |
1659 | } | |
1660 | ||
34865134 FB |
1661 | /* enable or disable low levels log */ |
1662 | void cpu_set_log(int log_flags) | |
1663 | { | |
1664 | loglevel = log_flags; | |
1665 | if (loglevel && !logfile) { | |
11fcfab4 | 1666 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1667 | if (!logfile) { |
1668 | perror(logfilename); | |
1669 | _exit(1); | |
1670 | } | |
9fa3e853 FB |
1671 | #if !defined(CONFIG_SOFTMMU) |
1672 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1673 | { | |
b55266b5 | 1674 | static char logfile_buf[4096]; |
9fa3e853 FB |
1675 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1676 | } | |
daf767b1 SW |
1677 | #elif defined(_WIN32) |
1678 | /* Win32 doesn't support line-buffering, so use unbuffered output. */ | |
1679 | setvbuf(logfile, NULL, _IONBF, 0); | |
1680 | #else | |
34865134 | 1681 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1682 | #endif |
e735b91c PB |
1683 | log_append = 1; |
1684 | } | |
1685 | if (!loglevel && logfile) { | |
1686 | fclose(logfile); | |
1687 | logfile = NULL; | |
34865134 FB |
1688 | } |
1689 | } | |
1690 | ||
1691 | void cpu_set_log_filename(const char *filename) | |
1692 | { | |
1693 | logfilename = strdup(filename); | |
e735b91c PB |
1694 | if (logfile) { |
1695 | fclose(logfile); | |
1696 | logfile = NULL; | |
1697 | } | |
1698 | cpu_set_log(loglevel); | |
34865134 | 1699 | } |
c33a346e | 1700 | |
9349b4f9 | 1701 | static void cpu_unlink_tb(CPUArchState *env) |
ea041c0e | 1702 | { |
3098dba0 AJ |
1703 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the |
1704 | problem and hope the cpu will stop of its own accord. For userspace | |
1705 | emulation this often isn't actually as bad as it sounds. Often | |
1706 | signals are used primarily to interrupt blocking syscalls. */ | |
ea041c0e | 1707 | TranslationBlock *tb; |
c227f099 | 1708 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
59817ccb | 1709 | |
cab1b4bd | 1710 | spin_lock(&interrupt_lock); |
3098dba0 AJ |
1711 | tb = env->current_tb; |
1712 | /* if the cpu is currently executing code, we must unlink it and | |
1713 | all the potentially executing TB */ | |
f76cfe56 | 1714 | if (tb) { |
3098dba0 AJ |
1715 | env->current_tb = NULL; |
1716 | tb_reset_jump_recursive(tb); | |
be214e6c | 1717 | } |
cab1b4bd | 1718 | spin_unlock(&interrupt_lock); |
3098dba0 AJ |
1719 | } |
1720 | ||
97ffbd8d | 1721 | #ifndef CONFIG_USER_ONLY |
3098dba0 | 1722 | /* mask must never be zero, except for A20 change call */ |
9349b4f9 | 1723 | static void tcg_handle_interrupt(CPUArchState *env, int mask) |
3098dba0 AJ |
1724 | { |
1725 | int old_mask; | |
be214e6c | 1726 | |
2e70f6ef | 1727 | old_mask = env->interrupt_request; |
68a79315 | 1728 | env->interrupt_request |= mask; |
3098dba0 | 1729 | |
8edac960 AL |
1730 | /* |
1731 | * If called from iothread context, wake the target cpu in | |
1732 | * case its halted. | |
1733 | */ | |
b7680cb6 | 1734 | if (!qemu_cpu_is_self(env)) { |
8edac960 AL |
1735 | qemu_cpu_kick(env); |
1736 | return; | |
1737 | } | |
8edac960 | 1738 | |
2e70f6ef | 1739 | if (use_icount) { |
266910c4 | 1740 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef | 1741 | if (!can_do_io(env) |
be214e6c | 1742 | && (mask & ~old_mask) != 0) { |
2e70f6ef PB |
1743 | cpu_abort(env, "Raised interrupt while not in I/O function"); |
1744 | } | |
2e70f6ef | 1745 | } else { |
3098dba0 | 1746 | cpu_unlink_tb(env); |
ea041c0e FB |
1747 | } |
1748 | } | |
1749 | ||
ec6959d0 JK |
1750 | CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt; |
1751 | ||
97ffbd8d JK |
1752 | #else /* CONFIG_USER_ONLY */ |
1753 | ||
9349b4f9 | 1754 | void cpu_interrupt(CPUArchState *env, int mask) |
97ffbd8d JK |
1755 | { |
1756 | env->interrupt_request |= mask; | |
1757 | cpu_unlink_tb(env); | |
1758 | } | |
1759 | #endif /* CONFIG_USER_ONLY */ | |
1760 | ||
9349b4f9 | 1761 | void cpu_reset_interrupt(CPUArchState *env, int mask) |
b54ad049 FB |
1762 | { |
1763 | env->interrupt_request &= ~mask; | |
1764 | } | |
1765 | ||
9349b4f9 | 1766 | void cpu_exit(CPUArchState *env) |
3098dba0 AJ |
1767 | { |
1768 | env->exit_request = 1; | |
1769 | cpu_unlink_tb(env); | |
1770 | } | |
1771 | ||
c7cd6a37 | 1772 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1773 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1774 | "show generated host assembly code for each compiled TB" }, |
1775 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1776 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1777 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1778 | "show micro ops for each compiled TB" }, |
f193c797 | 1779 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1780 | "show micro ops " |
1781 | #ifdef TARGET_I386 | |
1782 | "before eflags optimization and " | |
f193c797 | 1783 | #endif |
e01a1157 | 1784 | "after liveness analysis" }, |
f193c797 FB |
1785 | { CPU_LOG_INT, "int", |
1786 | "show interrupts/exceptions in short format" }, | |
1787 | { CPU_LOG_EXEC, "exec", | |
1788 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1789 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1790 | "show CPU state before block translation" }, |
f193c797 FB |
1791 | #ifdef TARGET_I386 |
1792 | { CPU_LOG_PCALL, "pcall", | |
1793 | "show protected mode far calls/returns/exceptions" }, | |
eca1bdf4 AL |
1794 | { CPU_LOG_RESET, "cpu_reset", |
1795 | "show CPU state before CPU resets" }, | |
f193c797 | 1796 | #endif |
8e3a9fd2 | 1797 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1798 | { CPU_LOG_IOPORT, "ioport", |
1799 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1800 | #endif |
f193c797 FB |
1801 | { 0, NULL, NULL }, |
1802 | }; | |
1803 | ||
1804 | static int cmp1(const char *s1, int n, const char *s2) | |
1805 | { | |
1806 | if (strlen(s2) != n) | |
1807 | return 0; | |
1808 | return memcmp(s1, s2, n) == 0; | |
1809 | } | |
3b46e624 | 1810 | |
f193c797 FB |
1811 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1812 | int cpu_str_to_log_mask(const char *str) | |
1813 | { | |
c7cd6a37 | 1814 | const CPULogItem *item; |
f193c797 FB |
1815 | int mask; |
1816 | const char *p, *p1; | |
1817 | ||
1818 | p = str; | |
1819 | mask = 0; | |
1820 | for(;;) { | |
1821 | p1 = strchr(p, ','); | |
1822 | if (!p1) | |
1823 | p1 = p + strlen(p); | |
9742bf26 YT |
1824 | if(cmp1(p,p1-p,"all")) { |
1825 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1826 | mask |= item->mask; | |
1827 | } | |
1828 | } else { | |
1829 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1830 | if (cmp1(p, p1 - p, item->name)) | |
1831 | goto found; | |
1832 | } | |
1833 | return 0; | |
f193c797 | 1834 | } |
f193c797 FB |
1835 | found: |
1836 | mask |= item->mask; | |
1837 | if (*p1 != ',') | |
1838 | break; | |
1839 | p = p1 + 1; | |
1840 | } | |
1841 | return mask; | |
1842 | } | |
ea041c0e | 1843 | |
9349b4f9 | 1844 | void cpu_abort(CPUArchState *env, const char *fmt, ...) |
7501267e FB |
1845 | { |
1846 | va_list ap; | |
493ae1f0 | 1847 | va_list ap2; |
7501267e FB |
1848 | |
1849 | va_start(ap, fmt); | |
493ae1f0 | 1850 | va_copy(ap2, ap); |
7501267e FB |
1851 | fprintf(stderr, "qemu: fatal: "); |
1852 | vfprintf(stderr, fmt, ap); | |
1853 | fprintf(stderr, "\n"); | |
1854 | #ifdef TARGET_I386 | |
7fe48483 FB |
1855 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1856 | #else | |
1857 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1858 | #endif |
93fcfe39 AL |
1859 | if (qemu_log_enabled()) { |
1860 | qemu_log("qemu: fatal: "); | |
1861 | qemu_log_vprintf(fmt, ap2); | |
1862 | qemu_log("\n"); | |
f9373291 | 1863 | #ifdef TARGET_I386 |
93fcfe39 | 1864 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); |
f9373291 | 1865 | #else |
93fcfe39 | 1866 | log_cpu_state(env, 0); |
f9373291 | 1867 | #endif |
31b1a7b4 | 1868 | qemu_log_flush(); |
93fcfe39 | 1869 | qemu_log_close(); |
924edcae | 1870 | } |
493ae1f0 | 1871 | va_end(ap2); |
f9373291 | 1872 | va_end(ap); |
fd052bf6 RV |
1873 | #if defined(CONFIG_USER_ONLY) |
1874 | { | |
1875 | struct sigaction act; | |
1876 | sigfillset(&act.sa_mask); | |
1877 | act.sa_handler = SIG_DFL; | |
1878 | sigaction(SIGABRT, &act, NULL); | |
1879 | } | |
1880 | #endif | |
7501267e FB |
1881 | abort(); |
1882 | } | |
1883 | ||
9349b4f9 | 1884 | CPUArchState *cpu_copy(CPUArchState *env) |
c5be9f08 | 1885 | { |
9349b4f9 AF |
1886 | CPUArchState *new_env = cpu_init(env->cpu_model_str); |
1887 | CPUArchState *next_cpu = new_env->next_cpu; | |
c5be9f08 | 1888 | int cpu_index = new_env->cpu_index; |
5a38f081 AL |
1889 | #if defined(TARGET_HAS_ICE) |
1890 | CPUBreakpoint *bp; | |
1891 | CPUWatchpoint *wp; | |
1892 | #endif | |
1893 | ||
9349b4f9 | 1894 | memcpy(new_env, env, sizeof(CPUArchState)); |
5a38f081 AL |
1895 | |
1896 | /* Preserve chaining and index. */ | |
c5be9f08 TS |
1897 | new_env->next_cpu = next_cpu; |
1898 | new_env->cpu_index = cpu_index; | |
5a38f081 AL |
1899 | |
1900 | /* Clone all break/watchpoints. | |
1901 | Note: Once we support ptrace with hw-debug register access, make sure | |
1902 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
72cf2d4f BS |
1903 | QTAILQ_INIT(&env->breakpoints); |
1904 | QTAILQ_INIT(&env->watchpoints); | |
5a38f081 | 1905 | #if defined(TARGET_HAS_ICE) |
72cf2d4f | 1906 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) { |
5a38f081 AL |
1907 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); |
1908 | } | |
72cf2d4f | 1909 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { |
5a38f081 AL |
1910 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, |
1911 | wp->flags, NULL); | |
1912 | } | |
1913 | #endif | |
1914 | ||
c5be9f08 TS |
1915 | return new_env; |
1916 | } | |
1917 | ||
0124311e FB |
1918 | #if !defined(CONFIG_USER_ONLY) |
1919 | ||
9349b4f9 | 1920 | static inline void tlb_flush_jmp_cache(CPUArchState *env, target_ulong addr) |
5c751e99 EI |
1921 | { |
1922 | unsigned int i; | |
1923 | ||
1924 | /* Discard jump cache entries for any tb which might potentially | |
1925 | overlap the flushed page. */ | |
1926 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1927 | memset (&env->tb_jmp_cache[i], 0, | |
9742bf26 | 1928 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
5c751e99 EI |
1929 | |
1930 | i = tb_jmp_cache_hash_page(addr); | |
1931 | memset (&env->tb_jmp_cache[i], 0, | |
9742bf26 | 1932 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
5c751e99 EI |
1933 | } |
1934 | ||
08738984 IK |
1935 | static CPUTLBEntry s_cputlb_empty_entry = { |
1936 | .addr_read = -1, | |
1937 | .addr_write = -1, | |
1938 | .addr_code = -1, | |
1939 | .addend = -1, | |
1940 | }; | |
1941 | ||
771124e1 PM |
1942 | /* NOTE: |
1943 | * If flush_global is true (the usual case), flush all tlb entries. | |
1944 | * If flush_global is false, flush (at least) all tlb entries not | |
1945 | * marked global. | |
1946 | * | |
1947 | * Since QEMU doesn't currently implement a global/not-global flag | |
1948 | * for tlb entries, at the moment tlb_flush() will also flush all | |
1949 | * tlb entries in the flush_global == false case. This is OK because | |
1950 | * CPU architectures generally permit an implementation to drop | |
1951 | * entries from the TLB at any time, so flushing more entries than | |
1952 | * required is only an efficiency issue, not a correctness issue. | |
1953 | */ | |
9349b4f9 | 1954 | void tlb_flush(CPUArchState *env, int flush_global) |
33417e70 | 1955 | { |
33417e70 | 1956 | int i; |
0124311e | 1957 | |
9fa3e853 FB |
1958 | #if defined(DEBUG_TLB) |
1959 | printf("tlb_flush:\n"); | |
1960 | #endif | |
0124311e FB |
1961 | /* must reset current TB so that interrupts cannot modify the |
1962 | links while we are modifying them */ | |
1963 | env->current_tb = NULL; | |
1964 | ||
33417e70 | 1965 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
cfde4bd9 IY |
1966 | int mmu_idx; |
1967 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
08738984 | 1968 | env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; |
cfde4bd9 | 1969 | } |
33417e70 | 1970 | } |
9fa3e853 | 1971 | |
8a40a180 | 1972 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1973 | |
d4c430a8 PB |
1974 | env->tlb_flush_addr = -1; |
1975 | env->tlb_flush_mask = 0; | |
e3db7226 | 1976 | tlb_flush_count++; |
33417e70 FB |
1977 | } |
1978 | ||
274da6b2 | 1979 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1980 | { |
5fafdf24 | 1981 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1982 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1983 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1984 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1985 | addr == (tlb_entry->addr_code & |
84b7b8e7 | 1986 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
08738984 | 1987 | *tlb_entry = s_cputlb_empty_entry; |
84b7b8e7 | 1988 | } |
61382a50 FB |
1989 | } |
1990 | ||
9349b4f9 | 1991 | void tlb_flush_page(CPUArchState *env, target_ulong addr) |
33417e70 | 1992 | { |
8a40a180 | 1993 | int i; |
cfde4bd9 | 1994 | int mmu_idx; |
0124311e | 1995 | |
9fa3e853 | 1996 | #if defined(DEBUG_TLB) |
108c49b8 | 1997 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1998 | #endif |
d4c430a8 PB |
1999 | /* Check if we need to flush due to large pages. */ |
2000 | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | |
2001 | #if defined(DEBUG_TLB) | |
2002 | printf("tlb_flush_page: forced full flush (" | |
2003 | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | |
2004 | env->tlb_flush_addr, env->tlb_flush_mask); | |
2005 | #endif | |
2006 | tlb_flush(env, 1); | |
2007 | return; | |
2008 | } | |
0124311e FB |
2009 | /* must reset current TB so that interrupts cannot modify the |
2010 | links while we are modifying them */ | |
2011 | env->current_tb = NULL; | |
61382a50 FB |
2012 | |
2013 | addr &= TARGET_PAGE_MASK; | |
2014 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
cfde4bd9 IY |
2015 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) |
2016 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
0124311e | 2017 | |
5c751e99 | 2018 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 FB |
2019 | } |
2020 | ||
9fa3e853 FB |
2021 | /* update the TLBs so that writes to code in the virtual page 'addr' |
2022 | can be detected */ | |
c227f099 | 2023 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 2024 | { |
5fafdf24 | 2025 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
2026 | ram_addr + TARGET_PAGE_SIZE, |
2027 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
2028 | } |
2029 | ||
9fa3e853 | 2030 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 2031 | tested for self modifying code */ |
9349b4f9 | 2032 | static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr, |
3a7d929e | 2033 | target_ulong vaddr) |
9fa3e853 | 2034 | { |
f7c11b53 | 2035 | cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG); |
1ccde1cb FB |
2036 | } |
2037 | ||
7859cc6e AK |
2038 | static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) |
2039 | { | |
2040 | return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; | |
2041 | } | |
2042 | ||
5fafdf24 | 2043 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
2044 | unsigned long start, unsigned long length) |
2045 | { | |
2046 | unsigned long addr; | |
7859cc6e | 2047 | if (tlb_is_dirty_ram(tlb_entry)) { |
84b7b8e7 | 2048 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; |
1ccde1cb | 2049 | if ((addr - start) < length) { |
7859cc6e | 2050 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
1ccde1cb FB |
2051 | } |
2052 | } | |
2053 | } | |
2054 | ||
5579c7f3 | 2055 | /* Note: start and end must be within the same ram block. */ |
c227f099 | 2056 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 2057 | int dirty_flags) |
1ccde1cb | 2058 | { |
9349b4f9 | 2059 | CPUArchState *env; |
4f2ac237 | 2060 | unsigned long length, start1; |
f7c11b53 | 2061 | int i; |
1ccde1cb FB |
2062 | |
2063 | start &= TARGET_PAGE_MASK; | |
2064 | end = TARGET_PAGE_ALIGN(end); | |
2065 | ||
2066 | length = end - start; | |
2067 | if (length == 0) | |
2068 | return; | |
f7c11b53 | 2069 | cpu_physical_memory_mask_dirty_range(start, length, dirty_flags); |
f23db169 | 2070 | |
1ccde1cb FB |
2071 | /* we modify the TLB cache so that the dirty bit will be set again |
2072 | when accessing the range */ | |
b2e0a138 | 2073 | start1 = (unsigned long)qemu_safe_ram_ptr(start); |
a57d23e4 | 2074 | /* Check that we don't span multiple blocks - this breaks the |
5579c7f3 | 2075 | address comparisons below. */ |
b2e0a138 | 2076 | if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1 |
5579c7f3 PB |
2077 | != (end - 1) - start) { |
2078 | abort(); | |
2079 | } | |
2080 | ||
6a00d601 | 2081 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
cfde4bd9 IY |
2082 | int mmu_idx; |
2083 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
2084 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
2085 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | |
2086 | start1, length); | |
2087 | } | |
6a00d601 | 2088 | } |
1ccde1cb FB |
2089 | } |
2090 | ||
74576198 AL |
2091 | int cpu_physical_memory_set_dirty_tracking(int enable) |
2092 | { | |
f6f3fbca | 2093 | int ret = 0; |
74576198 | 2094 | in_migration = enable; |
f6f3fbca | 2095 | return ret; |
74576198 AL |
2096 | } |
2097 | ||
3a7d929e FB |
2098 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
2099 | { | |
c227f099 | 2100 | ram_addr_t ram_addr; |
5579c7f3 | 2101 | void *p; |
3a7d929e | 2102 | |
7859cc6e | 2103 | if (tlb_is_dirty_ram(tlb_entry)) { |
5579c7f3 PB |
2104 | p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK) |
2105 | + tlb_entry->addend); | |
e890261f | 2106 | ram_addr = qemu_ram_addr_from_host_nofail(p); |
3a7d929e | 2107 | if (!cpu_physical_memory_is_dirty(ram_addr)) { |
0f459d16 | 2108 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
2109 | } |
2110 | } | |
2111 | } | |
2112 | ||
2113 | /* update the TLB according to the current state of the dirty bits */ | |
9349b4f9 | 2114 | void cpu_tlb_update_dirty(CPUArchState *env) |
3a7d929e FB |
2115 | { |
2116 | int i; | |
cfde4bd9 IY |
2117 | int mmu_idx; |
2118 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
2119 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
2120 | tlb_update_dirty(&env->tlb_table[mmu_idx][i]); | |
2121 | } | |
3a7d929e FB |
2122 | } |
2123 | ||
0f459d16 | 2124 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 2125 | { |
0f459d16 PB |
2126 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
2127 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
2128 | } |
2129 | ||
0f459d16 PB |
2130 | /* update the TLB corresponding to virtual page vaddr |
2131 | so that it is no longer dirty */ | |
9349b4f9 | 2132 | static inline void tlb_set_dirty(CPUArchState *env, target_ulong vaddr) |
1ccde1cb | 2133 | { |
1ccde1cb | 2134 | int i; |
cfde4bd9 | 2135 | int mmu_idx; |
1ccde1cb | 2136 | |
0f459d16 | 2137 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 2138 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
cfde4bd9 IY |
2139 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) |
2140 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | |
9fa3e853 FB |
2141 | } |
2142 | ||
d4c430a8 PB |
2143 | /* Our TLB does not support large pages, so remember the area covered by |
2144 | large pages and trigger a full TLB flush if these are invalidated. */ | |
9349b4f9 | 2145 | static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, |
d4c430a8 PB |
2146 | target_ulong size) |
2147 | { | |
2148 | target_ulong mask = ~(size - 1); | |
2149 | ||
2150 | if (env->tlb_flush_addr == (target_ulong)-1) { | |
2151 | env->tlb_flush_addr = vaddr & mask; | |
2152 | env->tlb_flush_mask = mask; | |
2153 | return; | |
2154 | } | |
2155 | /* Extend the existing region to include the new page. | |
2156 | This is a compromise between unnecessary flushes and the cost | |
2157 | of maintaining a full variable size TLB. */ | |
2158 | mask &= env->tlb_flush_mask; | |
2159 | while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { | |
2160 | mask <<= 1; | |
2161 | } | |
2162 | env->tlb_flush_addr &= mask; | |
2163 | env->tlb_flush_mask = mask; | |
2164 | } | |
2165 | ||
06ef3525 | 2166 | static bool is_ram_rom(MemoryRegionSection *s) |
1d393fa2 | 2167 | { |
06ef3525 | 2168 | return memory_region_is_ram(s->mr); |
1d393fa2 AK |
2169 | } |
2170 | ||
06ef3525 | 2171 | static bool is_romd(MemoryRegionSection *s) |
75c578dc | 2172 | { |
06ef3525 | 2173 | MemoryRegion *mr = s->mr; |
75c578dc | 2174 | |
75c578dc AK |
2175 | return mr->rom_device && mr->readable; |
2176 | } | |
2177 | ||
06ef3525 | 2178 | static bool is_ram_rom_romd(MemoryRegionSection *s) |
1d393fa2 | 2179 | { |
06ef3525 | 2180 | return is_ram_rom(s) || is_romd(s); |
1d393fa2 AK |
2181 | } |
2182 | ||
d4c430a8 PB |
2183 | /* Add a new TLB entry. At most one entry for a given virtual address |
2184 | is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the | |
2185 | supplied size is only used by tlb_flush_page. */ | |
9349b4f9 | 2186 | void tlb_set_page(CPUArchState *env, target_ulong vaddr, |
d4c430a8 PB |
2187 | target_phys_addr_t paddr, int prot, |
2188 | int mmu_idx, target_ulong size) | |
9fa3e853 | 2189 | { |
f3705d53 | 2190 | MemoryRegionSection *section; |
9fa3e853 | 2191 | unsigned int index; |
4f2ac237 | 2192 | target_ulong address; |
0f459d16 | 2193 | target_ulong code_address; |
355b1943 | 2194 | unsigned long addend; |
84b7b8e7 | 2195 | CPUTLBEntry *te; |
a1d1bb31 | 2196 | CPUWatchpoint *wp; |
c227f099 | 2197 | target_phys_addr_t iotlb; |
9fa3e853 | 2198 | |
d4c430a8 PB |
2199 | assert(size >= TARGET_PAGE_SIZE); |
2200 | if (size != TARGET_PAGE_SIZE) { | |
2201 | tlb_add_large_page(env, vaddr, size); | |
2202 | } | |
06ef3525 | 2203 | section = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 | 2204 | #if defined(DEBUG_TLB) |
7fd3f494 SW |
2205 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx |
2206 | " prot=%x idx=%d pd=0x%08lx\n", | |
2207 | vaddr, paddr, prot, mmu_idx, pd); | |
9fa3e853 FB |
2208 | #endif |
2209 | ||
0f459d16 | 2210 | address = vaddr; |
f3705d53 | 2211 | if (!is_ram_rom_romd(section)) { |
0f459d16 PB |
2212 | /* IO memory case (romd handled later) */ |
2213 | address |= TLB_MMIO; | |
2214 | } | |
f3705d53 AK |
2215 | if (is_ram_rom_romd(section)) { |
2216 | addend = (unsigned long)memory_region_get_ram_ptr(section->mr) | |
2217 | + section_addr(section, paddr); | |
06ef3525 AK |
2218 | } else { |
2219 | addend = 0; | |
2220 | } | |
f3705d53 | 2221 | if (is_ram_rom(section)) { |
0f459d16 | 2222 | /* Normal RAM. */ |
f3705d53 AK |
2223 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) |
2224 | + section_addr(section, paddr); | |
2225 | if (!section->readonly) | |
aa102231 | 2226 | iotlb |= phys_section_notdirty; |
0f459d16 | 2227 | else |
aa102231 | 2228 | iotlb |= phys_section_rom; |
0f459d16 | 2229 | } else { |
ccbb4d44 | 2230 | /* IO handlers are currently passed a physical address. |
0f459d16 PB |
2231 | It would be nice to pass an offset from the base address |
2232 | of that region. This would avoid having to special case RAM, | |
2233 | and avoid full address decoding in every device. | |
2234 | We can't use the high bits of pd for this because | |
2235 | IO_MEM_ROMD uses these as a ram address. */ | |
aa102231 | 2236 | iotlb = section - phys_sections; |
f3705d53 | 2237 | iotlb += section_addr(section, paddr); |
0f459d16 PB |
2238 | } |
2239 | ||
2240 | code_address = address; | |
2241 | /* Make accesses to pages with watchpoints go via the | |
2242 | watchpoint trap routines. */ | |
72cf2d4f | 2243 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { |
a1d1bb31 | 2244 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { |
bf298f83 JK |
2245 | /* Avoid trapping reads of pages with a write breakpoint. */ |
2246 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
aa102231 | 2247 | iotlb = phys_section_watch + paddr; |
bf298f83 JK |
2248 | address |= TLB_MMIO; |
2249 | break; | |
2250 | } | |
6658ffb8 | 2251 | } |
0f459d16 | 2252 | } |
d79acba4 | 2253 | |
0f459d16 PB |
2254 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
2255 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
2256 | te = &env->tlb_table[mmu_idx][index]; | |
2257 | te->addend = addend - vaddr; | |
2258 | if (prot & PAGE_READ) { | |
2259 | te->addr_read = address; | |
2260 | } else { | |
2261 | te->addr_read = -1; | |
2262 | } | |
5c751e99 | 2263 | |
0f459d16 PB |
2264 | if (prot & PAGE_EXEC) { |
2265 | te->addr_code = code_address; | |
2266 | } else { | |
2267 | te->addr_code = -1; | |
2268 | } | |
2269 | if (prot & PAGE_WRITE) { | |
f3705d53 AK |
2270 | if ((memory_region_is_ram(section->mr) && section->readonly) |
2271 | || is_romd(section)) { | |
0f459d16 PB |
2272 | /* Write access calls the I/O callback. */ |
2273 | te->addr_write = address | TLB_MMIO; | |
f3705d53 | 2274 | } else if (memory_region_is_ram(section->mr) |
06ef3525 | 2275 | && !cpu_physical_memory_is_dirty( |
f3705d53 AK |
2276 | section->mr->ram_addr |
2277 | + section_addr(section, paddr))) { | |
0f459d16 | 2278 | te->addr_write = address | TLB_NOTDIRTY; |
9fa3e853 | 2279 | } else { |
0f459d16 | 2280 | te->addr_write = address; |
9fa3e853 | 2281 | } |
0f459d16 PB |
2282 | } else { |
2283 | te->addr_write = -1; | |
9fa3e853 | 2284 | } |
9fa3e853 FB |
2285 | } |
2286 | ||
0124311e FB |
2287 | #else |
2288 | ||
9349b4f9 | 2289 | void tlb_flush(CPUArchState *env, int flush_global) |
0124311e FB |
2290 | { |
2291 | } | |
2292 | ||
9349b4f9 | 2293 | void tlb_flush_page(CPUArchState *env, target_ulong addr) |
0124311e FB |
2294 | { |
2295 | } | |
2296 | ||
edf8e2af MW |
2297 | /* |
2298 | * Walks guest process memory "regions" one by one | |
2299 | * and calls callback function 'fn' for each region. | |
2300 | */ | |
5cd2c5b6 RH |
2301 | |
2302 | struct walk_memory_regions_data | |
2303 | { | |
2304 | walk_memory_regions_fn fn; | |
2305 | void *priv; | |
2306 | unsigned long start; | |
2307 | int prot; | |
2308 | }; | |
2309 | ||
2310 | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | |
b480d9b7 | 2311 | abi_ulong end, int new_prot) |
5cd2c5b6 RH |
2312 | { |
2313 | if (data->start != -1ul) { | |
2314 | int rc = data->fn(data->priv, data->start, end, data->prot); | |
2315 | if (rc != 0) { | |
2316 | return rc; | |
2317 | } | |
2318 | } | |
2319 | ||
2320 | data->start = (new_prot ? end : -1ul); | |
2321 | data->prot = new_prot; | |
2322 | ||
2323 | return 0; | |
2324 | } | |
2325 | ||
2326 | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | |
b480d9b7 | 2327 | abi_ulong base, int level, void **lp) |
5cd2c5b6 | 2328 | { |
b480d9b7 | 2329 | abi_ulong pa; |
5cd2c5b6 RH |
2330 | int i, rc; |
2331 | ||
2332 | if (*lp == NULL) { | |
2333 | return walk_memory_regions_end(data, base, 0); | |
2334 | } | |
2335 | ||
2336 | if (level == 0) { | |
2337 | PageDesc *pd = *lp; | |
7296abac | 2338 | for (i = 0; i < L2_SIZE; ++i) { |
5cd2c5b6 RH |
2339 | int prot = pd[i].flags; |
2340 | ||
2341 | pa = base | (i << TARGET_PAGE_BITS); | |
2342 | if (prot != data->prot) { | |
2343 | rc = walk_memory_regions_end(data, pa, prot); | |
2344 | if (rc != 0) { | |
2345 | return rc; | |
9fa3e853 | 2346 | } |
9fa3e853 | 2347 | } |
5cd2c5b6 RH |
2348 | } |
2349 | } else { | |
2350 | void **pp = *lp; | |
7296abac | 2351 | for (i = 0; i < L2_SIZE; ++i) { |
b480d9b7 PB |
2352 | pa = base | ((abi_ulong)i << |
2353 | (TARGET_PAGE_BITS + L2_BITS * level)); | |
5cd2c5b6 RH |
2354 | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); |
2355 | if (rc != 0) { | |
2356 | return rc; | |
2357 | } | |
2358 | } | |
2359 | } | |
2360 | ||
2361 | return 0; | |
2362 | } | |
2363 | ||
2364 | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | |
2365 | { | |
2366 | struct walk_memory_regions_data data; | |
2367 | unsigned long i; | |
2368 | ||
2369 | data.fn = fn; | |
2370 | data.priv = priv; | |
2371 | data.start = -1ul; | |
2372 | data.prot = 0; | |
2373 | ||
2374 | for (i = 0; i < V_L1_SIZE; i++) { | |
b480d9b7 | 2375 | int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT, |
5cd2c5b6 RH |
2376 | V_L1_SHIFT / L2_BITS - 1, l1_map + i); |
2377 | if (rc != 0) { | |
2378 | return rc; | |
9fa3e853 | 2379 | } |
33417e70 | 2380 | } |
5cd2c5b6 RH |
2381 | |
2382 | return walk_memory_regions_end(&data, 0, 0); | |
edf8e2af MW |
2383 | } |
2384 | ||
b480d9b7 PB |
2385 | static int dump_region(void *priv, abi_ulong start, |
2386 | abi_ulong end, unsigned long prot) | |
edf8e2af MW |
2387 | { |
2388 | FILE *f = (FILE *)priv; | |
2389 | ||
b480d9b7 PB |
2390 | (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx |
2391 | " "TARGET_ABI_FMT_lx" %c%c%c\n", | |
edf8e2af MW |
2392 | start, end, end - start, |
2393 | ((prot & PAGE_READ) ? 'r' : '-'), | |
2394 | ((prot & PAGE_WRITE) ? 'w' : '-'), | |
2395 | ((prot & PAGE_EXEC) ? 'x' : '-')); | |
2396 | ||
2397 | return (0); | |
2398 | } | |
2399 | ||
2400 | /* dump memory mappings */ | |
2401 | void page_dump(FILE *f) | |
2402 | { | |
2403 | (void) fprintf(f, "%-8s %-8s %-8s %s\n", | |
2404 | "start", "end", "size", "prot"); | |
2405 | walk_memory_regions(f, dump_region); | |
33417e70 FB |
2406 | } |
2407 | ||
53a5960a | 2408 | int page_get_flags(target_ulong address) |
33417e70 | 2409 | { |
9fa3e853 FB |
2410 | PageDesc *p; |
2411 | ||
2412 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2413 | if (!p) |
9fa3e853 FB |
2414 | return 0; |
2415 | return p->flags; | |
2416 | } | |
2417 | ||
376a7909 RH |
2418 | /* Modify the flags of a page and invalidate the code if necessary. |
2419 | The flag PAGE_WRITE_ORG is positioned automatically depending | |
2420 | on PAGE_WRITE. The mmap_lock should already be held. */ | |
53a5960a | 2421 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 | 2422 | { |
376a7909 RH |
2423 | target_ulong addr, len; |
2424 | ||
2425 | /* This function should never be called with addresses outside the | |
2426 | guest address space. If this assert fires, it probably indicates | |
2427 | a missing call to h2g_valid. */ | |
b480d9b7 PB |
2428 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS |
2429 | assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
376a7909 RH |
2430 | #endif |
2431 | assert(start < end); | |
9fa3e853 FB |
2432 | |
2433 | start = start & TARGET_PAGE_MASK; | |
2434 | end = TARGET_PAGE_ALIGN(end); | |
376a7909 RH |
2435 | |
2436 | if (flags & PAGE_WRITE) { | |
9fa3e853 | 2437 | flags |= PAGE_WRITE_ORG; |
376a7909 RH |
2438 | } |
2439 | ||
2440 | for (addr = start, len = end - start; | |
2441 | len != 0; | |
2442 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
2443 | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2444 | ||
2445 | /* If the write protection bit is set, then we invalidate | |
2446 | the code inside. */ | |
5fafdf24 | 2447 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2448 | (flags & PAGE_WRITE) && |
2449 | p->first_tb) { | |
d720b93d | 2450 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2451 | } |
2452 | p->flags = flags; | |
2453 | } | |
33417e70 FB |
2454 | } |
2455 | ||
3d97b40b TS |
2456 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2457 | { | |
2458 | PageDesc *p; | |
2459 | target_ulong end; | |
2460 | target_ulong addr; | |
2461 | ||
376a7909 RH |
2462 | /* This function should never be called with addresses outside the |
2463 | guest address space. If this assert fires, it probably indicates | |
2464 | a missing call to h2g_valid. */ | |
338e9e6c BS |
2465 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS |
2466 | assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
376a7909 RH |
2467 | #endif |
2468 | ||
3e0650a9 RH |
2469 | if (len == 0) { |
2470 | return 0; | |
2471 | } | |
376a7909 RH |
2472 | if (start + len - 1 < start) { |
2473 | /* We've wrapped around. */ | |
55f280c9 | 2474 | return -1; |
376a7909 | 2475 | } |
55f280c9 | 2476 | |
3d97b40b TS |
2477 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ |
2478 | start = start & TARGET_PAGE_MASK; | |
2479 | ||
376a7909 RH |
2480 | for (addr = start, len = end - start; |
2481 | len != 0; | |
2482 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
3d97b40b TS |
2483 | p = page_find(addr >> TARGET_PAGE_BITS); |
2484 | if( !p ) | |
2485 | return -1; | |
2486 | if( !(p->flags & PAGE_VALID) ) | |
2487 | return -1; | |
2488 | ||
dae3270c | 2489 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2490 | return -1; |
dae3270c FB |
2491 | if (flags & PAGE_WRITE) { |
2492 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2493 | return -1; | |
2494 | /* unprotect the page if it was put read-only because it | |
2495 | contains translated code */ | |
2496 | if (!(p->flags & PAGE_WRITE)) { | |
2497 | if (!page_unprotect(addr, 0, NULL)) | |
2498 | return -1; | |
2499 | } | |
2500 | return 0; | |
2501 | } | |
3d97b40b TS |
2502 | } |
2503 | return 0; | |
2504 | } | |
2505 | ||
9fa3e853 | 2506 | /* called from signal handler: invalidate the code and unprotect the |
ccbb4d44 | 2507 | page. Return TRUE if the fault was successfully handled. */ |
6375e09e | 2508 | int page_unprotect(target_ulong address, uintptr_t pc, void *puc) |
9fa3e853 | 2509 | { |
45d679d6 AJ |
2510 | unsigned int prot; |
2511 | PageDesc *p; | |
53a5960a | 2512 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2513 | |
c8a706fe PB |
2514 | /* Technically this isn't safe inside a signal handler. However we |
2515 | know this only ever happens in a synchronous SEGV handler, so in | |
2516 | practice it seems to be ok. */ | |
2517 | mmap_lock(); | |
2518 | ||
45d679d6 AJ |
2519 | p = page_find(address >> TARGET_PAGE_BITS); |
2520 | if (!p) { | |
c8a706fe | 2521 | mmap_unlock(); |
9fa3e853 | 2522 | return 0; |
c8a706fe | 2523 | } |
45d679d6 | 2524 | |
9fa3e853 FB |
2525 | /* if the page was really writable, then we change its |
2526 | protection back to writable */ | |
45d679d6 AJ |
2527 | if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { |
2528 | host_start = address & qemu_host_page_mask; | |
2529 | host_end = host_start + qemu_host_page_size; | |
2530 | ||
2531 | prot = 0; | |
2532 | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { | |
2533 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2534 | p->flags |= PAGE_WRITE; | |
2535 | prot |= p->flags; | |
2536 | ||
9fa3e853 FB |
2537 | /* and since the content will be modified, we must invalidate |
2538 | the corresponding translated code. */ | |
45d679d6 | 2539 | tb_invalidate_phys_page(addr, pc, puc); |
9fa3e853 | 2540 | #ifdef DEBUG_TB_CHECK |
45d679d6 | 2541 | tb_invalidate_check(addr); |
9fa3e853 | 2542 | #endif |
9fa3e853 | 2543 | } |
45d679d6 AJ |
2544 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
2545 | prot & PAGE_BITS); | |
2546 | ||
2547 | mmap_unlock(); | |
2548 | return 1; | |
9fa3e853 | 2549 | } |
c8a706fe | 2550 | mmap_unlock(); |
9fa3e853 FB |
2551 | return 0; |
2552 | } | |
2553 | ||
9349b4f9 | 2554 | static inline void tlb_set_dirty(CPUArchState *env, |
6a00d601 | 2555 | unsigned long addr, target_ulong vaddr) |
1ccde1cb FB |
2556 | { |
2557 | } | |
9fa3e853 FB |
2558 | #endif /* defined(CONFIG_USER_ONLY) */ |
2559 | ||
e2eef170 | 2560 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 2561 | |
c04b2b78 PB |
2562 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
2563 | typedef struct subpage_t { | |
70c68e44 | 2564 | MemoryRegion iomem; |
c04b2b78 | 2565 | target_phys_addr_t base; |
5312bd8b | 2566 | uint16_t sub_section[TARGET_PAGE_SIZE]; |
c04b2b78 PB |
2567 | } subpage_t; |
2568 | ||
c227f099 | 2569 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2570 | uint16_t section); |
0f0cb164 | 2571 | static subpage_t *subpage_init(target_phys_addr_t base); |
5312bd8b | 2572 | static void destroy_page_desc(uint16_t section_index) |
54688b1e | 2573 | { |
5312bd8b AK |
2574 | MemoryRegionSection *section = &phys_sections[section_index]; |
2575 | MemoryRegion *mr = section->mr; | |
54688b1e AK |
2576 | |
2577 | if (mr->subpage) { | |
2578 | subpage_t *subpage = container_of(mr, subpage_t, iomem); | |
2579 | memory_region_destroy(&subpage->iomem); | |
2580 | g_free(subpage); | |
2581 | } | |
2582 | } | |
2583 | ||
4346ae3e | 2584 | static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level) |
54688b1e AK |
2585 | { |
2586 | unsigned i; | |
d6f2ea22 | 2587 | PhysPageEntry *p; |
54688b1e | 2588 | |
c19e8800 | 2589 | if (lp->ptr == PHYS_MAP_NODE_NIL) { |
54688b1e AK |
2590 | return; |
2591 | } | |
2592 | ||
c19e8800 | 2593 | p = phys_map_nodes[lp->ptr]; |
4346ae3e | 2594 | for (i = 0; i < L2_SIZE; ++i) { |
07f07b31 | 2595 | if (!p[i].is_leaf) { |
54688b1e | 2596 | destroy_l2_mapping(&p[i], level - 1); |
4346ae3e | 2597 | } else { |
c19e8800 | 2598 | destroy_page_desc(p[i].ptr); |
54688b1e | 2599 | } |
54688b1e | 2600 | } |
07f07b31 | 2601 | lp->is_leaf = 0; |
c19e8800 | 2602 | lp->ptr = PHYS_MAP_NODE_NIL; |
54688b1e AK |
2603 | } |
2604 | ||
2605 | static void destroy_all_mappings(void) | |
2606 | { | |
3eef53df | 2607 | destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1); |
d6f2ea22 | 2608 | phys_map_nodes_reset(); |
54688b1e AK |
2609 | } |
2610 | ||
5312bd8b AK |
2611 | static uint16_t phys_section_add(MemoryRegionSection *section) |
2612 | { | |
2613 | if (phys_sections_nb == phys_sections_nb_alloc) { | |
2614 | phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16); | |
2615 | phys_sections = g_renew(MemoryRegionSection, phys_sections, | |
2616 | phys_sections_nb_alloc); | |
2617 | } | |
2618 | phys_sections[phys_sections_nb] = *section; | |
2619 | return phys_sections_nb++; | |
2620 | } | |
2621 | ||
2622 | static void phys_sections_clear(void) | |
2623 | { | |
2624 | phys_sections_nb = 0; | |
2625 | } | |
2626 | ||
8f2498f9 MT |
2627 | /* register physical memory. |
2628 | For RAM, 'size' must be a multiple of the target page size. | |
2629 | If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
8da3ff18 PB |
2630 | io memory page. The address used when calling the IO function is |
2631 | the offset from the start of the region, plus region_offset. Both | |
ccbb4d44 | 2632 | start_addr and region_offset are rounded down to a page boundary |
8da3ff18 PB |
2633 | before calculating this offset. This should not be a problem unless |
2634 | the low bits of start_addr and region_offset differ. */ | |
0f0cb164 AK |
2635 | static void register_subpage(MemoryRegionSection *section) |
2636 | { | |
2637 | subpage_t *subpage; | |
2638 | target_phys_addr_t base = section->offset_within_address_space | |
2639 | & TARGET_PAGE_MASK; | |
f3705d53 | 2640 | MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS); |
0f0cb164 AK |
2641 | MemoryRegionSection subsection = { |
2642 | .offset_within_address_space = base, | |
2643 | .size = TARGET_PAGE_SIZE, | |
2644 | }; | |
0f0cb164 AK |
2645 | target_phys_addr_t start, end; |
2646 | ||
f3705d53 | 2647 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 2648 | |
f3705d53 | 2649 | if (!(existing->mr->subpage)) { |
0f0cb164 AK |
2650 | subpage = subpage_init(base); |
2651 | subsection.mr = &subpage->iomem; | |
2999097b AK |
2652 | phys_page_set(base >> TARGET_PAGE_BITS, 1, |
2653 | phys_section_add(&subsection)); | |
0f0cb164 | 2654 | } else { |
f3705d53 | 2655 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
2656 | } |
2657 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
2658 | end = start + section->size; | |
2659 | subpage_register(subpage, start, end, phys_section_add(section)); | |
2660 | } | |
2661 | ||
2662 | ||
2663 | static void register_multipage(MemoryRegionSection *section) | |
33417e70 | 2664 | { |
dd81124b AK |
2665 | target_phys_addr_t start_addr = section->offset_within_address_space; |
2666 | ram_addr_t size = section->size; | |
2999097b | 2667 | target_phys_addr_t addr; |
5312bd8b | 2668 | uint16_t section_index = phys_section_add(section); |
dd81124b | 2669 | |
3b8e6a2d | 2670 | assert(size); |
f6f3fbca | 2671 | |
3b8e6a2d | 2672 | addr = start_addr; |
2999097b AK |
2673 | phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS, |
2674 | section_index); | |
33417e70 FB |
2675 | } |
2676 | ||
0f0cb164 AK |
2677 | void cpu_register_physical_memory_log(MemoryRegionSection *section, |
2678 | bool readonly) | |
2679 | { | |
2680 | MemoryRegionSection now = *section, remain = *section; | |
2681 | ||
2682 | if ((now.offset_within_address_space & ~TARGET_PAGE_MASK) | |
2683 | || (now.size < TARGET_PAGE_SIZE)) { | |
2684 | now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
2685 | - now.offset_within_address_space, | |
2686 | now.size); | |
2687 | register_subpage(&now); | |
2688 | remain.size -= now.size; | |
2689 | remain.offset_within_address_space += now.size; | |
2690 | remain.offset_within_region += now.size; | |
2691 | } | |
2692 | now = remain; | |
2693 | now.size &= TARGET_PAGE_MASK; | |
2694 | if (now.size) { | |
2695 | register_multipage(&now); | |
2696 | remain.size -= now.size; | |
2697 | remain.offset_within_address_space += now.size; | |
2698 | remain.offset_within_region += now.size; | |
2699 | } | |
2700 | now = remain; | |
2701 | if (now.size) { | |
2702 | register_subpage(&now); | |
2703 | } | |
2704 | } | |
2705 | ||
2706 | ||
c227f099 | 2707 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) |
f65ed4c1 AL |
2708 | { |
2709 | if (kvm_enabled()) | |
2710 | kvm_coalesce_mmio_region(addr, size); | |
2711 | } | |
2712 | ||
c227f099 | 2713 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) |
f65ed4c1 AL |
2714 | { |
2715 | if (kvm_enabled()) | |
2716 | kvm_uncoalesce_mmio_region(addr, size); | |
2717 | } | |
2718 | ||
62a2744c SY |
2719 | void qemu_flush_coalesced_mmio_buffer(void) |
2720 | { | |
2721 | if (kvm_enabled()) | |
2722 | kvm_flush_coalesced_mmio_buffer(); | |
2723 | } | |
2724 | ||
c902760f MT |
2725 | #if defined(__linux__) && !defined(TARGET_S390X) |
2726 | ||
2727 | #include <sys/vfs.h> | |
2728 | ||
2729 | #define HUGETLBFS_MAGIC 0x958458f6 | |
2730 | ||
2731 | static long gethugepagesize(const char *path) | |
2732 | { | |
2733 | struct statfs fs; | |
2734 | int ret; | |
2735 | ||
2736 | do { | |
9742bf26 | 2737 | ret = statfs(path, &fs); |
c902760f MT |
2738 | } while (ret != 0 && errno == EINTR); |
2739 | ||
2740 | if (ret != 0) { | |
9742bf26 YT |
2741 | perror(path); |
2742 | return 0; | |
c902760f MT |
2743 | } |
2744 | ||
2745 | if (fs.f_type != HUGETLBFS_MAGIC) | |
9742bf26 | 2746 | fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); |
c902760f MT |
2747 | |
2748 | return fs.f_bsize; | |
2749 | } | |
2750 | ||
04b16653 AW |
2751 | static void *file_ram_alloc(RAMBlock *block, |
2752 | ram_addr_t memory, | |
2753 | const char *path) | |
c902760f MT |
2754 | { |
2755 | char *filename; | |
2756 | void *area; | |
2757 | int fd; | |
2758 | #ifdef MAP_POPULATE | |
2759 | int flags; | |
2760 | #endif | |
2761 | unsigned long hpagesize; | |
2762 | ||
2763 | hpagesize = gethugepagesize(path); | |
2764 | if (!hpagesize) { | |
9742bf26 | 2765 | return NULL; |
c902760f MT |
2766 | } |
2767 | ||
2768 | if (memory < hpagesize) { | |
2769 | return NULL; | |
2770 | } | |
2771 | ||
2772 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
2773 | fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n"); | |
2774 | return NULL; | |
2775 | } | |
2776 | ||
2777 | if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) { | |
9742bf26 | 2778 | return NULL; |
c902760f MT |
2779 | } |
2780 | ||
2781 | fd = mkstemp(filename); | |
2782 | if (fd < 0) { | |
9742bf26 YT |
2783 | perror("unable to create backing store for hugepages"); |
2784 | free(filename); | |
2785 | return NULL; | |
c902760f MT |
2786 | } |
2787 | unlink(filename); | |
2788 | free(filename); | |
2789 | ||
2790 | memory = (memory+hpagesize-1) & ~(hpagesize-1); | |
2791 | ||
2792 | /* | |
2793 | * ftruncate is not supported by hugetlbfs in older | |
2794 | * hosts, so don't bother bailing out on errors. | |
2795 | * If anything goes wrong with it under other filesystems, | |
2796 | * mmap will fail. | |
2797 | */ | |
2798 | if (ftruncate(fd, memory)) | |
9742bf26 | 2799 | perror("ftruncate"); |
c902760f MT |
2800 | |
2801 | #ifdef MAP_POPULATE | |
2802 | /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case | |
2803 | * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED | |
2804 | * to sidestep this quirk. | |
2805 | */ | |
2806 | flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE; | |
2807 | area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0); | |
2808 | #else | |
2809 | area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); | |
2810 | #endif | |
2811 | if (area == MAP_FAILED) { | |
9742bf26 YT |
2812 | perror("file_ram_alloc: can't mmap RAM pages"); |
2813 | close(fd); | |
2814 | return (NULL); | |
c902760f | 2815 | } |
04b16653 | 2816 | block->fd = fd; |
c902760f MT |
2817 | return area; |
2818 | } | |
2819 | #endif | |
2820 | ||
d17b5288 | 2821 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
2822 | { |
2823 | RAMBlock *block, *next_block; | |
3e837b2c | 2824 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 AW |
2825 | |
2826 | if (QLIST_EMPTY(&ram_list.blocks)) | |
2827 | return 0; | |
2828 | ||
2829 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
f15fbc4b | 2830 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 AW |
2831 | |
2832 | end = block->offset + block->length; | |
2833 | ||
2834 | QLIST_FOREACH(next_block, &ram_list.blocks, next) { | |
2835 | if (next_block->offset >= end) { | |
2836 | next = MIN(next, next_block->offset); | |
2837 | } | |
2838 | } | |
2839 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 2840 | offset = end; |
04b16653 AW |
2841 | mingap = next - end; |
2842 | } | |
2843 | } | |
3e837b2c AW |
2844 | |
2845 | if (offset == RAM_ADDR_MAX) { | |
2846 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
2847 | (uint64_t)size); | |
2848 | abort(); | |
2849 | } | |
2850 | ||
04b16653 AW |
2851 | return offset; |
2852 | } | |
2853 | ||
2854 | static ram_addr_t last_ram_offset(void) | |
d17b5288 AW |
2855 | { |
2856 | RAMBlock *block; | |
2857 | ram_addr_t last = 0; | |
2858 | ||
2859 | QLIST_FOREACH(block, &ram_list.blocks, next) | |
2860 | last = MAX(last, block->offset + block->length); | |
2861 | ||
2862 | return last; | |
2863 | } | |
2864 | ||
c5705a77 | 2865 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) |
84b89d78 CM |
2866 | { |
2867 | RAMBlock *new_block, *block; | |
2868 | ||
c5705a77 AK |
2869 | new_block = NULL; |
2870 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2871 | if (block->offset == addr) { | |
2872 | new_block = block; | |
2873 | break; | |
2874 | } | |
2875 | } | |
2876 | assert(new_block); | |
2877 | assert(!new_block->idstr[0]); | |
84b89d78 CM |
2878 | |
2879 | if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) { | |
2880 | char *id = dev->parent_bus->info->get_dev_path(dev); | |
2881 | if (id) { | |
2882 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 2883 | g_free(id); |
84b89d78 CM |
2884 | } |
2885 | } | |
2886 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
2887 | ||
2888 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
c5705a77 | 2889 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { |
84b89d78 CM |
2890 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
2891 | new_block->idstr); | |
2892 | abort(); | |
2893 | } | |
2894 | } | |
c5705a77 AK |
2895 | } |
2896 | ||
2897 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | |
2898 | MemoryRegion *mr) | |
2899 | { | |
2900 | RAMBlock *new_block; | |
2901 | ||
2902 | size = TARGET_PAGE_ALIGN(size); | |
2903 | new_block = g_malloc0(sizeof(*new_block)); | |
84b89d78 | 2904 | |
7c637366 | 2905 | new_block->mr = mr; |
432d268c | 2906 | new_block->offset = find_ram_offset(size); |
6977dfe6 YT |
2907 | if (host) { |
2908 | new_block->host = host; | |
cd19cfa2 | 2909 | new_block->flags |= RAM_PREALLOC_MASK; |
6977dfe6 YT |
2910 | } else { |
2911 | if (mem_path) { | |
c902760f | 2912 | #if defined (__linux__) && !defined(TARGET_S390X) |
6977dfe6 YT |
2913 | new_block->host = file_ram_alloc(new_block, size, mem_path); |
2914 | if (!new_block->host) { | |
2915 | new_block->host = qemu_vmalloc(size); | |
e78815a5 | 2916 | qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE); |
6977dfe6 | 2917 | } |
c902760f | 2918 | #else |
6977dfe6 YT |
2919 | fprintf(stderr, "-mem-path option unsupported\n"); |
2920 | exit(1); | |
c902760f | 2921 | #endif |
6977dfe6 | 2922 | } else { |
6b02494d | 2923 | #if defined(TARGET_S390X) && defined(CONFIG_KVM) |
ff83678a CB |
2924 | /* S390 KVM requires the topmost vma of the RAM to be smaller than |
2925 | an system defined value, which is at least 256GB. Larger systems | |
2926 | have larger values. We put the guest between the end of data | |
2927 | segment (system break) and this value. We use 32GB as a base to | |
2928 | have enough room for the system break to grow. */ | |
2929 | new_block->host = mmap((void*)0x800000000, size, | |
6977dfe6 | 2930 | PROT_EXEC|PROT_READ|PROT_WRITE, |
ff83678a | 2931 | MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); |
fb8b2735 AG |
2932 | if (new_block->host == MAP_FAILED) { |
2933 | fprintf(stderr, "Allocating RAM failed\n"); | |
2934 | abort(); | |
2935 | } | |
6b02494d | 2936 | #else |
868bb33f | 2937 | if (xen_enabled()) { |
fce537d4 | 2938 | xen_ram_alloc(new_block->offset, size, mr); |
432d268c JN |
2939 | } else { |
2940 | new_block->host = qemu_vmalloc(size); | |
2941 | } | |
6b02494d | 2942 | #endif |
e78815a5 | 2943 | qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE); |
6977dfe6 | 2944 | } |
c902760f | 2945 | } |
94a6b54f PB |
2946 | new_block->length = size; |
2947 | ||
f471a17e | 2948 | QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next); |
94a6b54f | 2949 | |
7267c094 | 2950 | ram_list.phys_dirty = g_realloc(ram_list.phys_dirty, |
04b16653 | 2951 | last_ram_offset() >> TARGET_PAGE_BITS); |
d17b5288 | 2952 | memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS), |
94a6b54f PB |
2953 | 0xff, size >> TARGET_PAGE_BITS); |
2954 | ||
6f0437e8 JK |
2955 | if (kvm_enabled()) |
2956 | kvm_setup_guest_memory(new_block->host, size); | |
2957 | ||
94a6b54f PB |
2958 | return new_block->offset; |
2959 | } | |
e9a1ab19 | 2960 | |
c5705a77 | 2961 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr) |
6977dfe6 | 2962 | { |
c5705a77 | 2963 | return qemu_ram_alloc_from_ptr(size, NULL, mr); |
6977dfe6 YT |
2964 | } |
2965 | ||
1f2e98b6 AW |
2966 | void qemu_ram_free_from_ptr(ram_addr_t addr) |
2967 | { | |
2968 | RAMBlock *block; | |
2969 | ||
2970 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2971 | if (addr == block->offset) { | |
2972 | QLIST_REMOVE(block, next); | |
7267c094 | 2973 | g_free(block); |
1f2e98b6 AW |
2974 | return; |
2975 | } | |
2976 | } | |
2977 | } | |
2978 | ||
c227f099 | 2979 | void qemu_ram_free(ram_addr_t addr) |
e9a1ab19 | 2980 | { |
04b16653 AW |
2981 | RAMBlock *block; |
2982 | ||
2983 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2984 | if (addr == block->offset) { | |
2985 | QLIST_REMOVE(block, next); | |
cd19cfa2 HY |
2986 | if (block->flags & RAM_PREALLOC_MASK) { |
2987 | ; | |
2988 | } else if (mem_path) { | |
04b16653 AW |
2989 | #if defined (__linux__) && !defined(TARGET_S390X) |
2990 | if (block->fd) { | |
2991 | munmap(block->host, block->length); | |
2992 | close(block->fd); | |
2993 | } else { | |
2994 | qemu_vfree(block->host); | |
2995 | } | |
fd28aa13 JK |
2996 | #else |
2997 | abort(); | |
04b16653 AW |
2998 | #endif |
2999 | } else { | |
3000 | #if defined(TARGET_S390X) && defined(CONFIG_KVM) | |
3001 | munmap(block->host, block->length); | |
3002 | #else | |
868bb33f | 3003 | if (xen_enabled()) { |
e41d7c69 | 3004 | xen_invalidate_map_cache_entry(block->host); |
432d268c JN |
3005 | } else { |
3006 | qemu_vfree(block->host); | |
3007 | } | |
04b16653 AW |
3008 | #endif |
3009 | } | |
7267c094 | 3010 | g_free(block); |
04b16653 AW |
3011 | return; |
3012 | } | |
3013 | } | |
3014 | ||
e9a1ab19 FB |
3015 | } |
3016 | ||
cd19cfa2 HY |
3017 | #ifndef _WIN32 |
3018 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
3019 | { | |
3020 | RAMBlock *block; | |
3021 | ram_addr_t offset; | |
3022 | int flags; | |
3023 | void *area, *vaddr; | |
3024 | ||
3025 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
3026 | offset = addr - block->offset; | |
3027 | if (offset < block->length) { | |
3028 | vaddr = block->host + offset; | |
3029 | if (block->flags & RAM_PREALLOC_MASK) { | |
3030 | ; | |
3031 | } else { | |
3032 | flags = MAP_FIXED; | |
3033 | munmap(vaddr, length); | |
3034 | if (mem_path) { | |
3035 | #if defined(__linux__) && !defined(TARGET_S390X) | |
3036 | if (block->fd) { | |
3037 | #ifdef MAP_POPULATE | |
3038 | flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED : | |
3039 | MAP_PRIVATE; | |
3040 | #else | |
3041 | flags |= MAP_PRIVATE; | |
3042 | #endif | |
3043 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
3044 | flags, block->fd, offset); | |
3045 | } else { | |
3046 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
3047 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
3048 | flags, -1, 0); | |
3049 | } | |
fd28aa13 JK |
3050 | #else |
3051 | abort(); | |
cd19cfa2 HY |
3052 | #endif |
3053 | } else { | |
3054 | #if defined(TARGET_S390X) && defined(CONFIG_KVM) | |
3055 | flags |= MAP_SHARED | MAP_ANONYMOUS; | |
3056 | area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE, | |
3057 | flags, -1, 0); | |
3058 | #else | |
3059 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
3060 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
3061 | flags, -1, 0); | |
3062 | #endif | |
3063 | } | |
3064 | if (area != vaddr) { | |
f15fbc4b AP |
3065 | fprintf(stderr, "Could not remap addr: " |
3066 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
3067 | length, addr); |
3068 | exit(1); | |
3069 | } | |
3070 | qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE); | |
3071 | } | |
3072 | return; | |
3073 | } | |
3074 | } | |
3075 | } | |
3076 | #endif /* !_WIN32 */ | |
3077 | ||
dc828ca1 | 3078 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
5579c7f3 PB |
3079 | With the exception of the softmmu code in this file, this should |
3080 | only be used for local memory (e.g. video ram) that the device owns, | |
3081 | and knows it isn't going to access beyond the end of the block. | |
3082 | ||
3083 | It should not be used for general purpose DMA. | |
3084 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | |
3085 | */ | |
c227f099 | 3086 | void *qemu_get_ram_ptr(ram_addr_t addr) |
dc828ca1 | 3087 | { |
94a6b54f PB |
3088 | RAMBlock *block; |
3089 | ||
f471a17e AW |
3090 | QLIST_FOREACH(block, &ram_list.blocks, next) { |
3091 | if (addr - block->offset < block->length) { | |
7d82af38 VP |
3092 | /* Move this entry to to start of the list. */ |
3093 | if (block != QLIST_FIRST(&ram_list.blocks)) { | |
3094 | QLIST_REMOVE(block, next); | |
3095 | QLIST_INSERT_HEAD(&ram_list.blocks, block, next); | |
3096 | } | |
868bb33f | 3097 | if (xen_enabled()) { |
432d268c JN |
3098 | /* We need to check if the requested address is in the RAM |
3099 | * because we don't want to map the entire memory in QEMU. | |
712c2b41 | 3100 | * In that case just map until the end of the page. |
432d268c JN |
3101 | */ |
3102 | if (block->offset == 0) { | |
e41d7c69 | 3103 | return xen_map_cache(addr, 0, 0); |
432d268c | 3104 | } else if (block->host == NULL) { |
e41d7c69 JK |
3105 | block->host = |
3106 | xen_map_cache(block->offset, block->length, 1); | |
432d268c JN |
3107 | } |
3108 | } | |
f471a17e AW |
3109 | return block->host + (addr - block->offset); |
3110 | } | |
94a6b54f | 3111 | } |
f471a17e AW |
3112 | |
3113 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
3114 | abort(); | |
3115 | ||
3116 | return NULL; | |
dc828ca1 PB |
3117 | } |
3118 | ||
b2e0a138 MT |
3119 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
3120 | * Same as qemu_get_ram_ptr but avoid reordering ramblocks. | |
3121 | */ | |
3122 | void *qemu_safe_ram_ptr(ram_addr_t addr) | |
3123 | { | |
3124 | RAMBlock *block; | |
3125 | ||
3126 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
3127 | if (addr - block->offset < block->length) { | |
868bb33f | 3128 | if (xen_enabled()) { |
432d268c JN |
3129 | /* We need to check if the requested address is in the RAM |
3130 | * because we don't want to map the entire memory in QEMU. | |
712c2b41 | 3131 | * In that case just map until the end of the page. |
432d268c JN |
3132 | */ |
3133 | if (block->offset == 0) { | |
e41d7c69 | 3134 | return xen_map_cache(addr, 0, 0); |
432d268c | 3135 | } else if (block->host == NULL) { |
e41d7c69 JK |
3136 | block->host = |
3137 | xen_map_cache(block->offset, block->length, 1); | |
432d268c JN |
3138 | } |
3139 | } | |
b2e0a138 MT |
3140 | return block->host + (addr - block->offset); |
3141 | } | |
3142 | } | |
3143 | ||
3144 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
3145 | abort(); | |
3146 | ||
3147 | return NULL; | |
3148 | } | |
3149 | ||
38bee5dc SS |
3150 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr |
3151 | * but takes a size argument */ | |
8ab934f9 | 3152 | void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size) |
38bee5dc | 3153 | { |
8ab934f9 SS |
3154 | if (*size == 0) { |
3155 | return NULL; | |
3156 | } | |
868bb33f | 3157 | if (xen_enabled()) { |
e41d7c69 | 3158 | return xen_map_cache(addr, *size, 1); |
868bb33f | 3159 | } else { |
38bee5dc SS |
3160 | RAMBlock *block; |
3161 | ||
3162 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
3163 | if (addr - block->offset < block->length) { | |
3164 | if (addr - block->offset + *size > block->length) | |
3165 | *size = block->length - addr + block->offset; | |
3166 | return block->host + (addr - block->offset); | |
3167 | } | |
3168 | } | |
3169 | ||
3170 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
3171 | abort(); | |
38bee5dc SS |
3172 | } |
3173 | } | |
3174 | ||
050a0ddf AP |
3175 | void qemu_put_ram_ptr(void *addr) |
3176 | { | |
3177 | trace_qemu_put_ram_ptr(addr); | |
050a0ddf AP |
3178 | } |
3179 | ||
e890261f | 3180 | int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) |
5579c7f3 | 3181 | { |
94a6b54f PB |
3182 | RAMBlock *block; |
3183 | uint8_t *host = ptr; | |
3184 | ||
868bb33f | 3185 | if (xen_enabled()) { |
e41d7c69 | 3186 | *ram_addr = xen_ram_addr_from_mapcache(ptr); |
712c2b41 SS |
3187 | return 0; |
3188 | } | |
3189 | ||
f471a17e | 3190 | QLIST_FOREACH(block, &ram_list.blocks, next) { |
432d268c JN |
3191 | /* This case append when the block is not mapped. */ |
3192 | if (block->host == NULL) { | |
3193 | continue; | |
3194 | } | |
f471a17e | 3195 | if (host - block->host < block->length) { |
e890261f MT |
3196 | *ram_addr = block->offset + (host - block->host); |
3197 | return 0; | |
f471a17e | 3198 | } |
94a6b54f | 3199 | } |
432d268c | 3200 | |
e890261f MT |
3201 | return -1; |
3202 | } | |
f471a17e | 3203 | |
e890261f MT |
3204 | /* Some of the softmmu routines need to translate from a host pointer |
3205 | (typically a TLB entry) back to a ram offset. */ | |
3206 | ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) | |
3207 | { | |
3208 | ram_addr_t ram_addr; | |
f471a17e | 3209 | |
e890261f MT |
3210 | if (qemu_ram_addr_from_host(ptr, &ram_addr)) { |
3211 | fprintf(stderr, "Bad ram pointer %p\n", ptr); | |
3212 | abort(); | |
3213 | } | |
3214 | return ram_addr; | |
5579c7f3 PB |
3215 | } |
3216 | ||
0e0df1e2 AK |
3217 | static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr, |
3218 | unsigned size) | |
e18231a3 BS |
3219 | { |
3220 | #ifdef DEBUG_UNASSIGNED | |
3221 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
3222 | #endif | |
5b450407 | 3223 | #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) |
0e0df1e2 | 3224 | cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size); |
e18231a3 BS |
3225 | #endif |
3226 | return 0; | |
3227 | } | |
3228 | ||
0e0df1e2 AK |
3229 | static void unassigned_mem_write(void *opaque, target_phys_addr_t addr, |
3230 | uint64_t val, unsigned size) | |
e18231a3 BS |
3231 | { |
3232 | #ifdef DEBUG_UNASSIGNED | |
0e0df1e2 | 3233 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val); |
e18231a3 | 3234 | #endif |
5b450407 | 3235 | #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) |
0e0df1e2 | 3236 | cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size); |
67d3b957 | 3237 | #endif |
33417e70 FB |
3238 | } |
3239 | ||
0e0df1e2 AK |
3240 | static const MemoryRegionOps unassigned_mem_ops = { |
3241 | .read = unassigned_mem_read, | |
3242 | .write = unassigned_mem_write, | |
3243 | .endianness = DEVICE_NATIVE_ENDIAN, | |
3244 | }; | |
e18231a3 | 3245 | |
0e0df1e2 AK |
3246 | static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr, |
3247 | unsigned size) | |
e18231a3 | 3248 | { |
0e0df1e2 | 3249 | abort(); |
e18231a3 BS |
3250 | } |
3251 | ||
0e0df1e2 AK |
3252 | static void error_mem_write(void *opaque, target_phys_addr_t addr, |
3253 | uint64_t value, unsigned size) | |
e18231a3 | 3254 | { |
0e0df1e2 | 3255 | abort(); |
33417e70 FB |
3256 | } |
3257 | ||
0e0df1e2 AK |
3258 | static const MemoryRegionOps error_mem_ops = { |
3259 | .read = error_mem_read, | |
3260 | .write = error_mem_write, | |
3261 | .endianness = DEVICE_NATIVE_ENDIAN, | |
33417e70 FB |
3262 | }; |
3263 | ||
0e0df1e2 AK |
3264 | static const MemoryRegionOps rom_mem_ops = { |
3265 | .read = error_mem_read, | |
3266 | .write = unassigned_mem_write, | |
3267 | .endianness = DEVICE_NATIVE_ENDIAN, | |
33417e70 FB |
3268 | }; |
3269 | ||
0e0df1e2 AK |
3270 | static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr, |
3271 | uint64_t val, unsigned size) | |
9fa3e853 | 3272 | { |
3a7d929e | 3273 | int dirty_flags; |
f7c11b53 | 3274 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); |
3a7d929e | 3275 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { |
9fa3e853 | 3276 | #if !defined(CONFIG_USER_ONLY) |
0e0df1e2 | 3277 | tb_invalidate_phys_page_fast(ram_addr, size); |
f7c11b53 | 3278 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); |
9fa3e853 | 3279 | #endif |
3a7d929e | 3280 | } |
0e0df1e2 AK |
3281 | switch (size) { |
3282 | case 1: | |
3283 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
3284 | break; | |
3285 | case 2: | |
3286 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
3287 | break; | |
3288 | case 4: | |
3289 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
3290 | break; | |
3291 | default: | |
3292 | abort(); | |
3a7d929e | 3293 | } |
f23db169 | 3294 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
f7c11b53 | 3295 | cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); |
f23db169 FB |
3296 | /* we remove the notdirty callback only if the code has been |
3297 | flushed */ | |
3298 | if (dirty_flags == 0xff) | |
2e70f6ef | 3299 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
3300 | } |
3301 | ||
0e0df1e2 AK |
3302 | static const MemoryRegionOps notdirty_mem_ops = { |
3303 | .read = error_mem_read, | |
3304 | .write = notdirty_mem_write, | |
3305 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1ccde1cb FB |
3306 | }; |
3307 | ||
0f459d16 | 3308 | /* Generate a debug exception if a watchpoint has been hit. */ |
b4051334 | 3309 | static void check_watchpoint(int offset, int len_mask, int flags) |
0f459d16 | 3310 | { |
9349b4f9 | 3311 | CPUArchState *env = cpu_single_env; |
06d55cc1 AL |
3312 | target_ulong pc, cs_base; |
3313 | TranslationBlock *tb; | |
0f459d16 | 3314 | target_ulong vaddr; |
a1d1bb31 | 3315 | CPUWatchpoint *wp; |
06d55cc1 | 3316 | int cpu_flags; |
0f459d16 | 3317 | |
06d55cc1 AL |
3318 | if (env->watchpoint_hit) { |
3319 | /* We re-entered the check after replacing the TB. Now raise | |
3320 | * the debug interrupt so that is will trigger after the | |
3321 | * current instruction. */ | |
3322 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
3323 | return; | |
3324 | } | |
2e70f6ef | 3325 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
72cf2d4f | 3326 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 AL |
3327 | if ((vaddr == (wp->vaddr & len_mask) || |
3328 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
6e140f28 AL |
3329 | wp->flags |= BP_WATCHPOINT_HIT; |
3330 | if (!env->watchpoint_hit) { | |
3331 | env->watchpoint_hit = wp; | |
3332 | tb = tb_find_pc(env->mem_io_pc); | |
3333 | if (!tb) { | |
3334 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
3335 | "pc=%p", (void *)env->mem_io_pc); | |
3336 | } | |
618ba8e6 | 3337 | cpu_restore_state(tb, env, env->mem_io_pc); |
6e140f28 AL |
3338 | tb_phys_invalidate(tb, -1); |
3339 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
3340 | env->exception_index = EXCP_DEBUG; | |
488d6577 | 3341 | cpu_loop_exit(env); |
6e140f28 AL |
3342 | } else { |
3343 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
3344 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
488d6577 | 3345 | cpu_resume_from_signal(env, NULL); |
6e140f28 | 3346 | } |
06d55cc1 | 3347 | } |
6e140f28 AL |
3348 | } else { |
3349 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
3350 | } |
3351 | } | |
3352 | } | |
3353 | ||
6658ffb8 PB |
3354 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
3355 | so these check for a hit then pass through to the normal out-of-line | |
3356 | phys routines. */ | |
1ec9b909 AK |
3357 | static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr, |
3358 | unsigned size) | |
6658ffb8 | 3359 | { |
1ec9b909 AK |
3360 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ); |
3361 | switch (size) { | |
3362 | case 1: return ldub_phys(addr); | |
3363 | case 2: return lduw_phys(addr); | |
3364 | case 4: return ldl_phys(addr); | |
3365 | default: abort(); | |
3366 | } | |
6658ffb8 PB |
3367 | } |
3368 | ||
1ec9b909 AK |
3369 | static void watch_mem_write(void *opaque, target_phys_addr_t addr, |
3370 | uint64_t val, unsigned size) | |
6658ffb8 | 3371 | { |
1ec9b909 AK |
3372 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE); |
3373 | switch (size) { | |
67364150 MF |
3374 | case 1: |
3375 | stb_phys(addr, val); | |
3376 | break; | |
3377 | case 2: | |
3378 | stw_phys(addr, val); | |
3379 | break; | |
3380 | case 4: | |
3381 | stl_phys(addr, val); | |
3382 | break; | |
1ec9b909 AK |
3383 | default: abort(); |
3384 | } | |
6658ffb8 PB |
3385 | } |
3386 | ||
1ec9b909 AK |
3387 | static const MemoryRegionOps watch_mem_ops = { |
3388 | .read = watch_mem_read, | |
3389 | .write = watch_mem_write, | |
3390 | .endianness = DEVICE_NATIVE_ENDIAN, | |
6658ffb8 | 3391 | }; |
6658ffb8 | 3392 | |
70c68e44 AK |
3393 | static uint64_t subpage_read(void *opaque, target_phys_addr_t addr, |
3394 | unsigned len) | |
db7b5426 | 3395 | { |
70c68e44 | 3396 | subpage_t *mmio = opaque; |
f6405247 | 3397 | unsigned int idx = SUBPAGE_IDX(addr); |
5312bd8b | 3398 | MemoryRegionSection *section; |
db7b5426 BS |
3399 | #if defined(DEBUG_SUBPAGE) |
3400 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
3401 | mmio, len, addr, idx); | |
3402 | #endif | |
db7b5426 | 3403 | |
5312bd8b AK |
3404 | section = &phys_sections[mmio->sub_section[idx]]; |
3405 | addr += mmio->base; | |
3406 | addr -= section->offset_within_address_space; | |
3407 | addr += section->offset_within_region; | |
37ec01d4 | 3408 | return io_mem_read(section->mr, addr, len); |
db7b5426 BS |
3409 | } |
3410 | ||
70c68e44 AK |
3411 | static void subpage_write(void *opaque, target_phys_addr_t addr, |
3412 | uint64_t value, unsigned len) | |
db7b5426 | 3413 | { |
70c68e44 | 3414 | subpage_t *mmio = opaque; |
f6405247 | 3415 | unsigned int idx = SUBPAGE_IDX(addr); |
5312bd8b | 3416 | MemoryRegionSection *section; |
db7b5426 | 3417 | #if defined(DEBUG_SUBPAGE) |
70c68e44 AK |
3418 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx |
3419 | " idx %d value %"PRIx64"\n", | |
f6405247 | 3420 | __func__, mmio, len, addr, idx, value); |
db7b5426 | 3421 | #endif |
f6405247 | 3422 | |
5312bd8b AK |
3423 | section = &phys_sections[mmio->sub_section[idx]]; |
3424 | addr += mmio->base; | |
3425 | addr -= section->offset_within_address_space; | |
3426 | addr += section->offset_within_region; | |
37ec01d4 | 3427 | io_mem_write(section->mr, addr, value, len); |
db7b5426 BS |
3428 | } |
3429 | ||
70c68e44 AK |
3430 | static const MemoryRegionOps subpage_ops = { |
3431 | .read = subpage_read, | |
3432 | .write = subpage_write, | |
3433 | .endianness = DEVICE_NATIVE_ENDIAN, | |
db7b5426 BS |
3434 | }; |
3435 | ||
de712f94 AK |
3436 | static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr, |
3437 | unsigned size) | |
56384e8b AF |
3438 | { |
3439 | ram_addr_t raddr = addr; | |
3440 | void *ptr = qemu_get_ram_ptr(raddr); | |
de712f94 AK |
3441 | switch (size) { |
3442 | case 1: return ldub_p(ptr); | |
3443 | case 2: return lduw_p(ptr); | |
3444 | case 4: return ldl_p(ptr); | |
3445 | default: abort(); | |
3446 | } | |
56384e8b AF |
3447 | } |
3448 | ||
de712f94 AK |
3449 | static void subpage_ram_write(void *opaque, target_phys_addr_t addr, |
3450 | uint64_t value, unsigned size) | |
56384e8b AF |
3451 | { |
3452 | ram_addr_t raddr = addr; | |
3453 | void *ptr = qemu_get_ram_ptr(raddr); | |
de712f94 AK |
3454 | switch (size) { |
3455 | case 1: return stb_p(ptr, value); | |
3456 | case 2: return stw_p(ptr, value); | |
3457 | case 4: return stl_p(ptr, value); | |
3458 | default: abort(); | |
3459 | } | |
56384e8b AF |
3460 | } |
3461 | ||
de712f94 AK |
3462 | static const MemoryRegionOps subpage_ram_ops = { |
3463 | .read = subpage_ram_read, | |
3464 | .write = subpage_ram_write, | |
3465 | .endianness = DEVICE_NATIVE_ENDIAN, | |
56384e8b AF |
3466 | }; |
3467 | ||
c227f099 | 3468 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 3469 | uint16_t section) |
db7b5426 BS |
3470 | { |
3471 | int idx, eidx; | |
3472 | ||
3473 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
3474 | return -1; | |
3475 | idx = SUBPAGE_IDX(start); | |
3476 | eidx = SUBPAGE_IDX(end); | |
3477 | #if defined(DEBUG_SUBPAGE) | |
0bf9e31a | 3478 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, |
db7b5426 BS |
3479 | mmio, start, end, idx, eidx, memory); |
3480 | #endif | |
5312bd8b AK |
3481 | if (memory_region_is_ram(phys_sections[section].mr)) { |
3482 | MemoryRegionSection new_section = phys_sections[section]; | |
3483 | new_section.mr = &io_mem_subpage_ram; | |
3484 | section = phys_section_add(&new_section); | |
56384e8b | 3485 | } |
db7b5426 | 3486 | for (; idx <= eidx; idx++) { |
5312bd8b | 3487 | mmio->sub_section[idx] = section; |
db7b5426 BS |
3488 | } |
3489 | ||
3490 | return 0; | |
3491 | } | |
3492 | ||
0f0cb164 | 3493 | static subpage_t *subpage_init(target_phys_addr_t base) |
db7b5426 | 3494 | { |
c227f099 | 3495 | subpage_t *mmio; |
db7b5426 | 3496 | |
7267c094 | 3497 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b AL |
3498 | |
3499 | mmio->base = base; | |
70c68e44 AK |
3500 | memory_region_init_io(&mmio->iomem, &subpage_ops, mmio, |
3501 | "subpage", TARGET_PAGE_SIZE); | |
b3b00c78 | 3502 | mmio->iomem.subpage = true; |
db7b5426 | 3503 | #if defined(DEBUG_SUBPAGE) |
1eec614b AL |
3504 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, |
3505 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
db7b5426 | 3506 | #endif |
0f0cb164 | 3507 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned); |
db7b5426 BS |
3508 | |
3509 | return mmio; | |
3510 | } | |
3511 | ||
5312bd8b AK |
3512 | static uint16_t dummy_section(MemoryRegion *mr) |
3513 | { | |
3514 | MemoryRegionSection section = { | |
3515 | .mr = mr, | |
3516 | .offset_within_address_space = 0, | |
3517 | .offset_within_region = 0, | |
3518 | .size = UINT64_MAX, | |
3519 | }; | |
3520 | ||
3521 | return phys_section_add(§ion); | |
3522 | } | |
3523 | ||
37ec01d4 | 3524 | MemoryRegion *iotlb_to_region(target_phys_addr_t index) |
aa102231 | 3525 | { |
37ec01d4 | 3526 | return phys_sections[index & ~TARGET_PAGE_MASK].mr; |
aa102231 AK |
3527 | } |
3528 | ||
e9179ce1 AK |
3529 | static void io_mem_init(void) |
3530 | { | |
0e0df1e2 | 3531 | memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX); |
0e0df1e2 AK |
3532 | memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX); |
3533 | memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL, | |
3534 | "unassigned", UINT64_MAX); | |
3535 | memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL, | |
3536 | "notdirty", UINT64_MAX); | |
de712f94 AK |
3537 | memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL, |
3538 | "subpage-ram", UINT64_MAX); | |
1ec9b909 AK |
3539 | memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL, |
3540 | "watch", UINT64_MAX); | |
e9179ce1 AK |
3541 | } |
3542 | ||
50c1e149 AK |
3543 | static void core_begin(MemoryListener *listener) |
3544 | { | |
54688b1e | 3545 | destroy_all_mappings(); |
5312bd8b | 3546 | phys_sections_clear(); |
c19e8800 | 3547 | phys_map.ptr = PHYS_MAP_NODE_NIL; |
5312bd8b | 3548 | phys_section_unassigned = dummy_section(&io_mem_unassigned); |
aa102231 AK |
3549 | phys_section_notdirty = dummy_section(&io_mem_notdirty); |
3550 | phys_section_rom = dummy_section(&io_mem_rom); | |
3551 | phys_section_watch = dummy_section(&io_mem_watch); | |
50c1e149 AK |
3552 | } |
3553 | ||
3554 | static void core_commit(MemoryListener *listener) | |
3555 | { | |
9349b4f9 | 3556 | CPUArchState *env; |
117712c3 AK |
3557 | |
3558 | /* since each CPU stores ram addresses in its TLB cache, we must | |
3559 | reset the modified entries */ | |
3560 | /* XXX: slow ! */ | |
3561 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
3562 | tlb_flush(env, 1); | |
3563 | } | |
50c1e149 AK |
3564 | } |
3565 | ||
93632747 AK |
3566 | static void core_region_add(MemoryListener *listener, |
3567 | MemoryRegionSection *section) | |
3568 | { | |
4855d41a | 3569 | cpu_register_physical_memory_log(section, section->readonly); |
93632747 AK |
3570 | } |
3571 | ||
3572 | static void core_region_del(MemoryListener *listener, | |
3573 | MemoryRegionSection *section) | |
3574 | { | |
93632747 AK |
3575 | } |
3576 | ||
50c1e149 AK |
3577 | static void core_region_nop(MemoryListener *listener, |
3578 | MemoryRegionSection *section) | |
3579 | { | |
54688b1e | 3580 | cpu_register_physical_memory_log(section, section->readonly); |
50c1e149 AK |
3581 | } |
3582 | ||
93632747 AK |
3583 | static void core_log_start(MemoryListener *listener, |
3584 | MemoryRegionSection *section) | |
3585 | { | |
3586 | } | |
3587 | ||
3588 | static void core_log_stop(MemoryListener *listener, | |
3589 | MemoryRegionSection *section) | |
3590 | { | |
3591 | } | |
3592 | ||
3593 | static void core_log_sync(MemoryListener *listener, | |
3594 | MemoryRegionSection *section) | |
3595 | { | |
3596 | } | |
3597 | ||
3598 | static void core_log_global_start(MemoryListener *listener) | |
3599 | { | |
3600 | cpu_physical_memory_set_dirty_tracking(1); | |
3601 | } | |
3602 | ||
3603 | static void core_log_global_stop(MemoryListener *listener) | |
3604 | { | |
3605 | cpu_physical_memory_set_dirty_tracking(0); | |
3606 | } | |
3607 | ||
3608 | static void core_eventfd_add(MemoryListener *listener, | |
3609 | MemoryRegionSection *section, | |
3610 | bool match_data, uint64_t data, int fd) | |
3611 | { | |
3612 | } | |
3613 | ||
3614 | static void core_eventfd_del(MemoryListener *listener, | |
3615 | MemoryRegionSection *section, | |
3616 | bool match_data, uint64_t data, int fd) | |
3617 | { | |
3618 | } | |
3619 | ||
50c1e149 AK |
3620 | static void io_begin(MemoryListener *listener) |
3621 | { | |
3622 | } | |
3623 | ||
3624 | static void io_commit(MemoryListener *listener) | |
3625 | { | |
3626 | } | |
3627 | ||
4855d41a AK |
3628 | static void io_region_add(MemoryListener *listener, |
3629 | MemoryRegionSection *section) | |
3630 | { | |
a2d33521 AK |
3631 | MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1); |
3632 | ||
3633 | mrio->mr = section->mr; | |
3634 | mrio->offset = section->offset_within_region; | |
3635 | iorange_init(&mrio->iorange, &memory_region_iorange_ops, | |
4855d41a | 3636 | section->offset_within_address_space, section->size); |
a2d33521 | 3637 | ioport_register(&mrio->iorange); |
4855d41a AK |
3638 | } |
3639 | ||
3640 | static void io_region_del(MemoryListener *listener, | |
3641 | MemoryRegionSection *section) | |
3642 | { | |
3643 | isa_unassign_ioport(section->offset_within_address_space, section->size); | |
3644 | } | |
3645 | ||
50c1e149 AK |
3646 | static void io_region_nop(MemoryListener *listener, |
3647 | MemoryRegionSection *section) | |
3648 | { | |
3649 | } | |
3650 | ||
4855d41a AK |
3651 | static void io_log_start(MemoryListener *listener, |
3652 | MemoryRegionSection *section) | |
3653 | { | |
3654 | } | |
3655 | ||
3656 | static void io_log_stop(MemoryListener *listener, | |
3657 | MemoryRegionSection *section) | |
3658 | { | |
3659 | } | |
3660 | ||
3661 | static void io_log_sync(MemoryListener *listener, | |
3662 | MemoryRegionSection *section) | |
3663 | { | |
3664 | } | |
3665 | ||
3666 | static void io_log_global_start(MemoryListener *listener) | |
3667 | { | |
3668 | } | |
3669 | ||
3670 | static void io_log_global_stop(MemoryListener *listener) | |
3671 | { | |
3672 | } | |
3673 | ||
3674 | static void io_eventfd_add(MemoryListener *listener, | |
3675 | MemoryRegionSection *section, | |
3676 | bool match_data, uint64_t data, int fd) | |
3677 | { | |
3678 | } | |
3679 | ||
3680 | static void io_eventfd_del(MemoryListener *listener, | |
3681 | MemoryRegionSection *section, | |
3682 | bool match_data, uint64_t data, int fd) | |
3683 | { | |
3684 | } | |
3685 | ||
93632747 | 3686 | static MemoryListener core_memory_listener = { |
50c1e149 AK |
3687 | .begin = core_begin, |
3688 | .commit = core_commit, | |
93632747 AK |
3689 | .region_add = core_region_add, |
3690 | .region_del = core_region_del, | |
50c1e149 | 3691 | .region_nop = core_region_nop, |
93632747 AK |
3692 | .log_start = core_log_start, |
3693 | .log_stop = core_log_stop, | |
3694 | .log_sync = core_log_sync, | |
3695 | .log_global_start = core_log_global_start, | |
3696 | .log_global_stop = core_log_global_stop, | |
3697 | .eventfd_add = core_eventfd_add, | |
3698 | .eventfd_del = core_eventfd_del, | |
3699 | .priority = 0, | |
3700 | }; | |
3701 | ||
4855d41a | 3702 | static MemoryListener io_memory_listener = { |
50c1e149 AK |
3703 | .begin = io_begin, |
3704 | .commit = io_commit, | |
4855d41a AK |
3705 | .region_add = io_region_add, |
3706 | .region_del = io_region_del, | |
50c1e149 | 3707 | .region_nop = io_region_nop, |
4855d41a AK |
3708 | .log_start = io_log_start, |
3709 | .log_stop = io_log_stop, | |
3710 | .log_sync = io_log_sync, | |
3711 | .log_global_start = io_log_global_start, | |
3712 | .log_global_stop = io_log_global_stop, | |
3713 | .eventfd_add = io_eventfd_add, | |
3714 | .eventfd_del = io_eventfd_del, | |
3715 | .priority = 0, | |
3716 | }; | |
3717 | ||
62152b8a AK |
3718 | static void memory_map_init(void) |
3719 | { | |
7267c094 | 3720 | system_memory = g_malloc(sizeof(*system_memory)); |
8417cebf | 3721 | memory_region_init(system_memory, "system", INT64_MAX); |
62152b8a | 3722 | set_system_memory_map(system_memory); |
309cb471 | 3723 | |
7267c094 | 3724 | system_io = g_malloc(sizeof(*system_io)); |
309cb471 AK |
3725 | memory_region_init(system_io, "io", 65536); |
3726 | set_system_io_map(system_io); | |
93632747 | 3727 | |
4855d41a AK |
3728 | memory_listener_register(&core_memory_listener, system_memory); |
3729 | memory_listener_register(&io_memory_listener, system_io); | |
62152b8a AK |
3730 | } |
3731 | ||
3732 | MemoryRegion *get_system_memory(void) | |
3733 | { | |
3734 | return system_memory; | |
3735 | } | |
3736 | ||
309cb471 AK |
3737 | MemoryRegion *get_system_io(void) |
3738 | { | |
3739 | return system_io; | |
3740 | } | |
3741 | ||
e2eef170 PB |
3742 | #endif /* !defined(CONFIG_USER_ONLY) */ |
3743 | ||
13eb76e0 FB |
3744 | /* physical memory access (slow version, mainly for debug) */ |
3745 | #if defined(CONFIG_USER_ONLY) | |
9349b4f9 | 3746 | int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr, |
a68fe89c | 3747 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3748 | { |
3749 | int l, flags; | |
3750 | target_ulong page; | |
53a5960a | 3751 | void * p; |
13eb76e0 FB |
3752 | |
3753 | while (len > 0) { | |
3754 | page = addr & TARGET_PAGE_MASK; | |
3755 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3756 | if (l > len) | |
3757 | l = len; | |
3758 | flags = page_get_flags(page); | |
3759 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 3760 | return -1; |
13eb76e0 FB |
3761 | if (is_write) { |
3762 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 3763 | return -1; |
579a97f7 | 3764 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3765 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 3766 | return -1; |
72fb7daa AJ |
3767 | memcpy(p, buf, l); |
3768 | unlock_user(p, addr, l); | |
13eb76e0 FB |
3769 | } else { |
3770 | if (!(flags & PAGE_READ)) | |
a68fe89c | 3771 | return -1; |
579a97f7 | 3772 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3773 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 3774 | return -1; |
72fb7daa | 3775 | memcpy(buf, p, l); |
5b257578 | 3776 | unlock_user(p, addr, 0); |
13eb76e0 FB |
3777 | } |
3778 | len -= l; | |
3779 | buf += l; | |
3780 | addr += l; | |
3781 | } | |
a68fe89c | 3782 | return 0; |
13eb76e0 | 3783 | } |
8df1cd07 | 3784 | |
13eb76e0 | 3785 | #else |
c227f099 | 3786 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
3787 | int len, int is_write) |
3788 | { | |
37ec01d4 | 3789 | int l; |
13eb76e0 FB |
3790 | uint8_t *ptr; |
3791 | uint32_t val; | |
c227f099 | 3792 | target_phys_addr_t page; |
f3705d53 | 3793 | MemoryRegionSection *section; |
3b46e624 | 3794 | |
13eb76e0 FB |
3795 | while (len > 0) { |
3796 | page = addr & TARGET_PAGE_MASK; | |
3797 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3798 | if (l > len) | |
3799 | l = len; | |
06ef3525 | 3800 | section = phys_page_find(page >> TARGET_PAGE_BITS); |
3b46e624 | 3801 | |
13eb76e0 | 3802 | if (is_write) { |
f3705d53 | 3803 | if (!memory_region_is_ram(section->mr)) { |
f1f6e3b8 | 3804 | target_phys_addr_t addr1; |
f3705d53 | 3805 | addr1 = section_addr(section, addr); |
6a00d601 FB |
3806 | /* XXX: could force cpu_single_env to NULL to avoid |
3807 | potential bugs */ | |
6c2934db | 3808 | if (l >= 4 && ((addr1 & 3) == 0)) { |
1c213d19 | 3809 | /* 32 bit write access */ |
c27004ec | 3810 | val = ldl_p(buf); |
37ec01d4 | 3811 | io_mem_write(section->mr, addr1, val, 4); |
13eb76e0 | 3812 | l = 4; |
6c2934db | 3813 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
1c213d19 | 3814 | /* 16 bit write access */ |
c27004ec | 3815 | val = lduw_p(buf); |
37ec01d4 | 3816 | io_mem_write(section->mr, addr1, val, 2); |
13eb76e0 FB |
3817 | l = 2; |
3818 | } else { | |
1c213d19 | 3819 | /* 8 bit write access */ |
c27004ec | 3820 | val = ldub_p(buf); |
37ec01d4 | 3821 | io_mem_write(section->mr, addr1, val, 1); |
13eb76e0 FB |
3822 | l = 1; |
3823 | } | |
f3705d53 | 3824 | } else if (!section->readonly) { |
8ca5692d | 3825 | ram_addr_t addr1; |
f3705d53 AK |
3826 | addr1 = memory_region_get_ram_addr(section->mr) |
3827 | + section_addr(section, addr); | |
13eb76e0 | 3828 | /* RAM case */ |
5579c7f3 | 3829 | ptr = qemu_get_ram_ptr(addr1); |
13eb76e0 | 3830 | memcpy(ptr, buf, l); |
3a7d929e FB |
3831 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3832 | /* invalidate code */ | |
3833 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3834 | /* set dirty bit */ | |
f7c11b53 YT |
3835 | cpu_physical_memory_set_dirty_flags( |
3836 | addr1, (0xff & ~CODE_DIRTY_FLAG)); | |
3a7d929e | 3837 | } |
050a0ddf | 3838 | qemu_put_ram_ptr(ptr); |
13eb76e0 FB |
3839 | } |
3840 | } else { | |
f3705d53 | 3841 | if (!is_ram_rom_romd(section)) { |
f1f6e3b8 | 3842 | target_phys_addr_t addr1; |
13eb76e0 | 3843 | /* I/O case */ |
f3705d53 | 3844 | addr1 = section_addr(section, addr); |
6c2934db | 3845 | if (l >= 4 && ((addr1 & 3) == 0)) { |
13eb76e0 | 3846 | /* 32 bit read access */ |
37ec01d4 | 3847 | val = io_mem_read(section->mr, addr1, 4); |
c27004ec | 3848 | stl_p(buf, val); |
13eb76e0 | 3849 | l = 4; |
6c2934db | 3850 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
13eb76e0 | 3851 | /* 16 bit read access */ |
37ec01d4 | 3852 | val = io_mem_read(section->mr, addr1, 2); |
c27004ec | 3853 | stw_p(buf, val); |
13eb76e0 FB |
3854 | l = 2; |
3855 | } else { | |
1c213d19 | 3856 | /* 8 bit read access */ |
37ec01d4 | 3857 | val = io_mem_read(section->mr, addr1, 1); |
c27004ec | 3858 | stb_p(buf, val); |
13eb76e0 FB |
3859 | l = 1; |
3860 | } | |
3861 | } else { | |
3862 | /* RAM case */ | |
0a1b357f AP |
3863 | ptr = qemu_get_ram_ptr(section->mr->ram_addr |
3864 | + section_addr(section, addr)); | |
f3705d53 | 3865 | memcpy(buf, ptr, l); |
050a0ddf | 3866 | qemu_put_ram_ptr(ptr); |
13eb76e0 FB |
3867 | } |
3868 | } | |
3869 | len -= l; | |
3870 | buf += l; | |
3871 | addr += l; | |
3872 | } | |
3873 | } | |
8df1cd07 | 3874 | |
d0ecd2aa | 3875 | /* used for ROM loading : can write in RAM and ROM */ |
c227f099 | 3876 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
3877 | const uint8_t *buf, int len) |
3878 | { | |
3879 | int l; | |
3880 | uint8_t *ptr; | |
c227f099 | 3881 | target_phys_addr_t page; |
f3705d53 | 3882 | MemoryRegionSection *section; |
3b46e624 | 3883 | |
d0ecd2aa FB |
3884 | while (len > 0) { |
3885 | page = addr & TARGET_PAGE_MASK; | |
3886 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3887 | if (l > len) | |
3888 | l = len; | |
06ef3525 | 3889 | section = phys_page_find(page >> TARGET_PAGE_BITS); |
3b46e624 | 3890 | |
f3705d53 | 3891 | if (!is_ram_rom_romd(section)) { |
d0ecd2aa FB |
3892 | /* do nothing */ |
3893 | } else { | |
3894 | unsigned long addr1; | |
f3705d53 AK |
3895 | addr1 = memory_region_get_ram_addr(section->mr) |
3896 | + section_addr(section, addr); | |
d0ecd2aa | 3897 | /* ROM/RAM case */ |
5579c7f3 | 3898 | ptr = qemu_get_ram_ptr(addr1); |
d0ecd2aa | 3899 | memcpy(ptr, buf, l); |
050a0ddf | 3900 | qemu_put_ram_ptr(ptr); |
d0ecd2aa FB |
3901 | } |
3902 | len -= l; | |
3903 | buf += l; | |
3904 | addr += l; | |
3905 | } | |
3906 | } | |
3907 | ||
6d16c2f8 AL |
3908 | typedef struct { |
3909 | void *buffer; | |
c227f099 AL |
3910 | target_phys_addr_t addr; |
3911 | target_phys_addr_t len; | |
6d16c2f8 AL |
3912 | } BounceBuffer; |
3913 | ||
3914 | static BounceBuffer bounce; | |
3915 | ||
ba223c29 AL |
3916 | typedef struct MapClient { |
3917 | void *opaque; | |
3918 | void (*callback)(void *opaque); | |
72cf2d4f | 3919 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
3920 | } MapClient; |
3921 | ||
72cf2d4f BS |
3922 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
3923 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 AL |
3924 | |
3925 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
3926 | { | |
7267c094 | 3927 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 AL |
3928 | |
3929 | client->opaque = opaque; | |
3930 | client->callback = callback; | |
72cf2d4f | 3931 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
ba223c29 AL |
3932 | return client; |
3933 | } | |
3934 | ||
3935 | void cpu_unregister_map_client(void *_client) | |
3936 | { | |
3937 | MapClient *client = (MapClient *)_client; | |
3938 | ||
72cf2d4f | 3939 | QLIST_REMOVE(client, link); |
7267c094 | 3940 | g_free(client); |
ba223c29 AL |
3941 | } |
3942 | ||
3943 | static void cpu_notify_map_clients(void) | |
3944 | { | |
3945 | MapClient *client; | |
3946 | ||
72cf2d4f BS |
3947 | while (!QLIST_EMPTY(&map_client_list)) { |
3948 | client = QLIST_FIRST(&map_client_list); | |
ba223c29 | 3949 | client->callback(client->opaque); |
34d5e948 | 3950 | cpu_unregister_map_client(client); |
ba223c29 AL |
3951 | } |
3952 | } | |
3953 | ||
6d16c2f8 AL |
3954 | /* Map a physical memory region into a host virtual address. |
3955 | * May map a subset of the requested range, given by and returned in *plen. | |
3956 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3957 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3958 | * Use cpu_register_map_client() to know when retrying the map operation is |
3959 | * likely to succeed. | |
6d16c2f8 | 3960 | */ |
c227f099 AL |
3961 | void *cpu_physical_memory_map(target_phys_addr_t addr, |
3962 | target_phys_addr_t *plen, | |
6d16c2f8 AL |
3963 | int is_write) |
3964 | { | |
c227f099 | 3965 | target_phys_addr_t len = *plen; |
38bee5dc | 3966 | target_phys_addr_t todo = 0; |
6d16c2f8 | 3967 | int l; |
c227f099 | 3968 | target_phys_addr_t page; |
f3705d53 | 3969 | MemoryRegionSection *section; |
f15fbc4b | 3970 | ram_addr_t raddr = RAM_ADDR_MAX; |
8ab934f9 SS |
3971 | ram_addr_t rlen; |
3972 | void *ret; | |
6d16c2f8 AL |
3973 | |
3974 | while (len > 0) { | |
3975 | page = addr & TARGET_PAGE_MASK; | |
3976 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3977 | if (l > len) | |
3978 | l = len; | |
06ef3525 | 3979 | section = phys_page_find(page >> TARGET_PAGE_BITS); |
6d16c2f8 | 3980 | |
f3705d53 | 3981 | if (!(memory_region_is_ram(section->mr) && !section->readonly)) { |
38bee5dc | 3982 | if (todo || bounce.buffer) { |
6d16c2f8 AL |
3983 | break; |
3984 | } | |
3985 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
3986 | bounce.addr = addr; | |
3987 | bounce.len = l; | |
3988 | if (!is_write) { | |
54f7b4a3 | 3989 | cpu_physical_memory_read(addr, bounce.buffer, l); |
6d16c2f8 | 3990 | } |
38bee5dc SS |
3991 | |
3992 | *plen = l; | |
3993 | return bounce.buffer; | |
6d16c2f8 | 3994 | } |
8ab934f9 | 3995 | if (!todo) { |
f3705d53 AK |
3996 | raddr = memory_region_get_ram_addr(section->mr) |
3997 | + section_addr(section, addr); | |
8ab934f9 | 3998 | } |
6d16c2f8 AL |
3999 | |
4000 | len -= l; | |
4001 | addr += l; | |
38bee5dc | 4002 | todo += l; |
6d16c2f8 | 4003 | } |
8ab934f9 SS |
4004 | rlen = todo; |
4005 | ret = qemu_ram_ptr_length(raddr, &rlen); | |
4006 | *plen = rlen; | |
4007 | return ret; | |
6d16c2f8 AL |
4008 | } |
4009 | ||
4010 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map(). | |
4011 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
4012 | * the amount of memory that was actually read or written by the caller. | |
4013 | */ | |
c227f099 AL |
4014 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, |
4015 | int is_write, target_phys_addr_t access_len) | |
6d16c2f8 AL |
4016 | { |
4017 | if (buffer != bounce.buffer) { | |
4018 | if (is_write) { | |
e890261f | 4019 | ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer); |
6d16c2f8 AL |
4020 | while (access_len) { |
4021 | unsigned l; | |
4022 | l = TARGET_PAGE_SIZE; | |
4023 | if (l > access_len) | |
4024 | l = access_len; | |
4025 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
4026 | /* invalidate code */ | |
4027 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
4028 | /* set dirty bit */ | |
f7c11b53 YT |
4029 | cpu_physical_memory_set_dirty_flags( |
4030 | addr1, (0xff & ~CODE_DIRTY_FLAG)); | |
6d16c2f8 AL |
4031 | } |
4032 | addr1 += l; | |
4033 | access_len -= l; | |
4034 | } | |
4035 | } | |
868bb33f | 4036 | if (xen_enabled()) { |
e41d7c69 | 4037 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 4038 | } |
6d16c2f8 AL |
4039 | return; |
4040 | } | |
4041 | if (is_write) { | |
4042 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); | |
4043 | } | |
f8a83245 | 4044 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 4045 | bounce.buffer = NULL; |
ba223c29 | 4046 | cpu_notify_map_clients(); |
6d16c2f8 | 4047 | } |
d0ecd2aa | 4048 | |
8df1cd07 | 4049 | /* warning: addr must be aligned */ |
1e78bcc1 AG |
4050 | static inline uint32_t ldl_phys_internal(target_phys_addr_t addr, |
4051 | enum device_endian endian) | |
8df1cd07 | 4052 | { |
8df1cd07 FB |
4053 | uint8_t *ptr; |
4054 | uint32_t val; | |
f3705d53 | 4055 | MemoryRegionSection *section; |
8df1cd07 | 4056 | |
06ef3525 | 4057 | section = phys_page_find(addr >> TARGET_PAGE_BITS); |
3b46e624 | 4058 | |
f3705d53 | 4059 | if (!is_ram_rom_romd(section)) { |
8df1cd07 | 4060 | /* I/O case */ |
f3705d53 | 4061 | addr = section_addr(section, addr); |
37ec01d4 | 4062 | val = io_mem_read(section->mr, addr, 4); |
1e78bcc1 AG |
4063 | #if defined(TARGET_WORDS_BIGENDIAN) |
4064 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
4065 | val = bswap32(val); | |
4066 | } | |
4067 | #else | |
4068 | if (endian == DEVICE_BIG_ENDIAN) { | |
4069 | val = bswap32(val); | |
4070 | } | |
4071 | #endif | |
8df1cd07 FB |
4072 | } else { |
4073 | /* RAM case */ | |
f3705d53 | 4074 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) |
06ef3525 | 4075 | & TARGET_PAGE_MASK) |
f3705d53 | 4076 | + section_addr(section, addr)); |
1e78bcc1 AG |
4077 | switch (endian) { |
4078 | case DEVICE_LITTLE_ENDIAN: | |
4079 | val = ldl_le_p(ptr); | |
4080 | break; | |
4081 | case DEVICE_BIG_ENDIAN: | |
4082 | val = ldl_be_p(ptr); | |
4083 | break; | |
4084 | default: | |
4085 | val = ldl_p(ptr); | |
4086 | break; | |
4087 | } | |
8df1cd07 FB |
4088 | } |
4089 | return val; | |
4090 | } | |
4091 | ||
1e78bcc1 AG |
4092 | uint32_t ldl_phys(target_phys_addr_t addr) |
4093 | { | |
4094 | return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
4095 | } | |
4096 | ||
4097 | uint32_t ldl_le_phys(target_phys_addr_t addr) | |
4098 | { | |
4099 | return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
4100 | } | |
4101 | ||
4102 | uint32_t ldl_be_phys(target_phys_addr_t addr) | |
4103 | { | |
4104 | return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
4105 | } | |
4106 | ||
84b7b8e7 | 4107 | /* warning: addr must be aligned */ |
1e78bcc1 AG |
4108 | static inline uint64_t ldq_phys_internal(target_phys_addr_t addr, |
4109 | enum device_endian endian) | |
84b7b8e7 | 4110 | { |
84b7b8e7 FB |
4111 | uint8_t *ptr; |
4112 | uint64_t val; | |
f3705d53 | 4113 | MemoryRegionSection *section; |
84b7b8e7 | 4114 | |
06ef3525 | 4115 | section = phys_page_find(addr >> TARGET_PAGE_BITS); |
3b46e624 | 4116 | |
f3705d53 | 4117 | if (!is_ram_rom_romd(section)) { |
84b7b8e7 | 4118 | /* I/O case */ |
f3705d53 | 4119 | addr = section_addr(section, addr); |
1e78bcc1 AG |
4120 | |
4121 | /* XXX This is broken when device endian != cpu endian. | |
4122 | Fix and add "endian" variable check */ | |
84b7b8e7 | 4123 | #ifdef TARGET_WORDS_BIGENDIAN |
37ec01d4 AK |
4124 | val = io_mem_read(section->mr, addr, 4) << 32; |
4125 | val |= io_mem_read(section->mr, addr + 4, 4); | |
84b7b8e7 | 4126 | #else |
37ec01d4 AK |
4127 | val = io_mem_read(section->mr, addr, 4); |
4128 | val |= io_mem_read(section->mr, addr + 4, 4) << 32; | |
84b7b8e7 FB |
4129 | #endif |
4130 | } else { | |
4131 | /* RAM case */ | |
f3705d53 | 4132 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) |
06ef3525 | 4133 | & TARGET_PAGE_MASK) |
f3705d53 | 4134 | + section_addr(section, addr)); |
1e78bcc1 AG |
4135 | switch (endian) { |
4136 | case DEVICE_LITTLE_ENDIAN: | |
4137 | val = ldq_le_p(ptr); | |
4138 | break; | |
4139 | case DEVICE_BIG_ENDIAN: | |
4140 | val = ldq_be_p(ptr); | |
4141 | break; | |
4142 | default: | |
4143 | val = ldq_p(ptr); | |
4144 | break; | |
4145 | } | |
84b7b8e7 FB |
4146 | } |
4147 | return val; | |
4148 | } | |
4149 | ||
1e78bcc1 AG |
4150 | uint64_t ldq_phys(target_phys_addr_t addr) |
4151 | { | |
4152 | return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
4153 | } | |
4154 | ||
4155 | uint64_t ldq_le_phys(target_phys_addr_t addr) | |
4156 | { | |
4157 | return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
4158 | } | |
4159 | ||
4160 | uint64_t ldq_be_phys(target_phys_addr_t addr) | |
4161 | { | |
4162 | return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
4163 | } | |
4164 | ||
aab33094 | 4165 | /* XXX: optimize */ |
c227f099 | 4166 | uint32_t ldub_phys(target_phys_addr_t addr) |
aab33094 FB |
4167 | { |
4168 | uint8_t val; | |
4169 | cpu_physical_memory_read(addr, &val, 1); | |
4170 | return val; | |
4171 | } | |
4172 | ||
733f0b02 | 4173 | /* warning: addr must be aligned */ |
1e78bcc1 AG |
4174 | static inline uint32_t lduw_phys_internal(target_phys_addr_t addr, |
4175 | enum device_endian endian) | |
aab33094 | 4176 | { |
733f0b02 MT |
4177 | uint8_t *ptr; |
4178 | uint64_t val; | |
f3705d53 | 4179 | MemoryRegionSection *section; |
733f0b02 | 4180 | |
06ef3525 | 4181 | section = phys_page_find(addr >> TARGET_PAGE_BITS); |
733f0b02 | 4182 | |
f3705d53 | 4183 | if (!is_ram_rom_romd(section)) { |
733f0b02 | 4184 | /* I/O case */ |
f3705d53 | 4185 | addr = section_addr(section, addr); |
37ec01d4 | 4186 | val = io_mem_read(section->mr, addr, 2); |
1e78bcc1 AG |
4187 | #if defined(TARGET_WORDS_BIGENDIAN) |
4188 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
4189 | val = bswap16(val); | |
4190 | } | |
4191 | #else | |
4192 | if (endian == DEVICE_BIG_ENDIAN) { | |
4193 | val = bswap16(val); | |
4194 | } | |
4195 | #endif | |
733f0b02 MT |
4196 | } else { |
4197 | /* RAM case */ | |
f3705d53 | 4198 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) |
06ef3525 | 4199 | & TARGET_PAGE_MASK) |
f3705d53 | 4200 | + section_addr(section, addr)); |
1e78bcc1 AG |
4201 | switch (endian) { |
4202 | case DEVICE_LITTLE_ENDIAN: | |
4203 | val = lduw_le_p(ptr); | |
4204 | break; | |
4205 | case DEVICE_BIG_ENDIAN: | |
4206 | val = lduw_be_p(ptr); | |
4207 | break; | |
4208 | default: | |
4209 | val = lduw_p(ptr); | |
4210 | break; | |
4211 | } | |
733f0b02 MT |
4212 | } |
4213 | return val; | |
aab33094 FB |
4214 | } |
4215 | ||
1e78bcc1 AG |
4216 | uint32_t lduw_phys(target_phys_addr_t addr) |
4217 | { | |
4218 | return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
4219 | } | |
4220 | ||
4221 | uint32_t lduw_le_phys(target_phys_addr_t addr) | |
4222 | { | |
4223 | return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
4224 | } | |
4225 | ||
4226 | uint32_t lduw_be_phys(target_phys_addr_t addr) | |
4227 | { | |
4228 | return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
4229 | } | |
4230 | ||
8df1cd07 FB |
4231 | /* warning: addr must be aligned. The ram page is not masked as dirty |
4232 | and the code inside is not invalidated. It is useful if the dirty | |
4233 | bits are used to track modified PTEs */ | |
c227f099 | 4234 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) |
8df1cd07 | 4235 | { |
8df1cd07 | 4236 | uint8_t *ptr; |
f3705d53 | 4237 | MemoryRegionSection *section; |
8df1cd07 | 4238 | |
06ef3525 | 4239 | section = phys_page_find(addr >> TARGET_PAGE_BITS); |
3b46e624 | 4240 | |
f3705d53 | 4241 | if (!memory_region_is_ram(section->mr) || section->readonly) { |
37ec01d4 | 4242 | addr = section_addr(section, addr); |
f3705d53 | 4243 | if (memory_region_is_ram(section->mr)) { |
37ec01d4 | 4244 | section = &phys_sections[phys_section_rom]; |
06ef3525 | 4245 | } |
37ec01d4 | 4246 | io_mem_write(section->mr, addr, val, 4); |
8df1cd07 | 4247 | } else { |
f3705d53 | 4248 | unsigned long addr1 = (memory_region_get_ram_addr(section->mr) |
06ef3525 | 4249 | & TARGET_PAGE_MASK) |
f3705d53 | 4250 | + section_addr(section, addr); |
5579c7f3 | 4251 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 4252 | stl_p(ptr, val); |
74576198 AL |
4253 | |
4254 | if (unlikely(in_migration)) { | |
4255 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
4256 | /* invalidate code */ | |
4257 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
4258 | /* set dirty bit */ | |
f7c11b53 YT |
4259 | cpu_physical_memory_set_dirty_flags( |
4260 | addr1, (0xff & ~CODE_DIRTY_FLAG)); | |
74576198 AL |
4261 | } |
4262 | } | |
8df1cd07 FB |
4263 | } |
4264 | } | |
4265 | ||
c227f099 | 4266 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
bc98a7ef | 4267 | { |
bc98a7ef | 4268 | uint8_t *ptr; |
f3705d53 | 4269 | MemoryRegionSection *section; |
bc98a7ef | 4270 | |
06ef3525 | 4271 | section = phys_page_find(addr >> TARGET_PAGE_BITS); |
3b46e624 | 4272 | |
f3705d53 | 4273 | if (!memory_region_is_ram(section->mr) || section->readonly) { |
37ec01d4 | 4274 | addr = section_addr(section, addr); |
f3705d53 | 4275 | if (memory_region_is_ram(section->mr)) { |
37ec01d4 | 4276 | section = &phys_sections[phys_section_rom]; |
06ef3525 | 4277 | } |
bc98a7ef | 4278 | #ifdef TARGET_WORDS_BIGENDIAN |
37ec01d4 AK |
4279 | io_mem_write(section->mr, addr, val >> 32, 4); |
4280 | io_mem_write(section->mr, addr + 4, (uint32_t)val, 4); | |
bc98a7ef | 4281 | #else |
37ec01d4 AK |
4282 | io_mem_write(section->mr, addr, (uint32_t)val, 4); |
4283 | io_mem_write(section->mr, addr + 4, val >> 32, 4); | |
bc98a7ef JM |
4284 | #endif |
4285 | } else { | |
f3705d53 | 4286 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) |
06ef3525 | 4287 | & TARGET_PAGE_MASK) |
f3705d53 | 4288 | + section_addr(section, addr)); |
bc98a7ef JM |
4289 | stq_p(ptr, val); |
4290 | } | |
4291 | } | |
4292 | ||
8df1cd07 | 4293 | /* warning: addr must be aligned */ |
1e78bcc1 AG |
4294 | static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val, |
4295 | enum device_endian endian) | |
8df1cd07 | 4296 | { |
8df1cd07 | 4297 | uint8_t *ptr; |
f3705d53 | 4298 | MemoryRegionSection *section; |
8df1cd07 | 4299 | |
06ef3525 | 4300 | section = phys_page_find(addr >> TARGET_PAGE_BITS); |
3b46e624 | 4301 | |
f3705d53 | 4302 | if (!memory_region_is_ram(section->mr) || section->readonly) { |
37ec01d4 | 4303 | addr = section_addr(section, addr); |
f3705d53 | 4304 | if (memory_region_is_ram(section->mr)) { |
37ec01d4 | 4305 | section = &phys_sections[phys_section_rom]; |
06ef3525 | 4306 | } |
1e78bcc1 AG |
4307 | #if defined(TARGET_WORDS_BIGENDIAN) |
4308 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
4309 | val = bswap32(val); | |
4310 | } | |
4311 | #else | |
4312 | if (endian == DEVICE_BIG_ENDIAN) { | |
4313 | val = bswap32(val); | |
4314 | } | |
4315 | #endif | |
37ec01d4 | 4316 | io_mem_write(section->mr, addr, val, 4); |
8df1cd07 FB |
4317 | } else { |
4318 | unsigned long addr1; | |
f3705d53 AK |
4319 | addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) |
4320 | + section_addr(section, addr); | |
8df1cd07 | 4321 | /* RAM case */ |
5579c7f3 | 4322 | ptr = qemu_get_ram_ptr(addr1); |
1e78bcc1 AG |
4323 | switch (endian) { |
4324 | case DEVICE_LITTLE_ENDIAN: | |
4325 | stl_le_p(ptr, val); | |
4326 | break; | |
4327 | case DEVICE_BIG_ENDIAN: | |
4328 | stl_be_p(ptr, val); | |
4329 | break; | |
4330 | default: | |
4331 | stl_p(ptr, val); | |
4332 | break; | |
4333 | } | |
3a7d929e FB |
4334 | if (!cpu_physical_memory_is_dirty(addr1)) { |
4335 | /* invalidate code */ | |
4336 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
4337 | /* set dirty bit */ | |
f7c11b53 YT |
4338 | cpu_physical_memory_set_dirty_flags(addr1, |
4339 | (0xff & ~CODE_DIRTY_FLAG)); | |
3a7d929e | 4340 | } |
8df1cd07 FB |
4341 | } |
4342 | } | |
4343 | ||
1e78bcc1 AG |
4344 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
4345 | { | |
4346 | stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); | |
4347 | } | |
4348 | ||
4349 | void stl_le_phys(target_phys_addr_t addr, uint32_t val) | |
4350 | { | |
4351 | stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); | |
4352 | } | |
4353 | ||
4354 | void stl_be_phys(target_phys_addr_t addr, uint32_t val) | |
4355 | { | |
4356 | stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN); | |
4357 | } | |
4358 | ||
aab33094 | 4359 | /* XXX: optimize */ |
c227f099 | 4360 | void stb_phys(target_phys_addr_t addr, uint32_t val) |
aab33094 FB |
4361 | { |
4362 | uint8_t v = val; | |
4363 | cpu_physical_memory_write(addr, &v, 1); | |
4364 | } | |
4365 | ||
733f0b02 | 4366 | /* warning: addr must be aligned */ |
1e78bcc1 AG |
4367 | static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val, |
4368 | enum device_endian endian) | |
aab33094 | 4369 | { |
733f0b02 | 4370 | uint8_t *ptr; |
f3705d53 | 4371 | MemoryRegionSection *section; |
733f0b02 | 4372 | |
06ef3525 | 4373 | section = phys_page_find(addr >> TARGET_PAGE_BITS); |
733f0b02 | 4374 | |
f3705d53 | 4375 | if (!memory_region_is_ram(section->mr) || section->readonly) { |
37ec01d4 | 4376 | addr = section_addr(section, addr); |
f3705d53 | 4377 | if (memory_region_is_ram(section->mr)) { |
37ec01d4 | 4378 | section = &phys_sections[phys_section_rom]; |
06ef3525 | 4379 | } |
1e78bcc1 AG |
4380 | #if defined(TARGET_WORDS_BIGENDIAN) |
4381 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
4382 | val = bswap16(val); | |
4383 | } | |
4384 | #else | |
4385 | if (endian == DEVICE_BIG_ENDIAN) { | |
4386 | val = bswap16(val); | |
4387 | } | |
4388 | #endif | |
37ec01d4 | 4389 | io_mem_write(section->mr, addr, val, 2); |
733f0b02 MT |
4390 | } else { |
4391 | unsigned long addr1; | |
f3705d53 AK |
4392 | addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) |
4393 | + section_addr(section, addr); | |
733f0b02 MT |
4394 | /* RAM case */ |
4395 | ptr = qemu_get_ram_ptr(addr1); | |
1e78bcc1 AG |
4396 | switch (endian) { |
4397 | case DEVICE_LITTLE_ENDIAN: | |
4398 | stw_le_p(ptr, val); | |
4399 | break; | |
4400 | case DEVICE_BIG_ENDIAN: | |
4401 | stw_be_p(ptr, val); | |
4402 | break; | |
4403 | default: | |
4404 | stw_p(ptr, val); | |
4405 | break; | |
4406 | } | |
733f0b02 MT |
4407 | if (!cpu_physical_memory_is_dirty(addr1)) { |
4408 | /* invalidate code */ | |
4409 | tb_invalidate_phys_page_range(addr1, addr1 + 2, 0); | |
4410 | /* set dirty bit */ | |
4411 | cpu_physical_memory_set_dirty_flags(addr1, | |
4412 | (0xff & ~CODE_DIRTY_FLAG)); | |
4413 | } | |
4414 | } | |
aab33094 FB |
4415 | } |
4416 | ||
1e78bcc1 AG |
4417 | void stw_phys(target_phys_addr_t addr, uint32_t val) |
4418 | { | |
4419 | stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); | |
4420 | } | |
4421 | ||
4422 | void stw_le_phys(target_phys_addr_t addr, uint32_t val) | |
4423 | { | |
4424 | stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); | |
4425 | } | |
4426 | ||
4427 | void stw_be_phys(target_phys_addr_t addr, uint32_t val) | |
4428 | { | |
4429 | stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN); | |
4430 | } | |
4431 | ||
aab33094 | 4432 | /* XXX: optimize */ |
c227f099 | 4433 | void stq_phys(target_phys_addr_t addr, uint64_t val) |
aab33094 FB |
4434 | { |
4435 | val = tswap64(val); | |
71d2b725 | 4436 | cpu_physical_memory_write(addr, &val, 8); |
aab33094 FB |
4437 | } |
4438 | ||
1e78bcc1 AG |
4439 | void stq_le_phys(target_phys_addr_t addr, uint64_t val) |
4440 | { | |
4441 | val = cpu_to_le64(val); | |
4442 | cpu_physical_memory_write(addr, &val, 8); | |
4443 | } | |
4444 | ||
4445 | void stq_be_phys(target_phys_addr_t addr, uint64_t val) | |
4446 | { | |
4447 | val = cpu_to_be64(val); | |
4448 | cpu_physical_memory_write(addr, &val, 8); | |
4449 | } | |
4450 | ||
5e2972fd | 4451 | /* virtual memory access for debug (includes writing to ROM) */ |
9349b4f9 | 4452 | int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr, |
b448f2f3 | 4453 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
4454 | { |
4455 | int l; | |
c227f099 | 4456 | target_phys_addr_t phys_addr; |
9b3c35e0 | 4457 | target_ulong page; |
13eb76e0 FB |
4458 | |
4459 | while (len > 0) { | |
4460 | page = addr & TARGET_PAGE_MASK; | |
4461 | phys_addr = cpu_get_phys_page_debug(env, page); | |
4462 | /* if no physical page mapped, return an error */ | |
4463 | if (phys_addr == -1) | |
4464 | return -1; | |
4465 | l = (page + TARGET_PAGE_SIZE) - addr; | |
4466 | if (l > len) | |
4467 | l = len; | |
5e2972fd | 4468 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
5e2972fd AL |
4469 | if (is_write) |
4470 | cpu_physical_memory_write_rom(phys_addr, buf, l); | |
4471 | else | |
5e2972fd | 4472 | cpu_physical_memory_rw(phys_addr, buf, l, is_write); |
13eb76e0 FB |
4473 | len -= l; |
4474 | buf += l; | |
4475 | addr += l; | |
4476 | } | |
4477 | return 0; | |
4478 | } | |
a68fe89c | 4479 | #endif |
13eb76e0 | 4480 | |
2e70f6ef PB |
4481 | /* in deterministic execution mode, instructions doing device I/Os |
4482 | must be at the end of the TB */ | |
20503968 | 4483 | void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr) |
2e70f6ef PB |
4484 | { |
4485 | TranslationBlock *tb; | |
4486 | uint32_t n, cflags; | |
4487 | target_ulong pc, cs_base; | |
4488 | uint64_t flags; | |
4489 | ||
20503968 | 4490 | tb = tb_find_pc(retaddr); |
2e70f6ef PB |
4491 | if (!tb) { |
4492 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
20503968 | 4493 | (void *)retaddr); |
2e70f6ef PB |
4494 | } |
4495 | n = env->icount_decr.u16.low + tb->icount; | |
20503968 | 4496 | cpu_restore_state(tb, env, retaddr); |
2e70f6ef | 4497 | /* Calculate how many instructions had been executed before the fault |
bf20dc07 | 4498 | occurred. */ |
2e70f6ef PB |
4499 | n = n - env->icount_decr.u16.low; |
4500 | /* Generate a new TB ending on the I/O insn. */ | |
4501 | n++; | |
4502 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
4503 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 4504 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
4505 | branch. */ |
4506 | #if defined(TARGET_MIPS) | |
4507 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
4508 | env->active_tc.PC -= 4; | |
4509 | env->icount_decr.u16.low++; | |
4510 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
4511 | } | |
4512 | #elif defined(TARGET_SH4) | |
4513 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
4514 | && n > 1) { | |
4515 | env->pc -= 2; | |
4516 | env->icount_decr.u16.low++; | |
4517 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
4518 | } | |
4519 | #endif | |
4520 | /* This should never happen. */ | |
4521 | if (n > CF_COUNT_MASK) | |
4522 | cpu_abort(env, "TB too big during recompile"); | |
4523 | ||
4524 | cflags = n | CF_LAST_IO; | |
4525 | pc = tb->pc; | |
4526 | cs_base = tb->cs_base; | |
4527 | flags = tb->flags; | |
4528 | tb_phys_invalidate(tb, -1); | |
4529 | /* FIXME: In theory this could raise an exception. In practice | |
4530 | we have already translated the block once so it's probably ok. */ | |
4531 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 4532 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
4533 | the first in the TB) then we end up generating a whole new TB and |
4534 | repeating the fault, which is horribly inefficient. | |
4535 | Better would be to execute just this insn uncached, or generate a | |
4536 | second new TB. */ | |
4537 | cpu_resume_from_signal(env, NULL); | |
4538 | } | |
4539 | ||
b3755a91 PB |
4540 | #if !defined(CONFIG_USER_ONLY) |
4541 | ||
055403b2 | 4542 | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) |
e3db7226 FB |
4543 | { |
4544 | int i, target_code_size, max_target_code_size; | |
4545 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
4546 | TranslationBlock *tb; | |
3b46e624 | 4547 | |
e3db7226 FB |
4548 | target_code_size = 0; |
4549 | max_target_code_size = 0; | |
4550 | cross_page = 0; | |
4551 | direct_jmp_count = 0; | |
4552 | direct_jmp2_count = 0; | |
4553 | for(i = 0; i < nb_tbs; i++) { | |
4554 | tb = &tbs[i]; | |
4555 | target_code_size += tb->size; | |
4556 | if (tb->size > max_target_code_size) | |
4557 | max_target_code_size = tb->size; | |
4558 | if (tb->page_addr[1] != -1) | |
4559 | cross_page++; | |
4560 | if (tb->tb_next_offset[0] != 0xffff) { | |
4561 | direct_jmp_count++; | |
4562 | if (tb->tb_next_offset[1] != 0xffff) { | |
4563 | direct_jmp2_count++; | |
4564 | } | |
4565 | } | |
4566 | } | |
4567 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 4568 | cpu_fprintf(f, "Translation buffer state:\n"); |
055403b2 | 4569 | cpu_fprintf(f, "gen code size %td/%ld\n", |
26a5f13b FB |
4570 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); |
4571 | cpu_fprintf(f, "TB count %d/%d\n", | |
4572 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 4573 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
4574 | nb_tbs ? target_code_size / nb_tbs : 0, |
4575 | max_target_code_size); | |
055403b2 | 4576 | cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
4577 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
4578 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
4579 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
4580 | cross_page, | |
e3db7226 FB |
4581 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
4582 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 4583 | direct_jmp_count, |
e3db7226 FB |
4584 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
4585 | direct_jmp2_count, | |
4586 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 4587 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
4588 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
4589 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
4590 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 4591 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
4592 | } |
4593 | ||
d39e8222 AK |
4594 | /* NOTE: this function can trigger an exception */ |
4595 | /* NOTE2: the returned address is not exactly the physical address: it | |
4596 | is the offset relative to phys_ram_base */ | |
9349b4f9 | 4597 | tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) |
d39e8222 AK |
4598 | { |
4599 | int mmu_idx, page_index, pd; | |
4600 | void *p; | |
37ec01d4 | 4601 | MemoryRegion *mr; |
d39e8222 AK |
4602 | |
4603 | page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
4604 | mmu_idx = cpu_mmu_index(env1); | |
4605 | if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != | |
4606 | (addr & TARGET_PAGE_MASK))) { | |
e141ab52 BS |
4607 | #ifdef CONFIG_TCG_PASS_AREG0 |
4608 | cpu_ldub_code(env1, addr); | |
4609 | #else | |
d39e8222 | 4610 | ldub_code(addr); |
e141ab52 | 4611 | #endif |
d39e8222 | 4612 | } |
ce5d64c2 | 4613 | pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK; |
37ec01d4 AK |
4614 | mr = iotlb_to_region(pd); |
4615 | if (mr != &io_mem_ram && mr != &io_mem_rom | |
32b08980 AK |
4616 | && mr != &io_mem_notdirty && !mr->rom_device |
4617 | && mr != &io_mem_watch) { | |
d39e8222 AK |
4618 | #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC) |
4619 | cpu_unassigned_access(env1, addr, 0, 1, 0, 4); | |
4620 | #else | |
4621 | cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); | |
4622 | #endif | |
4623 | } | |
4624 | p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); | |
4625 | return qemu_ram_addr_from_host_nofail(p); | |
4626 | } | |
4627 | ||
82afa586 BH |
4628 | /* |
4629 | * A helper function for the _utterly broken_ virtio device model to find out if | |
4630 | * it's running on a big endian machine. Don't do this at home kids! | |
4631 | */ | |
4632 | bool virtio_is_big_endian(void); | |
4633 | bool virtio_is_big_endian(void) | |
4634 | { | |
4635 | #if defined(TARGET_WORDS_BIGENDIAN) | |
4636 | return true; | |
4637 | #else | |
4638 | return false; | |
4639 | #endif | |
4640 | } | |
4641 | ||
61382a50 | 4642 | #define MMUSUFFIX _cmmu |
3917149d | 4643 | #undef GETPC |
20503968 | 4644 | #define GETPC() ((uintptr_t)0) |
61382a50 | 4645 | #define env cpu_single_env |
b769d8fe | 4646 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
4647 | |
4648 | #define SHIFT 0 | |
4649 | #include "softmmu_template.h" | |
4650 | ||
4651 | #define SHIFT 1 | |
4652 | #include "softmmu_template.h" | |
4653 | ||
4654 | #define SHIFT 2 | |
4655 | #include "softmmu_template.h" | |
4656 | ||
4657 | #define SHIFT 3 | |
4658 | #include "softmmu_template.h" | |
4659 | ||
4660 | #undef env | |
4661 | ||
4662 | #endif |