]>
Commit | Line | Data |
---|---|---|
8d725fac AF |
1 | /* |
2 | * QEMU float support | |
3 | * | |
16017c48 PM |
4 | * The code in this source file is derived from release 2a of the SoftFloat |
5 | * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and | |
6 | * some later contributions) are provided under that license, as detailed below. | |
7 | * It has subsequently been modified by contributors to the QEMU Project, | |
8 | * so some portions are provided under: | |
9 | * the SoftFloat-2a license | |
10 | * the BSD license | |
11 | * GPL-v2-or-later | |
12 | * | |
13 | * Any future contributions to this file after December 1st 2014 will be | |
14 | * taken to be licensed under the Softfloat-2a license unless specifically | |
15 | * indicated otherwise. | |
8d725fac | 16 | */ |
158142c2 | 17 | |
a7d1ac78 PM |
18 | /* |
19 | =============================================================================== | |
20 | This C source file is part of the SoftFloat IEC/IEEE Floating-point | |
21 | Arithmetic Package, Release 2a. | |
158142c2 FB |
22 | |
23 | Written by John R. Hauser. This work was made possible in part by the | |
24 | International Computer Science Institute, located at Suite 600, 1947 Center | |
25 | Street, Berkeley, California 94704. Funding was partially provided by the | |
26 | National Science Foundation under grant MIP-9311980. The original version | |
27 | of this code was written as part of a project to build a fixed-point vector | |
28 | processor in collaboration with the University of California at Berkeley, | |
29 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
a7d1ac78 | 30 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
158142c2 FB |
31 | arithmetic/SoftFloat.html'. |
32 | ||
a7d1ac78 PM |
33 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
34 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
35 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
36 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
37 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
158142c2 FB |
38 | |
39 | Derivative works are acceptable, even for commercial purposes, so long as | |
a7d1ac78 PM |
40 | (1) they include prominent notice that the work is derivative, and (2) they |
41 | include prominent notice akin to these four paragraphs for those parts of | |
42 | this code that are retained. | |
158142c2 | 43 | |
a7d1ac78 PM |
44 | =============================================================================== |
45 | */ | |
158142c2 | 46 | |
16017c48 PM |
47 | /* BSD licensing: |
48 | * Copyright (c) 2006, Fabrice Bellard | |
49 | * All rights reserved. | |
50 | * | |
51 | * Redistribution and use in source and binary forms, with or without | |
52 | * modification, are permitted provided that the following conditions are met: | |
53 | * | |
54 | * 1. Redistributions of source code must retain the above copyright notice, | |
55 | * this list of conditions and the following disclaimer. | |
56 | * | |
57 | * 2. Redistributions in binary form must reproduce the above copyright notice, | |
58 | * this list of conditions and the following disclaimer in the documentation | |
59 | * and/or other materials provided with the distribution. | |
60 | * | |
61 | * 3. Neither the name of the copyright holder nor the names of its contributors | |
62 | * may be used to endorse or promote products derived from this software without | |
63 | * specific prior written permission. | |
64 | * | |
65 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
66 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
67 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
68 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | |
69 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
70 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
71 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
72 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
73 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
74 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF | |
75 | * THE POSSIBILITY OF SUCH DAMAGE. | |
76 | */ | |
77 | ||
78 | /* Portions of this work are licensed under the terms of the GNU GPL, | |
79 | * version 2 or later. See the COPYING file in the top-level directory. | |
80 | */ | |
81 | ||
2ac8bd03 PM |
82 | /* softfloat (and in particular the code in softfloat-specialize.h) is |
83 | * target-dependent and needs the TARGET_* macros. | |
84 | */ | |
d38ea87a | 85 | #include "qemu/osdep.h" |
2ac8bd03 | 86 | |
6b4c305c | 87 | #include "fpu/softfloat.h" |
158142c2 | 88 | |
dc355b76 | 89 | /* We only need stdlib for abort() */ |
dc355b76 | 90 | |
158142c2 FB |
91 | /*---------------------------------------------------------------------------- |
92 | | Primitive arithmetic functions, including multi-word arithmetic, and | |
93 | | division and square root approximations. (Can be specialized to target if | |
94 | | desired.) | |
95 | *----------------------------------------------------------------------------*/ | |
96 | #include "softfloat-macros.h" | |
97 | ||
98 | /*---------------------------------------------------------------------------- | |
99 | | Functions and definitions to determine: (1) whether tininess for underflow | |
100 | | is detected before or after rounding by default, (2) what (if anything) | |
101 | | happens when exceptions are raised, (3) how signaling NaNs are distinguished | |
102 | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | |
103 | | are propagated from function inputs to output. These details are target- | |
104 | | specific. | |
105 | *----------------------------------------------------------------------------*/ | |
106 | #include "softfloat-specialize.h" | |
107 | ||
bb4d4bb3 PM |
108 | /*---------------------------------------------------------------------------- |
109 | | Returns the fraction bits of the half-precision floating-point value `a'. | |
110 | *----------------------------------------------------------------------------*/ | |
111 | ||
a49db98d | 112 | static inline uint32_t extractFloat16Frac(float16 a) |
bb4d4bb3 PM |
113 | { |
114 | return float16_val(a) & 0x3ff; | |
115 | } | |
116 | ||
117 | /*---------------------------------------------------------------------------- | |
118 | | Returns the exponent bits of the half-precision floating-point value `a'. | |
119 | *----------------------------------------------------------------------------*/ | |
120 | ||
0c48262d | 121 | static inline int extractFloat16Exp(float16 a) |
bb4d4bb3 PM |
122 | { |
123 | return (float16_val(a) >> 10) & 0x1f; | |
124 | } | |
125 | ||
126 | /*---------------------------------------------------------------------------- | |
127 | | Returns the sign bit of the single-precision floating-point value `a'. | |
128 | *----------------------------------------------------------------------------*/ | |
129 | ||
a49db98d | 130 | static inline flag extractFloat16Sign(float16 a) |
bb4d4bb3 PM |
131 | { |
132 | return float16_val(a)>>15; | |
133 | } | |
134 | ||
158142c2 FB |
135 | /*---------------------------------------------------------------------------- |
136 | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | |
137 | | and 7, and returns the properly rounded 32-bit integer corresponding to the | |
138 | | input. If `zSign' is 1, the input is negated before being converted to an | |
139 | | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input | |
140 | | is simply rounded to an integer, with the inexact exception raised if the | |
141 | | input cannot be represented exactly as an integer. However, if the fixed- | |
142 | | point input is too large, the invalid exception is raised and the largest | |
143 | | positive or negative integer is returned. | |
144 | *----------------------------------------------------------------------------*/ | |
145 | ||
f4014512 | 146 | static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status) |
158142c2 | 147 | { |
8f506c70 | 148 | int8_t roundingMode; |
158142c2 | 149 | flag roundNearestEven; |
8f506c70 | 150 | int8_t roundIncrement, roundBits; |
760e1416 | 151 | int32_t z; |
158142c2 | 152 | |
a2f2d288 | 153 | roundingMode = status->float_rounding_mode; |
158142c2 | 154 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
155 | switch (roundingMode) { |
156 | case float_round_nearest_even: | |
f9288a76 | 157 | case float_round_ties_away: |
dc355b76 PM |
158 | roundIncrement = 0x40; |
159 | break; | |
160 | case float_round_to_zero: | |
161 | roundIncrement = 0; | |
162 | break; | |
163 | case float_round_up: | |
164 | roundIncrement = zSign ? 0 : 0x7f; | |
165 | break; | |
166 | case float_round_down: | |
167 | roundIncrement = zSign ? 0x7f : 0; | |
168 | break; | |
169 | default: | |
170 | abort(); | |
158142c2 FB |
171 | } |
172 | roundBits = absZ & 0x7F; | |
173 | absZ = ( absZ + roundIncrement )>>7; | |
174 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
175 | z = absZ; | |
176 | if ( zSign ) z = - z; | |
177 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | |
ff32e16e | 178 | float_raise(float_flag_invalid, status); |
bb98fe42 | 179 | return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 | 180 | } |
a2f2d288 PM |
181 | if (roundBits) { |
182 | status->float_exception_flags |= float_flag_inexact; | |
183 | } | |
158142c2 FB |
184 | return z; |
185 | ||
186 | } | |
187 | ||
188 | /*---------------------------------------------------------------------------- | |
189 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
190 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
191 | | and returns the properly rounded 64-bit integer corresponding to the input. | |
192 | | If `zSign' is 1, the input is negated before being converted to an integer. | |
193 | | Ordinarily, the fixed-point input is simply rounded to an integer, with | |
194 | | the inexact exception raised if the input cannot be represented exactly as | |
195 | | an integer. However, if the fixed-point input is too large, the invalid | |
196 | | exception is raised and the largest positive or negative integer is | |
197 | | returned. | |
198 | *----------------------------------------------------------------------------*/ | |
199 | ||
f42c2224 | 200 | static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1, |
e5a41ffa | 201 | float_status *status) |
158142c2 | 202 | { |
8f506c70 | 203 | int8_t roundingMode; |
158142c2 | 204 | flag roundNearestEven, increment; |
760e1416 | 205 | int64_t z; |
158142c2 | 206 | |
a2f2d288 | 207 | roundingMode = status->float_rounding_mode; |
158142c2 | 208 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
209 | switch (roundingMode) { |
210 | case float_round_nearest_even: | |
f9288a76 | 211 | case float_round_ties_away: |
dc355b76 PM |
212 | increment = ((int64_t) absZ1 < 0); |
213 | break; | |
214 | case float_round_to_zero: | |
215 | increment = 0; | |
216 | break; | |
217 | case float_round_up: | |
218 | increment = !zSign && absZ1; | |
219 | break; | |
220 | case float_round_down: | |
221 | increment = zSign && absZ1; | |
222 | break; | |
223 | default: | |
224 | abort(); | |
158142c2 FB |
225 | } |
226 | if ( increment ) { | |
227 | ++absZ0; | |
228 | if ( absZ0 == 0 ) goto overflow; | |
bb98fe42 | 229 | absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
230 | } |
231 | z = absZ0; | |
232 | if ( zSign ) z = - z; | |
233 | if ( z && ( ( z < 0 ) ^ zSign ) ) { | |
234 | overflow: | |
ff32e16e | 235 | float_raise(float_flag_invalid, status); |
158142c2 | 236 | return |
bb98fe42 | 237 | zSign ? (int64_t) LIT64( 0x8000000000000000 ) |
158142c2 FB |
238 | : LIT64( 0x7FFFFFFFFFFFFFFF ); |
239 | } | |
a2f2d288 PM |
240 | if (absZ1) { |
241 | status->float_exception_flags |= float_flag_inexact; | |
242 | } | |
158142c2 FB |
243 | return z; |
244 | ||
245 | } | |
246 | ||
fb3ea83a TM |
247 | /*---------------------------------------------------------------------------- |
248 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
249 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
250 | | and returns the properly rounded 64-bit unsigned integer corresponding to the | |
251 | | input. Ordinarily, the fixed-point input is simply rounded to an integer, | |
252 | | with the inexact exception raised if the input cannot be represented exactly | |
253 | | as an integer. However, if the fixed-point input is too large, the invalid | |
254 | | exception is raised and the largest unsigned integer is returned. | |
255 | *----------------------------------------------------------------------------*/ | |
256 | ||
f42c2224 | 257 | static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0, |
e5a41ffa | 258 | uint64_t absZ1, float_status *status) |
fb3ea83a | 259 | { |
8f506c70 | 260 | int8_t roundingMode; |
fb3ea83a TM |
261 | flag roundNearestEven, increment; |
262 | ||
a2f2d288 | 263 | roundingMode = status->float_rounding_mode; |
fb3ea83a | 264 | roundNearestEven = (roundingMode == float_round_nearest_even); |
dc355b76 PM |
265 | switch (roundingMode) { |
266 | case float_round_nearest_even: | |
f9288a76 | 267 | case float_round_ties_away: |
dc355b76 PM |
268 | increment = ((int64_t)absZ1 < 0); |
269 | break; | |
270 | case float_round_to_zero: | |
271 | increment = 0; | |
272 | break; | |
273 | case float_round_up: | |
274 | increment = !zSign && absZ1; | |
275 | break; | |
276 | case float_round_down: | |
277 | increment = zSign && absZ1; | |
278 | break; | |
279 | default: | |
280 | abort(); | |
fb3ea83a TM |
281 | } |
282 | if (increment) { | |
283 | ++absZ0; | |
284 | if (absZ0 == 0) { | |
ff32e16e | 285 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
286 | return LIT64(0xFFFFFFFFFFFFFFFF); |
287 | } | |
288 | absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven); | |
289 | } | |
290 | ||
291 | if (zSign && absZ0) { | |
ff32e16e | 292 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
293 | return 0; |
294 | } | |
295 | ||
296 | if (absZ1) { | |
a2f2d288 | 297 | status->float_exception_flags |= float_flag_inexact; |
fb3ea83a TM |
298 | } |
299 | return absZ0; | |
300 | } | |
301 | ||
158142c2 FB |
302 | /*---------------------------------------------------------------------------- |
303 | | Returns the fraction bits of the single-precision floating-point value `a'. | |
304 | *----------------------------------------------------------------------------*/ | |
305 | ||
a49db98d | 306 | static inline uint32_t extractFloat32Frac( float32 a ) |
158142c2 FB |
307 | { |
308 | ||
f090c9d4 | 309 | return float32_val(a) & 0x007FFFFF; |
158142c2 FB |
310 | |
311 | } | |
312 | ||
313 | /*---------------------------------------------------------------------------- | |
314 | | Returns the exponent bits of the single-precision floating-point value `a'. | |
315 | *----------------------------------------------------------------------------*/ | |
316 | ||
0c48262d | 317 | static inline int extractFloat32Exp(float32 a) |
158142c2 FB |
318 | { |
319 | ||
f090c9d4 | 320 | return ( float32_val(a)>>23 ) & 0xFF; |
158142c2 FB |
321 | |
322 | } | |
323 | ||
324 | /*---------------------------------------------------------------------------- | |
325 | | Returns the sign bit of the single-precision floating-point value `a'. | |
326 | *----------------------------------------------------------------------------*/ | |
327 | ||
a49db98d | 328 | static inline flag extractFloat32Sign( float32 a ) |
158142c2 FB |
329 | { |
330 | ||
f090c9d4 | 331 | return float32_val(a)>>31; |
158142c2 FB |
332 | |
333 | } | |
334 | ||
37d18660 PM |
335 | /*---------------------------------------------------------------------------- |
336 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
337 | | input-denormal exception and return zero. Otherwise just return the value. | |
338 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 339 | float32 float32_squash_input_denormal(float32 a, float_status *status) |
37d18660 | 340 | { |
a2f2d288 | 341 | if (status->flush_inputs_to_zero) { |
37d18660 | 342 | if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { |
ff32e16e | 343 | float_raise(float_flag_input_denormal, status); |
37d18660 PM |
344 | return make_float32(float32_val(a) & 0x80000000); |
345 | } | |
346 | } | |
347 | return a; | |
348 | } | |
349 | ||
158142c2 FB |
350 | /*---------------------------------------------------------------------------- |
351 | | Normalizes the subnormal single-precision floating-point value represented | |
352 | | by the denormalized significand `aSig'. The normalized exponent and | |
353 | | significand are stored at the locations pointed to by `zExpPtr' and | |
354 | | `zSigPtr', respectively. | |
355 | *----------------------------------------------------------------------------*/ | |
356 | ||
357 | static void | |
0c48262d | 358 | normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr) |
158142c2 | 359 | { |
8f506c70 | 360 | int8_t shiftCount; |
158142c2 FB |
361 | |
362 | shiftCount = countLeadingZeros32( aSig ) - 8; | |
363 | *zSigPtr = aSig<<shiftCount; | |
364 | *zExpPtr = 1 - shiftCount; | |
365 | ||
366 | } | |
367 | ||
368 | /*---------------------------------------------------------------------------- | |
369 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
370 | | single-precision floating-point value, returning the result. After being | |
371 | | shifted into the proper positions, the three fields are simply added | |
372 | | together to form the result. This means that any integer portion of `zSig' | |
373 | | will be added into the exponent. Since a properly normalized significand | |
374 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
375 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
376 | | significand. | |
377 | *----------------------------------------------------------------------------*/ | |
378 | ||
0c48262d | 379 | static inline float32 packFloat32(flag zSign, int zExp, uint32_t zSig) |
158142c2 FB |
380 | { |
381 | ||
f090c9d4 | 382 | return make_float32( |
bb98fe42 | 383 | ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig); |
158142c2 FB |
384 | |
385 | } | |
386 | ||
387 | /*---------------------------------------------------------------------------- | |
388 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
389 | | and significand `zSig', and returns the proper single-precision floating- | |
390 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
391 | | value is simply rounded and packed into the single-precision format, with | |
392 | | the inexact exception raised if the abstract input cannot be represented | |
393 | | exactly. However, if the abstract value is too large, the overflow and | |
394 | | inexact exceptions are raised and an infinity or maximal finite value is | |
395 | | returned. If the abstract value is too small, the input value is rounded to | |
396 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
397 | | the abstract input cannot be represented exactly as a subnormal single- | |
398 | | precision floating-point number. | |
399 | | The input significand `zSig' has its binary point between bits 30 | |
400 | | and 29, which is 7 bits to the left of the usual location. This shifted | |
401 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
402 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
403 | | and it must not require rounding. In the usual case that `zSig' is | |
404 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
405 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
406 | | Binary Floating-Point Arithmetic. | |
407 | *----------------------------------------------------------------------------*/ | |
408 | ||
0c48262d | 409 | static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, |
e5a41ffa | 410 | float_status *status) |
158142c2 | 411 | { |
8f506c70 | 412 | int8_t roundingMode; |
158142c2 | 413 | flag roundNearestEven; |
8f506c70 | 414 | int8_t roundIncrement, roundBits; |
158142c2 FB |
415 | flag isTiny; |
416 | ||
a2f2d288 | 417 | roundingMode = status->float_rounding_mode; |
158142c2 | 418 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
419 | switch (roundingMode) { |
420 | case float_round_nearest_even: | |
f9288a76 | 421 | case float_round_ties_away: |
dc355b76 PM |
422 | roundIncrement = 0x40; |
423 | break; | |
424 | case float_round_to_zero: | |
425 | roundIncrement = 0; | |
426 | break; | |
427 | case float_round_up: | |
428 | roundIncrement = zSign ? 0 : 0x7f; | |
429 | break; | |
430 | case float_round_down: | |
431 | roundIncrement = zSign ? 0x7f : 0; | |
432 | break; | |
433 | default: | |
434 | abort(); | |
435 | break; | |
158142c2 FB |
436 | } |
437 | roundBits = zSig & 0x7F; | |
bb98fe42 | 438 | if ( 0xFD <= (uint16_t) zExp ) { |
158142c2 FB |
439 | if ( ( 0xFD < zExp ) |
440 | || ( ( zExp == 0xFD ) | |
bb98fe42 | 441 | && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 | 442 | ) { |
ff32e16e | 443 | float_raise(float_flag_overflow | float_flag_inexact, status); |
f090c9d4 | 444 | return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); |
158142c2 FB |
445 | } |
446 | if ( zExp < 0 ) { | |
a2f2d288 | 447 | if (status->flush_to_zero) { |
ff32e16e | 448 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
449 | return packFloat32(zSign, 0, 0); |
450 | } | |
158142c2 | 451 | isTiny = |
a2f2d288 PM |
452 | (status->float_detect_tininess |
453 | == float_tininess_before_rounding) | |
158142c2 FB |
454 | || ( zExp < -1 ) |
455 | || ( zSig + roundIncrement < 0x80000000 ); | |
456 | shift32RightJamming( zSig, - zExp, &zSig ); | |
457 | zExp = 0; | |
458 | roundBits = zSig & 0x7F; | |
ff32e16e PM |
459 | if (isTiny && roundBits) { |
460 | float_raise(float_flag_underflow, status); | |
461 | } | |
158142c2 FB |
462 | } |
463 | } | |
a2f2d288 PM |
464 | if (roundBits) { |
465 | status->float_exception_flags |= float_flag_inexact; | |
466 | } | |
158142c2 FB |
467 | zSig = ( zSig + roundIncrement )>>7; |
468 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
469 | if ( zSig == 0 ) zExp = 0; | |
470 | return packFloat32( zSign, zExp, zSig ); | |
471 | ||
472 | } | |
473 | ||
474 | /*---------------------------------------------------------------------------- | |
475 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
476 | | and significand `zSig', and returns the proper single-precision floating- | |
477 | | point value corresponding to the abstract input. This routine is just like | |
478 | | `roundAndPackFloat32' except that `zSig' does not have to be normalized. | |
479 | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
480 | | floating-point exponent. | |
481 | *----------------------------------------------------------------------------*/ | |
482 | ||
483 | static float32 | |
0c48262d | 484 | normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, |
e5a41ffa | 485 | float_status *status) |
158142c2 | 486 | { |
8f506c70 | 487 | int8_t shiftCount; |
158142c2 FB |
488 | |
489 | shiftCount = countLeadingZeros32( zSig ) - 1; | |
ff32e16e PM |
490 | return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount, |
491 | status); | |
158142c2 FB |
492 | |
493 | } | |
494 | ||
495 | /*---------------------------------------------------------------------------- | |
496 | | Returns the fraction bits of the double-precision floating-point value `a'. | |
497 | *----------------------------------------------------------------------------*/ | |
498 | ||
a49db98d | 499 | static inline uint64_t extractFloat64Frac( float64 a ) |
158142c2 FB |
500 | { |
501 | ||
f090c9d4 | 502 | return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF ); |
158142c2 FB |
503 | |
504 | } | |
505 | ||
506 | /*---------------------------------------------------------------------------- | |
507 | | Returns the exponent bits of the double-precision floating-point value `a'. | |
508 | *----------------------------------------------------------------------------*/ | |
509 | ||
0c48262d | 510 | static inline int extractFloat64Exp(float64 a) |
158142c2 FB |
511 | { |
512 | ||
f090c9d4 | 513 | return ( float64_val(a)>>52 ) & 0x7FF; |
158142c2 FB |
514 | |
515 | } | |
516 | ||
517 | /*---------------------------------------------------------------------------- | |
518 | | Returns the sign bit of the double-precision floating-point value `a'. | |
519 | *----------------------------------------------------------------------------*/ | |
520 | ||
a49db98d | 521 | static inline flag extractFloat64Sign( float64 a ) |
158142c2 FB |
522 | { |
523 | ||
f090c9d4 | 524 | return float64_val(a)>>63; |
158142c2 FB |
525 | |
526 | } | |
527 | ||
37d18660 PM |
528 | /*---------------------------------------------------------------------------- |
529 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
530 | | input-denormal exception and return zero. Otherwise just return the value. | |
531 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 532 | float64 float64_squash_input_denormal(float64 a, float_status *status) |
37d18660 | 533 | { |
a2f2d288 | 534 | if (status->flush_inputs_to_zero) { |
37d18660 | 535 | if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { |
ff32e16e | 536 | float_raise(float_flag_input_denormal, status); |
37d18660 PM |
537 | return make_float64(float64_val(a) & (1ULL << 63)); |
538 | } | |
539 | } | |
540 | return a; | |
541 | } | |
542 | ||
158142c2 FB |
543 | /*---------------------------------------------------------------------------- |
544 | | Normalizes the subnormal double-precision floating-point value represented | |
545 | | by the denormalized significand `aSig'. The normalized exponent and | |
546 | | significand are stored at the locations pointed to by `zExpPtr' and | |
547 | | `zSigPtr', respectively. | |
548 | *----------------------------------------------------------------------------*/ | |
549 | ||
550 | static void | |
0c48262d | 551 | normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr) |
158142c2 | 552 | { |
8f506c70 | 553 | int8_t shiftCount; |
158142c2 FB |
554 | |
555 | shiftCount = countLeadingZeros64( aSig ) - 11; | |
556 | *zSigPtr = aSig<<shiftCount; | |
557 | *zExpPtr = 1 - shiftCount; | |
558 | ||
559 | } | |
560 | ||
561 | /*---------------------------------------------------------------------------- | |
562 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
563 | | double-precision floating-point value, returning the result. After being | |
564 | | shifted into the proper positions, the three fields are simply added | |
565 | | together to form the result. This means that any integer portion of `zSig' | |
566 | | will be added into the exponent. Since a properly normalized significand | |
567 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
568 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
569 | | significand. | |
570 | *----------------------------------------------------------------------------*/ | |
571 | ||
0c48262d | 572 | static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig) |
158142c2 FB |
573 | { |
574 | ||
f090c9d4 | 575 | return make_float64( |
bb98fe42 | 576 | ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); |
158142c2 FB |
577 | |
578 | } | |
579 | ||
580 | /*---------------------------------------------------------------------------- | |
581 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
582 | | and significand `zSig', and returns the proper double-precision floating- | |
583 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
584 | | value is simply rounded and packed into the double-precision format, with | |
585 | | the inexact exception raised if the abstract input cannot be represented | |
586 | | exactly. However, if the abstract value is too large, the overflow and | |
587 | | inexact exceptions are raised and an infinity or maximal finite value is | |
a7d1ac78 PM |
588 | | returned. If the abstract value is too small, the input value is rounded to |
589 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
590 | | the abstract input cannot be represented exactly as a subnormal double- | |
158142c2 FB |
591 | | precision floating-point number. |
592 | | The input significand `zSig' has its binary point between bits 62 | |
593 | | and 61, which is 10 bits to the left of the usual location. This shifted | |
594 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
595 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
596 | | and it must not require rounding. In the usual case that `zSig' is | |
597 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
598 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
599 | | Binary Floating-Point Arithmetic. | |
600 | *----------------------------------------------------------------------------*/ | |
601 | ||
0c48262d | 602 | static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, |
e5a41ffa | 603 | float_status *status) |
158142c2 | 604 | { |
8f506c70 | 605 | int8_t roundingMode; |
158142c2 | 606 | flag roundNearestEven; |
0c48262d | 607 | int roundIncrement, roundBits; |
158142c2 FB |
608 | flag isTiny; |
609 | ||
a2f2d288 | 610 | roundingMode = status->float_rounding_mode; |
158142c2 | 611 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
612 | switch (roundingMode) { |
613 | case float_round_nearest_even: | |
f9288a76 | 614 | case float_round_ties_away: |
dc355b76 PM |
615 | roundIncrement = 0x200; |
616 | break; | |
617 | case float_round_to_zero: | |
618 | roundIncrement = 0; | |
619 | break; | |
620 | case float_round_up: | |
621 | roundIncrement = zSign ? 0 : 0x3ff; | |
622 | break; | |
623 | case float_round_down: | |
624 | roundIncrement = zSign ? 0x3ff : 0; | |
625 | break; | |
626 | default: | |
627 | abort(); | |
158142c2 FB |
628 | } |
629 | roundBits = zSig & 0x3FF; | |
bb98fe42 | 630 | if ( 0x7FD <= (uint16_t) zExp ) { |
158142c2 FB |
631 | if ( ( 0x7FD < zExp ) |
632 | || ( ( zExp == 0x7FD ) | |
bb98fe42 | 633 | && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 | 634 | ) { |
ff32e16e | 635 | float_raise(float_flag_overflow | float_flag_inexact, status); |
f090c9d4 | 636 | return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 )); |
158142c2 FB |
637 | } |
638 | if ( zExp < 0 ) { | |
a2f2d288 | 639 | if (status->flush_to_zero) { |
ff32e16e | 640 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
641 | return packFloat64(zSign, 0, 0); |
642 | } | |
158142c2 | 643 | isTiny = |
a2f2d288 PM |
644 | (status->float_detect_tininess |
645 | == float_tininess_before_rounding) | |
158142c2 FB |
646 | || ( zExp < -1 ) |
647 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | |
648 | shift64RightJamming( zSig, - zExp, &zSig ); | |
649 | zExp = 0; | |
650 | roundBits = zSig & 0x3FF; | |
ff32e16e PM |
651 | if (isTiny && roundBits) { |
652 | float_raise(float_flag_underflow, status); | |
653 | } | |
158142c2 FB |
654 | } |
655 | } | |
a2f2d288 PM |
656 | if (roundBits) { |
657 | status->float_exception_flags |= float_flag_inexact; | |
658 | } | |
158142c2 FB |
659 | zSig = ( zSig + roundIncrement )>>10; |
660 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | |
661 | if ( zSig == 0 ) zExp = 0; | |
662 | return packFloat64( zSign, zExp, zSig ); | |
663 | ||
664 | } | |
665 | ||
666 | /*---------------------------------------------------------------------------- | |
667 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
668 | | and significand `zSig', and returns the proper double-precision floating- | |
669 | | point value corresponding to the abstract input. This routine is just like | |
670 | | `roundAndPackFloat64' except that `zSig' does not have to be normalized. | |
671 | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
672 | | floating-point exponent. | |
673 | *----------------------------------------------------------------------------*/ | |
674 | ||
675 | static float64 | |
0c48262d | 676 | normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, |
e5a41ffa | 677 | float_status *status) |
158142c2 | 678 | { |
8f506c70 | 679 | int8_t shiftCount; |
158142c2 FB |
680 | |
681 | shiftCount = countLeadingZeros64( zSig ) - 1; | |
ff32e16e PM |
682 | return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount, |
683 | status); | |
158142c2 FB |
684 | |
685 | } | |
686 | ||
158142c2 FB |
687 | /*---------------------------------------------------------------------------- |
688 | | Returns the fraction bits of the extended double-precision floating-point | |
689 | | value `a'. | |
690 | *----------------------------------------------------------------------------*/ | |
691 | ||
a49db98d | 692 | static inline uint64_t extractFloatx80Frac( floatx80 a ) |
158142c2 FB |
693 | { |
694 | ||
695 | return a.low; | |
696 | ||
697 | } | |
698 | ||
699 | /*---------------------------------------------------------------------------- | |
700 | | Returns the exponent bits of the extended double-precision floating-point | |
701 | | value `a'. | |
702 | *----------------------------------------------------------------------------*/ | |
703 | ||
f4014512 | 704 | static inline int32_t extractFloatx80Exp( floatx80 a ) |
158142c2 FB |
705 | { |
706 | ||
707 | return a.high & 0x7FFF; | |
708 | ||
709 | } | |
710 | ||
711 | /*---------------------------------------------------------------------------- | |
712 | | Returns the sign bit of the extended double-precision floating-point value | |
713 | | `a'. | |
714 | *----------------------------------------------------------------------------*/ | |
715 | ||
a49db98d | 716 | static inline flag extractFloatx80Sign( floatx80 a ) |
158142c2 FB |
717 | { |
718 | ||
719 | return a.high>>15; | |
720 | ||
721 | } | |
722 | ||
723 | /*---------------------------------------------------------------------------- | |
724 | | Normalizes the subnormal extended double-precision floating-point value | |
725 | | represented by the denormalized significand `aSig'. The normalized exponent | |
726 | | and significand are stored at the locations pointed to by `zExpPtr' and | |
727 | | `zSigPtr', respectively. | |
728 | *----------------------------------------------------------------------------*/ | |
729 | ||
730 | static void | |
f4014512 | 731 | normalizeFloatx80Subnormal( uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr ) |
158142c2 | 732 | { |
8f506c70 | 733 | int8_t shiftCount; |
158142c2 FB |
734 | |
735 | shiftCount = countLeadingZeros64( aSig ); | |
736 | *zSigPtr = aSig<<shiftCount; | |
737 | *zExpPtr = 1 - shiftCount; | |
738 | ||
739 | } | |
740 | ||
741 | /*---------------------------------------------------------------------------- | |
742 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | |
743 | | extended double-precision floating-point value, returning the result. | |
744 | *----------------------------------------------------------------------------*/ | |
745 | ||
f4014512 | 746 | static inline floatx80 packFloatx80( flag zSign, int32_t zExp, uint64_t zSig ) |
158142c2 FB |
747 | { |
748 | floatx80 z; | |
749 | ||
750 | z.low = zSig; | |
bb98fe42 | 751 | z.high = ( ( (uint16_t) zSign )<<15 ) + zExp; |
158142c2 FB |
752 | return z; |
753 | ||
754 | } | |
755 | ||
756 | /*---------------------------------------------------------------------------- | |
757 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
758 | | and extended significand formed by the concatenation of `zSig0' and `zSig1', | |
759 | | and returns the proper extended double-precision floating-point value | |
760 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
761 | | rounded and packed into the extended double-precision format, with the | |
762 | | inexact exception raised if the abstract input cannot be represented | |
763 | | exactly. However, if the abstract value is too large, the overflow and | |
764 | | inexact exceptions are raised and an infinity or maximal finite value is | |
765 | | returned. If the abstract value is too small, the input value is rounded to | |
766 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
767 | | the abstract input cannot be represented exactly as a subnormal extended | |
768 | | double-precision floating-point number. | |
769 | | If `roundingPrecision' is 32 or 64, the result is rounded to the same | |
770 | | number of bits as single or double precision, respectively. Otherwise, the | |
771 | | result is rounded to the full precision of the extended double-precision | |
772 | | format. | |
773 | | The input significand must be normalized or smaller. If the input | |
774 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
775 | | returned is a subnormal number, and it must not require rounding. The | |
776 | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | |
777 | | Floating-Point Arithmetic. | |
778 | *----------------------------------------------------------------------------*/ | |
779 | ||
8f506c70 | 780 | static floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign, |
f4014512 | 781 | int32_t zExp, uint64_t zSig0, uint64_t zSig1, |
e5a41ffa | 782 | float_status *status) |
158142c2 | 783 | { |
8f506c70 | 784 | int8_t roundingMode; |
158142c2 | 785 | flag roundNearestEven, increment, isTiny; |
f42c2224 | 786 | int64_t roundIncrement, roundMask, roundBits; |
158142c2 | 787 | |
a2f2d288 | 788 | roundingMode = status->float_rounding_mode; |
158142c2 FB |
789 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
790 | if ( roundingPrecision == 80 ) goto precision80; | |
791 | if ( roundingPrecision == 64 ) { | |
792 | roundIncrement = LIT64( 0x0000000000000400 ); | |
793 | roundMask = LIT64( 0x00000000000007FF ); | |
794 | } | |
795 | else if ( roundingPrecision == 32 ) { | |
796 | roundIncrement = LIT64( 0x0000008000000000 ); | |
797 | roundMask = LIT64( 0x000000FFFFFFFFFF ); | |
798 | } | |
799 | else { | |
800 | goto precision80; | |
801 | } | |
802 | zSig0 |= ( zSig1 != 0 ); | |
dc355b76 PM |
803 | switch (roundingMode) { |
804 | case float_round_nearest_even: | |
f9288a76 | 805 | case float_round_ties_away: |
dc355b76 PM |
806 | break; |
807 | case float_round_to_zero: | |
808 | roundIncrement = 0; | |
809 | break; | |
810 | case float_round_up: | |
811 | roundIncrement = zSign ? 0 : roundMask; | |
812 | break; | |
813 | case float_round_down: | |
814 | roundIncrement = zSign ? roundMask : 0; | |
815 | break; | |
816 | default: | |
817 | abort(); | |
158142c2 FB |
818 | } |
819 | roundBits = zSig0 & roundMask; | |
bb98fe42 | 820 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
821 | if ( ( 0x7FFE < zExp ) |
822 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | |
823 | ) { | |
824 | goto overflow; | |
825 | } | |
826 | if ( zExp <= 0 ) { | |
a2f2d288 | 827 | if (status->flush_to_zero) { |
ff32e16e | 828 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
829 | return packFloatx80(zSign, 0, 0); |
830 | } | |
158142c2 | 831 | isTiny = |
a2f2d288 PM |
832 | (status->float_detect_tininess |
833 | == float_tininess_before_rounding) | |
158142c2 FB |
834 | || ( zExp < 0 ) |
835 | || ( zSig0 <= zSig0 + roundIncrement ); | |
836 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | |
837 | zExp = 0; | |
838 | roundBits = zSig0 & roundMask; | |
ff32e16e PM |
839 | if (isTiny && roundBits) { |
840 | float_raise(float_flag_underflow, status); | |
841 | } | |
a2f2d288 PM |
842 | if (roundBits) { |
843 | status->float_exception_flags |= float_flag_inexact; | |
844 | } | |
158142c2 | 845 | zSig0 += roundIncrement; |
bb98fe42 | 846 | if ( (int64_t) zSig0 < 0 ) zExp = 1; |
158142c2 FB |
847 | roundIncrement = roundMask + 1; |
848 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
849 | roundMask |= roundIncrement; | |
850 | } | |
851 | zSig0 &= ~ roundMask; | |
852 | return packFloatx80( zSign, zExp, zSig0 ); | |
853 | } | |
854 | } | |
a2f2d288 PM |
855 | if (roundBits) { |
856 | status->float_exception_flags |= float_flag_inexact; | |
857 | } | |
158142c2 FB |
858 | zSig0 += roundIncrement; |
859 | if ( zSig0 < roundIncrement ) { | |
860 | ++zExp; | |
861 | zSig0 = LIT64( 0x8000000000000000 ); | |
862 | } | |
863 | roundIncrement = roundMask + 1; | |
864 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
865 | roundMask |= roundIncrement; | |
866 | } | |
867 | zSig0 &= ~ roundMask; | |
868 | if ( zSig0 == 0 ) zExp = 0; | |
869 | return packFloatx80( zSign, zExp, zSig0 ); | |
870 | precision80: | |
dc355b76 PM |
871 | switch (roundingMode) { |
872 | case float_round_nearest_even: | |
f9288a76 | 873 | case float_round_ties_away: |
dc355b76 PM |
874 | increment = ((int64_t)zSig1 < 0); |
875 | break; | |
876 | case float_round_to_zero: | |
877 | increment = 0; | |
878 | break; | |
879 | case float_round_up: | |
880 | increment = !zSign && zSig1; | |
881 | break; | |
882 | case float_round_down: | |
883 | increment = zSign && zSig1; | |
884 | break; | |
885 | default: | |
886 | abort(); | |
158142c2 | 887 | } |
bb98fe42 | 888 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
889 | if ( ( 0x7FFE < zExp ) |
890 | || ( ( zExp == 0x7FFE ) | |
891 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | |
892 | && increment | |
893 | ) | |
894 | ) { | |
895 | roundMask = 0; | |
896 | overflow: | |
ff32e16e | 897 | float_raise(float_flag_overflow | float_flag_inexact, status); |
158142c2 FB |
898 | if ( ( roundingMode == float_round_to_zero ) |
899 | || ( zSign && ( roundingMode == float_round_up ) ) | |
900 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
901 | ) { | |
902 | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | |
903 | } | |
904 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
905 | } | |
906 | if ( zExp <= 0 ) { | |
907 | isTiny = | |
a2f2d288 PM |
908 | (status->float_detect_tininess |
909 | == float_tininess_before_rounding) | |
158142c2 FB |
910 | || ( zExp < 0 ) |
911 | || ! increment | |
912 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | |
913 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | |
914 | zExp = 0; | |
ff32e16e PM |
915 | if (isTiny && zSig1) { |
916 | float_raise(float_flag_underflow, status); | |
917 | } | |
a2f2d288 PM |
918 | if (zSig1) { |
919 | status->float_exception_flags |= float_flag_inexact; | |
920 | } | |
dc355b76 PM |
921 | switch (roundingMode) { |
922 | case float_round_nearest_even: | |
f9288a76 | 923 | case float_round_ties_away: |
dc355b76 PM |
924 | increment = ((int64_t)zSig1 < 0); |
925 | break; | |
926 | case float_round_to_zero: | |
927 | increment = 0; | |
928 | break; | |
929 | case float_round_up: | |
930 | increment = !zSign && zSig1; | |
931 | break; | |
932 | case float_round_down: | |
933 | increment = zSign && zSig1; | |
934 | break; | |
935 | default: | |
936 | abort(); | |
158142c2 FB |
937 | } |
938 | if ( increment ) { | |
939 | ++zSig0; | |
940 | zSig0 &= | |
bb98fe42 AF |
941 | ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
942 | if ( (int64_t) zSig0 < 0 ) zExp = 1; | |
158142c2 FB |
943 | } |
944 | return packFloatx80( zSign, zExp, zSig0 ); | |
945 | } | |
946 | } | |
a2f2d288 PM |
947 | if (zSig1) { |
948 | status->float_exception_flags |= float_flag_inexact; | |
949 | } | |
158142c2 FB |
950 | if ( increment ) { |
951 | ++zSig0; | |
952 | if ( zSig0 == 0 ) { | |
953 | ++zExp; | |
954 | zSig0 = LIT64( 0x8000000000000000 ); | |
955 | } | |
956 | else { | |
bb98fe42 | 957 | zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
958 | } |
959 | } | |
960 | else { | |
961 | if ( zSig0 == 0 ) zExp = 0; | |
962 | } | |
963 | return packFloatx80( zSign, zExp, zSig0 ); | |
964 | ||
965 | } | |
966 | ||
967 | /*---------------------------------------------------------------------------- | |
968 | | Takes an abstract floating-point value having sign `zSign', exponent | |
969 | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | |
970 | | and returns the proper extended double-precision floating-point value | |
971 | | corresponding to the abstract input. This routine is just like | |
972 | | `roundAndPackFloatx80' except that the input significand does not have to be | |
973 | | normalized. | |
974 | *----------------------------------------------------------------------------*/ | |
975 | ||
8f506c70 | 976 | static floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision, |
f4014512 | 977 | flag zSign, int32_t zExp, |
e5a41ffa PM |
978 | uint64_t zSig0, uint64_t zSig1, |
979 | float_status *status) | |
158142c2 | 980 | { |
8f506c70 | 981 | int8_t shiftCount; |
158142c2 FB |
982 | |
983 | if ( zSig0 == 0 ) { | |
984 | zSig0 = zSig1; | |
985 | zSig1 = 0; | |
986 | zExp -= 64; | |
987 | } | |
988 | shiftCount = countLeadingZeros64( zSig0 ); | |
989 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
990 | zExp -= shiftCount; | |
ff32e16e PM |
991 | return roundAndPackFloatx80(roundingPrecision, zSign, zExp, |
992 | zSig0, zSig1, status); | |
158142c2 FB |
993 | |
994 | } | |
995 | ||
158142c2 FB |
996 | /*---------------------------------------------------------------------------- |
997 | | Returns the least-significant 64 fraction bits of the quadruple-precision | |
998 | | floating-point value `a'. | |
999 | *----------------------------------------------------------------------------*/ | |
1000 | ||
a49db98d | 1001 | static inline uint64_t extractFloat128Frac1( float128 a ) |
158142c2 FB |
1002 | { |
1003 | ||
1004 | return a.low; | |
1005 | ||
1006 | } | |
1007 | ||
1008 | /*---------------------------------------------------------------------------- | |
1009 | | Returns the most-significant 48 fraction bits of the quadruple-precision | |
1010 | | floating-point value `a'. | |
1011 | *----------------------------------------------------------------------------*/ | |
1012 | ||
a49db98d | 1013 | static inline uint64_t extractFloat128Frac0( float128 a ) |
158142c2 FB |
1014 | { |
1015 | ||
1016 | return a.high & LIT64( 0x0000FFFFFFFFFFFF ); | |
1017 | ||
1018 | } | |
1019 | ||
1020 | /*---------------------------------------------------------------------------- | |
1021 | | Returns the exponent bits of the quadruple-precision floating-point value | |
1022 | | `a'. | |
1023 | *----------------------------------------------------------------------------*/ | |
1024 | ||
f4014512 | 1025 | static inline int32_t extractFloat128Exp( float128 a ) |
158142c2 FB |
1026 | { |
1027 | ||
1028 | return ( a.high>>48 ) & 0x7FFF; | |
1029 | ||
1030 | } | |
1031 | ||
1032 | /*---------------------------------------------------------------------------- | |
1033 | | Returns the sign bit of the quadruple-precision floating-point value `a'. | |
1034 | *----------------------------------------------------------------------------*/ | |
1035 | ||
a49db98d | 1036 | static inline flag extractFloat128Sign( float128 a ) |
158142c2 FB |
1037 | { |
1038 | ||
1039 | return a.high>>63; | |
1040 | ||
1041 | } | |
1042 | ||
1043 | /*---------------------------------------------------------------------------- | |
1044 | | Normalizes the subnormal quadruple-precision floating-point value | |
1045 | | represented by the denormalized significand formed by the concatenation of | |
1046 | | `aSig0' and `aSig1'. The normalized exponent is stored at the location | |
1047 | | pointed to by `zExpPtr'. The most significant 49 bits of the normalized | |
1048 | | significand are stored at the location pointed to by `zSig0Ptr', and the | |
1049 | | least significant 64 bits of the normalized significand are stored at the | |
1050 | | location pointed to by `zSig1Ptr'. | |
1051 | *----------------------------------------------------------------------------*/ | |
1052 | ||
1053 | static void | |
1054 | normalizeFloat128Subnormal( | |
bb98fe42 AF |
1055 | uint64_t aSig0, |
1056 | uint64_t aSig1, | |
f4014512 | 1057 | int32_t *zExpPtr, |
bb98fe42 AF |
1058 | uint64_t *zSig0Ptr, |
1059 | uint64_t *zSig1Ptr | |
158142c2 FB |
1060 | ) |
1061 | { | |
8f506c70 | 1062 | int8_t shiftCount; |
158142c2 FB |
1063 | |
1064 | if ( aSig0 == 0 ) { | |
1065 | shiftCount = countLeadingZeros64( aSig1 ) - 15; | |
1066 | if ( shiftCount < 0 ) { | |
1067 | *zSig0Ptr = aSig1>>( - shiftCount ); | |
1068 | *zSig1Ptr = aSig1<<( shiftCount & 63 ); | |
1069 | } | |
1070 | else { | |
1071 | *zSig0Ptr = aSig1<<shiftCount; | |
1072 | *zSig1Ptr = 0; | |
1073 | } | |
1074 | *zExpPtr = - shiftCount - 63; | |
1075 | } | |
1076 | else { | |
1077 | shiftCount = countLeadingZeros64( aSig0 ) - 15; | |
1078 | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); | |
1079 | *zExpPtr = 1 - shiftCount; | |
1080 | } | |
1081 | ||
1082 | } | |
1083 | ||
1084 | /*---------------------------------------------------------------------------- | |
1085 | | Packs the sign `zSign', the exponent `zExp', and the significand formed | |
1086 | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision | |
1087 | | floating-point value, returning the result. After being shifted into the | |
1088 | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply | |
1089 | | added together to form the most significant 32 bits of the result. This | |
1090 | | means that any integer portion of `zSig0' will be added into the exponent. | |
1091 | | Since a properly normalized significand will have an integer portion equal | |
1092 | | to 1, the `zExp' input should be 1 less than the desired result exponent | |
1093 | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized | |
1094 | | significand. | |
1095 | *----------------------------------------------------------------------------*/ | |
1096 | ||
a49db98d | 1097 | static inline float128 |
f4014512 | 1098 | packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 ) |
158142c2 FB |
1099 | { |
1100 | float128 z; | |
1101 | ||
1102 | z.low = zSig1; | |
bb98fe42 | 1103 | z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; |
158142c2 FB |
1104 | return z; |
1105 | ||
1106 | } | |
1107 | ||
1108 | /*---------------------------------------------------------------------------- | |
1109 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1110 | | and extended significand formed by the concatenation of `zSig0', `zSig1', | |
1111 | | and `zSig2', and returns the proper quadruple-precision floating-point value | |
1112 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
1113 | | simply rounded and packed into the quadruple-precision format, with the | |
1114 | | inexact exception raised if the abstract input cannot be represented | |
1115 | | exactly. However, if the abstract value is too large, the overflow and | |
1116 | | inexact exceptions are raised and an infinity or maximal finite value is | |
1117 | | returned. If the abstract value is too small, the input value is rounded to | |
1118 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
1119 | | the abstract input cannot be represented exactly as a subnormal quadruple- | |
1120 | | precision floating-point number. | |
1121 | | The input significand must be normalized or smaller. If the input | |
1122 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
1123 | | returned is a subnormal number, and it must not require rounding. In the | |
1124 | | usual case that the input significand is normalized, `zExp' must be 1 less | |
1125 | | than the ``true'' floating-point exponent. The handling of underflow and | |
1126 | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1127 | *----------------------------------------------------------------------------*/ | |
1128 | ||
f4014512 | 1129 | static float128 roundAndPackFloat128(flag zSign, int32_t zExp, |
e5a41ffa PM |
1130 | uint64_t zSig0, uint64_t zSig1, |
1131 | uint64_t zSig2, float_status *status) | |
158142c2 | 1132 | { |
8f506c70 | 1133 | int8_t roundingMode; |
158142c2 FB |
1134 | flag roundNearestEven, increment, isTiny; |
1135 | ||
a2f2d288 | 1136 | roundingMode = status->float_rounding_mode; |
158142c2 | 1137 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
1138 | switch (roundingMode) { |
1139 | case float_round_nearest_even: | |
f9288a76 | 1140 | case float_round_ties_away: |
dc355b76 PM |
1141 | increment = ((int64_t)zSig2 < 0); |
1142 | break; | |
1143 | case float_round_to_zero: | |
1144 | increment = 0; | |
1145 | break; | |
1146 | case float_round_up: | |
1147 | increment = !zSign && zSig2; | |
1148 | break; | |
1149 | case float_round_down: | |
1150 | increment = zSign && zSig2; | |
1151 | break; | |
1152 | default: | |
1153 | abort(); | |
158142c2 | 1154 | } |
bb98fe42 | 1155 | if ( 0x7FFD <= (uint32_t) zExp ) { |
158142c2 FB |
1156 | if ( ( 0x7FFD < zExp ) |
1157 | || ( ( zExp == 0x7FFD ) | |
1158 | && eq128( | |
1159 | LIT64( 0x0001FFFFFFFFFFFF ), | |
1160 | LIT64( 0xFFFFFFFFFFFFFFFF ), | |
1161 | zSig0, | |
1162 | zSig1 | |
1163 | ) | |
1164 | && increment | |
1165 | ) | |
1166 | ) { | |
ff32e16e | 1167 | float_raise(float_flag_overflow | float_flag_inexact, status); |
158142c2 FB |
1168 | if ( ( roundingMode == float_round_to_zero ) |
1169 | || ( zSign && ( roundingMode == float_round_up ) ) | |
1170 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
1171 | ) { | |
1172 | return | |
1173 | packFloat128( | |
1174 | zSign, | |
1175 | 0x7FFE, | |
1176 | LIT64( 0x0000FFFFFFFFFFFF ), | |
1177 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
1178 | ); | |
1179 | } | |
1180 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
1181 | } | |
1182 | if ( zExp < 0 ) { | |
a2f2d288 | 1183 | if (status->flush_to_zero) { |
ff32e16e | 1184 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
1185 | return packFloat128(zSign, 0, 0, 0); |
1186 | } | |
158142c2 | 1187 | isTiny = |
a2f2d288 PM |
1188 | (status->float_detect_tininess |
1189 | == float_tininess_before_rounding) | |
158142c2 FB |
1190 | || ( zExp < -1 ) |
1191 | || ! increment | |
1192 | || lt128( | |
1193 | zSig0, | |
1194 | zSig1, | |
1195 | LIT64( 0x0001FFFFFFFFFFFF ), | |
1196 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
1197 | ); | |
1198 | shift128ExtraRightJamming( | |
1199 | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); | |
1200 | zExp = 0; | |
ff32e16e PM |
1201 | if (isTiny && zSig2) { |
1202 | float_raise(float_flag_underflow, status); | |
1203 | } | |
dc355b76 PM |
1204 | switch (roundingMode) { |
1205 | case float_round_nearest_even: | |
f9288a76 | 1206 | case float_round_ties_away: |
dc355b76 PM |
1207 | increment = ((int64_t)zSig2 < 0); |
1208 | break; | |
1209 | case float_round_to_zero: | |
1210 | increment = 0; | |
1211 | break; | |
1212 | case float_round_up: | |
1213 | increment = !zSign && zSig2; | |
1214 | break; | |
1215 | case float_round_down: | |
1216 | increment = zSign && zSig2; | |
1217 | break; | |
1218 | default: | |
1219 | abort(); | |
158142c2 FB |
1220 | } |
1221 | } | |
1222 | } | |
a2f2d288 PM |
1223 | if (zSig2) { |
1224 | status->float_exception_flags |= float_flag_inexact; | |
1225 | } | |
158142c2 FB |
1226 | if ( increment ) { |
1227 | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); | |
1228 | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); | |
1229 | } | |
1230 | else { | |
1231 | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; | |
1232 | } | |
1233 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1234 | ||
1235 | } | |
1236 | ||
1237 | /*---------------------------------------------------------------------------- | |
1238 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1239 | | and significand formed by the concatenation of `zSig0' and `zSig1', and | |
1240 | | returns the proper quadruple-precision floating-point value corresponding | |
1241 | | to the abstract input. This routine is just like `roundAndPackFloat128' | |
1242 | | except that the input significand has fewer bits and does not have to be | |
1243 | | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
1244 | | point exponent. | |
1245 | *----------------------------------------------------------------------------*/ | |
1246 | ||
f4014512 | 1247 | static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp, |
e5a41ffa PM |
1248 | uint64_t zSig0, uint64_t zSig1, |
1249 | float_status *status) | |
158142c2 | 1250 | { |
8f506c70 | 1251 | int8_t shiftCount; |
bb98fe42 | 1252 | uint64_t zSig2; |
158142c2 FB |
1253 | |
1254 | if ( zSig0 == 0 ) { | |
1255 | zSig0 = zSig1; | |
1256 | zSig1 = 0; | |
1257 | zExp -= 64; | |
1258 | } | |
1259 | shiftCount = countLeadingZeros64( zSig0 ) - 15; | |
1260 | if ( 0 <= shiftCount ) { | |
1261 | zSig2 = 0; | |
1262 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1263 | } | |
1264 | else { | |
1265 | shift128ExtraRightJamming( | |
1266 | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); | |
1267 | } | |
1268 | zExp -= shiftCount; | |
ff32e16e | 1269 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
1270 | |
1271 | } | |
1272 | ||
158142c2 FB |
1273 | /*---------------------------------------------------------------------------- |
1274 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1275 | | to the single-precision floating-point format. The conversion is performed | |
1276 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1277 | *----------------------------------------------------------------------------*/ | |
1278 | ||
e5a41ffa | 1279 | float32 int32_to_float32(int32_t a, float_status *status) |
158142c2 FB |
1280 | { |
1281 | flag zSign; | |
1282 | ||
f090c9d4 | 1283 | if ( a == 0 ) return float32_zero; |
bb98fe42 | 1284 | if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); |
158142c2 | 1285 | zSign = ( a < 0 ); |
ff32e16e | 1286 | return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status); |
158142c2 FB |
1287 | } |
1288 | ||
1289 | /*---------------------------------------------------------------------------- | |
1290 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1291 | | to the double-precision floating-point format. The conversion is performed | |
1292 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1293 | *----------------------------------------------------------------------------*/ | |
1294 | ||
e5a41ffa | 1295 | float64 int32_to_float64(int32_t a, float_status *status) |
158142c2 FB |
1296 | { |
1297 | flag zSign; | |
3a87d009 | 1298 | uint32_t absA; |
8f506c70 | 1299 | int8_t shiftCount; |
bb98fe42 | 1300 | uint64_t zSig; |
158142c2 | 1301 | |
f090c9d4 | 1302 | if ( a == 0 ) return float64_zero; |
158142c2 FB |
1303 | zSign = ( a < 0 ); |
1304 | absA = zSign ? - a : a; | |
1305 | shiftCount = countLeadingZeros32( absA ) + 21; | |
1306 | zSig = absA; | |
1307 | return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); | |
1308 | ||
1309 | } | |
1310 | ||
158142c2 FB |
1311 | /*---------------------------------------------------------------------------- |
1312 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1313 | | to the extended double-precision floating-point format. The conversion | |
1314 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1315 | | Arithmetic. | |
1316 | *----------------------------------------------------------------------------*/ | |
1317 | ||
e5a41ffa | 1318 | floatx80 int32_to_floatx80(int32_t a, float_status *status) |
158142c2 FB |
1319 | { |
1320 | flag zSign; | |
3a87d009 | 1321 | uint32_t absA; |
8f506c70 | 1322 | int8_t shiftCount; |
bb98fe42 | 1323 | uint64_t zSig; |
158142c2 FB |
1324 | |
1325 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
1326 | zSign = ( a < 0 ); | |
1327 | absA = zSign ? - a : a; | |
1328 | shiftCount = countLeadingZeros32( absA ) + 32; | |
1329 | zSig = absA; | |
1330 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | |
1331 | ||
1332 | } | |
1333 | ||
158142c2 FB |
1334 | /*---------------------------------------------------------------------------- |
1335 | | Returns the result of converting the 32-bit two's complement integer `a' to | |
1336 | | the quadruple-precision floating-point format. The conversion is performed | |
1337 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1338 | *----------------------------------------------------------------------------*/ | |
1339 | ||
e5a41ffa | 1340 | float128 int32_to_float128(int32_t a, float_status *status) |
158142c2 FB |
1341 | { |
1342 | flag zSign; | |
3a87d009 | 1343 | uint32_t absA; |
8f506c70 | 1344 | int8_t shiftCount; |
bb98fe42 | 1345 | uint64_t zSig0; |
158142c2 FB |
1346 | |
1347 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
1348 | zSign = ( a < 0 ); | |
1349 | absA = zSign ? - a : a; | |
1350 | shiftCount = countLeadingZeros32( absA ) + 17; | |
1351 | zSig0 = absA; | |
1352 | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); | |
1353 | ||
1354 | } | |
1355 | ||
158142c2 FB |
1356 | /*---------------------------------------------------------------------------- |
1357 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1358 | | to the single-precision floating-point format. The conversion is performed | |
1359 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1360 | *----------------------------------------------------------------------------*/ | |
1361 | ||
e5a41ffa | 1362 | float32 int64_to_float32(int64_t a, float_status *status) |
158142c2 FB |
1363 | { |
1364 | flag zSign; | |
182f42fd | 1365 | uint64_t absA; |
8f506c70 | 1366 | int8_t shiftCount; |
158142c2 | 1367 | |
f090c9d4 | 1368 | if ( a == 0 ) return float32_zero; |
158142c2 FB |
1369 | zSign = ( a < 0 ); |
1370 | absA = zSign ? - a : a; | |
1371 | shiftCount = countLeadingZeros64( absA ) - 40; | |
1372 | if ( 0 <= shiftCount ) { | |
1373 | return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); | |
1374 | } | |
1375 | else { | |
1376 | shiftCount += 7; | |
1377 | if ( shiftCount < 0 ) { | |
1378 | shift64RightJamming( absA, - shiftCount, &absA ); | |
1379 | } | |
1380 | else { | |
1381 | absA <<= shiftCount; | |
1382 | } | |
ff32e16e | 1383 | return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status); |
158142c2 FB |
1384 | } |
1385 | ||
1386 | } | |
1387 | ||
1388 | /*---------------------------------------------------------------------------- | |
1389 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1390 | | to the double-precision floating-point format. The conversion is performed | |
1391 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1392 | *----------------------------------------------------------------------------*/ | |
1393 | ||
e5a41ffa | 1394 | float64 int64_to_float64(int64_t a, float_status *status) |
158142c2 FB |
1395 | { |
1396 | flag zSign; | |
1397 | ||
f090c9d4 | 1398 | if ( a == 0 ) return float64_zero; |
bb98fe42 | 1399 | if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) { |
158142c2 FB |
1400 | return packFloat64( 1, 0x43E, 0 ); |
1401 | } | |
1402 | zSign = ( a < 0 ); | |
ff32e16e | 1403 | return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status); |
158142c2 FB |
1404 | } |
1405 | ||
158142c2 FB |
1406 | /*---------------------------------------------------------------------------- |
1407 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1408 | | to the extended double-precision floating-point format. The conversion | |
1409 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1410 | | Arithmetic. | |
1411 | *----------------------------------------------------------------------------*/ | |
1412 | ||
e5a41ffa | 1413 | floatx80 int64_to_floatx80(int64_t a, float_status *status) |
158142c2 FB |
1414 | { |
1415 | flag zSign; | |
182f42fd | 1416 | uint64_t absA; |
8f506c70 | 1417 | int8_t shiftCount; |
158142c2 FB |
1418 | |
1419 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
1420 | zSign = ( a < 0 ); | |
1421 | absA = zSign ? - a : a; | |
1422 | shiftCount = countLeadingZeros64( absA ); | |
1423 | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); | |
1424 | ||
1425 | } | |
1426 | ||
158142c2 FB |
1427 | /*---------------------------------------------------------------------------- |
1428 | | Returns the result of converting the 64-bit two's complement integer `a' to | |
1429 | | the quadruple-precision floating-point format. The conversion is performed | |
1430 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1431 | *----------------------------------------------------------------------------*/ | |
1432 | ||
e5a41ffa | 1433 | float128 int64_to_float128(int64_t a, float_status *status) |
158142c2 FB |
1434 | { |
1435 | flag zSign; | |
182f42fd | 1436 | uint64_t absA; |
8f506c70 | 1437 | int8_t shiftCount; |
f4014512 | 1438 | int32_t zExp; |
bb98fe42 | 1439 | uint64_t zSig0, zSig1; |
158142c2 FB |
1440 | |
1441 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
1442 | zSign = ( a < 0 ); | |
1443 | absA = zSign ? - a : a; | |
1444 | shiftCount = countLeadingZeros64( absA ) + 49; | |
1445 | zExp = 0x406E - shiftCount; | |
1446 | if ( 64 <= shiftCount ) { | |
1447 | zSig1 = 0; | |
1448 | zSig0 = absA; | |
1449 | shiftCount -= 64; | |
1450 | } | |
1451 | else { | |
1452 | zSig1 = absA; | |
1453 | zSig0 = 0; | |
1454 | } | |
1455 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1456 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1457 | ||
1458 | } | |
1459 | ||
6bb8e0f1 PM |
1460 | /*---------------------------------------------------------------------------- |
1461 | | Returns the result of converting the 64-bit unsigned integer `a' | |
1462 | | to the single-precision floating-point format. The conversion is performed | |
1463 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1464 | *----------------------------------------------------------------------------*/ | |
1465 | ||
e5a41ffa | 1466 | float32 uint64_to_float32(uint64_t a, float_status *status) |
6bb8e0f1 PM |
1467 | { |
1468 | int shiftcount; | |
1469 | ||
1470 | if (a == 0) { | |
1471 | return float32_zero; | |
1472 | } | |
1473 | ||
1474 | /* Determine (left) shift needed to put first set bit into bit posn 23 | |
1475 | * (since packFloat32() expects the binary point between bits 23 and 22); | |
1476 | * this is the fast case for smallish numbers. | |
1477 | */ | |
1478 | shiftcount = countLeadingZeros64(a) - 40; | |
1479 | if (shiftcount >= 0) { | |
1480 | return packFloat32(0, 0x95 - shiftcount, a << shiftcount); | |
1481 | } | |
1482 | /* Otherwise we need to do a round-and-pack. roundAndPackFloat32() | |
1483 | * expects the binary point between bits 30 and 29, hence the + 7. | |
1484 | */ | |
1485 | shiftcount += 7; | |
1486 | if (shiftcount < 0) { | |
1487 | shift64RightJamming(a, -shiftcount, &a); | |
1488 | } else { | |
1489 | a <<= shiftcount; | |
1490 | } | |
1491 | ||
ff32e16e | 1492 | return roundAndPackFloat32(0, 0x9c - shiftcount, a, status); |
6bb8e0f1 PM |
1493 | } |
1494 | ||
1495 | /*---------------------------------------------------------------------------- | |
1496 | | Returns the result of converting the 64-bit unsigned integer `a' | |
1497 | | to the double-precision floating-point format. The conversion is performed | |
1498 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1499 | *----------------------------------------------------------------------------*/ | |
1500 | ||
e5a41ffa | 1501 | float64 uint64_to_float64(uint64_t a, float_status *status) |
6bb8e0f1 PM |
1502 | { |
1503 | int exp = 0x43C; | |
1504 | int shiftcount; | |
1505 | ||
1506 | if (a == 0) { | |
1507 | return float64_zero; | |
1508 | } | |
1509 | ||
1510 | shiftcount = countLeadingZeros64(a) - 1; | |
1511 | if (shiftcount < 0) { | |
1512 | shift64RightJamming(a, -shiftcount, &a); | |
1513 | } else { | |
1514 | a <<= shiftcount; | |
1515 | } | |
ff32e16e | 1516 | return roundAndPackFloat64(0, exp - shiftcount, a, status); |
6bb8e0f1 PM |
1517 | } |
1518 | ||
1519 | /*---------------------------------------------------------------------------- | |
1520 | | Returns the result of converting the 64-bit unsigned integer `a' | |
1521 | | to the quadruple-precision floating-point format. The conversion is performed | |
1522 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1523 | *----------------------------------------------------------------------------*/ | |
1524 | ||
e5a41ffa | 1525 | float128 uint64_to_float128(uint64_t a, float_status *status) |
1e397ead RH |
1526 | { |
1527 | if (a == 0) { | |
1528 | return float128_zero; | |
1529 | } | |
ff32e16e | 1530 | return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status); |
1e397ead RH |
1531 | } |
1532 | ||
158142c2 FB |
1533 | /*---------------------------------------------------------------------------- |
1534 | | Returns the result of converting the single-precision floating-point value | |
1535 | | `a' to the 32-bit two's complement integer format. The conversion is | |
1536 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1537 | | Arithmetic---which means in particular that the conversion is rounded | |
1538 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1539 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
1540 | | largest integer with the same sign as `a' is returned. | |
1541 | *----------------------------------------------------------------------------*/ | |
1542 | ||
f4014512 | 1543 | int32_t float32_to_int32(float32 a, float_status *status) |
158142c2 FB |
1544 | { |
1545 | flag aSign; | |
0c48262d | 1546 | int aExp; |
07d792d2 | 1547 | int shiftCount; |
bb98fe42 AF |
1548 | uint32_t aSig; |
1549 | uint64_t aSig64; | |
158142c2 | 1550 | |
ff32e16e | 1551 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1552 | aSig = extractFloat32Frac( a ); |
1553 | aExp = extractFloat32Exp( a ); | |
1554 | aSign = extractFloat32Sign( a ); | |
1555 | if ( ( aExp == 0xFF ) && aSig ) aSign = 0; | |
1556 | if ( aExp ) aSig |= 0x00800000; | |
1557 | shiftCount = 0xAF - aExp; | |
1558 | aSig64 = aSig; | |
1559 | aSig64 <<= 32; | |
1560 | if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); | |
ff32e16e | 1561 | return roundAndPackInt32(aSign, aSig64, status); |
158142c2 FB |
1562 | |
1563 | } | |
1564 | ||
1565 | /*---------------------------------------------------------------------------- | |
1566 | | Returns the result of converting the single-precision floating-point value | |
1567 | | `a' to the 32-bit two's complement integer format. The conversion is | |
1568 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1569 | | Arithmetic, except that the conversion is always rounded toward zero. | |
1570 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
1571 | | the conversion overflows, the largest integer with the same sign as `a' is | |
1572 | | returned. | |
1573 | *----------------------------------------------------------------------------*/ | |
1574 | ||
f4014512 | 1575 | int32_t float32_to_int32_round_to_zero(float32 a, float_status *status) |
158142c2 FB |
1576 | { |
1577 | flag aSign; | |
0c48262d | 1578 | int aExp; |
07d792d2 | 1579 | int shiftCount; |
bb98fe42 | 1580 | uint32_t aSig; |
b3a6a2e0 | 1581 | int32_t z; |
ff32e16e | 1582 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1583 | |
1584 | aSig = extractFloat32Frac( a ); | |
1585 | aExp = extractFloat32Exp( a ); | |
1586 | aSign = extractFloat32Sign( a ); | |
1587 | shiftCount = aExp - 0x9E; | |
1588 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 1589 | if ( float32_val(a) != 0xCF000000 ) { |
ff32e16e | 1590 | float_raise(float_flag_invalid, status); |
158142c2 FB |
1591 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; |
1592 | } | |
bb98fe42 | 1593 | return (int32_t) 0x80000000; |
158142c2 FB |
1594 | } |
1595 | else if ( aExp <= 0x7E ) { | |
a2f2d288 PM |
1596 | if (aExp | aSig) { |
1597 | status->float_exception_flags |= float_flag_inexact; | |
1598 | } | |
158142c2 FB |
1599 | return 0; |
1600 | } | |
1601 | aSig = ( aSig | 0x00800000 )<<8; | |
1602 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 1603 | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { |
a2f2d288 | 1604 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
1605 | } |
1606 | if ( aSign ) z = - z; | |
1607 | return z; | |
1608 | ||
1609 | } | |
1610 | ||
cbcef455 PM |
1611 | /*---------------------------------------------------------------------------- |
1612 | | Returns the result of converting the single-precision floating-point value | |
1613 | | `a' to the 16-bit two's complement integer format. The conversion is | |
1614 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1615 | | Arithmetic, except that the conversion is always rounded toward zero. | |
1616 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
1617 | | the conversion overflows, the largest integer with the same sign as `a' is | |
1618 | | returned. | |
1619 | *----------------------------------------------------------------------------*/ | |
1620 | ||
0bb721d7 | 1621 | int16_t float32_to_int16_round_to_zero(float32 a, float_status *status) |
cbcef455 PM |
1622 | { |
1623 | flag aSign; | |
0c48262d | 1624 | int aExp; |
07d792d2 | 1625 | int shiftCount; |
bb98fe42 | 1626 | uint32_t aSig; |
f4014512 | 1627 | int32_t z; |
cbcef455 PM |
1628 | |
1629 | aSig = extractFloat32Frac( a ); | |
1630 | aExp = extractFloat32Exp( a ); | |
1631 | aSign = extractFloat32Sign( a ); | |
1632 | shiftCount = aExp - 0x8E; | |
1633 | if ( 0 <= shiftCount ) { | |
1634 | if ( float32_val(a) != 0xC7000000 ) { | |
ff32e16e | 1635 | float_raise(float_flag_invalid, status); |
cbcef455 PM |
1636 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { |
1637 | return 0x7FFF; | |
1638 | } | |
1639 | } | |
bb98fe42 | 1640 | return (int32_t) 0xffff8000; |
cbcef455 PM |
1641 | } |
1642 | else if ( aExp <= 0x7E ) { | |
1643 | if ( aExp | aSig ) { | |
a2f2d288 | 1644 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
1645 | } |
1646 | return 0; | |
1647 | } | |
1648 | shiftCount -= 0x10; | |
1649 | aSig = ( aSig | 0x00800000 )<<8; | |
1650 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 1651 | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { |
a2f2d288 | 1652 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
1653 | } |
1654 | if ( aSign ) { | |
1655 | z = - z; | |
1656 | } | |
1657 | return z; | |
1658 | ||
1659 | } | |
1660 | ||
158142c2 FB |
1661 | /*---------------------------------------------------------------------------- |
1662 | | Returns the result of converting the single-precision floating-point value | |
1663 | | `a' to the 64-bit two's complement integer format. The conversion is | |
1664 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1665 | | Arithmetic---which means in particular that the conversion is rounded | |
1666 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1667 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
1668 | | largest integer with the same sign as `a' is returned. | |
1669 | *----------------------------------------------------------------------------*/ | |
1670 | ||
f42c2224 | 1671 | int64_t float32_to_int64(float32 a, float_status *status) |
158142c2 FB |
1672 | { |
1673 | flag aSign; | |
0c48262d | 1674 | int aExp; |
07d792d2 | 1675 | int shiftCount; |
bb98fe42 AF |
1676 | uint32_t aSig; |
1677 | uint64_t aSig64, aSigExtra; | |
ff32e16e | 1678 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1679 | |
1680 | aSig = extractFloat32Frac( a ); | |
1681 | aExp = extractFloat32Exp( a ); | |
1682 | aSign = extractFloat32Sign( a ); | |
1683 | shiftCount = 0xBE - aExp; | |
1684 | if ( shiftCount < 0 ) { | |
ff32e16e | 1685 | float_raise(float_flag_invalid, status); |
158142c2 FB |
1686 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { |
1687 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
1688 | } | |
bb98fe42 | 1689 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
1690 | } |
1691 | if ( aExp ) aSig |= 0x00800000; | |
1692 | aSig64 = aSig; | |
1693 | aSig64 <<= 40; | |
1694 | shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); | |
ff32e16e | 1695 | return roundAndPackInt64(aSign, aSig64, aSigExtra, status); |
158142c2 FB |
1696 | |
1697 | } | |
1698 | ||
2f18bbf9 TM |
1699 | /*---------------------------------------------------------------------------- |
1700 | | Returns the result of converting the single-precision floating-point value | |
1701 | | `a' to the 64-bit unsigned integer format. The conversion is | |
1702 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1703 | | Arithmetic---which means in particular that the conversion is rounded | |
1704 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1705 | | unsigned integer is returned. Otherwise, if the conversion overflows, the | |
1706 | | largest unsigned integer is returned. If the 'a' is negative, the result | |
1707 | | is rounded and zero is returned; values that do not round to zero will | |
1708 | | raise the inexact exception flag. | |
1709 | *----------------------------------------------------------------------------*/ | |
1710 | ||
182f42fd | 1711 | uint64_t float32_to_uint64(float32 a, float_status *status) |
2f18bbf9 TM |
1712 | { |
1713 | flag aSign; | |
0c48262d | 1714 | int aExp; |
07d792d2 | 1715 | int shiftCount; |
2f18bbf9 TM |
1716 | uint32_t aSig; |
1717 | uint64_t aSig64, aSigExtra; | |
ff32e16e | 1718 | a = float32_squash_input_denormal(a, status); |
2f18bbf9 TM |
1719 | |
1720 | aSig = extractFloat32Frac(a); | |
1721 | aExp = extractFloat32Exp(a); | |
1722 | aSign = extractFloat32Sign(a); | |
1723 | if ((aSign) && (aExp > 126)) { | |
ff32e16e | 1724 | float_raise(float_flag_invalid, status); |
2f18bbf9 TM |
1725 | if (float32_is_any_nan(a)) { |
1726 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
1727 | } else { | |
1728 | return 0; | |
1729 | } | |
1730 | } | |
1731 | shiftCount = 0xBE - aExp; | |
1732 | if (aExp) { | |
1733 | aSig |= 0x00800000; | |
1734 | } | |
1735 | if (shiftCount < 0) { | |
ff32e16e | 1736 | float_raise(float_flag_invalid, status); |
2f18bbf9 TM |
1737 | return LIT64(0xFFFFFFFFFFFFFFFF); |
1738 | } | |
1739 | ||
1740 | aSig64 = aSig; | |
1741 | aSig64 <<= 40; | |
1742 | shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra); | |
ff32e16e | 1743 | return roundAndPackUint64(aSign, aSig64, aSigExtra, status); |
2f18bbf9 TM |
1744 | } |
1745 | ||
a13d4489 TM |
1746 | /*---------------------------------------------------------------------------- |
1747 | | Returns the result of converting the single-precision floating-point value | |
1748 | | `a' to the 64-bit unsigned integer format. The conversion is | |
1749 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1750 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
1751 | | `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the | |
1752 | | conversion overflows, the largest unsigned integer is returned. If the | |
1753 | | 'a' is negative, the result is rounded and zero is returned; values that do | |
1754 | | not round to zero will raise the inexact flag. | |
1755 | *----------------------------------------------------------------------------*/ | |
1756 | ||
182f42fd | 1757 | uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *status) |
a13d4489 | 1758 | { |
a2f2d288 | 1759 | signed char current_rounding_mode = status->float_rounding_mode; |
ff32e16e PM |
1760 | set_float_rounding_mode(float_round_to_zero, status); |
1761 | int64_t v = float32_to_uint64(a, status); | |
1762 | set_float_rounding_mode(current_rounding_mode, status); | |
a13d4489 TM |
1763 | return v; |
1764 | } | |
1765 | ||
158142c2 FB |
1766 | /*---------------------------------------------------------------------------- |
1767 | | Returns the result of converting the single-precision floating-point value | |
1768 | | `a' to the 64-bit two's complement integer format. The conversion is | |
1769 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1770 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
1771 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
1772 | | conversion overflows, the largest integer with the same sign as `a' is | |
1773 | | returned. | |
1774 | *----------------------------------------------------------------------------*/ | |
1775 | ||
f42c2224 | 1776 | int64_t float32_to_int64_round_to_zero(float32 a, float_status *status) |
158142c2 FB |
1777 | { |
1778 | flag aSign; | |
0c48262d | 1779 | int aExp; |
07d792d2 | 1780 | int shiftCount; |
bb98fe42 AF |
1781 | uint32_t aSig; |
1782 | uint64_t aSig64; | |
f42c2224 | 1783 | int64_t z; |
ff32e16e | 1784 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1785 | |
1786 | aSig = extractFloat32Frac( a ); | |
1787 | aExp = extractFloat32Exp( a ); | |
1788 | aSign = extractFloat32Sign( a ); | |
1789 | shiftCount = aExp - 0xBE; | |
1790 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 1791 | if ( float32_val(a) != 0xDF000000 ) { |
ff32e16e | 1792 | float_raise(float_flag_invalid, status); |
158142c2 FB |
1793 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { |
1794 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
1795 | } | |
1796 | } | |
bb98fe42 | 1797 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
1798 | } |
1799 | else if ( aExp <= 0x7E ) { | |
a2f2d288 PM |
1800 | if (aExp | aSig) { |
1801 | status->float_exception_flags |= float_flag_inexact; | |
1802 | } | |
158142c2 FB |
1803 | return 0; |
1804 | } | |
1805 | aSig64 = aSig | 0x00800000; | |
1806 | aSig64 <<= 40; | |
1807 | z = aSig64>>( - shiftCount ); | |
bb98fe42 | 1808 | if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 1809 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
1810 | } |
1811 | if ( aSign ) z = - z; | |
1812 | return z; | |
1813 | ||
1814 | } | |
1815 | ||
1816 | /*---------------------------------------------------------------------------- | |
1817 | | Returns the result of converting the single-precision floating-point value | |
1818 | | `a' to the double-precision floating-point format. The conversion is | |
1819 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1820 | | Arithmetic. | |
1821 | *----------------------------------------------------------------------------*/ | |
1822 | ||
e5a41ffa | 1823 | float64 float32_to_float64(float32 a, float_status *status) |
158142c2 FB |
1824 | { |
1825 | flag aSign; | |
0c48262d | 1826 | int aExp; |
bb98fe42 | 1827 | uint32_t aSig; |
ff32e16e | 1828 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1829 | |
1830 | aSig = extractFloat32Frac( a ); | |
1831 | aExp = extractFloat32Exp( a ); | |
1832 | aSign = extractFloat32Sign( a ); | |
1833 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
1834 | if (aSig) { |
1835 | return commonNaNToFloat64(float32ToCommonNaN(a, status), status); | |
1836 | } | |
158142c2 FB |
1837 | return packFloat64( aSign, 0x7FF, 0 ); |
1838 | } | |
1839 | if ( aExp == 0 ) { | |
1840 | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | |
1841 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1842 | --aExp; | |
1843 | } | |
bb98fe42 | 1844 | return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 ); |
158142c2 FB |
1845 | |
1846 | } | |
1847 | ||
158142c2 FB |
1848 | /*---------------------------------------------------------------------------- |
1849 | | Returns the result of converting the single-precision floating-point value | |
1850 | | `a' to the extended double-precision floating-point format. The conversion | |
1851 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1852 | | Arithmetic. | |
1853 | *----------------------------------------------------------------------------*/ | |
1854 | ||
e5a41ffa | 1855 | floatx80 float32_to_floatx80(float32 a, float_status *status) |
158142c2 FB |
1856 | { |
1857 | flag aSign; | |
0c48262d | 1858 | int aExp; |
bb98fe42 | 1859 | uint32_t aSig; |
158142c2 | 1860 | |
ff32e16e | 1861 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1862 | aSig = extractFloat32Frac( a ); |
1863 | aExp = extractFloat32Exp( a ); | |
1864 | aSign = extractFloat32Sign( a ); | |
1865 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
1866 | if (aSig) { |
1867 | return commonNaNToFloatx80(float32ToCommonNaN(a, status), status); | |
1868 | } | |
158142c2 FB |
1869 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
1870 | } | |
1871 | if ( aExp == 0 ) { | |
1872 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
1873 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1874 | } | |
1875 | aSig |= 0x00800000; | |
bb98fe42 | 1876 | return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); |
158142c2 FB |
1877 | |
1878 | } | |
1879 | ||
158142c2 FB |
1880 | /*---------------------------------------------------------------------------- |
1881 | | Returns the result of converting the single-precision floating-point value | |
1882 | | `a' to the double-precision floating-point format. The conversion is | |
1883 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1884 | | Arithmetic. | |
1885 | *----------------------------------------------------------------------------*/ | |
1886 | ||
e5a41ffa | 1887 | float128 float32_to_float128(float32 a, float_status *status) |
158142c2 FB |
1888 | { |
1889 | flag aSign; | |
0c48262d | 1890 | int aExp; |
bb98fe42 | 1891 | uint32_t aSig; |
158142c2 | 1892 | |
ff32e16e | 1893 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1894 | aSig = extractFloat32Frac( a ); |
1895 | aExp = extractFloat32Exp( a ); | |
1896 | aSign = extractFloat32Sign( a ); | |
1897 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
1898 | if (aSig) { |
1899 | return commonNaNToFloat128(float32ToCommonNaN(a, status), status); | |
1900 | } | |
158142c2 FB |
1901 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
1902 | } | |
1903 | if ( aExp == 0 ) { | |
1904 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
1905 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1906 | --aExp; | |
1907 | } | |
bb98fe42 | 1908 | return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); |
158142c2 FB |
1909 | |
1910 | } | |
1911 | ||
158142c2 FB |
1912 | /*---------------------------------------------------------------------------- |
1913 | | Rounds the single-precision floating-point value `a' to an integer, and | |
1914 | | returns the result as a single-precision floating-point value. The | |
1915 | | operation is performed according to the IEC/IEEE Standard for Binary | |
1916 | | Floating-Point Arithmetic. | |
1917 | *----------------------------------------------------------------------------*/ | |
1918 | ||
e5a41ffa | 1919 | float32 float32_round_to_int(float32 a, float_status *status) |
158142c2 FB |
1920 | { |
1921 | flag aSign; | |
0c48262d | 1922 | int aExp; |
bb98fe42 | 1923 | uint32_t lastBitMask, roundBitsMask; |
bb98fe42 | 1924 | uint32_t z; |
ff32e16e | 1925 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1926 | |
1927 | aExp = extractFloat32Exp( a ); | |
1928 | if ( 0x96 <= aExp ) { | |
1929 | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | |
ff32e16e | 1930 | return propagateFloat32NaN(a, a, status); |
158142c2 FB |
1931 | } |
1932 | return a; | |
1933 | } | |
1934 | if ( aExp <= 0x7E ) { | |
bb98fe42 | 1935 | if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a; |
a2f2d288 | 1936 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 1937 | aSign = extractFloat32Sign( a ); |
a2f2d288 | 1938 | switch (status->float_rounding_mode) { |
158142c2 FB |
1939 | case float_round_nearest_even: |
1940 | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | |
1941 | return packFloat32( aSign, 0x7F, 0 ); | |
1942 | } | |
1943 | break; | |
f9288a76 PM |
1944 | case float_round_ties_away: |
1945 | if (aExp == 0x7E) { | |
1946 | return packFloat32(aSign, 0x7F, 0); | |
1947 | } | |
1948 | break; | |
158142c2 | 1949 | case float_round_down: |
f090c9d4 | 1950 | return make_float32(aSign ? 0xBF800000 : 0); |
158142c2 | 1951 | case float_round_up: |
f090c9d4 | 1952 | return make_float32(aSign ? 0x80000000 : 0x3F800000); |
158142c2 FB |
1953 | } |
1954 | return packFloat32( aSign, 0, 0 ); | |
1955 | } | |
1956 | lastBitMask = 1; | |
1957 | lastBitMask <<= 0x96 - aExp; | |
1958 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 1959 | z = float32_val(a); |
a2f2d288 | 1960 | switch (status->float_rounding_mode) { |
dc355b76 | 1961 | case float_round_nearest_even: |
158142c2 | 1962 | z += lastBitMask>>1; |
dc355b76 PM |
1963 | if ((z & roundBitsMask) == 0) { |
1964 | z &= ~lastBitMask; | |
1965 | } | |
1966 | break; | |
f9288a76 PM |
1967 | case float_round_ties_away: |
1968 | z += lastBitMask >> 1; | |
1969 | break; | |
dc355b76 PM |
1970 | case float_round_to_zero: |
1971 | break; | |
1972 | case float_round_up: | |
1973 | if (!extractFloat32Sign(make_float32(z))) { | |
1974 | z += roundBitsMask; | |
1975 | } | |
1976 | break; | |
1977 | case float_round_down: | |
1978 | if (extractFloat32Sign(make_float32(z))) { | |
158142c2 FB |
1979 | z += roundBitsMask; |
1980 | } | |
dc355b76 PM |
1981 | break; |
1982 | default: | |
1983 | abort(); | |
158142c2 FB |
1984 | } |
1985 | z &= ~ roundBitsMask; | |
a2f2d288 PM |
1986 | if (z != float32_val(a)) { |
1987 | status->float_exception_flags |= float_flag_inexact; | |
1988 | } | |
f090c9d4 | 1989 | return make_float32(z); |
158142c2 FB |
1990 | |
1991 | } | |
1992 | ||
1993 | /*---------------------------------------------------------------------------- | |
1994 | | Returns the result of adding the absolute values of the single-precision | |
1995 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
1996 | | before being returned. `zSign' is ignored if the result is a NaN. | |
1997 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
1998 | | Floating-Point Arithmetic. | |
1999 | *----------------------------------------------------------------------------*/ | |
2000 | ||
e5a41ffa PM |
2001 | static float32 addFloat32Sigs(float32 a, float32 b, flag zSign, |
2002 | float_status *status) | |
158142c2 | 2003 | { |
0c48262d | 2004 | int aExp, bExp, zExp; |
bb98fe42 | 2005 | uint32_t aSig, bSig, zSig; |
0c48262d | 2006 | int expDiff; |
158142c2 FB |
2007 | |
2008 | aSig = extractFloat32Frac( a ); | |
2009 | aExp = extractFloat32Exp( a ); | |
2010 | bSig = extractFloat32Frac( b ); | |
2011 | bExp = extractFloat32Exp( b ); | |
2012 | expDiff = aExp - bExp; | |
2013 | aSig <<= 6; | |
2014 | bSig <<= 6; | |
2015 | if ( 0 < expDiff ) { | |
2016 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2017 | if (aSig) { |
2018 | return propagateFloat32NaN(a, b, status); | |
2019 | } | |
158142c2 FB |
2020 | return a; |
2021 | } | |
2022 | if ( bExp == 0 ) { | |
2023 | --expDiff; | |
2024 | } | |
2025 | else { | |
2026 | bSig |= 0x20000000; | |
2027 | } | |
2028 | shift32RightJamming( bSig, expDiff, &bSig ); | |
2029 | zExp = aExp; | |
2030 | } | |
2031 | else if ( expDiff < 0 ) { | |
2032 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2033 | if (bSig) { |
2034 | return propagateFloat32NaN(a, b, status); | |
2035 | } | |
158142c2 FB |
2036 | return packFloat32( zSign, 0xFF, 0 ); |
2037 | } | |
2038 | if ( aExp == 0 ) { | |
2039 | ++expDiff; | |
2040 | } | |
2041 | else { | |
2042 | aSig |= 0x20000000; | |
2043 | } | |
2044 | shift32RightJamming( aSig, - expDiff, &aSig ); | |
2045 | zExp = bExp; | |
2046 | } | |
2047 | else { | |
2048 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2049 | if (aSig | bSig) { |
2050 | return propagateFloat32NaN(a, b, status); | |
2051 | } | |
158142c2 FB |
2052 | return a; |
2053 | } | |
fe76d976 | 2054 | if ( aExp == 0 ) { |
a2f2d288 | 2055 | if (status->flush_to_zero) { |
e6afc87f | 2056 | if (aSig | bSig) { |
ff32e16e | 2057 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
2058 | } |
2059 | return packFloat32(zSign, 0, 0); | |
2060 | } | |
fe76d976 PB |
2061 | return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); |
2062 | } | |
158142c2 FB |
2063 | zSig = 0x40000000 + aSig + bSig; |
2064 | zExp = aExp; | |
2065 | goto roundAndPack; | |
2066 | } | |
2067 | aSig |= 0x20000000; | |
2068 | zSig = ( aSig + bSig )<<1; | |
2069 | --zExp; | |
bb98fe42 | 2070 | if ( (int32_t) zSig < 0 ) { |
158142c2 FB |
2071 | zSig = aSig + bSig; |
2072 | ++zExp; | |
2073 | } | |
2074 | roundAndPack: | |
ff32e16e | 2075 | return roundAndPackFloat32(zSign, zExp, zSig, status); |
158142c2 FB |
2076 | |
2077 | } | |
2078 | ||
2079 | /*---------------------------------------------------------------------------- | |
2080 | | Returns the result of subtracting the absolute values of the single- | |
2081 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
2082 | | difference is negated before being returned. `zSign' is ignored if the | |
2083 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
2084 | | Standard for Binary Floating-Point Arithmetic. | |
2085 | *----------------------------------------------------------------------------*/ | |
2086 | ||
e5a41ffa PM |
2087 | static float32 subFloat32Sigs(float32 a, float32 b, flag zSign, |
2088 | float_status *status) | |
158142c2 | 2089 | { |
0c48262d | 2090 | int aExp, bExp, zExp; |
bb98fe42 | 2091 | uint32_t aSig, bSig, zSig; |
0c48262d | 2092 | int expDiff; |
158142c2 FB |
2093 | |
2094 | aSig = extractFloat32Frac( a ); | |
2095 | aExp = extractFloat32Exp( a ); | |
2096 | bSig = extractFloat32Frac( b ); | |
2097 | bExp = extractFloat32Exp( b ); | |
2098 | expDiff = aExp - bExp; | |
2099 | aSig <<= 7; | |
2100 | bSig <<= 7; | |
2101 | if ( 0 < expDiff ) goto aExpBigger; | |
2102 | if ( expDiff < 0 ) goto bExpBigger; | |
2103 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2104 | if (aSig | bSig) { |
2105 | return propagateFloat32NaN(a, b, status); | |
2106 | } | |
2107 | float_raise(float_flag_invalid, status); | |
af39bc8c | 2108 | return float32_default_nan(status); |
158142c2 FB |
2109 | } |
2110 | if ( aExp == 0 ) { | |
2111 | aExp = 1; | |
2112 | bExp = 1; | |
2113 | } | |
2114 | if ( bSig < aSig ) goto aBigger; | |
2115 | if ( aSig < bSig ) goto bBigger; | |
a2f2d288 | 2116 | return packFloat32(status->float_rounding_mode == float_round_down, 0, 0); |
158142c2 FB |
2117 | bExpBigger: |
2118 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2119 | if (bSig) { |
2120 | return propagateFloat32NaN(a, b, status); | |
2121 | } | |
158142c2 FB |
2122 | return packFloat32( zSign ^ 1, 0xFF, 0 ); |
2123 | } | |
2124 | if ( aExp == 0 ) { | |
2125 | ++expDiff; | |
2126 | } | |
2127 | else { | |
2128 | aSig |= 0x40000000; | |
2129 | } | |
2130 | shift32RightJamming( aSig, - expDiff, &aSig ); | |
2131 | bSig |= 0x40000000; | |
2132 | bBigger: | |
2133 | zSig = bSig - aSig; | |
2134 | zExp = bExp; | |
2135 | zSign ^= 1; | |
2136 | goto normalizeRoundAndPack; | |
2137 | aExpBigger: | |
2138 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2139 | if (aSig) { |
2140 | return propagateFloat32NaN(a, b, status); | |
2141 | } | |
158142c2 FB |
2142 | return a; |
2143 | } | |
2144 | if ( bExp == 0 ) { | |
2145 | --expDiff; | |
2146 | } | |
2147 | else { | |
2148 | bSig |= 0x40000000; | |
2149 | } | |
2150 | shift32RightJamming( bSig, expDiff, &bSig ); | |
2151 | aSig |= 0x40000000; | |
2152 | aBigger: | |
2153 | zSig = aSig - bSig; | |
2154 | zExp = aExp; | |
2155 | normalizeRoundAndPack: | |
2156 | --zExp; | |
ff32e16e | 2157 | return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status); |
158142c2 FB |
2158 | |
2159 | } | |
2160 | ||
2161 | /*---------------------------------------------------------------------------- | |
2162 | | Returns the result of adding the single-precision floating-point values `a' | |
2163 | | and `b'. The operation is performed according to the IEC/IEEE Standard for | |
2164 | | Binary Floating-Point Arithmetic. | |
2165 | *----------------------------------------------------------------------------*/ | |
2166 | ||
e5a41ffa | 2167 | float32 float32_add(float32 a, float32 b, float_status *status) |
158142c2 FB |
2168 | { |
2169 | flag aSign, bSign; | |
ff32e16e PM |
2170 | a = float32_squash_input_denormal(a, status); |
2171 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2172 | |
2173 | aSign = extractFloat32Sign( a ); | |
2174 | bSign = extractFloat32Sign( b ); | |
2175 | if ( aSign == bSign ) { | |
ff32e16e | 2176 | return addFloat32Sigs(a, b, aSign, status); |
158142c2 FB |
2177 | } |
2178 | else { | |
ff32e16e | 2179 | return subFloat32Sigs(a, b, aSign, status); |
158142c2 FB |
2180 | } |
2181 | ||
2182 | } | |
2183 | ||
2184 | /*---------------------------------------------------------------------------- | |
2185 | | Returns the result of subtracting the single-precision floating-point values | |
2186 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
2187 | | for Binary Floating-Point Arithmetic. | |
2188 | *----------------------------------------------------------------------------*/ | |
2189 | ||
e5a41ffa | 2190 | float32 float32_sub(float32 a, float32 b, float_status *status) |
158142c2 FB |
2191 | { |
2192 | flag aSign, bSign; | |
ff32e16e PM |
2193 | a = float32_squash_input_denormal(a, status); |
2194 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2195 | |
2196 | aSign = extractFloat32Sign( a ); | |
2197 | bSign = extractFloat32Sign( b ); | |
2198 | if ( aSign == bSign ) { | |
ff32e16e | 2199 | return subFloat32Sigs(a, b, aSign, status); |
158142c2 FB |
2200 | } |
2201 | else { | |
ff32e16e | 2202 | return addFloat32Sigs(a, b, aSign, status); |
158142c2 FB |
2203 | } |
2204 | ||
2205 | } | |
2206 | ||
2207 | /*---------------------------------------------------------------------------- | |
2208 | | Returns the result of multiplying the single-precision floating-point values | |
2209 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
2210 | | for Binary Floating-Point Arithmetic. | |
2211 | *----------------------------------------------------------------------------*/ | |
2212 | ||
e5a41ffa | 2213 | float32 float32_mul(float32 a, float32 b, float_status *status) |
158142c2 FB |
2214 | { |
2215 | flag aSign, bSign, zSign; | |
0c48262d | 2216 | int aExp, bExp, zExp; |
bb98fe42 AF |
2217 | uint32_t aSig, bSig; |
2218 | uint64_t zSig64; | |
2219 | uint32_t zSig; | |
158142c2 | 2220 | |
ff32e16e PM |
2221 | a = float32_squash_input_denormal(a, status); |
2222 | b = float32_squash_input_denormal(b, status); | |
37d18660 | 2223 | |
158142c2 FB |
2224 | aSig = extractFloat32Frac( a ); |
2225 | aExp = extractFloat32Exp( a ); | |
2226 | aSign = extractFloat32Sign( a ); | |
2227 | bSig = extractFloat32Frac( b ); | |
2228 | bExp = extractFloat32Exp( b ); | |
2229 | bSign = extractFloat32Sign( b ); | |
2230 | zSign = aSign ^ bSign; | |
2231 | if ( aExp == 0xFF ) { | |
2232 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
ff32e16e | 2233 | return propagateFloat32NaN(a, b, status); |
158142c2 FB |
2234 | } |
2235 | if ( ( bExp | bSig ) == 0 ) { | |
ff32e16e | 2236 | float_raise(float_flag_invalid, status); |
af39bc8c | 2237 | return float32_default_nan(status); |
158142c2 FB |
2238 | } |
2239 | return packFloat32( zSign, 0xFF, 0 ); | |
2240 | } | |
2241 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2242 | if (bSig) { |
2243 | return propagateFloat32NaN(a, b, status); | |
2244 | } | |
158142c2 | 2245 | if ( ( aExp | aSig ) == 0 ) { |
ff32e16e | 2246 | float_raise(float_flag_invalid, status); |
af39bc8c | 2247 | return float32_default_nan(status); |
158142c2 FB |
2248 | } |
2249 | return packFloat32( zSign, 0xFF, 0 ); | |
2250 | } | |
2251 | if ( aExp == 0 ) { | |
2252 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
2253 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2254 | } | |
2255 | if ( bExp == 0 ) { | |
2256 | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
2257 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2258 | } | |
2259 | zExp = aExp + bExp - 0x7F; | |
2260 | aSig = ( aSig | 0x00800000 )<<7; | |
2261 | bSig = ( bSig | 0x00800000 )<<8; | |
bb98fe42 | 2262 | shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 ); |
158142c2 | 2263 | zSig = zSig64; |
bb98fe42 | 2264 | if ( 0 <= (int32_t) ( zSig<<1 ) ) { |
158142c2 FB |
2265 | zSig <<= 1; |
2266 | --zExp; | |
2267 | } | |
ff32e16e | 2268 | return roundAndPackFloat32(zSign, zExp, zSig, status); |
158142c2 FB |
2269 | |
2270 | } | |
2271 | ||
2272 | /*---------------------------------------------------------------------------- | |
2273 | | Returns the result of dividing the single-precision floating-point value `a' | |
2274 | | by the corresponding value `b'. The operation is performed according to the | |
2275 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2276 | *----------------------------------------------------------------------------*/ | |
2277 | ||
e5a41ffa | 2278 | float32 float32_div(float32 a, float32 b, float_status *status) |
158142c2 FB |
2279 | { |
2280 | flag aSign, bSign, zSign; | |
0c48262d | 2281 | int aExp, bExp, zExp; |
bb98fe42 | 2282 | uint32_t aSig, bSig, zSig; |
ff32e16e PM |
2283 | a = float32_squash_input_denormal(a, status); |
2284 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2285 | |
2286 | aSig = extractFloat32Frac( a ); | |
2287 | aExp = extractFloat32Exp( a ); | |
2288 | aSign = extractFloat32Sign( a ); | |
2289 | bSig = extractFloat32Frac( b ); | |
2290 | bExp = extractFloat32Exp( b ); | |
2291 | bSign = extractFloat32Sign( b ); | |
2292 | zSign = aSign ^ bSign; | |
2293 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2294 | if (aSig) { |
2295 | return propagateFloat32NaN(a, b, status); | |
2296 | } | |
158142c2 | 2297 | if ( bExp == 0xFF ) { |
ff32e16e PM |
2298 | if (bSig) { |
2299 | return propagateFloat32NaN(a, b, status); | |
2300 | } | |
2301 | float_raise(float_flag_invalid, status); | |
af39bc8c | 2302 | return float32_default_nan(status); |
158142c2 FB |
2303 | } |
2304 | return packFloat32( zSign, 0xFF, 0 ); | |
2305 | } | |
2306 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2307 | if (bSig) { |
2308 | return propagateFloat32NaN(a, b, status); | |
2309 | } | |
158142c2 FB |
2310 | return packFloat32( zSign, 0, 0 ); |
2311 | } | |
2312 | if ( bExp == 0 ) { | |
2313 | if ( bSig == 0 ) { | |
2314 | if ( ( aExp | aSig ) == 0 ) { | |
ff32e16e | 2315 | float_raise(float_flag_invalid, status); |
af39bc8c | 2316 | return float32_default_nan(status); |
158142c2 | 2317 | } |
ff32e16e | 2318 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
2319 | return packFloat32( zSign, 0xFF, 0 ); |
2320 | } | |
2321 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2322 | } | |
2323 | if ( aExp == 0 ) { | |
2324 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
2325 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2326 | } | |
2327 | zExp = aExp - bExp + 0x7D; | |
2328 | aSig = ( aSig | 0x00800000 )<<7; | |
2329 | bSig = ( bSig | 0x00800000 )<<8; | |
2330 | if ( bSig <= ( aSig + aSig ) ) { | |
2331 | aSig >>= 1; | |
2332 | ++zExp; | |
2333 | } | |
bb98fe42 | 2334 | zSig = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 | 2335 | if ( ( zSig & 0x3F ) == 0 ) { |
bb98fe42 | 2336 | zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 ); |
158142c2 | 2337 | } |
ff32e16e | 2338 | return roundAndPackFloat32(zSign, zExp, zSig, status); |
158142c2 FB |
2339 | |
2340 | } | |
2341 | ||
2342 | /*---------------------------------------------------------------------------- | |
2343 | | Returns the remainder of the single-precision floating-point value `a' | |
2344 | | with respect to the corresponding value `b'. The operation is performed | |
2345 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2346 | *----------------------------------------------------------------------------*/ | |
2347 | ||
e5a41ffa | 2348 | float32 float32_rem(float32 a, float32 b, float_status *status) |
158142c2 | 2349 | { |
ed086f3d | 2350 | flag aSign, zSign; |
0c48262d | 2351 | int aExp, bExp, expDiff; |
bb98fe42 AF |
2352 | uint32_t aSig, bSig; |
2353 | uint32_t q; | |
2354 | uint64_t aSig64, bSig64, q64; | |
2355 | uint32_t alternateASig; | |
2356 | int32_t sigMean; | |
ff32e16e PM |
2357 | a = float32_squash_input_denormal(a, status); |
2358 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2359 | |
2360 | aSig = extractFloat32Frac( a ); | |
2361 | aExp = extractFloat32Exp( a ); | |
2362 | aSign = extractFloat32Sign( a ); | |
2363 | bSig = extractFloat32Frac( b ); | |
2364 | bExp = extractFloat32Exp( b ); | |
158142c2 FB |
2365 | if ( aExp == 0xFF ) { |
2366 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
ff32e16e | 2367 | return propagateFloat32NaN(a, b, status); |
158142c2 | 2368 | } |
ff32e16e | 2369 | float_raise(float_flag_invalid, status); |
af39bc8c | 2370 | return float32_default_nan(status); |
158142c2 FB |
2371 | } |
2372 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2373 | if (bSig) { |
2374 | return propagateFloat32NaN(a, b, status); | |
2375 | } | |
158142c2 FB |
2376 | return a; |
2377 | } | |
2378 | if ( bExp == 0 ) { | |
2379 | if ( bSig == 0 ) { | |
ff32e16e | 2380 | float_raise(float_flag_invalid, status); |
af39bc8c | 2381 | return float32_default_nan(status); |
158142c2 FB |
2382 | } |
2383 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2384 | } | |
2385 | if ( aExp == 0 ) { | |
2386 | if ( aSig == 0 ) return a; | |
2387 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2388 | } | |
2389 | expDiff = aExp - bExp; | |
2390 | aSig |= 0x00800000; | |
2391 | bSig |= 0x00800000; | |
2392 | if ( expDiff < 32 ) { | |
2393 | aSig <<= 8; | |
2394 | bSig <<= 8; | |
2395 | if ( expDiff < 0 ) { | |
2396 | if ( expDiff < -1 ) return a; | |
2397 | aSig >>= 1; | |
2398 | } | |
2399 | q = ( bSig <= aSig ); | |
2400 | if ( q ) aSig -= bSig; | |
2401 | if ( 0 < expDiff ) { | |
bb98fe42 | 2402 | q = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 FB |
2403 | q >>= 32 - expDiff; |
2404 | bSig >>= 2; | |
2405 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
2406 | } | |
2407 | else { | |
2408 | aSig >>= 2; | |
2409 | bSig >>= 2; | |
2410 | } | |
2411 | } | |
2412 | else { | |
2413 | if ( bSig <= aSig ) aSig -= bSig; | |
bb98fe42 AF |
2414 | aSig64 = ( (uint64_t) aSig )<<40; |
2415 | bSig64 = ( (uint64_t) bSig )<<40; | |
158142c2 FB |
2416 | expDiff -= 64; |
2417 | while ( 0 < expDiff ) { | |
2418 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
2419 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
2420 | aSig64 = - ( ( bSig * q64 )<<38 ); | |
2421 | expDiff -= 62; | |
2422 | } | |
2423 | expDiff += 64; | |
2424 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
2425 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
2426 | q = q64>>( 64 - expDiff ); | |
2427 | bSig <<= 6; | |
2428 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | |
2429 | } | |
2430 | do { | |
2431 | alternateASig = aSig; | |
2432 | ++q; | |
2433 | aSig -= bSig; | |
bb98fe42 | 2434 | } while ( 0 <= (int32_t) aSig ); |
158142c2 FB |
2435 | sigMean = aSig + alternateASig; |
2436 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
2437 | aSig = alternateASig; | |
2438 | } | |
bb98fe42 | 2439 | zSign = ( (int32_t) aSig < 0 ); |
158142c2 | 2440 | if ( zSign ) aSig = - aSig; |
ff32e16e | 2441 | return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); |
158142c2 FB |
2442 | } |
2443 | ||
369be8f6 PM |
2444 | /*---------------------------------------------------------------------------- |
2445 | | Returns the result of multiplying the single-precision floating-point values | |
2446 | | `a' and `b' then adding 'c', with no intermediate rounding step after the | |
2447 | | multiplication. The operation is performed according to the IEC/IEEE | |
2448 | | Standard for Binary Floating-Point Arithmetic 754-2008. | |
2449 | | The flags argument allows the caller to select negation of the | |
2450 | | addend, the intermediate product, or the final result. (The difference | |
2451 | | between this and having the caller do a separate negation is that negating | |
2452 | | externally will flip the sign bit on NaNs.) | |
2453 | *----------------------------------------------------------------------------*/ | |
2454 | ||
e5a41ffa PM |
2455 | float32 float32_muladd(float32 a, float32 b, float32 c, int flags, |
2456 | float_status *status) | |
369be8f6 PM |
2457 | { |
2458 | flag aSign, bSign, cSign, zSign; | |
0c48262d | 2459 | int aExp, bExp, cExp, pExp, zExp, expDiff; |
369be8f6 PM |
2460 | uint32_t aSig, bSig, cSig; |
2461 | flag pInf, pZero, pSign; | |
2462 | uint64_t pSig64, cSig64, zSig64; | |
2463 | uint32_t pSig; | |
2464 | int shiftcount; | |
2465 | flag signflip, infzero; | |
2466 | ||
ff32e16e PM |
2467 | a = float32_squash_input_denormal(a, status); |
2468 | b = float32_squash_input_denormal(b, status); | |
2469 | c = float32_squash_input_denormal(c, status); | |
369be8f6 PM |
2470 | aSig = extractFloat32Frac(a); |
2471 | aExp = extractFloat32Exp(a); | |
2472 | aSign = extractFloat32Sign(a); | |
2473 | bSig = extractFloat32Frac(b); | |
2474 | bExp = extractFloat32Exp(b); | |
2475 | bSign = extractFloat32Sign(b); | |
2476 | cSig = extractFloat32Frac(c); | |
2477 | cExp = extractFloat32Exp(c); | |
2478 | cSign = extractFloat32Sign(c); | |
2479 | ||
2480 | infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) || | |
2481 | (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0)); | |
2482 | ||
2483 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
2484 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
2485 | * they return if they do), so we have to hand this information | |
2486 | * off to the target-specific pick-a-NaN routine. | |
2487 | */ | |
2488 | if (((aExp == 0xff) && aSig) || | |
2489 | ((bExp == 0xff) && bSig) || | |
2490 | ((cExp == 0xff) && cSig)) { | |
ff32e16e | 2491 | return propagateFloat32MulAddNaN(a, b, c, infzero, status); |
369be8f6 PM |
2492 | } |
2493 | ||
2494 | if (infzero) { | |
ff32e16e | 2495 | float_raise(float_flag_invalid, status); |
af39bc8c | 2496 | return float32_default_nan(status); |
369be8f6 PM |
2497 | } |
2498 | ||
2499 | if (flags & float_muladd_negate_c) { | |
2500 | cSign ^= 1; | |
2501 | } | |
2502 | ||
2503 | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | |
2504 | ||
2505 | /* Work out the sign and type of the product */ | |
2506 | pSign = aSign ^ bSign; | |
2507 | if (flags & float_muladd_negate_product) { | |
2508 | pSign ^= 1; | |
2509 | } | |
2510 | pInf = (aExp == 0xff) || (bExp == 0xff); | |
2511 | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | |
2512 | ||
2513 | if (cExp == 0xff) { | |
2514 | if (pInf && (pSign ^ cSign)) { | |
2515 | /* addition of opposite-signed infinities => InvalidOperation */ | |
ff32e16e | 2516 | float_raise(float_flag_invalid, status); |
af39bc8c | 2517 | return float32_default_nan(status); |
369be8f6 PM |
2518 | } |
2519 | /* Otherwise generate an infinity of the same sign */ | |
2520 | return packFloat32(cSign ^ signflip, 0xff, 0); | |
2521 | } | |
2522 | ||
2523 | if (pInf) { | |
2524 | return packFloat32(pSign ^ signflip, 0xff, 0); | |
2525 | } | |
2526 | ||
2527 | if (pZero) { | |
2528 | if (cExp == 0) { | |
2529 | if (cSig == 0) { | |
2530 | /* Adding two exact zeroes */ | |
2531 | if (pSign == cSign) { | |
2532 | zSign = pSign; | |
a2f2d288 | 2533 | } else if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
2534 | zSign = 1; |
2535 | } else { | |
2536 | zSign = 0; | |
2537 | } | |
2538 | return packFloat32(zSign ^ signflip, 0, 0); | |
2539 | } | |
2540 | /* Exact zero plus a denorm */ | |
a2f2d288 | 2541 | if (status->flush_to_zero) { |
ff32e16e | 2542 | float_raise(float_flag_output_denormal, status); |
369be8f6 PM |
2543 | return packFloat32(cSign ^ signflip, 0, 0); |
2544 | } | |
2545 | } | |
2546 | /* Zero plus something non-zero : just return the something */ | |
67d43538 PM |
2547 | if (flags & float_muladd_halve_result) { |
2548 | if (cExp == 0) { | |
2549 | normalizeFloat32Subnormal(cSig, &cExp, &cSig); | |
2550 | } | |
2551 | /* Subtract one to halve, and one again because roundAndPackFloat32 | |
2552 | * wants one less than the true exponent. | |
2553 | */ | |
2554 | cExp -= 2; | |
2555 | cSig = (cSig | 0x00800000) << 7; | |
ff32e16e | 2556 | return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status); |
67d43538 | 2557 | } |
a6e7c184 | 2558 | return packFloat32(cSign ^ signflip, cExp, cSig); |
369be8f6 PM |
2559 | } |
2560 | ||
2561 | if (aExp == 0) { | |
2562 | normalizeFloat32Subnormal(aSig, &aExp, &aSig); | |
2563 | } | |
2564 | if (bExp == 0) { | |
2565 | normalizeFloat32Subnormal(bSig, &bExp, &bSig); | |
2566 | } | |
2567 | ||
2568 | /* Calculate the actual result a * b + c */ | |
2569 | ||
2570 | /* Multiply first; this is easy. */ | |
2571 | /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f | |
2572 | * because we want the true exponent, not the "one-less-than" | |
2573 | * flavour that roundAndPackFloat32() takes. | |
2574 | */ | |
2575 | pExp = aExp + bExp - 0x7e; | |
2576 | aSig = (aSig | 0x00800000) << 7; | |
2577 | bSig = (bSig | 0x00800000) << 8; | |
2578 | pSig64 = (uint64_t)aSig * bSig; | |
2579 | if ((int64_t)(pSig64 << 1) >= 0) { | |
2580 | pSig64 <<= 1; | |
2581 | pExp--; | |
2582 | } | |
2583 | ||
2584 | zSign = pSign ^ signflip; | |
2585 | ||
2586 | /* Now pSig64 is the significand of the multiply, with the explicit bit in | |
2587 | * position 62. | |
2588 | */ | |
2589 | if (cExp == 0) { | |
2590 | if (!cSig) { | |
2591 | /* Throw out the special case of c being an exact zero now */ | |
2592 | shift64RightJamming(pSig64, 32, &pSig64); | |
2593 | pSig = pSig64; | |
67d43538 PM |
2594 | if (flags & float_muladd_halve_result) { |
2595 | pExp--; | |
2596 | } | |
369be8f6 | 2597 | return roundAndPackFloat32(zSign, pExp - 1, |
ff32e16e | 2598 | pSig, status); |
369be8f6 PM |
2599 | } |
2600 | normalizeFloat32Subnormal(cSig, &cExp, &cSig); | |
2601 | } | |
2602 | ||
2603 | cSig64 = (uint64_t)cSig << (62 - 23); | |
2604 | cSig64 |= LIT64(0x4000000000000000); | |
2605 | expDiff = pExp - cExp; | |
2606 | ||
2607 | if (pSign == cSign) { | |
2608 | /* Addition */ | |
2609 | if (expDiff > 0) { | |
2610 | /* scale c to match p */ | |
2611 | shift64RightJamming(cSig64, expDiff, &cSig64); | |
2612 | zExp = pExp; | |
2613 | } else if (expDiff < 0) { | |
2614 | /* scale p to match c */ | |
2615 | shift64RightJamming(pSig64, -expDiff, &pSig64); | |
2616 | zExp = cExp; | |
2617 | } else { | |
2618 | /* no scaling needed */ | |
2619 | zExp = cExp; | |
2620 | } | |
2621 | /* Add significands and make sure explicit bit ends up in posn 62 */ | |
2622 | zSig64 = pSig64 + cSig64; | |
2623 | if ((int64_t)zSig64 < 0) { | |
2624 | shift64RightJamming(zSig64, 1, &zSig64); | |
2625 | } else { | |
2626 | zExp--; | |
2627 | } | |
2628 | } else { | |
2629 | /* Subtraction */ | |
2630 | if (expDiff > 0) { | |
2631 | shift64RightJamming(cSig64, expDiff, &cSig64); | |
2632 | zSig64 = pSig64 - cSig64; | |
2633 | zExp = pExp; | |
2634 | } else if (expDiff < 0) { | |
2635 | shift64RightJamming(pSig64, -expDiff, &pSig64); | |
2636 | zSig64 = cSig64 - pSig64; | |
2637 | zExp = cExp; | |
2638 | zSign ^= 1; | |
2639 | } else { | |
2640 | zExp = pExp; | |
2641 | if (cSig64 < pSig64) { | |
2642 | zSig64 = pSig64 - cSig64; | |
2643 | } else if (pSig64 < cSig64) { | |
2644 | zSig64 = cSig64 - pSig64; | |
2645 | zSign ^= 1; | |
2646 | } else { | |
2647 | /* Exact zero */ | |
2648 | zSign = signflip; | |
a2f2d288 | 2649 | if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
2650 | zSign ^= 1; |
2651 | } | |
2652 | return packFloat32(zSign, 0, 0); | |
2653 | } | |
2654 | } | |
2655 | --zExp; | |
2656 | /* Normalize to put the explicit bit back into bit 62. */ | |
2657 | shiftcount = countLeadingZeros64(zSig64) - 1; | |
2658 | zSig64 <<= shiftcount; | |
2659 | zExp -= shiftcount; | |
2660 | } | |
67d43538 PM |
2661 | if (flags & float_muladd_halve_result) { |
2662 | zExp--; | |
2663 | } | |
2664 | ||
369be8f6 | 2665 | shift64RightJamming(zSig64, 32, &zSig64); |
ff32e16e | 2666 | return roundAndPackFloat32(zSign, zExp, zSig64, status); |
369be8f6 PM |
2667 | } |
2668 | ||
2669 | ||
158142c2 FB |
2670 | /*---------------------------------------------------------------------------- |
2671 | | Returns the square root of the single-precision floating-point value `a'. | |
2672 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
2673 | | Floating-Point Arithmetic. | |
2674 | *----------------------------------------------------------------------------*/ | |
2675 | ||
e5a41ffa | 2676 | float32 float32_sqrt(float32 a, float_status *status) |
158142c2 FB |
2677 | { |
2678 | flag aSign; | |
0c48262d | 2679 | int aExp, zExp; |
bb98fe42 AF |
2680 | uint32_t aSig, zSig; |
2681 | uint64_t rem, term; | |
ff32e16e | 2682 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
2683 | |
2684 | aSig = extractFloat32Frac( a ); | |
2685 | aExp = extractFloat32Exp( a ); | |
2686 | aSign = extractFloat32Sign( a ); | |
2687 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2688 | if (aSig) { |
2689 | return propagateFloat32NaN(a, float32_zero, status); | |
2690 | } | |
158142c2 | 2691 | if ( ! aSign ) return a; |
ff32e16e | 2692 | float_raise(float_flag_invalid, status); |
af39bc8c | 2693 | return float32_default_nan(status); |
158142c2 FB |
2694 | } |
2695 | if ( aSign ) { | |
2696 | if ( ( aExp | aSig ) == 0 ) return a; | |
ff32e16e | 2697 | float_raise(float_flag_invalid, status); |
af39bc8c | 2698 | return float32_default_nan(status); |
158142c2 FB |
2699 | } |
2700 | if ( aExp == 0 ) { | |
f090c9d4 | 2701 | if ( aSig == 0 ) return float32_zero; |
158142c2 FB |
2702 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
2703 | } | |
2704 | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | |
2705 | aSig = ( aSig | 0x00800000 )<<8; | |
2706 | zSig = estimateSqrt32( aExp, aSig ) + 2; | |
2707 | if ( ( zSig & 0x7F ) <= 5 ) { | |
2708 | if ( zSig < 2 ) { | |
2709 | zSig = 0x7FFFFFFF; | |
2710 | goto roundAndPack; | |
2711 | } | |
2712 | aSig >>= aExp & 1; | |
bb98fe42 AF |
2713 | term = ( (uint64_t) zSig ) * zSig; |
2714 | rem = ( ( (uint64_t) aSig )<<32 ) - term; | |
2715 | while ( (int64_t) rem < 0 ) { | |
158142c2 | 2716 | --zSig; |
bb98fe42 | 2717 | rem += ( ( (uint64_t) zSig )<<1 ) | 1; |
158142c2 FB |
2718 | } |
2719 | zSig |= ( rem != 0 ); | |
2720 | } | |
2721 | shift32RightJamming( zSig, 1, &zSig ); | |
2722 | roundAndPack: | |
ff32e16e | 2723 | return roundAndPackFloat32(0, zExp, zSig, status); |
158142c2 FB |
2724 | |
2725 | } | |
2726 | ||
8229c991 AJ |
2727 | /*---------------------------------------------------------------------------- |
2728 | | Returns the binary exponential of the single-precision floating-point value | |
2729 | | `a'. The operation is performed according to the IEC/IEEE Standard for | |
2730 | | Binary Floating-Point Arithmetic. | |
2731 | | | |
2732 | | Uses the following identities: | |
2733 | | | |
2734 | | 1. ------------------------------------------------------------------------- | |
2735 | | x x*ln(2) | |
2736 | | 2 = e | |
2737 | | | |
2738 | | 2. ------------------------------------------------------------------------- | |
2739 | | 2 3 4 5 n | |
2740 | | x x x x x x x | |
2741 | | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... | |
2742 | | 1! 2! 3! 4! 5! n! | |
2743 | *----------------------------------------------------------------------------*/ | |
2744 | ||
2745 | static const float64 float32_exp2_coefficients[15] = | |
2746 | { | |
d5138cf4 PM |
2747 | const_float64( 0x3ff0000000000000ll ), /* 1 */ |
2748 | const_float64( 0x3fe0000000000000ll ), /* 2 */ | |
2749 | const_float64( 0x3fc5555555555555ll ), /* 3 */ | |
2750 | const_float64( 0x3fa5555555555555ll ), /* 4 */ | |
2751 | const_float64( 0x3f81111111111111ll ), /* 5 */ | |
2752 | const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ | |
2753 | const_float64( 0x3f2a01a01a01a01all ), /* 7 */ | |
2754 | const_float64( 0x3efa01a01a01a01all ), /* 8 */ | |
2755 | const_float64( 0x3ec71de3a556c734ll ), /* 9 */ | |
2756 | const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ | |
2757 | const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ | |
2758 | const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ | |
2759 | const_float64( 0x3de6124613a86d09ll ), /* 13 */ | |
2760 | const_float64( 0x3da93974a8c07c9dll ), /* 14 */ | |
2761 | const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ | |
8229c991 AJ |
2762 | }; |
2763 | ||
e5a41ffa | 2764 | float32 float32_exp2(float32 a, float_status *status) |
8229c991 AJ |
2765 | { |
2766 | flag aSign; | |
0c48262d | 2767 | int aExp; |
bb98fe42 | 2768 | uint32_t aSig; |
8229c991 AJ |
2769 | float64 r, x, xn; |
2770 | int i; | |
ff32e16e | 2771 | a = float32_squash_input_denormal(a, status); |
8229c991 AJ |
2772 | |
2773 | aSig = extractFloat32Frac( a ); | |
2774 | aExp = extractFloat32Exp( a ); | |
2775 | aSign = extractFloat32Sign( a ); | |
2776 | ||
2777 | if ( aExp == 0xFF) { | |
ff32e16e PM |
2778 | if (aSig) { |
2779 | return propagateFloat32NaN(a, float32_zero, status); | |
2780 | } | |
8229c991 AJ |
2781 | return (aSign) ? float32_zero : a; |
2782 | } | |
2783 | if (aExp == 0) { | |
2784 | if (aSig == 0) return float32_one; | |
2785 | } | |
2786 | ||
ff32e16e | 2787 | float_raise(float_flag_inexact, status); |
8229c991 AJ |
2788 | |
2789 | /* ******************************* */ | |
2790 | /* using float64 for approximation */ | |
2791 | /* ******************************* */ | |
ff32e16e PM |
2792 | x = float32_to_float64(a, status); |
2793 | x = float64_mul(x, float64_ln2, status); | |
8229c991 AJ |
2794 | |
2795 | xn = x; | |
2796 | r = float64_one; | |
2797 | for (i = 0 ; i < 15 ; i++) { | |
2798 | float64 f; | |
2799 | ||
ff32e16e PM |
2800 | f = float64_mul(xn, float32_exp2_coefficients[i], status); |
2801 | r = float64_add(r, f, status); | |
8229c991 | 2802 | |
ff32e16e | 2803 | xn = float64_mul(xn, x, status); |
8229c991 AJ |
2804 | } |
2805 | ||
2806 | return float64_to_float32(r, status); | |
2807 | } | |
2808 | ||
374dfc33 AJ |
2809 | /*---------------------------------------------------------------------------- |
2810 | | Returns the binary log of the single-precision floating-point value `a'. | |
2811 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
2812 | | Floating-Point Arithmetic. | |
2813 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 2814 | float32 float32_log2(float32 a, float_status *status) |
374dfc33 AJ |
2815 | { |
2816 | flag aSign, zSign; | |
0c48262d | 2817 | int aExp; |
bb98fe42 | 2818 | uint32_t aSig, zSig, i; |
374dfc33 | 2819 | |
ff32e16e | 2820 | a = float32_squash_input_denormal(a, status); |
374dfc33 AJ |
2821 | aSig = extractFloat32Frac( a ); |
2822 | aExp = extractFloat32Exp( a ); | |
2823 | aSign = extractFloat32Sign( a ); | |
2824 | ||
2825 | if ( aExp == 0 ) { | |
2826 | if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); | |
2827 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2828 | } | |
2829 | if ( aSign ) { | |
ff32e16e | 2830 | float_raise(float_flag_invalid, status); |
af39bc8c | 2831 | return float32_default_nan(status); |
374dfc33 AJ |
2832 | } |
2833 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2834 | if (aSig) { |
2835 | return propagateFloat32NaN(a, float32_zero, status); | |
2836 | } | |
374dfc33 AJ |
2837 | return a; |
2838 | } | |
2839 | ||
2840 | aExp -= 0x7F; | |
2841 | aSig |= 0x00800000; | |
2842 | zSign = aExp < 0; | |
2843 | zSig = aExp << 23; | |
2844 | ||
2845 | for (i = 1 << 22; i > 0; i >>= 1) { | |
bb98fe42 | 2846 | aSig = ( (uint64_t)aSig * aSig ) >> 23; |
374dfc33 AJ |
2847 | if ( aSig & 0x01000000 ) { |
2848 | aSig >>= 1; | |
2849 | zSig |= i; | |
2850 | } | |
2851 | } | |
2852 | ||
2853 | if ( zSign ) | |
2854 | zSig = -zSig; | |
2855 | ||
ff32e16e | 2856 | return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status); |
374dfc33 AJ |
2857 | } |
2858 | ||
158142c2 FB |
2859 | /*---------------------------------------------------------------------------- |
2860 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
b689362d AJ |
2861 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
2862 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
2863 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
2864 | *----------------------------------------------------------------------------*/ | |
2865 | ||
e5a41ffa | 2866 | int float32_eq(float32 a, float32 b, float_status *status) |
158142c2 | 2867 | { |
b689362d | 2868 | uint32_t av, bv; |
ff32e16e PM |
2869 | a = float32_squash_input_denormal(a, status); |
2870 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2871 | |
2872 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2873 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2874 | ) { | |
ff32e16e | 2875 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2876 | return 0; |
2877 | } | |
b689362d AJ |
2878 | av = float32_val(a); |
2879 | bv = float32_val(b); | |
2880 | return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); | |
158142c2 FB |
2881 | } |
2882 | ||
2883 | /*---------------------------------------------------------------------------- | |
2884 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
2885 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
2886 | | exception is raised if either operand is a NaN. The comparison is performed | |
2887 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2888 | *----------------------------------------------------------------------------*/ |
2889 | ||
e5a41ffa | 2890 | int float32_le(float32 a, float32 b, float_status *status) |
158142c2 FB |
2891 | { |
2892 | flag aSign, bSign; | |
bb98fe42 | 2893 | uint32_t av, bv; |
ff32e16e PM |
2894 | a = float32_squash_input_denormal(a, status); |
2895 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2896 | |
2897 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2898 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2899 | ) { | |
ff32e16e | 2900 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2901 | return 0; |
2902 | } | |
2903 | aSign = extractFloat32Sign( a ); | |
2904 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2905 | av = float32_val(a); |
2906 | bv = float32_val(b); | |
bb98fe42 | 2907 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 2908 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2909 | |
2910 | } | |
2911 | ||
2912 | /*---------------------------------------------------------------------------- | |
2913 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
2914 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
2915 | | raised if either operand is a NaN. The comparison is performed according | |
2916 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2917 | *----------------------------------------------------------------------------*/ |
2918 | ||
e5a41ffa | 2919 | int float32_lt(float32 a, float32 b, float_status *status) |
158142c2 FB |
2920 | { |
2921 | flag aSign, bSign; | |
bb98fe42 | 2922 | uint32_t av, bv; |
ff32e16e PM |
2923 | a = float32_squash_input_denormal(a, status); |
2924 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2925 | |
2926 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2927 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2928 | ) { | |
ff32e16e | 2929 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2930 | return 0; |
2931 | } | |
2932 | aSign = extractFloat32Sign( a ); | |
2933 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2934 | av = float32_val(a); |
2935 | bv = float32_val(b); | |
bb98fe42 | 2936 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 2937 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2938 | |
2939 | } | |
2940 | ||
67b7861d AJ |
2941 | /*---------------------------------------------------------------------------- |
2942 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
2943 | | be compared, and 0 otherwise. The invalid exception is raised if either |
2944 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
2945 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
2946 | *----------------------------------------------------------------------------*/ |
2947 | ||
e5a41ffa | 2948 | int float32_unordered(float32 a, float32 b, float_status *status) |
67b7861d | 2949 | { |
ff32e16e PM |
2950 | a = float32_squash_input_denormal(a, status); |
2951 | b = float32_squash_input_denormal(b, status); | |
67b7861d AJ |
2952 | |
2953 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2954 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2955 | ) { | |
ff32e16e | 2956 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
2957 | return 1; |
2958 | } | |
2959 | return 0; | |
2960 | } | |
b689362d | 2961 | |
158142c2 FB |
2962 | /*---------------------------------------------------------------------------- |
2963 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
f5a64251 AJ |
2964 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
2965 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
2966 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2967 | *----------------------------------------------------------------------------*/ |
2968 | ||
e5a41ffa | 2969 | int float32_eq_quiet(float32 a, float32 b, float_status *status) |
158142c2 | 2970 | { |
ff32e16e PM |
2971 | a = float32_squash_input_denormal(a, status); |
2972 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2973 | |
2974 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2975 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2976 | ) { | |
af39bc8c AM |
2977 | if (float32_is_signaling_nan(a, status) |
2978 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 2979 | float_raise(float_flag_invalid, status); |
b689362d | 2980 | } |
158142c2 FB |
2981 | return 0; |
2982 | } | |
b689362d AJ |
2983 | return ( float32_val(a) == float32_val(b) ) || |
2984 | ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); | |
158142c2 FB |
2985 | } |
2986 | ||
2987 | /*---------------------------------------------------------------------------- | |
2988 | | Returns 1 if the single-precision floating-point value `a' is less than or | |
2989 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
2990 | | cause an exception. Otherwise, the comparison is performed according to the | |
2991 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2992 | *----------------------------------------------------------------------------*/ | |
2993 | ||
e5a41ffa | 2994 | int float32_le_quiet(float32 a, float32 b, float_status *status) |
158142c2 FB |
2995 | { |
2996 | flag aSign, bSign; | |
bb98fe42 | 2997 | uint32_t av, bv; |
ff32e16e PM |
2998 | a = float32_squash_input_denormal(a, status); |
2999 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3000 | |
3001 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3002 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3003 | ) { | |
af39bc8c AM |
3004 | if (float32_is_signaling_nan(a, status) |
3005 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 3006 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3007 | } |
3008 | return 0; | |
3009 | } | |
3010 | aSign = extractFloat32Sign( a ); | |
3011 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3012 | av = float32_val(a); |
3013 | bv = float32_val(b); | |
bb98fe42 | 3014 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 3015 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3016 | |
3017 | } | |
3018 | ||
3019 | /*---------------------------------------------------------------------------- | |
3020 | | Returns 1 if the single-precision floating-point value `a' is less than | |
3021 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
3022 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
3023 | | Standard for Binary Floating-Point Arithmetic. | |
3024 | *----------------------------------------------------------------------------*/ | |
3025 | ||
e5a41ffa | 3026 | int float32_lt_quiet(float32 a, float32 b, float_status *status) |
158142c2 FB |
3027 | { |
3028 | flag aSign, bSign; | |
bb98fe42 | 3029 | uint32_t av, bv; |
ff32e16e PM |
3030 | a = float32_squash_input_denormal(a, status); |
3031 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3032 | |
3033 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3034 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3035 | ) { | |
af39bc8c AM |
3036 | if (float32_is_signaling_nan(a, status) |
3037 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 3038 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3039 | } |
3040 | return 0; | |
3041 | } | |
3042 | aSign = extractFloat32Sign( a ); | |
3043 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3044 | av = float32_val(a); |
3045 | bv = float32_val(b); | |
bb98fe42 | 3046 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 3047 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3048 | |
3049 | } | |
3050 | ||
67b7861d AJ |
3051 | /*---------------------------------------------------------------------------- |
3052 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
3053 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
3054 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
3055 | | Floating-Point Arithmetic. | |
3056 | *----------------------------------------------------------------------------*/ | |
3057 | ||
e5a41ffa | 3058 | int float32_unordered_quiet(float32 a, float32 b, float_status *status) |
67b7861d | 3059 | { |
ff32e16e PM |
3060 | a = float32_squash_input_denormal(a, status); |
3061 | b = float32_squash_input_denormal(b, status); | |
67b7861d AJ |
3062 | |
3063 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3064 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3065 | ) { | |
af39bc8c AM |
3066 | if (float32_is_signaling_nan(a, status) |
3067 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 3068 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
3069 | } |
3070 | return 1; | |
3071 | } | |
3072 | return 0; | |
3073 | } | |
3074 | ||
158142c2 FB |
3075 | /*---------------------------------------------------------------------------- |
3076 | | Returns the result of converting the double-precision floating-point value | |
3077 | | `a' to the 32-bit two's complement integer format. The conversion is | |
3078 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3079 | | Arithmetic---which means in particular that the conversion is rounded | |
3080 | | according to the current rounding mode. If `a' is a NaN, the largest | |
3081 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
3082 | | largest integer with the same sign as `a' is returned. | |
3083 | *----------------------------------------------------------------------------*/ | |
3084 | ||
f4014512 | 3085 | int32_t float64_to_int32(float64 a, float_status *status) |
158142c2 FB |
3086 | { |
3087 | flag aSign; | |
0c48262d | 3088 | int aExp; |
07d792d2 | 3089 | int shiftCount; |
bb98fe42 | 3090 | uint64_t aSig; |
ff32e16e | 3091 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3092 | |
3093 | aSig = extractFloat64Frac( a ); | |
3094 | aExp = extractFloat64Exp( a ); | |
3095 | aSign = extractFloat64Sign( a ); | |
3096 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
3097 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3098 | shiftCount = 0x42C - aExp; | |
3099 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | |
ff32e16e | 3100 | return roundAndPackInt32(aSign, aSig, status); |
158142c2 FB |
3101 | |
3102 | } | |
3103 | ||
3104 | /*---------------------------------------------------------------------------- | |
3105 | | Returns the result of converting the double-precision floating-point value | |
3106 | | `a' to the 32-bit two's complement integer format. The conversion is | |
3107 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3108 | | Arithmetic, except that the conversion is always rounded toward zero. | |
3109 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
3110 | | the conversion overflows, the largest integer with the same sign as `a' is | |
3111 | | returned. | |
3112 | *----------------------------------------------------------------------------*/ | |
3113 | ||
f4014512 | 3114 | int32_t float64_to_int32_round_to_zero(float64 a, float_status *status) |
158142c2 FB |
3115 | { |
3116 | flag aSign; | |
0c48262d | 3117 | int aExp; |
07d792d2 | 3118 | int shiftCount; |
bb98fe42 | 3119 | uint64_t aSig, savedASig; |
b3a6a2e0 | 3120 | int32_t z; |
ff32e16e | 3121 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3122 | |
3123 | aSig = extractFloat64Frac( a ); | |
3124 | aExp = extractFloat64Exp( a ); | |
3125 | aSign = extractFloat64Sign( a ); | |
3126 | if ( 0x41E < aExp ) { | |
3127 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
3128 | goto invalid; | |
3129 | } | |
3130 | else if ( aExp < 0x3FF ) { | |
a2f2d288 PM |
3131 | if (aExp || aSig) { |
3132 | status->float_exception_flags |= float_flag_inexact; | |
3133 | } | |
158142c2 FB |
3134 | return 0; |
3135 | } | |
3136 | aSig |= LIT64( 0x0010000000000000 ); | |
3137 | shiftCount = 0x433 - aExp; | |
3138 | savedASig = aSig; | |
3139 | aSig >>= shiftCount; | |
3140 | z = aSig; | |
3141 | if ( aSign ) z = - z; | |
3142 | if ( ( z < 0 ) ^ aSign ) { | |
3143 | invalid: | |
ff32e16e | 3144 | float_raise(float_flag_invalid, status); |
bb98fe42 | 3145 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
3146 | } |
3147 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 3148 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
3149 | } |
3150 | return z; | |
3151 | ||
3152 | } | |
3153 | ||
cbcef455 PM |
3154 | /*---------------------------------------------------------------------------- |
3155 | | Returns the result of converting the double-precision floating-point value | |
3156 | | `a' to the 16-bit two's complement integer format. The conversion is | |
3157 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3158 | | Arithmetic, except that the conversion is always rounded toward zero. | |
3159 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
3160 | | the conversion overflows, the largest integer with the same sign as `a' is | |
3161 | | returned. | |
3162 | *----------------------------------------------------------------------------*/ | |
3163 | ||
0bb721d7 | 3164 | int16_t float64_to_int16_round_to_zero(float64 a, float_status *status) |
cbcef455 PM |
3165 | { |
3166 | flag aSign; | |
0c48262d | 3167 | int aExp; |
07d792d2 | 3168 | int shiftCount; |
bb98fe42 | 3169 | uint64_t aSig, savedASig; |
f4014512 | 3170 | int32_t z; |
cbcef455 PM |
3171 | |
3172 | aSig = extractFloat64Frac( a ); | |
3173 | aExp = extractFloat64Exp( a ); | |
3174 | aSign = extractFloat64Sign( a ); | |
3175 | if ( 0x40E < aExp ) { | |
3176 | if ( ( aExp == 0x7FF ) && aSig ) { | |
3177 | aSign = 0; | |
3178 | } | |
3179 | goto invalid; | |
3180 | } | |
3181 | else if ( aExp < 0x3FF ) { | |
3182 | if ( aExp || aSig ) { | |
a2f2d288 | 3183 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
3184 | } |
3185 | return 0; | |
3186 | } | |
3187 | aSig |= LIT64( 0x0010000000000000 ); | |
3188 | shiftCount = 0x433 - aExp; | |
3189 | savedASig = aSig; | |
3190 | aSig >>= shiftCount; | |
3191 | z = aSig; | |
3192 | if ( aSign ) { | |
3193 | z = - z; | |
3194 | } | |
3195 | if ( ( (int16_t)z < 0 ) ^ aSign ) { | |
3196 | invalid: | |
ff32e16e | 3197 | float_raise(float_flag_invalid, status); |
bb98fe42 | 3198 | return aSign ? (int32_t) 0xffff8000 : 0x7FFF; |
cbcef455 PM |
3199 | } |
3200 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 3201 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
3202 | } |
3203 | return z; | |
3204 | } | |
3205 | ||
158142c2 FB |
3206 | /*---------------------------------------------------------------------------- |
3207 | | Returns the result of converting the double-precision floating-point value | |
3208 | | `a' to the 64-bit two's complement integer format. The conversion is | |
3209 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3210 | | Arithmetic---which means in particular that the conversion is rounded | |
3211 | | according to the current rounding mode. If `a' is a NaN, the largest | |
3212 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
3213 | | largest integer with the same sign as `a' is returned. | |
3214 | *----------------------------------------------------------------------------*/ | |
3215 | ||
f42c2224 | 3216 | int64_t float64_to_int64(float64 a, float_status *status) |
158142c2 FB |
3217 | { |
3218 | flag aSign; | |
0c48262d | 3219 | int aExp; |
07d792d2 | 3220 | int shiftCount; |
bb98fe42 | 3221 | uint64_t aSig, aSigExtra; |
ff32e16e | 3222 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3223 | |
3224 | aSig = extractFloat64Frac( a ); | |
3225 | aExp = extractFloat64Exp( a ); | |
3226 | aSign = extractFloat64Sign( a ); | |
3227 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3228 | shiftCount = 0x433 - aExp; | |
3229 | if ( shiftCount <= 0 ) { | |
3230 | if ( 0x43E < aExp ) { | |
ff32e16e | 3231 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3232 | if ( ! aSign |
3233 | || ( ( aExp == 0x7FF ) | |
3234 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
3235 | ) { | |
3236 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3237 | } | |
bb98fe42 | 3238 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
3239 | } |
3240 | aSigExtra = 0; | |
3241 | aSig <<= - shiftCount; | |
3242 | } | |
3243 | else { | |
3244 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
3245 | } | |
ff32e16e | 3246 | return roundAndPackInt64(aSign, aSig, aSigExtra, status); |
158142c2 FB |
3247 | |
3248 | } | |
3249 | ||
3250 | /*---------------------------------------------------------------------------- | |
3251 | | Returns the result of converting the double-precision floating-point value | |
3252 | | `a' to the 64-bit two's complement integer format. The conversion is | |
3253 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3254 | | Arithmetic, except that the conversion is always rounded toward zero. | |
3255 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
3256 | | the conversion overflows, the largest integer with the same sign as `a' is | |
3257 | | returned. | |
3258 | *----------------------------------------------------------------------------*/ | |
3259 | ||
f42c2224 | 3260 | int64_t float64_to_int64_round_to_zero(float64 a, float_status *status) |
158142c2 FB |
3261 | { |
3262 | flag aSign; | |
0c48262d | 3263 | int aExp; |
07d792d2 | 3264 | int shiftCount; |
bb98fe42 | 3265 | uint64_t aSig; |
f42c2224 | 3266 | int64_t z; |
ff32e16e | 3267 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3268 | |
3269 | aSig = extractFloat64Frac( a ); | |
3270 | aExp = extractFloat64Exp( a ); | |
3271 | aSign = extractFloat64Sign( a ); | |
3272 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3273 | shiftCount = aExp - 0x433; | |
3274 | if ( 0 <= shiftCount ) { | |
3275 | if ( 0x43E <= aExp ) { | |
f090c9d4 | 3276 | if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) { |
ff32e16e | 3277 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3278 | if ( ! aSign |
3279 | || ( ( aExp == 0x7FF ) | |
3280 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
3281 | ) { | |
3282 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3283 | } | |
3284 | } | |
bb98fe42 | 3285 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
3286 | } |
3287 | z = aSig<<shiftCount; | |
3288 | } | |
3289 | else { | |
3290 | if ( aExp < 0x3FE ) { | |
a2f2d288 PM |
3291 | if (aExp | aSig) { |
3292 | status->float_exception_flags |= float_flag_inexact; | |
3293 | } | |
158142c2 FB |
3294 | return 0; |
3295 | } | |
3296 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 3297 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 3298 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
3299 | } |
3300 | } | |
3301 | if ( aSign ) z = - z; | |
3302 | return z; | |
3303 | ||
3304 | } | |
3305 | ||
3306 | /*---------------------------------------------------------------------------- | |
3307 | | Returns the result of converting the double-precision floating-point value | |
3308 | | `a' to the single-precision floating-point format. The conversion is | |
3309 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3310 | | Arithmetic. | |
3311 | *----------------------------------------------------------------------------*/ | |
3312 | ||
e5a41ffa | 3313 | float32 float64_to_float32(float64 a, float_status *status) |
158142c2 FB |
3314 | { |
3315 | flag aSign; | |
0c48262d | 3316 | int aExp; |
bb98fe42 AF |
3317 | uint64_t aSig; |
3318 | uint32_t zSig; | |
ff32e16e | 3319 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3320 | |
3321 | aSig = extractFloat64Frac( a ); | |
3322 | aExp = extractFloat64Exp( a ); | |
3323 | aSign = extractFloat64Sign( a ); | |
3324 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3325 | if (aSig) { |
3326 | return commonNaNToFloat32(float64ToCommonNaN(a, status), status); | |
3327 | } | |
158142c2 FB |
3328 | return packFloat32( aSign, 0xFF, 0 ); |
3329 | } | |
3330 | shift64RightJamming( aSig, 22, &aSig ); | |
3331 | zSig = aSig; | |
3332 | if ( aExp || zSig ) { | |
3333 | zSig |= 0x40000000; | |
3334 | aExp -= 0x381; | |
3335 | } | |
ff32e16e | 3336 | return roundAndPackFloat32(aSign, aExp, zSig, status); |
158142c2 FB |
3337 | |
3338 | } | |
3339 | ||
60011498 PB |
3340 | |
3341 | /*---------------------------------------------------------------------------- | |
3342 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
3343 | | half-precision floating-point value, returning the result. After being | |
3344 | | shifted into the proper positions, the three fields are simply added | |
3345 | | together to form the result. This means that any integer portion of `zSig' | |
3346 | | will be added into the exponent. Since a properly normalized significand | |
3347 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
3348 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
3349 | | significand. | |
3350 | *----------------------------------------------------------------------------*/ | |
0c48262d | 3351 | static float16 packFloat16(flag zSign, int zExp, uint16_t zSig) |
60011498 | 3352 | { |
bb4d4bb3 | 3353 | return make_float16( |
bb98fe42 | 3354 | (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig); |
60011498 PB |
3355 | } |
3356 | ||
c4a1c5e7 PM |
3357 | /*---------------------------------------------------------------------------- |
3358 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3359 | | and significand `zSig', and returns the proper half-precision floating- | |
3360 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
3361 | | value is simply rounded and packed into the half-precision format, with | |
3362 | | the inexact exception raised if the abstract input cannot be represented | |
3363 | | exactly. However, if the abstract value is too large, the overflow and | |
3364 | | inexact exceptions are raised and an infinity or maximal finite value is | |
3365 | | returned. If the abstract value is too small, the input value is rounded to | |
3366 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
3367 | | the abstract input cannot be represented exactly as a subnormal half- | |
3368 | | precision floating-point number. | |
3369 | | The `ieee' flag indicates whether to use IEEE standard half precision, or | |
3370 | | ARM-style "alternative representation", which omits the NaN and Inf | |
3371 | | encodings in order to raise the maximum representable exponent by one. | |
3372 | | The input significand `zSig' has its binary point between bits 22 | |
3373 | | and 23, which is 13 bits to the left of the usual location. This shifted | |
3374 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
3375 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
3376 | | and it must not require rounding. In the usual case that `zSig' is | |
3377 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
3378 | | Note the slightly odd position of the binary point in zSig compared with the | |
3379 | | other roundAndPackFloat functions. This should probably be fixed if we | |
3380 | | need to implement more float16 routines than just conversion. | |
3381 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
3382 | | Binary Floating-Point Arithmetic. | |
3383 | *----------------------------------------------------------------------------*/ | |
3384 | ||
0c48262d | 3385 | static float16 roundAndPackFloat16(flag zSign, int zExp, |
e5a41ffa PM |
3386 | uint32_t zSig, flag ieee, |
3387 | float_status *status) | |
c4a1c5e7 PM |
3388 | { |
3389 | int maxexp = ieee ? 29 : 30; | |
3390 | uint32_t mask; | |
3391 | uint32_t increment; | |
c4a1c5e7 PM |
3392 | bool rounding_bumps_exp; |
3393 | bool is_tiny = false; | |
3394 | ||
3395 | /* Calculate the mask of bits of the mantissa which are not | |
3396 | * representable in half-precision and will be lost. | |
3397 | */ | |
3398 | if (zExp < 1) { | |
3399 | /* Will be denormal in halfprec */ | |
3400 | mask = 0x00ffffff; | |
3401 | if (zExp >= -11) { | |
3402 | mask >>= 11 + zExp; | |
3403 | } | |
3404 | } else { | |
3405 | /* Normal number in halfprec */ | |
3406 | mask = 0x00001fff; | |
3407 | } | |
3408 | ||
a2f2d288 | 3409 | switch (status->float_rounding_mode) { |
c4a1c5e7 PM |
3410 | case float_round_nearest_even: |
3411 | increment = (mask + 1) >> 1; | |
3412 | if ((zSig & mask) == increment) { | |
3413 | increment = zSig & (increment << 1); | |
3414 | } | |
3415 | break; | |
f9288a76 PM |
3416 | case float_round_ties_away: |
3417 | increment = (mask + 1) >> 1; | |
3418 | break; | |
c4a1c5e7 PM |
3419 | case float_round_up: |
3420 | increment = zSign ? 0 : mask; | |
3421 | break; | |
3422 | case float_round_down: | |
3423 | increment = zSign ? mask : 0; | |
3424 | break; | |
3425 | default: /* round_to_zero */ | |
3426 | increment = 0; | |
3427 | break; | |
3428 | } | |
3429 | ||
3430 | rounding_bumps_exp = (zSig + increment >= 0x01000000); | |
3431 | ||
3432 | if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) { | |
3433 | if (ieee) { | |
ff32e16e | 3434 | float_raise(float_flag_overflow | float_flag_inexact, status); |
c4a1c5e7 PM |
3435 | return packFloat16(zSign, 0x1f, 0); |
3436 | } else { | |
ff32e16e | 3437 | float_raise(float_flag_invalid, status); |
c4a1c5e7 PM |
3438 | return packFloat16(zSign, 0x1f, 0x3ff); |
3439 | } | |
3440 | } | |
3441 | ||
3442 | if (zExp < 0) { | |
3443 | /* Note that flush-to-zero does not affect half-precision results */ | |
3444 | is_tiny = | |
a2f2d288 | 3445 | (status->float_detect_tininess == float_tininess_before_rounding) |
c4a1c5e7 PM |
3446 | || (zExp < -1) |
3447 | || (!rounding_bumps_exp); | |
3448 | } | |
3449 | if (zSig & mask) { | |
ff32e16e | 3450 | float_raise(float_flag_inexact, status); |
c4a1c5e7 | 3451 | if (is_tiny) { |
ff32e16e | 3452 | float_raise(float_flag_underflow, status); |
c4a1c5e7 PM |
3453 | } |
3454 | } | |
3455 | ||
3456 | zSig += increment; | |
3457 | if (rounding_bumps_exp) { | |
3458 | zSig >>= 1; | |
3459 | zExp++; | |
3460 | } | |
3461 | ||
3462 | if (zExp < -10) { | |
3463 | return packFloat16(zSign, 0, 0); | |
3464 | } | |
3465 | if (zExp < 0) { | |
3466 | zSig >>= -zExp; | |
3467 | zExp = 0; | |
3468 | } | |
3469 | return packFloat16(zSign, zExp, zSig >> 13); | |
3470 | } | |
3471 | ||
0c48262d | 3472 | static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr, |
c4a1c5e7 PM |
3473 | uint32_t *zSigPtr) |
3474 | { | |
3475 | int8_t shiftCount = countLeadingZeros32(aSig) - 21; | |
3476 | *zSigPtr = aSig << shiftCount; | |
3477 | *zExpPtr = 1 - shiftCount; | |
3478 | } | |
3479 | ||
60011498 PB |
3480 | /* Half precision floats come in two formats: standard IEEE and "ARM" format. |
3481 | The latter gains extra exponent range by omitting the NaN/Inf encodings. */ | |
bb4d4bb3 | 3482 | |
e5a41ffa | 3483 | float32 float16_to_float32(float16 a, flag ieee, float_status *status) |
60011498 PB |
3484 | { |
3485 | flag aSign; | |
0c48262d | 3486 | int aExp; |
bb98fe42 | 3487 | uint32_t aSig; |
60011498 | 3488 | |
bb4d4bb3 PM |
3489 | aSign = extractFloat16Sign(a); |
3490 | aExp = extractFloat16Exp(a); | |
3491 | aSig = extractFloat16Frac(a); | |
60011498 PB |
3492 | |
3493 | if (aExp == 0x1f && ieee) { | |
3494 | if (aSig) { | |
ff32e16e | 3495 | return commonNaNToFloat32(float16ToCommonNaN(a, status), status); |
60011498 | 3496 | } |
4be8eeac | 3497 | return packFloat32(aSign, 0xff, 0); |
60011498 PB |
3498 | } |
3499 | if (aExp == 0) { | |
60011498 PB |
3500 | if (aSig == 0) { |
3501 | return packFloat32(aSign, 0, 0); | |
3502 | } | |
3503 | ||
c4a1c5e7 PM |
3504 | normalizeFloat16Subnormal(aSig, &aExp, &aSig); |
3505 | aExp--; | |
60011498 PB |
3506 | } |
3507 | return packFloat32( aSign, aExp + 0x70, aSig << 13); | |
3508 | } | |
3509 | ||
e5a41ffa | 3510 | float16 float32_to_float16(float32 a, flag ieee, float_status *status) |
60011498 PB |
3511 | { |
3512 | flag aSign; | |
0c48262d | 3513 | int aExp; |
bb98fe42 | 3514 | uint32_t aSig; |
38970efa | 3515 | |
ff32e16e | 3516 | a = float32_squash_input_denormal(a, status); |
60011498 PB |
3517 | |
3518 | aSig = extractFloat32Frac( a ); | |
3519 | aExp = extractFloat32Exp( a ); | |
3520 | aSign = extractFloat32Sign( a ); | |
3521 | if ( aExp == 0xFF ) { | |
3522 | if (aSig) { | |
600e30d2 | 3523 | /* Input is a NaN */ |
600e30d2 | 3524 | if (!ieee) { |
ff32e16e | 3525 | float_raise(float_flag_invalid, status); |
600e30d2 PM |
3526 | return packFloat16(aSign, 0, 0); |
3527 | } | |
38970efa | 3528 | return commonNaNToFloat16( |
ff32e16e | 3529 | float32ToCommonNaN(a, status), status); |
60011498 | 3530 | } |
600e30d2 PM |
3531 | /* Infinity */ |
3532 | if (!ieee) { | |
ff32e16e | 3533 | float_raise(float_flag_invalid, status); |
600e30d2 PM |
3534 | return packFloat16(aSign, 0x1f, 0x3ff); |
3535 | } | |
3536 | return packFloat16(aSign, 0x1f, 0); | |
60011498 | 3537 | } |
600e30d2 | 3538 | if (aExp == 0 && aSig == 0) { |
60011498 PB |
3539 | return packFloat16(aSign, 0, 0); |
3540 | } | |
38970efa PM |
3541 | /* Decimal point between bits 22 and 23. Note that we add the 1 bit |
3542 | * even if the input is denormal; however this is harmless because | |
3543 | * the largest possible single-precision denormal is still smaller | |
3544 | * than the smallest representable half-precision denormal, and so we | |
3545 | * will end up ignoring aSig and returning via the "always return zero" | |
3546 | * codepath. | |
3547 | */ | |
60011498 | 3548 | aSig |= 0x00800000; |
c4a1c5e7 | 3549 | aExp -= 0x71; |
60011498 | 3550 | |
ff32e16e | 3551 | return roundAndPackFloat16(aSign, aExp, aSig, ieee, status); |
60011498 PB |
3552 | } |
3553 | ||
e5a41ffa | 3554 | float64 float16_to_float64(float16 a, flag ieee, float_status *status) |
14c9a07e PM |
3555 | { |
3556 | flag aSign; | |
0c48262d | 3557 | int aExp; |
14c9a07e PM |
3558 | uint32_t aSig; |
3559 | ||
3560 | aSign = extractFloat16Sign(a); | |
3561 | aExp = extractFloat16Exp(a); | |
3562 | aSig = extractFloat16Frac(a); | |
3563 | ||
3564 | if (aExp == 0x1f && ieee) { | |
3565 | if (aSig) { | |
3566 | return commonNaNToFloat64( | |
ff32e16e | 3567 | float16ToCommonNaN(a, status), status); |
14c9a07e PM |
3568 | } |
3569 | return packFloat64(aSign, 0x7ff, 0); | |
3570 | } | |
3571 | if (aExp == 0) { | |
3572 | if (aSig == 0) { | |
3573 | return packFloat64(aSign, 0, 0); | |
3574 | } | |
3575 | ||
3576 | normalizeFloat16Subnormal(aSig, &aExp, &aSig); | |
3577 | aExp--; | |
3578 | } | |
3579 | return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42); | |
3580 | } | |
3581 | ||
e5a41ffa | 3582 | float16 float64_to_float16(float64 a, flag ieee, float_status *status) |
14c9a07e PM |
3583 | { |
3584 | flag aSign; | |
0c48262d | 3585 | int aExp; |
14c9a07e PM |
3586 | uint64_t aSig; |
3587 | uint32_t zSig; | |
3588 | ||
ff32e16e | 3589 | a = float64_squash_input_denormal(a, status); |
14c9a07e PM |
3590 | |
3591 | aSig = extractFloat64Frac(a); | |
3592 | aExp = extractFloat64Exp(a); | |
3593 | aSign = extractFloat64Sign(a); | |
3594 | if (aExp == 0x7FF) { | |
3595 | if (aSig) { | |
3596 | /* Input is a NaN */ | |
3597 | if (!ieee) { | |
ff32e16e | 3598 | float_raise(float_flag_invalid, status); |
14c9a07e PM |
3599 | return packFloat16(aSign, 0, 0); |
3600 | } | |
3601 | return commonNaNToFloat16( | |
ff32e16e | 3602 | float64ToCommonNaN(a, status), status); |
14c9a07e PM |
3603 | } |
3604 | /* Infinity */ | |
3605 | if (!ieee) { | |
ff32e16e | 3606 | float_raise(float_flag_invalid, status); |
14c9a07e PM |
3607 | return packFloat16(aSign, 0x1f, 0x3ff); |
3608 | } | |
3609 | return packFloat16(aSign, 0x1f, 0); | |
3610 | } | |
3611 | shift64RightJamming(aSig, 29, &aSig); | |
3612 | zSig = aSig; | |
3613 | if (aExp == 0 && zSig == 0) { | |
3614 | return packFloat16(aSign, 0, 0); | |
3615 | } | |
3616 | /* Decimal point between bits 22 and 23. Note that we add the 1 bit | |
3617 | * even if the input is denormal; however this is harmless because | |
3618 | * the largest possible single-precision denormal is still smaller | |
3619 | * than the smallest representable half-precision denormal, and so we | |
3620 | * will end up ignoring aSig and returning via the "always return zero" | |
3621 | * codepath. | |
3622 | */ | |
3623 | zSig |= 0x00800000; | |
3624 | aExp -= 0x3F1; | |
3625 | ||
ff32e16e | 3626 | return roundAndPackFloat16(aSign, aExp, zSig, ieee, status); |
14c9a07e PM |
3627 | } |
3628 | ||
158142c2 FB |
3629 | /*---------------------------------------------------------------------------- |
3630 | | Returns the result of converting the double-precision floating-point value | |
3631 | | `a' to the extended double-precision floating-point format. The conversion | |
3632 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3633 | | Arithmetic. | |
3634 | *----------------------------------------------------------------------------*/ | |
3635 | ||
e5a41ffa | 3636 | floatx80 float64_to_floatx80(float64 a, float_status *status) |
158142c2 FB |
3637 | { |
3638 | flag aSign; | |
0c48262d | 3639 | int aExp; |
bb98fe42 | 3640 | uint64_t aSig; |
158142c2 | 3641 | |
ff32e16e | 3642 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3643 | aSig = extractFloat64Frac( a ); |
3644 | aExp = extractFloat64Exp( a ); | |
3645 | aSign = extractFloat64Sign( a ); | |
3646 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3647 | if (aSig) { |
3648 | return commonNaNToFloatx80(float64ToCommonNaN(a, status), status); | |
3649 | } | |
158142c2 FB |
3650 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
3651 | } | |
3652 | if ( aExp == 0 ) { | |
3653 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
3654 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3655 | } | |
3656 | return | |
3657 | packFloatx80( | |
3658 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | |
3659 | ||
3660 | } | |
3661 | ||
158142c2 FB |
3662 | /*---------------------------------------------------------------------------- |
3663 | | Returns the result of converting the double-precision floating-point value | |
3664 | | `a' to the quadruple-precision floating-point format. The conversion is | |
3665 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3666 | | Arithmetic. | |
3667 | *----------------------------------------------------------------------------*/ | |
3668 | ||
e5a41ffa | 3669 | float128 float64_to_float128(float64 a, float_status *status) |
158142c2 FB |
3670 | { |
3671 | flag aSign; | |
0c48262d | 3672 | int aExp; |
bb98fe42 | 3673 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 3674 | |
ff32e16e | 3675 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3676 | aSig = extractFloat64Frac( a ); |
3677 | aExp = extractFloat64Exp( a ); | |
3678 | aSign = extractFloat64Sign( a ); | |
3679 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3680 | if (aSig) { |
3681 | return commonNaNToFloat128(float64ToCommonNaN(a, status), status); | |
3682 | } | |
158142c2 FB |
3683 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
3684 | } | |
3685 | if ( aExp == 0 ) { | |
3686 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
3687 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3688 | --aExp; | |
3689 | } | |
3690 | shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); | |
3691 | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); | |
3692 | ||
3693 | } | |
3694 | ||
158142c2 FB |
3695 | /*---------------------------------------------------------------------------- |
3696 | | Rounds the double-precision floating-point value `a' to an integer, and | |
3697 | | returns the result as a double-precision floating-point value. The | |
3698 | | operation is performed according to the IEC/IEEE Standard for Binary | |
3699 | | Floating-Point Arithmetic. | |
3700 | *----------------------------------------------------------------------------*/ | |
3701 | ||
e5a41ffa | 3702 | float64 float64_round_to_int(float64 a, float_status *status) |
158142c2 FB |
3703 | { |
3704 | flag aSign; | |
0c48262d | 3705 | int aExp; |
bb98fe42 | 3706 | uint64_t lastBitMask, roundBitsMask; |
bb98fe42 | 3707 | uint64_t z; |
ff32e16e | 3708 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3709 | |
3710 | aExp = extractFloat64Exp( a ); | |
3711 | if ( 0x433 <= aExp ) { | |
3712 | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | |
ff32e16e | 3713 | return propagateFloat64NaN(a, a, status); |
158142c2 FB |
3714 | } |
3715 | return a; | |
3716 | } | |
3717 | if ( aExp < 0x3FF ) { | |
bb98fe42 | 3718 | if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a; |
a2f2d288 | 3719 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 3720 | aSign = extractFloat64Sign( a ); |
a2f2d288 | 3721 | switch (status->float_rounding_mode) { |
158142c2 FB |
3722 | case float_round_nearest_even: |
3723 | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | |
3724 | return packFloat64( aSign, 0x3FF, 0 ); | |
3725 | } | |
3726 | break; | |
f9288a76 PM |
3727 | case float_round_ties_away: |
3728 | if (aExp == 0x3FE) { | |
3729 | return packFloat64(aSign, 0x3ff, 0); | |
3730 | } | |
3731 | break; | |
158142c2 | 3732 | case float_round_down: |
f090c9d4 | 3733 | return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0); |
158142c2 | 3734 | case float_round_up: |
f090c9d4 PB |
3735 | return make_float64( |
3736 | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 )); | |
158142c2 FB |
3737 | } |
3738 | return packFloat64( aSign, 0, 0 ); | |
3739 | } | |
3740 | lastBitMask = 1; | |
3741 | lastBitMask <<= 0x433 - aExp; | |
3742 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 3743 | z = float64_val(a); |
a2f2d288 | 3744 | switch (status->float_rounding_mode) { |
dc355b76 PM |
3745 | case float_round_nearest_even: |
3746 | z += lastBitMask >> 1; | |
3747 | if ((z & roundBitsMask) == 0) { | |
3748 | z &= ~lastBitMask; | |
3749 | } | |
3750 | break; | |
f9288a76 PM |
3751 | case float_round_ties_away: |
3752 | z += lastBitMask >> 1; | |
3753 | break; | |
dc355b76 PM |
3754 | case float_round_to_zero: |
3755 | break; | |
3756 | case float_round_up: | |
3757 | if (!extractFloat64Sign(make_float64(z))) { | |
3758 | z += roundBitsMask; | |
3759 | } | |
3760 | break; | |
3761 | case float_round_down: | |
3762 | if (extractFloat64Sign(make_float64(z))) { | |
158142c2 FB |
3763 | z += roundBitsMask; |
3764 | } | |
dc355b76 PM |
3765 | break; |
3766 | default: | |
3767 | abort(); | |
158142c2 FB |
3768 | } |
3769 | z &= ~ roundBitsMask; | |
a2f2d288 PM |
3770 | if (z != float64_val(a)) { |
3771 | status->float_exception_flags |= float_flag_inexact; | |
3772 | } | |
f090c9d4 | 3773 | return make_float64(z); |
158142c2 FB |
3774 | |
3775 | } | |
3776 | ||
e5a41ffa | 3777 | float64 float64_trunc_to_int(float64 a, float_status *status) |
e6e5906b PB |
3778 | { |
3779 | int oldmode; | |
3780 | float64 res; | |
a2f2d288 PM |
3781 | oldmode = status->float_rounding_mode; |
3782 | status->float_rounding_mode = float_round_to_zero; | |
ff32e16e | 3783 | res = float64_round_to_int(a, status); |
a2f2d288 | 3784 | status->float_rounding_mode = oldmode; |
e6e5906b PB |
3785 | return res; |
3786 | } | |
3787 | ||
158142c2 FB |
3788 | /*---------------------------------------------------------------------------- |
3789 | | Returns the result of adding the absolute values of the double-precision | |
3790 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
3791 | | before being returned. `zSign' is ignored if the result is a NaN. | |
3792 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
3793 | | Floating-Point Arithmetic. | |
3794 | *----------------------------------------------------------------------------*/ | |
3795 | ||
e5a41ffa PM |
3796 | static float64 addFloat64Sigs(float64 a, float64 b, flag zSign, |
3797 | float_status *status) | |
158142c2 | 3798 | { |
0c48262d | 3799 | int aExp, bExp, zExp; |
bb98fe42 | 3800 | uint64_t aSig, bSig, zSig; |
0c48262d | 3801 | int expDiff; |
158142c2 FB |
3802 | |
3803 | aSig = extractFloat64Frac( a ); | |
3804 | aExp = extractFloat64Exp( a ); | |
3805 | bSig = extractFloat64Frac( b ); | |
3806 | bExp = extractFloat64Exp( b ); | |
3807 | expDiff = aExp - bExp; | |
3808 | aSig <<= 9; | |
3809 | bSig <<= 9; | |
3810 | if ( 0 < expDiff ) { | |
3811 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3812 | if (aSig) { |
3813 | return propagateFloat64NaN(a, b, status); | |
3814 | } | |
158142c2 FB |
3815 | return a; |
3816 | } | |
3817 | if ( bExp == 0 ) { | |
3818 | --expDiff; | |
3819 | } | |
3820 | else { | |
3821 | bSig |= LIT64( 0x2000000000000000 ); | |
3822 | } | |
3823 | shift64RightJamming( bSig, expDiff, &bSig ); | |
3824 | zExp = aExp; | |
3825 | } | |
3826 | else if ( expDiff < 0 ) { | |
3827 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
3828 | if (bSig) { |
3829 | return propagateFloat64NaN(a, b, status); | |
3830 | } | |
158142c2 FB |
3831 | return packFloat64( zSign, 0x7FF, 0 ); |
3832 | } | |
3833 | if ( aExp == 0 ) { | |
3834 | ++expDiff; | |
3835 | } | |
3836 | else { | |
3837 | aSig |= LIT64( 0x2000000000000000 ); | |
3838 | } | |
3839 | shift64RightJamming( aSig, - expDiff, &aSig ); | |
3840 | zExp = bExp; | |
3841 | } | |
3842 | else { | |
3843 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3844 | if (aSig | bSig) { |
3845 | return propagateFloat64NaN(a, b, status); | |
3846 | } | |
158142c2 FB |
3847 | return a; |
3848 | } | |
fe76d976 | 3849 | if ( aExp == 0 ) { |
a2f2d288 | 3850 | if (status->flush_to_zero) { |
e6afc87f | 3851 | if (aSig | bSig) { |
ff32e16e | 3852 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
3853 | } |
3854 | return packFloat64(zSign, 0, 0); | |
3855 | } | |
fe76d976 PB |
3856 | return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); |
3857 | } | |
158142c2 FB |
3858 | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; |
3859 | zExp = aExp; | |
3860 | goto roundAndPack; | |
3861 | } | |
3862 | aSig |= LIT64( 0x2000000000000000 ); | |
3863 | zSig = ( aSig + bSig )<<1; | |
3864 | --zExp; | |
bb98fe42 | 3865 | if ( (int64_t) zSig < 0 ) { |
158142c2 FB |
3866 | zSig = aSig + bSig; |
3867 | ++zExp; | |
3868 | } | |
3869 | roundAndPack: | |
ff32e16e | 3870 | return roundAndPackFloat64(zSign, zExp, zSig, status); |
158142c2 FB |
3871 | |
3872 | } | |
3873 | ||
3874 | /*---------------------------------------------------------------------------- | |
3875 | | Returns the result of subtracting the absolute values of the double- | |
3876 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
3877 | | difference is negated before being returned. `zSign' is ignored if the | |
3878 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
3879 | | Standard for Binary Floating-Point Arithmetic. | |
3880 | *----------------------------------------------------------------------------*/ | |
3881 | ||
e5a41ffa PM |
3882 | static float64 subFloat64Sigs(float64 a, float64 b, flag zSign, |
3883 | float_status *status) | |
158142c2 | 3884 | { |
0c48262d | 3885 | int aExp, bExp, zExp; |
bb98fe42 | 3886 | uint64_t aSig, bSig, zSig; |
0c48262d | 3887 | int expDiff; |
158142c2 FB |
3888 | |
3889 | aSig = extractFloat64Frac( a ); | |
3890 | aExp = extractFloat64Exp( a ); | |
3891 | bSig = extractFloat64Frac( b ); | |
3892 | bExp = extractFloat64Exp( b ); | |
3893 | expDiff = aExp - bExp; | |
3894 | aSig <<= 10; | |
3895 | bSig <<= 10; | |
3896 | if ( 0 < expDiff ) goto aExpBigger; | |
3897 | if ( expDiff < 0 ) goto bExpBigger; | |
3898 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3899 | if (aSig | bSig) { |
3900 | return propagateFloat64NaN(a, b, status); | |
3901 | } | |
3902 | float_raise(float_flag_invalid, status); | |
af39bc8c | 3903 | return float64_default_nan(status); |
158142c2 FB |
3904 | } |
3905 | if ( aExp == 0 ) { | |
3906 | aExp = 1; | |
3907 | bExp = 1; | |
3908 | } | |
3909 | if ( bSig < aSig ) goto aBigger; | |
3910 | if ( aSig < bSig ) goto bBigger; | |
a2f2d288 | 3911 | return packFloat64(status->float_rounding_mode == float_round_down, 0, 0); |
158142c2 FB |
3912 | bExpBigger: |
3913 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
3914 | if (bSig) { |
3915 | return propagateFloat64NaN(a, b, status); | |
3916 | } | |
158142c2 FB |
3917 | return packFloat64( zSign ^ 1, 0x7FF, 0 ); |
3918 | } | |
3919 | if ( aExp == 0 ) { | |
3920 | ++expDiff; | |
3921 | } | |
3922 | else { | |
3923 | aSig |= LIT64( 0x4000000000000000 ); | |
3924 | } | |
3925 | shift64RightJamming( aSig, - expDiff, &aSig ); | |
3926 | bSig |= LIT64( 0x4000000000000000 ); | |
3927 | bBigger: | |
3928 | zSig = bSig - aSig; | |
3929 | zExp = bExp; | |
3930 | zSign ^= 1; | |
3931 | goto normalizeRoundAndPack; | |
3932 | aExpBigger: | |
3933 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3934 | if (aSig) { |
3935 | return propagateFloat64NaN(a, b, status); | |
3936 | } | |
158142c2 FB |
3937 | return a; |
3938 | } | |
3939 | if ( bExp == 0 ) { | |
3940 | --expDiff; | |
3941 | } | |
3942 | else { | |
3943 | bSig |= LIT64( 0x4000000000000000 ); | |
3944 | } | |
3945 | shift64RightJamming( bSig, expDiff, &bSig ); | |
3946 | aSig |= LIT64( 0x4000000000000000 ); | |
3947 | aBigger: | |
3948 | zSig = aSig - bSig; | |
3949 | zExp = aExp; | |
3950 | normalizeRoundAndPack: | |
3951 | --zExp; | |
ff32e16e | 3952 | return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status); |
158142c2 FB |
3953 | |
3954 | } | |
3955 | ||
3956 | /*---------------------------------------------------------------------------- | |
3957 | | Returns the result of adding the double-precision floating-point values `a' | |
3958 | | and `b'. The operation is performed according to the IEC/IEEE Standard for | |
3959 | | Binary Floating-Point Arithmetic. | |
3960 | *----------------------------------------------------------------------------*/ | |
3961 | ||
e5a41ffa | 3962 | float64 float64_add(float64 a, float64 b, float_status *status) |
158142c2 FB |
3963 | { |
3964 | flag aSign, bSign; | |
ff32e16e PM |
3965 | a = float64_squash_input_denormal(a, status); |
3966 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
3967 | |
3968 | aSign = extractFloat64Sign( a ); | |
3969 | bSign = extractFloat64Sign( b ); | |
3970 | if ( aSign == bSign ) { | |
ff32e16e | 3971 | return addFloat64Sigs(a, b, aSign, status); |
158142c2 FB |
3972 | } |
3973 | else { | |
ff32e16e | 3974 | return subFloat64Sigs(a, b, aSign, status); |
158142c2 FB |
3975 | } |
3976 | ||
3977 | } | |
3978 | ||
3979 | /*---------------------------------------------------------------------------- | |
3980 | | Returns the result of subtracting the double-precision floating-point values | |
3981 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
3982 | | for Binary Floating-Point Arithmetic. | |
3983 | *----------------------------------------------------------------------------*/ | |
3984 | ||
e5a41ffa | 3985 | float64 float64_sub(float64 a, float64 b, float_status *status) |
158142c2 FB |
3986 | { |
3987 | flag aSign, bSign; | |
ff32e16e PM |
3988 | a = float64_squash_input_denormal(a, status); |
3989 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
3990 | |
3991 | aSign = extractFloat64Sign( a ); | |
3992 | bSign = extractFloat64Sign( b ); | |
3993 | if ( aSign == bSign ) { | |
ff32e16e | 3994 | return subFloat64Sigs(a, b, aSign, status); |
158142c2 FB |
3995 | } |
3996 | else { | |
ff32e16e | 3997 | return addFloat64Sigs(a, b, aSign, status); |
158142c2 FB |
3998 | } |
3999 | ||
4000 | } | |
4001 | ||
4002 | /*---------------------------------------------------------------------------- | |
4003 | | Returns the result of multiplying the double-precision floating-point values | |
4004 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
4005 | | for Binary Floating-Point Arithmetic. | |
4006 | *----------------------------------------------------------------------------*/ | |
4007 | ||
e5a41ffa | 4008 | float64 float64_mul(float64 a, float64 b, float_status *status) |
158142c2 FB |
4009 | { |
4010 | flag aSign, bSign, zSign; | |
0c48262d | 4011 | int aExp, bExp, zExp; |
bb98fe42 | 4012 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 | 4013 | |
ff32e16e PM |
4014 | a = float64_squash_input_denormal(a, status); |
4015 | b = float64_squash_input_denormal(b, status); | |
37d18660 | 4016 | |
158142c2 FB |
4017 | aSig = extractFloat64Frac( a ); |
4018 | aExp = extractFloat64Exp( a ); | |
4019 | aSign = extractFloat64Sign( a ); | |
4020 | bSig = extractFloat64Frac( b ); | |
4021 | bExp = extractFloat64Exp( b ); | |
4022 | bSign = extractFloat64Sign( b ); | |
4023 | zSign = aSign ^ bSign; | |
4024 | if ( aExp == 0x7FF ) { | |
4025 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
ff32e16e | 4026 | return propagateFloat64NaN(a, b, status); |
158142c2 FB |
4027 | } |
4028 | if ( ( bExp | bSig ) == 0 ) { | |
ff32e16e | 4029 | float_raise(float_flag_invalid, status); |
af39bc8c | 4030 | return float64_default_nan(status); |
158142c2 FB |
4031 | } |
4032 | return packFloat64( zSign, 0x7FF, 0 ); | |
4033 | } | |
4034 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
4035 | if (bSig) { |
4036 | return propagateFloat64NaN(a, b, status); | |
4037 | } | |
158142c2 | 4038 | if ( ( aExp | aSig ) == 0 ) { |
ff32e16e | 4039 | float_raise(float_flag_invalid, status); |
af39bc8c | 4040 | return float64_default_nan(status); |
158142c2 FB |
4041 | } |
4042 | return packFloat64( zSign, 0x7FF, 0 ); | |
4043 | } | |
4044 | if ( aExp == 0 ) { | |
4045 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
4046 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4047 | } | |
4048 | if ( bExp == 0 ) { | |
4049 | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
4050 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
4051 | } | |
4052 | zExp = aExp + bExp - 0x3FF; | |
4053 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
4054 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
4055 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
4056 | zSig0 |= ( zSig1 != 0 ); | |
bb98fe42 | 4057 | if ( 0 <= (int64_t) ( zSig0<<1 ) ) { |
158142c2 FB |
4058 | zSig0 <<= 1; |
4059 | --zExp; | |
4060 | } | |
ff32e16e | 4061 | return roundAndPackFloat64(zSign, zExp, zSig0, status); |
158142c2 FB |
4062 | |
4063 | } | |
4064 | ||
4065 | /*---------------------------------------------------------------------------- | |
4066 | | Returns the result of dividing the double-precision floating-point value `a' | |
4067 | | by the corresponding value `b'. The operation is performed according to | |
4068 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4069 | *----------------------------------------------------------------------------*/ | |
4070 | ||
e5a41ffa | 4071 | float64 float64_div(float64 a, float64 b, float_status *status) |
158142c2 FB |
4072 | { |
4073 | flag aSign, bSign, zSign; | |
0c48262d | 4074 | int aExp, bExp, zExp; |
bb98fe42 AF |
4075 | uint64_t aSig, bSig, zSig; |
4076 | uint64_t rem0, rem1; | |
4077 | uint64_t term0, term1; | |
ff32e16e PM |
4078 | a = float64_squash_input_denormal(a, status); |
4079 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4080 | |
4081 | aSig = extractFloat64Frac( a ); | |
4082 | aExp = extractFloat64Exp( a ); | |
4083 | aSign = extractFloat64Sign( a ); | |
4084 | bSig = extractFloat64Frac( b ); | |
4085 | bExp = extractFloat64Exp( b ); | |
4086 | bSign = extractFloat64Sign( b ); | |
4087 | zSign = aSign ^ bSign; | |
4088 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4089 | if (aSig) { |
4090 | return propagateFloat64NaN(a, b, status); | |
4091 | } | |
158142c2 | 4092 | if ( bExp == 0x7FF ) { |
ff32e16e PM |
4093 | if (bSig) { |
4094 | return propagateFloat64NaN(a, b, status); | |
4095 | } | |
4096 | float_raise(float_flag_invalid, status); | |
af39bc8c | 4097 | return float64_default_nan(status); |
158142c2 FB |
4098 | } |
4099 | return packFloat64( zSign, 0x7FF, 0 ); | |
4100 | } | |
4101 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
4102 | if (bSig) { |
4103 | return propagateFloat64NaN(a, b, status); | |
4104 | } | |
158142c2 FB |
4105 | return packFloat64( zSign, 0, 0 ); |
4106 | } | |
4107 | if ( bExp == 0 ) { | |
4108 | if ( bSig == 0 ) { | |
4109 | if ( ( aExp | aSig ) == 0 ) { | |
ff32e16e | 4110 | float_raise(float_flag_invalid, status); |
af39bc8c | 4111 | return float64_default_nan(status); |
158142c2 | 4112 | } |
ff32e16e | 4113 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
4114 | return packFloat64( zSign, 0x7FF, 0 ); |
4115 | } | |
4116 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
4117 | } | |
4118 | if ( aExp == 0 ) { | |
4119 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
4120 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4121 | } | |
4122 | zExp = aExp - bExp + 0x3FD; | |
4123 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
4124 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
4125 | if ( bSig <= ( aSig + aSig ) ) { | |
4126 | aSig >>= 1; | |
4127 | ++zExp; | |
4128 | } | |
4129 | zSig = estimateDiv128To64( aSig, 0, bSig ); | |
4130 | if ( ( zSig & 0x1FF ) <= 2 ) { | |
4131 | mul64To128( bSig, zSig, &term0, &term1 ); | |
4132 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 4133 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
4134 | --zSig; |
4135 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
4136 | } | |
4137 | zSig |= ( rem1 != 0 ); | |
4138 | } | |
ff32e16e | 4139 | return roundAndPackFloat64(zSign, zExp, zSig, status); |
158142c2 FB |
4140 | |
4141 | } | |
4142 | ||
4143 | /*---------------------------------------------------------------------------- | |
4144 | | Returns the remainder of the double-precision floating-point value `a' | |
4145 | | with respect to the corresponding value `b'. The operation is performed | |
4146 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4147 | *----------------------------------------------------------------------------*/ | |
4148 | ||
e5a41ffa | 4149 | float64 float64_rem(float64 a, float64 b, float_status *status) |
158142c2 | 4150 | { |
ed086f3d | 4151 | flag aSign, zSign; |
0c48262d | 4152 | int aExp, bExp, expDiff; |
bb98fe42 AF |
4153 | uint64_t aSig, bSig; |
4154 | uint64_t q, alternateASig; | |
4155 | int64_t sigMean; | |
158142c2 | 4156 | |
ff32e16e PM |
4157 | a = float64_squash_input_denormal(a, status); |
4158 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4159 | aSig = extractFloat64Frac( a ); |
4160 | aExp = extractFloat64Exp( a ); | |
4161 | aSign = extractFloat64Sign( a ); | |
4162 | bSig = extractFloat64Frac( b ); | |
4163 | bExp = extractFloat64Exp( b ); | |
158142c2 FB |
4164 | if ( aExp == 0x7FF ) { |
4165 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
ff32e16e | 4166 | return propagateFloat64NaN(a, b, status); |
158142c2 | 4167 | } |
ff32e16e | 4168 | float_raise(float_flag_invalid, status); |
af39bc8c | 4169 | return float64_default_nan(status); |
158142c2 FB |
4170 | } |
4171 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
4172 | if (bSig) { |
4173 | return propagateFloat64NaN(a, b, status); | |
4174 | } | |
158142c2 FB |
4175 | return a; |
4176 | } | |
4177 | if ( bExp == 0 ) { | |
4178 | if ( bSig == 0 ) { | |
ff32e16e | 4179 | float_raise(float_flag_invalid, status); |
af39bc8c | 4180 | return float64_default_nan(status); |
158142c2 FB |
4181 | } |
4182 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
4183 | } | |
4184 | if ( aExp == 0 ) { | |
4185 | if ( aSig == 0 ) return a; | |
4186 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4187 | } | |
4188 | expDiff = aExp - bExp; | |
4189 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | |
4190 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
4191 | if ( expDiff < 0 ) { | |
4192 | if ( expDiff < -1 ) return a; | |
4193 | aSig >>= 1; | |
4194 | } | |
4195 | q = ( bSig <= aSig ); | |
4196 | if ( q ) aSig -= bSig; | |
4197 | expDiff -= 64; | |
4198 | while ( 0 < expDiff ) { | |
4199 | q = estimateDiv128To64( aSig, 0, bSig ); | |
4200 | q = ( 2 < q ) ? q - 2 : 0; | |
4201 | aSig = - ( ( bSig>>2 ) * q ); | |
4202 | expDiff -= 62; | |
4203 | } | |
4204 | expDiff += 64; | |
4205 | if ( 0 < expDiff ) { | |
4206 | q = estimateDiv128To64( aSig, 0, bSig ); | |
4207 | q = ( 2 < q ) ? q - 2 : 0; | |
4208 | q >>= 64 - expDiff; | |
4209 | bSig >>= 2; | |
4210 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
4211 | } | |
4212 | else { | |
4213 | aSig >>= 2; | |
4214 | bSig >>= 2; | |
4215 | } | |
4216 | do { | |
4217 | alternateASig = aSig; | |
4218 | ++q; | |
4219 | aSig -= bSig; | |
bb98fe42 | 4220 | } while ( 0 <= (int64_t) aSig ); |
158142c2 FB |
4221 | sigMean = aSig + alternateASig; |
4222 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
4223 | aSig = alternateASig; | |
4224 | } | |
bb98fe42 | 4225 | zSign = ( (int64_t) aSig < 0 ); |
158142c2 | 4226 | if ( zSign ) aSig = - aSig; |
ff32e16e | 4227 | return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status); |
158142c2 FB |
4228 | |
4229 | } | |
4230 | ||
369be8f6 PM |
4231 | /*---------------------------------------------------------------------------- |
4232 | | Returns the result of multiplying the double-precision floating-point values | |
4233 | | `a' and `b' then adding 'c', with no intermediate rounding step after the | |
4234 | | multiplication. The operation is performed according to the IEC/IEEE | |
4235 | | Standard for Binary Floating-Point Arithmetic 754-2008. | |
4236 | | The flags argument allows the caller to select negation of the | |
4237 | | addend, the intermediate product, or the final result. (The difference | |
4238 | | between this and having the caller do a separate negation is that negating | |
4239 | | externally will flip the sign bit on NaNs.) | |
4240 | *----------------------------------------------------------------------------*/ | |
4241 | ||
e5a41ffa PM |
4242 | float64 float64_muladd(float64 a, float64 b, float64 c, int flags, |
4243 | float_status *status) | |
369be8f6 PM |
4244 | { |
4245 | flag aSign, bSign, cSign, zSign; | |
0c48262d | 4246 | int aExp, bExp, cExp, pExp, zExp, expDiff; |
369be8f6 PM |
4247 | uint64_t aSig, bSig, cSig; |
4248 | flag pInf, pZero, pSign; | |
4249 | uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1; | |
4250 | int shiftcount; | |
4251 | flag signflip, infzero; | |
4252 | ||
ff32e16e PM |
4253 | a = float64_squash_input_denormal(a, status); |
4254 | b = float64_squash_input_denormal(b, status); | |
4255 | c = float64_squash_input_denormal(c, status); | |
369be8f6 PM |
4256 | aSig = extractFloat64Frac(a); |
4257 | aExp = extractFloat64Exp(a); | |
4258 | aSign = extractFloat64Sign(a); | |
4259 | bSig = extractFloat64Frac(b); | |
4260 | bExp = extractFloat64Exp(b); | |
4261 | bSign = extractFloat64Sign(b); | |
4262 | cSig = extractFloat64Frac(c); | |
4263 | cExp = extractFloat64Exp(c); | |
4264 | cSign = extractFloat64Sign(c); | |
4265 | ||
4266 | infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) || | |
4267 | (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0)); | |
4268 | ||
4269 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
4270 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
4271 | * they return if they do), so we have to hand this information | |
4272 | * off to the target-specific pick-a-NaN routine. | |
4273 | */ | |
4274 | if (((aExp == 0x7ff) && aSig) || | |
4275 | ((bExp == 0x7ff) && bSig) || | |
4276 | ((cExp == 0x7ff) && cSig)) { | |
ff32e16e | 4277 | return propagateFloat64MulAddNaN(a, b, c, infzero, status); |
369be8f6 PM |
4278 | } |
4279 | ||
4280 | if (infzero) { | |
ff32e16e | 4281 | float_raise(float_flag_invalid, status); |
af39bc8c | 4282 | return float64_default_nan(status); |
369be8f6 PM |
4283 | } |
4284 | ||
4285 | if (flags & float_muladd_negate_c) { | |
4286 | cSign ^= 1; | |
4287 | } | |
4288 | ||
4289 | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | |
4290 | ||
4291 | /* Work out the sign and type of the product */ | |
4292 | pSign = aSign ^ bSign; | |
4293 | if (flags & float_muladd_negate_product) { | |
4294 | pSign ^= 1; | |
4295 | } | |
4296 | pInf = (aExp == 0x7ff) || (bExp == 0x7ff); | |
4297 | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | |
4298 | ||
4299 | if (cExp == 0x7ff) { | |
4300 | if (pInf && (pSign ^ cSign)) { | |
4301 | /* addition of opposite-signed infinities => InvalidOperation */ | |
ff32e16e | 4302 | float_raise(float_flag_invalid, status); |
af39bc8c | 4303 | return float64_default_nan(status); |
369be8f6 PM |
4304 | } |
4305 | /* Otherwise generate an infinity of the same sign */ | |
4306 | return packFloat64(cSign ^ signflip, 0x7ff, 0); | |
4307 | } | |
4308 | ||
4309 | if (pInf) { | |
4310 | return packFloat64(pSign ^ signflip, 0x7ff, 0); | |
4311 | } | |
4312 | ||
4313 | if (pZero) { | |
4314 | if (cExp == 0) { | |
4315 | if (cSig == 0) { | |
4316 | /* Adding two exact zeroes */ | |
4317 | if (pSign == cSign) { | |
4318 | zSign = pSign; | |
a2f2d288 | 4319 | } else if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
4320 | zSign = 1; |
4321 | } else { | |
4322 | zSign = 0; | |
4323 | } | |
4324 | return packFloat64(zSign ^ signflip, 0, 0); | |
4325 | } | |
4326 | /* Exact zero plus a denorm */ | |
a2f2d288 | 4327 | if (status->flush_to_zero) { |
ff32e16e | 4328 | float_raise(float_flag_output_denormal, status); |
369be8f6 PM |
4329 | return packFloat64(cSign ^ signflip, 0, 0); |
4330 | } | |
4331 | } | |
4332 | /* Zero plus something non-zero : just return the something */ | |
67d43538 PM |
4333 | if (flags & float_muladd_halve_result) { |
4334 | if (cExp == 0) { | |
4335 | normalizeFloat64Subnormal(cSig, &cExp, &cSig); | |
4336 | } | |
4337 | /* Subtract one to halve, and one again because roundAndPackFloat64 | |
4338 | * wants one less than the true exponent. | |
4339 | */ | |
4340 | cExp -= 2; | |
4341 | cSig = (cSig | 0x0010000000000000ULL) << 10; | |
ff32e16e | 4342 | return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status); |
67d43538 | 4343 | } |
a6e7c184 | 4344 | return packFloat64(cSign ^ signflip, cExp, cSig); |
369be8f6 PM |
4345 | } |
4346 | ||
4347 | if (aExp == 0) { | |
4348 | normalizeFloat64Subnormal(aSig, &aExp, &aSig); | |
4349 | } | |
4350 | if (bExp == 0) { | |
4351 | normalizeFloat64Subnormal(bSig, &bExp, &bSig); | |
4352 | } | |
4353 | ||
4354 | /* Calculate the actual result a * b + c */ | |
4355 | ||
4356 | /* Multiply first; this is easy. */ | |
4357 | /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff | |
4358 | * because we want the true exponent, not the "one-less-than" | |
4359 | * flavour that roundAndPackFloat64() takes. | |
4360 | */ | |
4361 | pExp = aExp + bExp - 0x3fe; | |
4362 | aSig = (aSig | LIT64(0x0010000000000000))<<10; | |
4363 | bSig = (bSig | LIT64(0x0010000000000000))<<11; | |
4364 | mul64To128(aSig, bSig, &pSig0, &pSig1); | |
4365 | if ((int64_t)(pSig0 << 1) >= 0) { | |
4366 | shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1); | |
4367 | pExp--; | |
4368 | } | |
4369 | ||
4370 | zSign = pSign ^ signflip; | |
4371 | ||
4372 | /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit | |
4373 | * bit in position 126. | |
4374 | */ | |
4375 | if (cExp == 0) { | |
4376 | if (!cSig) { | |
4377 | /* Throw out the special case of c being an exact zero now */ | |
4378 | shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1); | |
67d43538 PM |
4379 | if (flags & float_muladd_halve_result) { |
4380 | pExp--; | |
4381 | } | |
369be8f6 | 4382 | return roundAndPackFloat64(zSign, pExp - 1, |
ff32e16e | 4383 | pSig1, status); |
369be8f6 PM |
4384 | } |
4385 | normalizeFloat64Subnormal(cSig, &cExp, &cSig); | |
4386 | } | |
4387 | ||
4388 | /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the | |
4389 | * significand of the addend, with the explicit bit in position 126. | |
4390 | */ | |
4391 | cSig0 = cSig << (126 - 64 - 52); | |
4392 | cSig1 = 0; | |
4393 | cSig0 |= LIT64(0x4000000000000000); | |
4394 | expDiff = pExp - cExp; | |
4395 | ||
4396 | if (pSign == cSign) { | |
4397 | /* Addition */ | |
4398 | if (expDiff > 0) { | |
4399 | /* scale c to match p */ | |
4400 | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | |
4401 | zExp = pExp; | |
4402 | } else if (expDiff < 0) { | |
4403 | /* scale p to match c */ | |
4404 | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | |
4405 | zExp = cExp; | |
4406 | } else { | |
4407 | /* no scaling needed */ | |
4408 | zExp = cExp; | |
4409 | } | |
4410 | /* Add significands and make sure explicit bit ends up in posn 126 */ | |
4411 | add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4412 | if ((int64_t)zSig0 < 0) { | |
4413 | shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1); | |
4414 | } else { | |
4415 | zExp--; | |
4416 | } | |
4417 | shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1); | |
67d43538 PM |
4418 | if (flags & float_muladd_halve_result) { |
4419 | zExp--; | |
4420 | } | |
ff32e16e | 4421 | return roundAndPackFloat64(zSign, zExp, zSig1, status); |
369be8f6 PM |
4422 | } else { |
4423 | /* Subtraction */ | |
4424 | if (expDiff > 0) { | |
4425 | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | |
4426 | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4427 | zExp = pExp; | |
4428 | } else if (expDiff < 0) { | |
4429 | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | |
4430 | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | |
4431 | zExp = cExp; | |
4432 | zSign ^= 1; | |
4433 | } else { | |
4434 | zExp = pExp; | |
4435 | if (lt128(cSig0, cSig1, pSig0, pSig1)) { | |
4436 | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4437 | } else if (lt128(pSig0, pSig1, cSig0, cSig1)) { | |
4438 | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | |
4439 | zSign ^= 1; | |
4440 | } else { | |
4441 | /* Exact zero */ | |
4442 | zSign = signflip; | |
a2f2d288 | 4443 | if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
4444 | zSign ^= 1; |
4445 | } | |
4446 | return packFloat64(zSign, 0, 0); | |
4447 | } | |
4448 | } | |
4449 | --zExp; | |
4450 | /* Do the equivalent of normalizeRoundAndPackFloat64() but | |
4451 | * starting with the significand in a pair of uint64_t. | |
4452 | */ | |
4453 | if (zSig0) { | |
4454 | shiftcount = countLeadingZeros64(zSig0) - 1; | |
4455 | shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1); | |
4456 | if (zSig1) { | |
4457 | zSig0 |= 1; | |
4458 | } | |
4459 | zExp -= shiftcount; | |
4460 | } else { | |
e3d142d0 PM |
4461 | shiftcount = countLeadingZeros64(zSig1); |
4462 | if (shiftcount == 0) { | |
4463 | zSig0 = (zSig1 >> 1) | (zSig1 & 1); | |
4464 | zExp -= 63; | |
4465 | } else { | |
4466 | shiftcount--; | |
4467 | zSig0 = zSig1 << shiftcount; | |
4468 | zExp -= (shiftcount + 64); | |
4469 | } | |
369be8f6 | 4470 | } |
67d43538 PM |
4471 | if (flags & float_muladd_halve_result) { |
4472 | zExp--; | |
4473 | } | |
ff32e16e | 4474 | return roundAndPackFloat64(zSign, zExp, zSig0, status); |
369be8f6 PM |
4475 | } |
4476 | } | |
4477 | ||
158142c2 FB |
4478 | /*---------------------------------------------------------------------------- |
4479 | | Returns the square root of the double-precision floating-point value `a'. | |
4480 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
4481 | | Floating-Point Arithmetic. | |
4482 | *----------------------------------------------------------------------------*/ | |
4483 | ||
e5a41ffa | 4484 | float64 float64_sqrt(float64 a, float_status *status) |
158142c2 FB |
4485 | { |
4486 | flag aSign; | |
0c48262d | 4487 | int aExp, zExp; |
bb98fe42 AF |
4488 | uint64_t aSig, zSig, doubleZSig; |
4489 | uint64_t rem0, rem1, term0, term1; | |
ff32e16e | 4490 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
4491 | |
4492 | aSig = extractFloat64Frac( a ); | |
4493 | aExp = extractFloat64Exp( a ); | |
4494 | aSign = extractFloat64Sign( a ); | |
4495 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4496 | if (aSig) { |
4497 | return propagateFloat64NaN(a, a, status); | |
4498 | } | |
158142c2 | 4499 | if ( ! aSign ) return a; |
ff32e16e | 4500 | float_raise(float_flag_invalid, status); |
af39bc8c | 4501 | return float64_default_nan(status); |
158142c2 FB |
4502 | } |
4503 | if ( aSign ) { | |
4504 | if ( ( aExp | aSig ) == 0 ) return a; | |
ff32e16e | 4505 | float_raise(float_flag_invalid, status); |
af39bc8c | 4506 | return float64_default_nan(status); |
158142c2 FB |
4507 | } |
4508 | if ( aExp == 0 ) { | |
f090c9d4 | 4509 | if ( aSig == 0 ) return float64_zero; |
158142c2 FB |
4510 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
4511 | } | |
4512 | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | |
4513 | aSig |= LIT64( 0x0010000000000000 ); | |
4514 | zSig = estimateSqrt32( aExp, aSig>>21 ); | |
4515 | aSig <<= 9 - ( aExp & 1 ); | |
4516 | zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); | |
4517 | if ( ( zSig & 0x1FF ) <= 5 ) { | |
4518 | doubleZSig = zSig<<1; | |
4519 | mul64To128( zSig, zSig, &term0, &term1 ); | |
4520 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 4521 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
4522 | --zSig; |
4523 | doubleZSig -= 2; | |
4524 | add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); | |
4525 | } | |
4526 | zSig |= ( ( rem0 | rem1 ) != 0 ); | |
4527 | } | |
ff32e16e | 4528 | return roundAndPackFloat64(0, zExp, zSig, status); |
158142c2 FB |
4529 | |
4530 | } | |
4531 | ||
374dfc33 AJ |
4532 | /*---------------------------------------------------------------------------- |
4533 | | Returns the binary log of the double-precision floating-point value `a'. | |
4534 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
4535 | | Floating-Point Arithmetic. | |
4536 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 4537 | float64 float64_log2(float64 a, float_status *status) |
374dfc33 AJ |
4538 | { |
4539 | flag aSign, zSign; | |
0c48262d | 4540 | int aExp; |
bb98fe42 | 4541 | uint64_t aSig, aSig0, aSig1, zSig, i; |
ff32e16e | 4542 | a = float64_squash_input_denormal(a, status); |
374dfc33 AJ |
4543 | |
4544 | aSig = extractFloat64Frac( a ); | |
4545 | aExp = extractFloat64Exp( a ); | |
4546 | aSign = extractFloat64Sign( a ); | |
4547 | ||
4548 | if ( aExp == 0 ) { | |
4549 | if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); | |
4550 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4551 | } | |
4552 | if ( aSign ) { | |
ff32e16e | 4553 | float_raise(float_flag_invalid, status); |
af39bc8c | 4554 | return float64_default_nan(status); |
374dfc33 AJ |
4555 | } |
4556 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4557 | if (aSig) { |
4558 | return propagateFloat64NaN(a, float64_zero, status); | |
4559 | } | |
374dfc33 AJ |
4560 | return a; |
4561 | } | |
4562 | ||
4563 | aExp -= 0x3FF; | |
4564 | aSig |= LIT64( 0x0010000000000000 ); | |
4565 | zSign = aExp < 0; | |
bb98fe42 | 4566 | zSig = (uint64_t)aExp << 52; |
374dfc33 AJ |
4567 | for (i = 1LL << 51; i > 0; i >>= 1) { |
4568 | mul64To128( aSig, aSig, &aSig0, &aSig1 ); | |
4569 | aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); | |
4570 | if ( aSig & LIT64( 0x0020000000000000 ) ) { | |
4571 | aSig >>= 1; | |
4572 | zSig |= i; | |
4573 | } | |
4574 | } | |
4575 | ||
4576 | if ( zSign ) | |
4577 | zSig = -zSig; | |
ff32e16e | 4578 | return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status); |
374dfc33 AJ |
4579 | } |
4580 | ||
158142c2 FB |
4581 | /*---------------------------------------------------------------------------- |
4582 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
b689362d AJ |
4583 | | corresponding value `b', and 0 otherwise. The invalid exception is raised |
4584 | | if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
4585 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
4586 | *----------------------------------------------------------------------------*/ | |
4587 | ||
e5a41ffa | 4588 | int float64_eq(float64 a, float64 b, float_status *status) |
158142c2 | 4589 | { |
bb98fe42 | 4590 | uint64_t av, bv; |
ff32e16e PM |
4591 | a = float64_squash_input_denormal(a, status); |
4592 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4593 | |
4594 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4595 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4596 | ) { | |
ff32e16e | 4597 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4598 | return 0; |
4599 | } | |
f090c9d4 | 4600 | av = float64_val(a); |
a1b91bb4 | 4601 | bv = float64_val(b); |
bb98fe42 | 4602 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4603 | |
4604 | } | |
4605 | ||
4606 | /*---------------------------------------------------------------------------- | |
4607 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
f5a64251 AJ |
4608 | | equal to the corresponding value `b', and 0 otherwise. The invalid |
4609 | | exception is raised if either operand is a NaN. The comparison is performed | |
4610 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4611 | *----------------------------------------------------------------------------*/ |
4612 | ||
e5a41ffa | 4613 | int float64_le(float64 a, float64 b, float_status *status) |
158142c2 FB |
4614 | { |
4615 | flag aSign, bSign; | |
bb98fe42 | 4616 | uint64_t av, bv; |
ff32e16e PM |
4617 | a = float64_squash_input_denormal(a, status); |
4618 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4619 | |
4620 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4621 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4622 | ) { | |
ff32e16e | 4623 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4624 | return 0; |
4625 | } | |
4626 | aSign = extractFloat64Sign( a ); | |
4627 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4628 | av = float64_val(a); |
a1b91bb4 | 4629 | bv = float64_val(b); |
bb98fe42 | 4630 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4631 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4632 | |
4633 | } | |
4634 | ||
4635 | /*---------------------------------------------------------------------------- | |
4636 | | Returns 1 if the double-precision floating-point value `a' is less than | |
f5a64251 AJ |
4637 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
4638 | | raised if either operand is a NaN. The comparison is performed according | |
4639 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4640 | *----------------------------------------------------------------------------*/ |
4641 | ||
e5a41ffa | 4642 | int float64_lt(float64 a, float64 b, float_status *status) |
158142c2 FB |
4643 | { |
4644 | flag aSign, bSign; | |
bb98fe42 | 4645 | uint64_t av, bv; |
158142c2 | 4646 | |
ff32e16e PM |
4647 | a = float64_squash_input_denormal(a, status); |
4648 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4649 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
4650 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4651 | ) { | |
ff32e16e | 4652 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4653 | return 0; |
4654 | } | |
4655 | aSign = extractFloat64Sign( a ); | |
4656 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4657 | av = float64_val(a); |
a1b91bb4 | 4658 | bv = float64_val(b); |
bb98fe42 | 4659 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4660 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4661 | |
4662 | } | |
4663 | ||
67b7861d AJ |
4664 | /*---------------------------------------------------------------------------- |
4665 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
4666 | | be compared, and 0 otherwise. The invalid exception is raised if either |
4667 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
4668 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
4669 | *----------------------------------------------------------------------------*/ |
4670 | ||
e5a41ffa | 4671 | int float64_unordered(float64 a, float64 b, float_status *status) |
67b7861d | 4672 | { |
ff32e16e PM |
4673 | a = float64_squash_input_denormal(a, status); |
4674 | b = float64_squash_input_denormal(b, status); | |
67b7861d AJ |
4675 | |
4676 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4677 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4678 | ) { | |
ff32e16e | 4679 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
4680 | return 1; |
4681 | } | |
4682 | return 0; | |
4683 | } | |
4684 | ||
158142c2 FB |
4685 | /*---------------------------------------------------------------------------- |
4686 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
f5a64251 AJ |
4687 | | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
4688 | | exception.The comparison is performed according to the IEC/IEEE Standard | |
4689 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4690 | *----------------------------------------------------------------------------*/ |
4691 | ||
e5a41ffa | 4692 | int float64_eq_quiet(float64 a, float64 b, float_status *status) |
158142c2 | 4693 | { |
bb98fe42 | 4694 | uint64_t av, bv; |
ff32e16e PM |
4695 | a = float64_squash_input_denormal(a, status); |
4696 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4697 | |
4698 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4699 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4700 | ) { | |
af39bc8c AM |
4701 | if (float64_is_signaling_nan(a, status) |
4702 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4703 | float_raise(float_flag_invalid, status); |
b689362d | 4704 | } |
158142c2 FB |
4705 | return 0; |
4706 | } | |
f090c9d4 | 4707 | av = float64_val(a); |
a1b91bb4 | 4708 | bv = float64_val(b); |
bb98fe42 | 4709 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4710 | |
4711 | } | |
4712 | ||
4713 | /*---------------------------------------------------------------------------- | |
4714 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
4715 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
4716 | | cause an exception. Otherwise, the comparison is performed according to the | |
4717 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4718 | *----------------------------------------------------------------------------*/ | |
4719 | ||
e5a41ffa | 4720 | int float64_le_quiet(float64 a, float64 b, float_status *status) |
158142c2 FB |
4721 | { |
4722 | flag aSign, bSign; | |
bb98fe42 | 4723 | uint64_t av, bv; |
ff32e16e PM |
4724 | a = float64_squash_input_denormal(a, status); |
4725 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4726 | |
4727 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4728 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4729 | ) { | |
af39bc8c AM |
4730 | if (float64_is_signaling_nan(a, status) |
4731 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4732 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4733 | } |
4734 | return 0; | |
4735 | } | |
4736 | aSign = extractFloat64Sign( a ); | |
4737 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4738 | av = float64_val(a); |
a1b91bb4 | 4739 | bv = float64_val(b); |
bb98fe42 | 4740 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4741 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4742 | |
4743 | } | |
4744 | ||
4745 | /*---------------------------------------------------------------------------- | |
4746 | | Returns 1 if the double-precision floating-point value `a' is less than | |
4747 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
4748 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
4749 | | Standard for Binary Floating-Point Arithmetic. | |
4750 | *----------------------------------------------------------------------------*/ | |
4751 | ||
e5a41ffa | 4752 | int float64_lt_quiet(float64 a, float64 b, float_status *status) |
158142c2 FB |
4753 | { |
4754 | flag aSign, bSign; | |
bb98fe42 | 4755 | uint64_t av, bv; |
ff32e16e PM |
4756 | a = float64_squash_input_denormal(a, status); |
4757 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4758 | |
4759 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4760 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4761 | ) { | |
af39bc8c AM |
4762 | if (float64_is_signaling_nan(a, status) |
4763 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4764 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4765 | } |
4766 | return 0; | |
4767 | } | |
4768 | aSign = extractFloat64Sign( a ); | |
4769 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4770 | av = float64_val(a); |
a1b91bb4 | 4771 | bv = float64_val(b); |
bb98fe42 | 4772 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4773 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4774 | |
4775 | } | |
4776 | ||
67b7861d AJ |
4777 | /*---------------------------------------------------------------------------- |
4778 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
4779 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
4780 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
4781 | | Floating-Point Arithmetic. | |
4782 | *----------------------------------------------------------------------------*/ | |
4783 | ||
e5a41ffa | 4784 | int float64_unordered_quiet(float64 a, float64 b, float_status *status) |
67b7861d | 4785 | { |
ff32e16e PM |
4786 | a = float64_squash_input_denormal(a, status); |
4787 | b = float64_squash_input_denormal(b, status); | |
67b7861d AJ |
4788 | |
4789 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4790 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4791 | ) { | |
af39bc8c AM |
4792 | if (float64_is_signaling_nan(a, status) |
4793 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4794 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
4795 | } |
4796 | return 1; | |
4797 | } | |
4798 | return 0; | |
4799 | } | |
4800 | ||
158142c2 FB |
4801 | /*---------------------------------------------------------------------------- |
4802 | | Returns the result of converting the extended double-precision floating- | |
4803 | | point value `a' to the 32-bit two's complement integer format. The | |
4804 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4805 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4806 | | is rounded according to the current rounding mode. If `a' is a NaN, the | |
4807 | | largest positive integer is returned. Otherwise, if the conversion | |
4808 | | overflows, the largest integer with the same sign as `a' is returned. | |
4809 | *----------------------------------------------------------------------------*/ | |
4810 | ||
f4014512 | 4811 | int32_t floatx80_to_int32(floatx80 a, float_status *status) |
158142c2 FB |
4812 | { |
4813 | flag aSign; | |
f4014512 | 4814 | int32_t aExp, shiftCount; |
bb98fe42 | 4815 | uint64_t aSig; |
158142c2 | 4816 | |
d1eb8f2a AD |
4817 | if (floatx80_invalid_encoding(a)) { |
4818 | float_raise(float_flag_invalid, status); | |
4819 | return 1 << 31; | |
4820 | } | |
158142c2 FB |
4821 | aSig = extractFloatx80Frac( a ); |
4822 | aExp = extractFloatx80Exp( a ); | |
4823 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 4824 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4825 | shiftCount = 0x4037 - aExp; |
4826 | if ( shiftCount <= 0 ) shiftCount = 1; | |
4827 | shift64RightJamming( aSig, shiftCount, &aSig ); | |
ff32e16e | 4828 | return roundAndPackInt32(aSign, aSig, status); |
158142c2 FB |
4829 | |
4830 | } | |
4831 | ||
4832 | /*---------------------------------------------------------------------------- | |
4833 | | Returns the result of converting the extended double-precision floating- | |
4834 | | point value `a' to the 32-bit two's complement integer format. The | |
4835 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4836 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4837 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4838 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4839 | | sign as `a' is returned. | |
4840 | *----------------------------------------------------------------------------*/ | |
4841 | ||
f4014512 | 4842 | int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status) |
158142c2 FB |
4843 | { |
4844 | flag aSign; | |
f4014512 | 4845 | int32_t aExp, shiftCount; |
bb98fe42 | 4846 | uint64_t aSig, savedASig; |
b3a6a2e0 | 4847 | int32_t z; |
158142c2 | 4848 | |
d1eb8f2a AD |
4849 | if (floatx80_invalid_encoding(a)) { |
4850 | float_raise(float_flag_invalid, status); | |
4851 | return 1 << 31; | |
4852 | } | |
158142c2 FB |
4853 | aSig = extractFloatx80Frac( a ); |
4854 | aExp = extractFloatx80Exp( a ); | |
4855 | aSign = extractFloatx80Sign( a ); | |
4856 | if ( 0x401E < aExp ) { | |
bb98fe42 | 4857 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4858 | goto invalid; |
4859 | } | |
4860 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
4861 | if (aExp || aSig) { |
4862 | status->float_exception_flags |= float_flag_inexact; | |
4863 | } | |
158142c2 FB |
4864 | return 0; |
4865 | } | |
4866 | shiftCount = 0x403E - aExp; | |
4867 | savedASig = aSig; | |
4868 | aSig >>= shiftCount; | |
4869 | z = aSig; | |
4870 | if ( aSign ) z = - z; | |
4871 | if ( ( z < 0 ) ^ aSign ) { | |
4872 | invalid: | |
ff32e16e | 4873 | float_raise(float_flag_invalid, status); |
bb98fe42 | 4874 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
4875 | } |
4876 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 4877 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
4878 | } |
4879 | return z; | |
4880 | ||
4881 | } | |
4882 | ||
4883 | /*---------------------------------------------------------------------------- | |
4884 | | Returns the result of converting the extended double-precision floating- | |
4885 | | point value `a' to the 64-bit two's complement integer format. The | |
4886 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4887 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4888 | | is rounded according to the current rounding mode. If `a' is a NaN, | |
4889 | | the largest positive integer is returned. Otherwise, if the conversion | |
4890 | | overflows, the largest integer with the same sign as `a' is returned. | |
4891 | *----------------------------------------------------------------------------*/ | |
4892 | ||
f42c2224 | 4893 | int64_t floatx80_to_int64(floatx80 a, float_status *status) |
158142c2 FB |
4894 | { |
4895 | flag aSign; | |
f4014512 | 4896 | int32_t aExp, shiftCount; |
bb98fe42 | 4897 | uint64_t aSig, aSigExtra; |
158142c2 | 4898 | |
d1eb8f2a AD |
4899 | if (floatx80_invalid_encoding(a)) { |
4900 | float_raise(float_flag_invalid, status); | |
4901 | return 1ULL << 63; | |
4902 | } | |
158142c2 FB |
4903 | aSig = extractFloatx80Frac( a ); |
4904 | aExp = extractFloatx80Exp( a ); | |
4905 | aSign = extractFloatx80Sign( a ); | |
4906 | shiftCount = 0x403E - aExp; | |
4907 | if ( shiftCount <= 0 ) { | |
4908 | if ( shiftCount ) { | |
ff32e16e | 4909 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4910 | if ( ! aSign |
4911 | || ( ( aExp == 0x7FFF ) | |
4912 | && ( aSig != LIT64( 0x8000000000000000 ) ) ) | |
4913 | ) { | |
4914 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4915 | } | |
bb98fe42 | 4916 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4917 | } |
4918 | aSigExtra = 0; | |
4919 | } | |
4920 | else { | |
4921 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
4922 | } | |
ff32e16e | 4923 | return roundAndPackInt64(aSign, aSig, aSigExtra, status); |
158142c2 FB |
4924 | |
4925 | } | |
4926 | ||
4927 | /*---------------------------------------------------------------------------- | |
4928 | | Returns the result of converting the extended double-precision floating- | |
4929 | | point value `a' to the 64-bit two's complement integer format. The | |
4930 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4931 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4932 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4933 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4934 | | sign as `a' is returned. | |
4935 | *----------------------------------------------------------------------------*/ | |
4936 | ||
f42c2224 | 4937 | int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status) |
158142c2 FB |
4938 | { |
4939 | flag aSign; | |
f4014512 | 4940 | int32_t aExp, shiftCount; |
bb98fe42 | 4941 | uint64_t aSig; |
f42c2224 | 4942 | int64_t z; |
158142c2 | 4943 | |
d1eb8f2a AD |
4944 | if (floatx80_invalid_encoding(a)) { |
4945 | float_raise(float_flag_invalid, status); | |
4946 | return 1ULL << 63; | |
4947 | } | |
158142c2 FB |
4948 | aSig = extractFloatx80Frac( a ); |
4949 | aExp = extractFloatx80Exp( a ); | |
4950 | aSign = extractFloatx80Sign( a ); | |
4951 | shiftCount = aExp - 0x403E; | |
4952 | if ( 0 <= shiftCount ) { | |
4953 | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4954 | if ( ( a.high != 0xC03E ) || aSig ) { | |
ff32e16e | 4955 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4956 | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { |
4957 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4958 | } | |
4959 | } | |
bb98fe42 | 4960 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4961 | } |
4962 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
4963 | if (aExp | aSig) { |
4964 | status->float_exception_flags |= float_flag_inexact; | |
4965 | } | |
158142c2 FB |
4966 | return 0; |
4967 | } | |
4968 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 4969 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 4970 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
4971 | } |
4972 | if ( aSign ) z = - z; | |
4973 | return z; | |
4974 | ||
4975 | } | |
4976 | ||
4977 | /*---------------------------------------------------------------------------- | |
4978 | | Returns the result of converting the extended double-precision floating- | |
4979 | | point value `a' to the single-precision floating-point format. The | |
4980 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4981 | | Floating-Point Arithmetic. | |
4982 | *----------------------------------------------------------------------------*/ | |
4983 | ||
e5a41ffa | 4984 | float32 floatx80_to_float32(floatx80 a, float_status *status) |
158142c2 FB |
4985 | { |
4986 | flag aSign; | |
f4014512 | 4987 | int32_t aExp; |
bb98fe42 | 4988 | uint64_t aSig; |
158142c2 | 4989 | |
d1eb8f2a AD |
4990 | if (floatx80_invalid_encoding(a)) { |
4991 | float_raise(float_flag_invalid, status); | |
4992 | return float32_default_nan(status); | |
4993 | } | |
158142c2 FB |
4994 | aSig = extractFloatx80Frac( a ); |
4995 | aExp = extractFloatx80Exp( a ); | |
4996 | aSign = extractFloatx80Sign( a ); | |
4997 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4998 | if ( (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 4999 | return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
5000 | } |
5001 | return packFloat32( aSign, 0xFF, 0 ); | |
5002 | } | |
5003 | shift64RightJamming( aSig, 33, &aSig ); | |
5004 | if ( aExp || aSig ) aExp -= 0x3F81; | |
ff32e16e | 5005 | return roundAndPackFloat32(aSign, aExp, aSig, status); |
158142c2 FB |
5006 | |
5007 | } | |
5008 | ||
5009 | /*---------------------------------------------------------------------------- | |
5010 | | Returns the result of converting the extended double-precision floating- | |
5011 | | point value `a' to the double-precision floating-point format. The | |
5012 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5013 | | Floating-Point Arithmetic. | |
5014 | *----------------------------------------------------------------------------*/ | |
5015 | ||
e5a41ffa | 5016 | float64 floatx80_to_float64(floatx80 a, float_status *status) |
158142c2 FB |
5017 | { |
5018 | flag aSign; | |
f4014512 | 5019 | int32_t aExp; |
bb98fe42 | 5020 | uint64_t aSig, zSig; |
158142c2 | 5021 | |
d1eb8f2a AD |
5022 | if (floatx80_invalid_encoding(a)) { |
5023 | float_raise(float_flag_invalid, status); | |
5024 | return float64_default_nan(status); | |
5025 | } | |
158142c2 FB |
5026 | aSig = extractFloatx80Frac( a ); |
5027 | aExp = extractFloatx80Exp( a ); | |
5028 | aSign = extractFloatx80Sign( a ); | |
5029 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5030 | if ( (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 5031 | return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
5032 | } |
5033 | return packFloat64( aSign, 0x7FF, 0 ); | |
5034 | } | |
5035 | shift64RightJamming( aSig, 1, &zSig ); | |
5036 | if ( aExp || aSig ) aExp -= 0x3C01; | |
ff32e16e | 5037 | return roundAndPackFloat64(aSign, aExp, zSig, status); |
158142c2 FB |
5038 | |
5039 | } | |
5040 | ||
158142c2 FB |
5041 | /*---------------------------------------------------------------------------- |
5042 | | Returns the result of converting the extended double-precision floating- | |
5043 | | point value `a' to the quadruple-precision floating-point format. The | |
5044 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5045 | | Floating-Point Arithmetic. | |
5046 | *----------------------------------------------------------------------------*/ | |
5047 | ||
e5a41ffa | 5048 | float128 floatx80_to_float128(floatx80 a, float_status *status) |
158142c2 FB |
5049 | { |
5050 | flag aSign; | |
0c48262d | 5051 | int aExp; |
bb98fe42 | 5052 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 5053 | |
d1eb8f2a AD |
5054 | if (floatx80_invalid_encoding(a)) { |
5055 | float_raise(float_flag_invalid, status); | |
5056 | return float128_default_nan(status); | |
5057 | } | |
158142c2 FB |
5058 | aSig = extractFloatx80Frac( a ); |
5059 | aExp = extractFloatx80Exp( a ); | |
5060 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 5061 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 5062 | return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
5063 | } |
5064 | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); | |
5065 | return packFloat128( aSign, aExp, zSig0, zSig1 ); | |
5066 | ||
5067 | } | |
5068 | ||
158142c2 FB |
5069 | /*---------------------------------------------------------------------------- |
5070 | | Rounds the extended double-precision floating-point value `a' to an integer, | |
5071 | | and returns the result as an extended quadruple-precision floating-point | |
5072 | | value. The operation is performed according to the IEC/IEEE Standard for | |
5073 | | Binary Floating-Point Arithmetic. | |
5074 | *----------------------------------------------------------------------------*/ | |
5075 | ||
e5a41ffa | 5076 | floatx80 floatx80_round_to_int(floatx80 a, float_status *status) |
158142c2 FB |
5077 | { |
5078 | flag aSign; | |
f4014512 | 5079 | int32_t aExp; |
bb98fe42 | 5080 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
5081 | floatx80 z; |
5082 | ||
d1eb8f2a AD |
5083 | if (floatx80_invalid_encoding(a)) { |
5084 | float_raise(float_flag_invalid, status); | |
5085 | return floatx80_default_nan(status); | |
5086 | } | |
158142c2 FB |
5087 | aExp = extractFloatx80Exp( a ); |
5088 | if ( 0x403E <= aExp ) { | |
bb98fe42 | 5089 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { |
ff32e16e | 5090 | return propagateFloatx80NaN(a, a, status); |
158142c2 FB |
5091 | } |
5092 | return a; | |
5093 | } | |
5094 | if ( aExp < 0x3FFF ) { | |
5095 | if ( ( aExp == 0 ) | |
bb98fe42 | 5096 | && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { |
158142c2 FB |
5097 | return a; |
5098 | } | |
a2f2d288 | 5099 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 5100 | aSign = extractFloatx80Sign( a ); |
a2f2d288 | 5101 | switch (status->float_rounding_mode) { |
158142c2 | 5102 | case float_round_nearest_even: |
bb98fe42 | 5103 | if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) |
158142c2 FB |
5104 | ) { |
5105 | return | |
5106 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
5107 | } | |
5108 | break; | |
f9288a76 PM |
5109 | case float_round_ties_away: |
5110 | if (aExp == 0x3FFE) { | |
5111 | return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000)); | |
5112 | } | |
5113 | break; | |
158142c2 FB |
5114 | case float_round_down: |
5115 | return | |
5116 | aSign ? | |
5117 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | |
5118 | : packFloatx80( 0, 0, 0 ); | |
5119 | case float_round_up: | |
5120 | return | |
5121 | aSign ? packFloatx80( 1, 0, 0 ) | |
5122 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
5123 | } | |
5124 | return packFloatx80( aSign, 0, 0 ); | |
5125 | } | |
5126 | lastBitMask = 1; | |
5127 | lastBitMask <<= 0x403E - aExp; | |
5128 | roundBitsMask = lastBitMask - 1; | |
5129 | z = a; | |
a2f2d288 | 5130 | switch (status->float_rounding_mode) { |
dc355b76 | 5131 | case float_round_nearest_even: |
158142c2 | 5132 | z.low += lastBitMask>>1; |
dc355b76 PM |
5133 | if ((z.low & roundBitsMask) == 0) { |
5134 | z.low &= ~lastBitMask; | |
5135 | } | |
5136 | break; | |
f9288a76 PM |
5137 | case float_round_ties_away: |
5138 | z.low += lastBitMask >> 1; | |
5139 | break; | |
dc355b76 PM |
5140 | case float_round_to_zero: |
5141 | break; | |
5142 | case float_round_up: | |
5143 | if (!extractFloatx80Sign(z)) { | |
5144 | z.low += roundBitsMask; | |
5145 | } | |
5146 | break; | |
5147 | case float_round_down: | |
5148 | if (extractFloatx80Sign(z)) { | |
158142c2 FB |
5149 | z.low += roundBitsMask; |
5150 | } | |
dc355b76 PM |
5151 | break; |
5152 | default: | |
5153 | abort(); | |
158142c2 FB |
5154 | } |
5155 | z.low &= ~ roundBitsMask; | |
5156 | if ( z.low == 0 ) { | |
5157 | ++z.high; | |
5158 | z.low = LIT64( 0x8000000000000000 ); | |
5159 | } | |
a2f2d288 PM |
5160 | if (z.low != a.low) { |
5161 | status->float_exception_flags |= float_flag_inexact; | |
5162 | } | |
158142c2 FB |
5163 | return z; |
5164 | ||
5165 | } | |
5166 | ||
5167 | /*---------------------------------------------------------------------------- | |
5168 | | Returns the result of adding the absolute values of the extended double- | |
5169 | | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is | |
5170 | | negated before being returned. `zSign' is ignored if the result is a NaN. | |
5171 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
5172 | | Floating-Point Arithmetic. | |
5173 | *----------------------------------------------------------------------------*/ | |
5174 | ||
e5a41ffa PM |
5175 | static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
5176 | float_status *status) | |
158142c2 | 5177 | { |
f4014512 | 5178 | int32_t aExp, bExp, zExp; |
bb98fe42 | 5179 | uint64_t aSig, bSig, zSig0, zSig1; |
f4014512 | 5180 | int32_t expDiff; |
158142c2 FB |
5181 | |
5182 | aSig = extractFloatx80Frac( a ); | |
5183 | aExp = extractFloatx80Exp( a ); | |
5184 | bSig = extractFloatx80Frac( b ); | |
5185 | bExp = extractFloatx80Exp( b ); | |
5186 | expDiff = aExp - bExp; | |
5187 | if ( 0 < expDiff ) { | |
5188 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5189 | if ((uint64_t)(aSig << 1)) { |
5190 | return propagateFloatx80NaN(a, b, status); | |
5191 | } | |
158142c2 FB |
5192 | return a; |
5193 | } | |
5194 | if ( bExp == 0 ) --expDiff; | |
5195 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
5196 | zExp = aExp; | |
5197 | } | |
5198 | else if ( expDiff < 0 ) { | |
5199 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5200 | if ((uint64_t)(bSig << 1)) { |
5201 | return propagateFloatx80NaN(a, b, status); | |
5202 | } | |
158142c2 FB |
5203 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
5204 | } | |
5205 | if ( aExp == 0 ) ++expDiff; | |
5206 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
5207 | zExp = bExp; | |
5208 | } | |
5209 | else { | |
5210 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5211 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
ff32e16e | 5212 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5213 | } |
5214 | return a; | |
5215 | } | |
5216 | zSig1 = 0; | |
5217 | zSig0 = aSig + bSig; | |
5218 | if ( aExp == 0 ) { | |
5219 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | |
5220 | goto roundAndPack; | |
5221 | } | |
5222 | zExp = aExp; | |
5223 | goto shiftRight1; | |
5224 | } | |
5225 | zSig0 = aSig + bSig; | |
bb98fe42 | 5226 | if ( (int64_t) zSig0 < 0 ) goto roundAndPack; |
158142c2 FB |
5227 | shiftRight1: |
5228 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
5229 | zSig0 |= LIT64( 0x8000000000000000 ); | |
5230 | ++zExp; | |
5231 | roundAndPack: | |
a2f2d288 | 5232 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5233 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5234 | } |
5235 | ||
5236 | /*---------------------------------------------------------------------------- | |
5237 | | Returns the result of subtracting the absolute values of the extended | |
5238 | | double-precision floating-point values `a' and `b'. If `zSign' is 1, the | |
5239 | | difference is negated before being returned. `zSign' is ignored if the | |
5240 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
5241 | | Standard for Binary Floating-Point Arithmetic. | |
5242 | *----------------------------------------------------------------------------*/ | |
5243 | ||
e5a41ffa PM |
5244 | static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
5245 | float_status *status) | |
158142c2 | 5246 | { |
f4014512 | 5247 | int32_t aExp, bExp, zExp; |
bb98fe42 | 5248 | uint64_t aSig, bSig, zSig0, zSig1; |
f4014512 | 5249 | int32_t expDiff; |
158142c2 FB |
5250 | |
5251 | aSig = extractFloatx80Frac( a ); | |
5252 | aExp = extractFloatx80Exp( a ); | |
5253 | bSig = extractFloatx80Frac( b ); | |
5254 | bExp = extractFloatx80Exp( b ); | |
5255 | expDiff = aExp - bExp; | |
5256 | if ( 0 < expDiff ) goto aExpBigger; | |
5257 | if ( expDiff < 0 ) goto bExpBigger; | |
5258 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5259 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
ff32e16e | 5260 | return propagateFloatx80NaN(a, b, status); |
158142c2 | 5261 | } |
ff32e16e | 5262 | float_raise(float_flag_invalid, status); |
af39bc8c | 5263 | return floatx80_default_nan(status); |
158142c2 FB |
5264 | } |
5265 | if ( aExp == 0 ) { | |
5266 | aExp = 1; | |
5267 | bExp = 1; | |
5268 | } | |
5269 | zSig1 = 0; | |
5270 | if ( bSig < aSig ) goto aBigger; | |
5271 | if ( aSig < bSig ) goto bBigger; | |
a2f2d288 | 5272 | return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0); |
158142c2 FB |
5273 | bExpBigger: |
5274 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5275 | if ((uint64_t)(bSig << 1)) { |
5276 | return propagateFloatx80NaN(a, b, status); | |
5277 | } | |
158142c2 FB |
5278 | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
5279 | } | |
5280 | if ( aExp == 0 ) ++expDiff; | |
5281 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
5282 | bBigger: | |
5283 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | |
5284 | zExp = bExp; | |
5285 | zSign ^= 1; | |
5286 | goto normalizeRoundAndPack; | |
5287 | aExpBigger: | |
5288 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5289 | if ((uint64_t)(aSig << 1)) { |
5290 | return propagateFloatx80NaN(a, b, status); | |
5291 | } | |
158142c2 FB |
5292 | return a; |
5293 | } | |
5294 | if ( bExp == 0 ) --expDiff; | |
5295 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
5296 | aBigger: | |
5297 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | |
5298 | zExp = aExp; | |
5299 | normalizeRoundAndPack: | |
a2f2d288 | 5300 | return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5301 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5302 | } |
5303 | ||
5304 | /*---------------------------------------------------------------------------- | |
5305 | | Returns the result of adding the extended double-precision floating-point | |
5306 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
5307 | | Standard for Binary Floating-Point Arithmetic. | |
5308 | *----------------------------------------------------------------------------*/ | |
5309 | ||
e5a41ffa | 5310 | floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5311 | { |
5312 | flag aSign, bSign; | |
5313 | ||
d1eb8f2a AD |
5314 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5315 | float_raise(float_flag_invalid, status); | |
5316 | return floatx80_default_nan(status); | |
5317 | } | |
158142c2 FB |
5318 | aSign = extractFloatx80Sign( a ); |
5319 | bSign = extractFloatx80Sign( b ); | |
5320 | if ( aSign == bSign ) { | |
ff32e16e | 5321 | return addFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5322 | } |
5323 | else { | |
ff32e16e | 5324 | return subFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5325 | } |
5326 | ||
5327 | } | |
5328 | ||
5329 | /*---------------------------------------------------------------------------- | |
5330 | | Returns the result of subtracting the extended double-precision floating- | |
5331 | | point values `a' and `b'. The operation is performed according to the | |
5332 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5333 | *----------------------------------------------------------------------------*/ | |
5334 | ||
e5a41ffa | 5335 | floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5336 | { |
5337 | flag aSign, bSign; | |
5338 | ||
d1eb8f2a AD |
5339 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5340 | float_raise(float_flag_invalid, status); | |
5341 | return floatx80_default_nan(status); | |
5342 | } | |
158142c2 FB |
5343 | aSign = extractFloatx80Sign( a ); |
5344 | bSign = extractFloatx80Sign( b ); | |
5345 | if ( aSign == bSign ) { | |
ff32e16e | 5346 | return subFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5347 | } |
5348 | else { | |
ff32e16e | 5349 | return addFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5350 | } |
5351 | ||
5352 | } | |
5353 | ||
5354 | /*---------------------------------------------------------------------------- | |
5355 | | Returns the result of multiplying the extended double-precision floating- | |
5356 | | point values `a' and `b'. The operation is performed according to the | |
5357 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5358 | *----------------------------------------------------------------------------*/ | |
5359 | ||
e5a41ffa | 5360 | floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5361 | { |
5362 | flag aSign, bSign, zSign; | |
f4014512 | 5363 | int32_t aExp, bExp, zExp; |
bb98fe42 | 5364 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 | 5365 | |
d1eb8f2a AD |
5366 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5367 | float_raise(float_flag_invalid, status); | |
5368 | return floatx80_default_nan(status); | |
5369 | } | |
158142c2 FB |
5370 | aSig = extractFloatx80Frac( a ); |
5371 | aExp = extractFloatx80Exp( a ); | |
5372 | aSign = extractFloatx80Sign( a ); | |
5373 | bSig = extractFloatx80Frac( b ); | |
5374 | bExp = extractFloatx80Exp( b ); | |
5375 | bSign = extractFloatx80Sign( b ); | |
5376 | zSign = aSign ^ bSign; | |
5377 | if ( aExp == 0x7FFF ) { | |
bb98fe42 AF |
5378 | if ( (uint64_t) ( aSig<<1 ) |
5379 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
ff32e16e | 5380 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5381 | } |
5382 | if ( ( bExp | bSig ) == 0 ) goto invalid; | |
5383 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5384 | } | |
5385 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5386 | if ((uint64_t)(bSig << 1)) { |
5387 | return propagateFloatx80NaN(a, b, status); | |
5388 | } | |
158142c2 FB |
5389 | if ( ( aExp | aSig ) == 0 ) { |
5390 | invalid: | |
ff32e16e | 5391 | float_raise(float_flag_invalid, status); |
af39bc8c | 5392 | return floatx80_default_nan(status); |
158142c2 FB |
5393 | } |
5394 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5395 | } | |
5396 | if ( aExp == 0 ) { | |
5397 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5398 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
5399 | } | |
5400 | if ( bExp == 0 ) { | |
5401 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5402 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5403 | } | |
5404 | zExp = aExp + bExp - 0x3FFE; | |
5405 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
bb98fe42 | 5406 | if ( 0 < (int64_t) zSig0 ) { |
158142c2 FB |
5407 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
5408 | --zExp; | |
5409 | } | |
a2f2d288 | 5410 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5411 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5412 | } |
5413 | ||
5414 | /*---------------------------------------------------------------------------- | |
5415 | | Returns the result of dividing the extended double-precision floating-point | |
5416 | | value `a' by the corresponding value `b'. The operation is performed | |
5417 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5418 | *----------------------------------------------------------------------------*/ | |
5419 | ||
e5a41ffa | 5420 | floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5421 | { |
5422 | flag aSign, bSign, zSign; | |
f4014512 | 5423 | int32_t aExp, bExp, zExp; |
bb98fe42 AF |
5424 | uint64_t aSig, bSig, zSig0, zSig1; |
5425 | uint64_t rem0, rem1, rem2, term0, term1, term2; | |
158142c2 | 5426 | |
d1eb8f2a AD |
5427 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5428 | float_raise(float_flag_invalid, status); | |
5429 | return floatx80_default_nan(status); | |
5430 | } | |
158142c2 FB |
5431 | aSig = extractFloatx80Frac( a ); |
5432 | aExp = extractFloatx80Exp( a ); | |
5433 | aSign = extractFloatx80Sign( a ); | |
5434 | bSig = extractFloatx80Frac( b ); | |
5435 | bExp = extractFloatx80Exp( b ); | |
5436 | bSign = extractFloatx80Sign( b ); | |
5437 | zSign = aSign ^ bSign; | |
5438 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5439 | if ((uint64_t)(aSig << 1)) { |
5440 | return propagateFloatx80NaN(a, b, status); | |
5441 | } | |
158142c2 | 5442 | if ( bExp == 0x7FFF ) { |
ff32e16e PM |
5443 | if ((uint64_t)(bSig << 1)) { |
5444 | return propagateFloatx80NaN(a, b, status); | |
5445 | } | |
158142c2 FB |
5446 | goto invalid; |
5447 | } | |
5448 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5449 | } | |
5450 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5451 | if ((uint64_t)(bSig << 1)) { |
5452 | return propagateFloatx80NaN(a, b, status); | |
5453 | } | |
158142c2 FB |
5454 | return packFloatx80( zSign, 0, 0 ); |
5455 | } | |
5456 | if ( bExp == 0 ) { | |
5457 | if ( bSig == 0 ) { | |
5458 | if ( ( aExp | aSig ) == 0 ) { | |
5459 | invalid: | |
ff32e16e | 5460 | float_raise(float_flag_invalid, status); |
af39bc8c | 5461 | return floatx80_default_nan(status); |
158142c2 | 5462 | } |
ff32e16e | 5463 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
5464 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
5465 | } | |
5466 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5467 | } | |
5468 | if ( aExp == 0 ) { | |
5469 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5470 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
5471 | } | |
5472 | zExp = aExp - bExp + 0x3FFE; | |
5473 | rem1 = 0; | |
5474 | if ( bSig <= aSig ) { | |
5475 | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | |
5476 | ++zExp; | |
5477 | } | |
5478 | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | |
5479 | mul64To128( bSig, zSig0, &term0, &term1 ); | |
5480 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 5481 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
5482 | --zSig0; |
5483 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
5484 | } | |
5485 | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | |
bb98fe42 | 5486 | if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { |
158142c2 FB |
5487 | mul64To128( bSig, zSig1, &term1, &term2 ); |
5488 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
bb98fe42 | 5489 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5490 | --zSig1; |
5491 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | |
5492 | } | |
5493 | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | |
5494 | } | |
a2f2d288 | 5495 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5496 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5497 | } |
5498 | ||
5499 | /*---------------------------------------------------------------------------- | |
5500 | | Returns the remainder of the extended double-precision floating-point value | |
5501 | | `a' with respect to the corresponding value `b'. The operation is performed | |
5502 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5503 | *----------------------------------------------------------------------------*/ | |
5504 | ||
e5a41ffa | 5505 | floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status) |
158142c2 | 5506 | { |
ed086f3d | 5507 | flag aSign, zSign; |
f4014512 | 5508 | int32_t aExp, bExp, expDiff; |
bb98fe42 AF |
5509 | uint64_t aSig0, aSig1, bSig; |
5510 | uint64_t q, term0, term1, alternateASig0, alternateASig1; | |
158142c2 | 5511 | |
d1eb8f2a AD |
5512 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5513 | float_raise(float_flag_invalid, status); | |
5514 | return floatx80_default_nan(status); | |
5515 | } | |
158142c2 FB |
5516 | aSig0 = extractFloatx80Frac( a ); |
5517 | aExp = extractFloatx80Exp( a ); | |
5518 | aSign = extractFloatx80Sign( a ); | |
5519 | bSig = extractFloatx80Frac( b ); | |
5520 | bExp = extractFloatx80Exp( b ); | |
158142c2 | 5521 | if ( aExp == 0x7FFF ) { |
bb98fe42 AF |
5522 | if ( (uint64_t) ( aSig0<<1 ) |
5523 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
ff32e16e | 5524 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5525 | } |
5526 | goto invalid; | |
5527 | } | |
5528 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5529 | if ((uint64_t)(bSig << 1)) { |
5530 | return propagateFloatx80NaN(a, b, status); | |
5531 | } | |
158142c2 FB |
5532 | return a; |
5533 | } | |
5534 | if ( bExp == 0 ) { | |
5535 | if ( bSig == 0 ) { | |
5536 | invalid: | |
ff32e16e | 5537 | float_raise(float_flag_invalid, status); |
af39bc8c | 5538 | return floatx80_default_nan(status); |
158142c2 FB |
5539 | } |
5540 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5541 | } | |
5542 | if ( aExp == 0 ) { | |
bb98fe42 | 5543 | if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; |
158142c2 FB |
5544 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
5545 | } | |
5546 | bSig |= LIT64( 0x8000000000000000 ); | |
5547 | zSign = aSign; | |
5548 | expDiff = aExp - bExp; | |
5549 | aSig1 = 0; | |
5550 | if ( expDiff < 0 ) { | |
5551 | if ( expDiff < -1 ) return a; | |
5552 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | |
5553 | expDiff = 0; | |
5554 | } | |
5555 | q = ( bSig <= aSig0 ); | |
5556 | if ( q ) aSig0 -= bSig; | |
5557 | expDiff -= 64; | |
5558 | while ( 0 < expDiff ) { | |
5559 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
5560 | q = ( 2 < q ) ? q - 2 : 0; | |
5561 | mul64To128( bSig, q, &term0, &term1 ); | |
5562 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5563 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | |
5564 | expDiff -= 62; | |
5565 | } | |
5566 | expDiff += 64; | |
5567 | if ( 0 < expDiff ) { | |
5568 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
5569 | q = ( 2 < q ) ? q - 2 : 0; | |
5570 | q >>= 64 - expDiff; | |
5571 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | |
5572 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5573 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | |
5574 | while ( le128( term0, term1, aSig0, aSig1 ) ) { | |
5575 | ++q; | |
5576 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5577 | } | |
5578 | } | |
5579 | else { | |
5580 | term1 = 0; | |
5581 | term0 = bSig; | |
5582 | } | |
5583 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | |
5584 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
5585 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
5586 | && ( q & 1 ) ) | |
5587 | ) { | |
5588 | aSig0 = alternateASig0; | |
5589 | aSig1 = alternateASig1; | |
5590 | zSign = ! zSign; | |
5591 | } | |
5592 | return | |
5593 | normalizeRoundAndPackFloatx80( | |
ff32e16e | 5594 | 80, zSign, bExp + expDiff, aSig0, aSig1, status); |
158142c2 FB |
5595 | |
5596 | } | |
5597 | ||
5598 | /*---------------------------------------------------------------------------- | |
5599 | | Returns the square root of the extended double-precision floating-point | |
5600 | | value `a'. The operation is performed according to the IEC/IEEE Standard | |
5601 | | for Binary Floating-Point Arithmetic. | |
5602 | *----------------------------------------------------------------------------*/ | |
5603 | ||
e5a41ffa | 5604 | floatx80 floatx80_sqrt(floatx80 a, float_status *status) |
158142c2 FB |
5605 | { |
5606 | flag aSign; | |
f4014512 | 5607 | int32_t aExp, zExp; |
bb98fe42 AF |
5608 | uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; |
5609 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 | 5610 | |
d1eb8f2a AD |
5611 | if (floatx80_invalid_encoding(a)) { |
5612 | float_raise(float_flag_invalid, status); | |
5613 | return floatx80_default_nan(status); | |
5614 | } | |
158142c2 FB |
5615 | aSig0 = extractFloatx80Frac( a ); |
5616 | aExp = extractFloatx80Exp( a ); | |
5617 | aSign = extractFloatx80Sign( a ); | |
5618 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5619 | if ((uint64_t)(aSig0 << 1)) { |
5620 | return propagateFloatx80NaN(a, a, status); | |
5621 | } | |
158142c2 FB |
5622 | if ( ! aSign ) return a; |
5623 | goto invalid; | |
5624 | } | |
5625 | if ( aSign ) { | |
5626 | if ( ( aExp | aSig0 ) == 0 ) return a; | |
5627 | invalid: | |
ff32e16e | 5628 | float_raise(float_flag_invalid, status); |
af39bc8c | 5629 | return floatx80_default_nan(status); |
158142c2 FB |
5630 | } |
5631 | if ( aExp == 0 ) { | |
5632 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | |
5633 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
5634 | } | |
5635 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | |
5636 | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | |
5637 | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); | |
5638 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
5639 | doubleZSig0 = zSig0<<1; | |
5640 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
5641 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 5642 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
5643 | --zSig0; |
5644 | doubleZSig0 -= 2; | |
5645 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
5646 | } | |
5647 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
5648 | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { | |
5649 | if ( zSig1 == 0 ) zSig1 = 1; | |
5650 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
5651 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
5652 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
5653 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 5654 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5655 | --zSig1; |
5656 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
5657 | term3 |= 1; | |
5658 | term2 |= doubleZSig0; | |
5659 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
5660 | } | |
5661 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
5662 | } | |
5663 | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); | |
5664 | zSig0 |= doubleZSig0; | |
a2f2d288 PM |
5665 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
5666 | 0, zExp, zSig0, zSig1, status); | |
158142c2 FB |
5667 | } |
5668 | ||
5669 | /*---------------------------------------------------------------------------- | |
b689362d AJ |
5670 | | Returns 1 if the extended double-precision floating-point value `a' is equal |
5671 | | to the corresponding value `b', and 0 otherwise. The invalid exception is | |
5672 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
5673 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5674 | *----------------------------------------------------------------------------*/ |
5675 | ||
e5a41ffa | 5676 | int floatx80_eq(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5677 | { |
5678 | ||
d1eb8f2a AD |
5679 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5680 | || (extractFloatx80Exp(a) == 0x7FFF | |
5681 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5682 | || (extractFloatx80Exp(b) == 0x7FFF | |
5683 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 5684 | ) { |
ff32e16e | 5685 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5686 | return 0; |
5687 | } | |
5688 | return | |
5689 | ( a.low == b.low ) | |
5690 | && ( ( a.high == b.high ) | |
5691 | || ( ( a.low == 0 ) | |
bb98fe42 | 5692 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5693 | ); |
5694 | ||
5695 | } | |
5696 | ||
5697 | /*---------------------------------------------------------------------------- | |
5698 | | Returns 1 if the extended double-precision floating-point value `a' is | |
5699 | | less than or equal to the corresponding value `b', and 0 otherwise. The | |
f5a64251 AJ |
5700 | | invalid exception is raised if either operand is a NaN. The comparison is |
5701 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5702 | | Arithmetic. | |
158142c2 FB |
5703 | *----------------------------------------------------------------------------*/ |
5704 | ||
e5a41ffa | 5705 | int floatx80_le(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5706 | { |
5707 | flag aSign, bSign; | |
5708 | ||
d1eb8f2a AD |
5709 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5710 | || (extractFloatx80Exp(a) == 0x7FFF | |
5711 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5712 | || (extractFloatx80Exp(b) == 0x7FFF | |
5713 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 5714 | ) { |
ff32e16e | 5715 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5716 | return 0; |
5717 | } | |
5718 | aSign = extractFloatx80Sign( a ); | |
5719 | bSign = extractFloatx80Sign( b ); | |
5720 | if ( aSign != bSign ) { | |
5721 | return | |
5722 | aSign | |
bb98fe42 | 5723 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5724 | == 0 ); |
5725 | } | |
5726 | return | |
5727 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5728 | : le128( a.high, a.low, b.high, b.low ); | |
5729 | ||
5730 | } | |
5731 | ||
5732 | /*---------------------------------------------------------------------------- | |
5733 | | Returns 1 if the extended double-precision floating-point value `a' is | |
f5a64251 AJ |
5734 | | less than the corresponding value `b', and 0 otherwise. The invalid |
5735 | | exception is raised if either operand is a NaN. The comparison is performed | |
5736 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5737 | *----------------------------------------------------------------------------*/ |
5738 | ||
e5a41ffa | 5739 | int floatx80_lt(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5740 | { |
5741 | flag aSign, bSign; | |
5742 | ||
d1eb8f2a AD |
5743 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5744 | || (extractFloatx80Exp(a) == 0x7FFF | |
5745 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5746 | || (extractFloatx80Exp(b) == 0x7FFF | |
5747 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 5748 | ) { |
ff32e16e | 5749 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5750 | return 0; |
5751 | } | |
5752 | aSign = extractFloatx80Sign( a ); | |
5753 | bSign = extractFloatx80Sign( b ); | |
5754 | if ( aSign != bSign ) { | |
5755 | return | |
5756 | aSign | |
bb98fe42 | 5757 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5758 | != 0 ); |
5759 | } | |
5760 | return | |
5761 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5762 | : lt128( a.high, a.low, b.high, b.low ); | |
5763 | ||
5764 | } | |
5765 | ||
67b7861d AJ |
5766 | /*---------------------------------------------------------------------------- |
5767 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
f5a64251 AJ |
5768 | | cannot be compared, and 0 otherwise. The invalid exception is raised if |
5769 | | either operand is a NaN. The comparison is performed according to the | |
5770 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
67b7861d | 5771 | *----------------------------------------------------------------------------*/ |
e5a41ffa | 5772 | int floatx80_unordered(floatx80 a, floatx80 b, float_status *status) |
67b7861d | 5773 | { |
d1eb8f2a AD |
5774 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5775 | || (extractFloatx80Exp(a) == 0x7FFF | |
5776 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5777 | || (extractFloatx80Exp(b) == 0x7FFF | |
5778 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
67b7861d | 5779 | ) { |
ff32e16e | 5780 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
5781 | return 1; |
5782 | } | |
5783 | return 0; | |
5784 | } | |
5785 | ||
158142c2 | 5786 | /*---------------------------------------------------------------------------- |
b689362d | 5787 | | Returns 1 if the extended double-precision floating-point value `a' is |
f5a64251 AJ |
5788 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
5789 | | cause an exception. The comparison is performed according to the IEC/IEEE | |
5790 | | Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5791 | *----------------------------------------------------------------------------*/ |
5792 | ||
e5a41ffa | 5793 | int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5794 | { |
5795 | ||
d1eb8f2a AD |
5796 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5797 | float_raise(float_flag_invalid, status); | |
5798 | return 0; | |
5799 | } | |
158142c2 | 5800 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 5801 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5802 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5803 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5804 | ) { |
af39bc8c AM |
5805 | if (floatx80_is_signaling_nan(a, status) |
5806 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5807 | float_raise(float_flag_invalid, status); |
b689362d | 5808 | } |
158142c2 FB |
5809 | return 0; |
5810 | } | |
5811 | return | |
5812 | ( a.low == b.low ) | |
5813 | && ( ( a.high == b.high ) | |
5814 | || ( ( a.low == 0 ) | |
bb98fe42 | 5815 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5816 | ); |
5817 | ||
5818 | } | |
5819 | ||
5820 | /*---------------------------------------------------------------------------- | |
5821 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5822 | | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | |
5823 | | do not cause an exception. Otherwise, the comparison is performed according | |
5824 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5825 | *----------------------------------------------------------------------------*/ | |
5826 | ||
e5a41ffa | 5827 | int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5828 | { |
5829 | flag aSign, bSign; | |
5830 | ||
d1eb8f2a AD |
5831 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5832 | float_raise(float_flag_invalid, status); | |
5833 | return 0; | |
5834 | } | |
158142c2 | 5835 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 5836 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5837 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5838 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5839 | ) { |
af39bc8c AM |
5840 | if (floatx80_is_signaling_nan(a, status) |
5841 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5842 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5843 | } |
5844 | return 0; | |
5845 | } | |
5846 | aSign = extractFloatx80Sign( a ); | |
5847 | bSign = extractFloatx80Sign( b ); | |
5848 | if ( aSign != bSign ) { | |
5849 | return | |
5850 | aSign | |
bb98fe42 | 5851 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5852 | == 0 ); |
5853 | } | |
5854 | return | |
5855 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5856 | : le128( a.high, a.low, b.high, b.low ); | |
5857 | ||
5858 | } | |
5859 | ||
5860 | /*---------------------------------------------------------------------------- | |
5861 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5862 | | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | |
5863 | | an exception. Otherwise, the comparison is performed according to the | |
5864 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5865 | *----------------------------------------------------------------------------*/ | |
5866 | ||
e5a41ffa | 5867 | int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5868 | { |
5869 | flag aSign, bSign; | |
5870 | ||
d1eb8f2a AD |
5871 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5872 | float_raise(float_flag_invalid, status); | |
5873 | return 0; | |
5874 | } | |
158142c2 | 5875 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 5876 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5877 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5878 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5879 | ) { |
af39bc8c AM |
5880 | if (floatx80_is_signaling_nan(a, status) |
5881 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5882 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5883 | } |
5884 | return 0; | |
5885 | } | |
5886 | aSign = extractFloatx80Sign( a ); | |
5887 | bSign = extractFloatx80Sign( b ); | |
5888 | if ( aSign != bSign ) { | |
5889 | return | |
5890 | aSign | |
bb98fe42 | 5891 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5892 | != 0 ); |
5893 | } | |
5894 | return | |
5895 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5896 | : lt128( a.high, a.low, b.high, b.low ); | |
5897 | ||
5898 | } | |
5899 | ||
67b7861d AJ |
5900 | /*---------------------------------------------------------------------------- |
5901 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
5902 | | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. | |
5903 | | The comparison is performed according to the IEC/IEEE Standard for Binary | |
5904 | | Floating-Point Arithmetic. | |
5905 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 5906 | int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status) |
67b7861d | 5907 | { |
d1eb8f2a AD |
5908 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5909 | float_raise(float_flag_invalid, status); | |
5910 | return 1; | |
5911 | } | |
67b7861d AJ |
5912 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
5913 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | |
5914 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
5915 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | |
5916 | ) { | |
af39bc8c AM |
5917 | if (floatx80_is_signaling_nan(a, status) |
5918 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5919 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
5920 | } |
5921 | return 1; | |
5922 | } | |
5923 | return 0; | |
5924 | } | |
5925 | ||
158142c2 FB |
5926 | /*---------------------------------------------------------------------------- |
5927 | | Returns the result of converting the quadruple-precision floating-point | |
5928 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5929 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5930 | | Arithmetic---which means in particular that the conversion is rounded | |
5931 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5932 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
5933 | | largest integer with the same sign as `a' is returned. | |
5934 | *----------------------------------------------------------------------------*/ | |
5935 | ||
f4014512 | 5936 | int32_t float128_to_int32(float128 a, float_status *status) |
158142c2 FB |
5937 | { |
5938 | flag aSign; | |
f4014512 | 5939 | int32_t aExp, shiftCount; |
bb98fe42 | 5940 | uint64_t aSig0, aSig1; |
158142c2 FB |
5941 | |
5942 | aSig1 = extractFloat128Frac1( a ); | |
5943 | aSig0 = extractFloat128Frac0( a ); | |
5944 | aExp = extractFloat128Exp( a ); | |
5945 | aSign = extractFloat128Sign( a ); | |
5946 | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; | |
5947 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5948 | aSig0 |= ( aSig1 != 0 ); | |
5949 | shiftCount = 0x4028 - aExp; | |
5950 | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); | |
ff32e16e | 5951 | return roundAndPackInt32(aSign, aSig0, status); |
158142c2 FB |
5952 | |
5953 | } | |
5954 | ||
5955 | /*---------------------------------------------------------------------------- | |
5956 | | Returns the result of converting the quadruple-precision floating-point | |
5957 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5958 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5959 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
5960 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
5961 | | conversion overflows, the largest integer with the same sign as `a' is | |
5962 | | returned. | |
5963 | *----------------------------------------------------------------------------*/ | |
5964 | ||
f4014512 | 5965 | int32_t float128_to_int32_round_to_zero(float128 a, float_status *status) |
158142c2 FB |
5966 | { |
5967 | flag aSign; | |
f4014512 | 5968 | int32_t aExp, shiftCount; |
bb98fe42 | 5969 | uint64_t aSig0, aSig1, savedASig; |
b3a6a2e0 | 5970 | int32_t z; |
158142c2 FB |
5971 | |
5972 | aSig1 = extractFloat128Frac1( a ); | |
5973 | aSig0 = extractFloat128Frac0( a ); | |
5974 | aExp = extractFloat128Exp( a ); | |
5975 | aSign = extractFloat128Sign( a ); | |
5976 | aSig0 |= ( aSig1 != 0 ); | |
5977 | if ( 0x401E < aExp ) { | |
5978 | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; | |
5979 | goto invalid; | |
5980 | } | |
5981 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
5982 | if (aExp || aSig0) { |
5983 | status->float_exception_flags |= float_flag_inexact; | |
5984 | } | |
158142c2 FB |
5985 | return 0; |
5986 | } | |
5987 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5988 | shiftCount = 0x402F - aExp; | |
5989 | savedASig = aSig0; | |
5990 | aSig0 >>= shiftCount; | |
5991 | z = aSig0; | |
5992 | if ( aSign ) z = - z; | |
5993 | if ( ( z < 0 ) ^ aSign ) { | |
5994 | invalid: | |
ff32e16e | 5995 | float_raise(float_flag_invalid, status); |
bb98fe42 | 5996 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
5997 | } |
5998 | if ( ( aSig0<<shiftCount ) != savedASig ) { | |
a2f2d288 | 5999 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6000 | } |
6001 | return z; | |
6002 | ||
6003 | } | |
6004 | ||
6005 | /*---------------------------------------------------------------------------- | |
6006 | | Returns the result of converting the quadruple-precision floating-point | |
6007 | | value `a' to the 64-bit two's complement integer format. The conversion | |
6008 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6009 | | Arithmetic---which means in particular that the conversion is rounded | |
6010 | | according to the current rounding mode. If `a' is a NaN, the largest | |
6011 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
6012 | | largest integer with the same sign as `a' is returned. | |
6013 | *----------------------------------------------------------------------------*/ | |
6014 | ||
f42c2224 | 6015 | int64_t float128_to_int64(float128 a, float_status *status) |
158142c2 FB |
6016 | { |
6017 | flag aSign; | |
f4014512 | 6018 | int32_t aExp, shiftCount; |
bb98fe42 | 6019 | uint64_t aSig0, aSig1; |
158142c2 FB |
6020 | |
6021 | aSig1 = extractFloat128Frac1( a ); | |
6022 | aSig0 = extractFloat128Frac0( a ); | |
6023 | aExp = extractFloat128Exp( a ); | |
6024 | aSign = extractFloat128Sign( a ); | |
6025 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
6026 | shiftCount = 0x402F - aExp; | |
6027 | if ( shiftCount <= 0 ) { | |
6028 | if ( 0x403E < aExp ) { | |
ff32e16e | 6029 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6030 | if ( ! aSign |
6031 | || ( ( aExp == 0x7FFF ) | |
6032 | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) | |
6033 | ) | |
6034 | ) { | |
6035 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
6036 | } | |
bb98fe42 | 6037 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
6038 | } |
6039 | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); | |
6040 | } | |
6041 | else { | |
6042 | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); | |
6043 | } | |
ff32e16e | 6044 | return roundAndPackInt64(aSign, aSig0, aSig1, status); |
158142c2 FB |
6045 | |
6046 | } | |
6047 | ||
6048 | /*---------------------------------------------------------------------------- | |
6049 | | Returns the result of converting the quadruple-precision floating-point | |
6050 | | value `a' to the 64-bit two's complement integer format. The conversion | |
6051 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6052 | | Arithmetic, except that the conversion is always rounded toward zero. | |
6053 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
6054 | | the conversion overflows, the largest integer with the same sign as `a' is | |
6055 | | returned. | |
6056 | *----------------------------------------------------------------------------*/ | |
6057 | ||
f42c2224 | 6058 | int64_t float128_to_int64_round_to_zero(float128 a, float_status *status) |
158142c2 FB |
6059 | { |
6060 | flag aSign; | |
f4014512 | 6061 | int32_t aExp, shiftCount; |
bb98fe42 | 6062 | uint64_t aSig0, aSig1; |
f42c2224 | 6063 | int64_t z; |
158142c2 FB |
6064 | |
6065 | aSig1 = extractFloat128Frac1( a ); | |
6066 | aSig0 = extractFloat128Frac0( a ); | |
6067 | aExp = extractFloat128Exp( a ); | |
6068 | aSign = extractFloat128Sign( a ); | |
6069 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
6070 | shiftCount = aExp - 0x402F; | |
6071 | if ( 0 < shiftCount ) { | |
6072 | if ( 0x403E <= aExp ) { | |
6073 | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); | |
6074 | if ( ( a.high == LIT64( 0xC03E000000000000 ) ) | |
6075 | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { | |
a2f2d288 PM |
6076 | if (aSig1) { |
6077 | status->float_exception_flags |= float_flag_inexact; | |
6078 | } | |
158142c2 FB |
6079 | } |
6080 | else { | |
ff32e16e | 6081 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6082 | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { |
6083 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
6084 | } | |
6085 | } | |
bb98fe42 | 6086 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
6087 | } |
6088 | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); | |
bb98fe42 | 6089 | if ( (uint64_t) ( aSig1<<shiftCount ) ) { |
a2f2d288 | 6090 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6091 | } |
6092 | } | |
6093 | else { | |
6094 | if ( aExp < 0x3FFF ) { | |
6095 | if ( aExp | aSig0 | aSig1 ) { | |
a2f2d288 | 6096 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6097 | } |
6098 | return 0; | |
6099 | } | |
6100 | z = aSig0>>( - shiftCount ); | |
6101 | if ( aSig1 | |
bb98fe42 | 6102 | || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { |
a2f2d288 | 6103 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6104 | } |
6105 | } | |
6106 | if ( aSign ) z = - z; | |
6107 | return z; | |
6108 | ||
6109 | } | |
6110 | ||
6111 | /*---------------------------------------------------------------------------- | |
6112 | | Returns the result of converting the quadruple-precision floating-point | |
6113 | | value `a' to the single-precision floating-point format. The conversion | |
6114 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6115 | | Arithmetic. | |
6116 | *----------------------------------------------------------------------------*/ | |
6117 | ||
e5a41ffa | 6118 | float32 float128_to_float32(float128 a, float_status *status) |
158142c2 FB |
6119 | { |
6120 | flag aSign; | |
f4014512 | 6121 | int32_t aExp; |
bb98fe42 AF |
6122 | uint64_t aSig0, aSig1; |
6123 | uint32_t zSig; | |
158142c2 FB |
6124 | |
6125 | aSig1 = extractFloat128Frac1( a ); | |
6126 | aSig0 = extractFloat128Frac0( a ); | |
6127 | aExp = extractFloat128Exp( a ); | |
6128 | aSign = extractFloat128Sign( a ); | |
6129 | if ( aExp == 0x7FFF ) { | |
6130 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6131 | return commonNaNToFloat32(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6132 | } |
6133 | return packFloat32( aSign, 0xFF, 0 ); | |
6134 | } | |
6135 | aSig0 |= ( aSig1 != 0 ); | |
6136 | shift64RightJamming( aSig0, 18, &aSig0 ); | |
6137 | zSig = aSig0; | |
6138 | if ( aExp || zSig ) { | |
6139 | zSig |= 0x40000000; | |
6140 | aExp -= 0x3F81; | |
6141 | } | |
ff32e16e | 6142 | return roundAndPackFloat32(aSign, aExp, zSig, status); |
158142c2 FB |
6143 | |
6144 | } | |
6145 | ||
6146 | /*---------------------------------------------------------------------------- | |
6147 | | Returns the result of converting the quadruple-precision floating-point | |
6148 | | value `a' to the double-precision floating-point format. The conversion | |
6149 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6150 | | Arithmetic. | |
6151 | *----------------------------------------------------------------------------*/ | |
6152 | ||
e5a41ffa | 6153 | float64 float128_to_float64(float128 a, float_status *status) |
158142c2 FB |
6154 | { |
6155 | flag aSign; | |
f4014512 | 6156 | int32_t aExp; |
bb98fe42 | 6157 | uint64_t aSig0, aSig1; |
158142c2 FB |
6158 | |
6159 | aSig1 = extractFloat128Frac1( a ); | |
6160 | aSig0 = extractFloat128Frac0( a ); | |
6161 | aExp = extractFloat128Exp( a ); | |
6162 | aSign = extractFloat128Sign( a ); | |
6163 | if ( aExp == 0x7FFF ) { | |
6164 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6165 | return commonNaNToFloat64(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6166 | } |
6167 | return packFloat64( aSign, 0x7FF, 0 ); | |
6168 | } | |
6169 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
6170 | aSig0 |= ( aSig1 != 0 ); | |
6171 | if ( aExp || aSig0 ) { | |
6172 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6173 | aExp -= 0x3C01; | |
6174 | } | |
ff32e16e | 6175 | return roundAndPackFloat64(aSign, aExp, aSig0, status); |
158142c2 FB |
6176 | |
6177 | } | |
6178 | ||
158142c2 FB |
6179 | /*---------------------------------------------------------------------------- |
6180 | | Returns the result of converting the quadruple-precision floating-point | |
6181 | | value `a' to the extended double-precision floating-point format. The | |
6182 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
6183 | | Floating-Point Arithmetic. | |
6184 | *----------------------------------------------------------------------------*/ | |
6185 | ||
e5a41ffa | 6186 | floatx80 float128_to_floatx80(float128 a, float_status *status) |
158142c2 FB |
6187 | { |
6188 | flag aSign; | |
f4014512 | 6189 | int32_t aExp; |
bb98fe42 | 6190 | uint64_t aSig0, aSig1; |
158142c2 FB |
6191 | |
6192 | aSig1 = extractFloat128Frac1( a ); | |
6193 | aSig0 = extractFloat128Frac0( a ); | |
6194 | aExp = extractFloat128Exp( a ); | |
6195 | aSign = extractFloat128Sign( a ); | |
6196 | if ( aExp == 0x7FFF ) { | |
6197 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6198 | return commonNaNToFloatx80(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6199 | } |
6200 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
6201 | } | |
6202 | if ( aExp == 0 ) { | |
6203 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); | |
6204 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6205 | } | |
6206 | else { | |
6207 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6208 | } | |
6209 | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); | |
ff32e16e | 6210 | return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status); |
158142c2 FB |
6211 | |
6212 | } | |
6213 | ||
158142c2 FB |
6214 | /*---------------------------------------------------------------------------- |
6215 | | Rounds the quadruple-precision floating-point value `a' to an integer, and | |
6216 | | returns the result as a quadruple-precision floating-point value. The | |
6217 | | operation is performed according to the IEC/IEEE Standard for Binary | |
6218 | | Floating-Point Arithmetic. | |
6219 | *----------------------------------------------------------------------------*/ | |
6220 | ||
e5a41ffa | 6221 | float128 float128_round_to_int(float128 a, float_status *status) |
158142c2 FB |
6222 | { |
6223 | flag aSign; | |
f4014512 | 6224 | int32_t aExp; |
bb98fe42 | 6225 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
6226 | float128 z; |
6227 | ||
6228 | aExp = extractFloat128Exp( a ); | |
6229 | if ( 0x402F <= aExp ) { | |
6230 | if ( 0x406F <= aExp ) { | |
6231 | if ( ( aExp == 0x7FFF ) | |
6232 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) | |
6233 | ) { | |
ff32e16e | 6234 | return propagateFloat128NaN(a, a, status); |
158142c2 FB |
6235 | } |
6236 | return a; | |
6237 | } | |
6238 | lastBitMask = 1; | |
6239 | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; | |
6240 | roundBitsMask = lastBitMask - 1; | |
6241 | z = a; | |
a2f2d288 | 6242 | switch (status->float_rounding_mode) { |
dc355b76 | 6243 | case float_round_nearest_even: |
158142c2 FB |
6244 | if ( lastBitMask ) { |
6245 | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); | |
6246 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
6247 | } | |
6248 | else { | |
bb98fe42 | 6249 | if ( (int64_t) z.low < 0 ) { |
158142c2 | 6250 | ++z.high; |
bb98fe42 | 6251 | if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; |
158142c2 FB |
6252 | } |
6253 | } | |
dc355b76 | 6254 | break; |
f9288a76 PM |
6255 | case float_round_ties_away: |
6256 | if (lastBitMask) { | |
6257 | add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low); | |
6258 | } else { | |
6259 | if ((int64_t) z.low < 0) { | |
6260 | ++z.high; | |
6261 | } | |
6262 | } | |
6263 | break; | |
dc355b76 PM |
6264 | case float_round_to_zero: |
6265 | break; | |
6266 | case float_round_up: | |
6267 | if (!extractFloat128Sign(z)) { | |
6268 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
6269 | } | |
6270 | break; | |
6271 | case float_round_down: | |
6272 | if (extractFloat128Sign(z)) { | |
6273 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
158142c2 | 6274 | } |
dc355b76 PM |
6275 | break; |
6276 | default: | |
6277 | abort(); | |
158142c2 FB |
6278 | } |
6279 | z.low &= ~ roundBitsMask; | |
6280 | } | |
6281 | else { | |
6282 | if ( aExp < 0x3FFF ) { | |
bb98fe42 | 6283 | if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; |
a2f2d288 | 6284 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 6285 | aSign = extractFloat128Sign( a ); |
a2f2d288 | 6286 | switch (status->float_rounding_mode) { |
158142c2 FB |
6287 | case float_round_nearest_even: |
6288 | if ( ( aExp == 0x3FFE ) | |
6289 | && ( extractFloat128Frac0( a ) | |
6290 | | extractFloat128Frac1( a ) ) | |
6291 | ) { | |
6292 | return packFloat128( aSign, 0x3FFF, 0, 0 ); | |
6293 | } | |
6294 | break; | |
f9288a76 PM |
6295 | case float_round_ties_away: |
6296 | if (aExp == 0x3FFE) { | |
6297 | return packFloat128(aSign, 0x3FFF, 0, 0); | |
6298 | } | |
6299 | break; | |
158142c2 FB |
6300 | case float_round_down: |
6301 | return | |
6302 | aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) | |
6303 | : packFloat128( 0, 0, 0, 0 ); | |
6304 | case float_round_up: | |
6305 | return | |
6306 | aSign ? packFloat128( 1, 0, 0, 0 ) | |
6307 | : packFloat128( 0, 0x3FFF, 0, 0 ); | |
6308 | } | |
6309 | return packFloat128( aSign, 0, 0, 0 ); | |
6310 | } | |
6311 | lastBitMask = 1; | |
6312 | lastBitMask <<= 0x402F - aExp; | |
6313 | roundBitsMask = lastBitMask - 1; | |
6314 | z.low = 0; | |
6315 | z.high = a.high; | |
a2f2d288 | 6316 | switch (status->float_rounding_mode) { |
dc355b76 | 6317 | case float_round_nearest_even: |
158142c2 FB |
6318 | z.high += lastBitMask>>1; |
6319 | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { | |
6320 | z.high &= ~ lastBitMask; | |
6321 | } | |
dc355b76 | 6322 | break; |
f9288a76 PM |
6323 | case float_round_ties_away: |
6324 | z.high += lastBitMask>>1; | |
6325 | break; | |
dc355b76 PM |
6326 | case float_round_to_zero: |
6327 | break; | |
6328 | case float_round_up: | |
6329 | if (!extractFloat128Sign(z)) { | |
158142c2 FB |
6330 | z.high |= ( a.low != 0 ); |
6331 | z.high += roundBitsMask; | |
6332 | } | |
dc355b76 PM |
6333 | break; |
6334 | case float_round_down: | |
6335 | if (extractFloat128Sign(z)) { | |
6336 | z.high |= (a.low != 0); | |
6337 | z.high += roundBitsMask; | |
6338 | } | |
6339 | break; | |
6340 | default: | |
6341 | abort(); | |
158142c2 FB |
6342 | } |
6343 | z.high &= ~ roundBitsMask; | |
6344 | } | |
6345 | if ( ( z.low != a.low ) || ( z.high != a.high ) ) { | |
a2f2d288 | 6346 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6347 | } |
6348 | return z; | |
6349 | ||
6350 | } | |
6351 | ||
6352 | /*---------------------------------------------------------------------------- | |
6353 | | Returns the result of adding the absolute values of the quadruple-precision | |
6354 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
6355 | | before being returned. `zSign' is ignored if the result is a NaN. | |
6356 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
6357 | | Floating-Point Arithmetic. | |
6358 | *----------------------------------------------------------------------------*/ | |
6359 | ||
e5a41ffa PM |
6360 | static float128 addFloat128Sigs(float128 a, float128 b, flag zSign, |
6361 | float_status *status) | |
158142c2 | 6362 | { |
f4014512 | 6363 | int32_t aExp, bExp, zExp; |
bb98fe42 | 6364 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
f4014512 | 6365 | int32_t expDiff; |
158142c2 FB |
6366 | |
6367 | aSig1 = extractFloat128Frac1( a ); | |
6368 | aSig0 = extractFloat128Frac0( a ); | |
6369 | aExp = extractFloat128Exp( a ); | |
6370 | bSig1 = extractFloat128Frac1( b ); | |
6371 | bSig0 = extractFloat128Frac0( b ); | |
6372 | bExp = extractFloat128Exp( b ); | |
6373 | expDiff = aExp - bExp; | |
6374 | if ( 0 < expDiff ) { | |
6375 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6376 | if (aSig0 | aSig1) { |
6377 | return propagateFloat128NaN(a, b, status); | |
6378 | } | |
158142c2 FB |
6379 | return a; |
6380 | } | |
6381 | if ( bExp == 0 ) { | |
6382 | --expDiff; | |
6383 | } | |
6384 | else { | |
6385 | bSig0 |= LIT64( 0x0001000000000000 ); | |
6386 | } | |
6387 | shift128ExtraRightJamming( | |
6388 | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); | |
6389 | zExp = aExp; | |
6390 | } | |
6391 | else if ( expDiff < 0 ) { | |
6392 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6393 | if (bSig0 | bSig1) { |
6394 | return propagateFloat128NaN(a, b, status); | |
6395 | } | |
158142c2 FB |
6396 | return packFloat128( zSign, 0x7FFF, 0, 0 ); |
6397 | } | |
6398 | if ( aExp == 0 ) { | |
6399 | ++expDiff; | |
6400 | } | |
6401 | else { | |
6402 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6403 | } | |
6404 | shift128ExtraRightJamming( | |
6405 | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); | |
6406 | zExp = bExp; | |
6407 | } | |
6408 | else { | |
6409 | if ( aExp == 0x7FFF ) { | |
6410 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
ff32e16e | 6411 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6412 | } |
6413 | return a; | |
6414 | } | |
6415 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
fe76d976 | 6416 | if ( aExp == 0 ) { |
a2f2d288 | 6417 | if (status->flush_to_zero) { |
e6afc87f | 6418 | if (zSig0 | zSig1) { |
ff32e16e | 6419 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
6420 | } |
6421 | return packFloat128(zSign, 0, 0, 0); | |
6422 | } | |
fe76d976 PB |
6423 | return packFloat128( zSign, 0, zSig0, zSig1 ); |
6424 | } | |
158142c2 FB |
6425 | zSig2 = 0; |
6426 | zSig0 |= LIT64( 0x0002000000000000 ); | |
6427 | zExp = aExp; | |
6428 | goto shiftRight1; | |
6429 | } | |
6430 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6431 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
6432 | --zExp; | |
6433 | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; | |
6434 | ++zExp; | |
6435 | shiftRight1: | |
6436 | shift128ExtraRightJamming( | |
6437 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
6438 | roundAndPack: | |
ff32e16e | 6439 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6440 | |
6441 | } | |
6442 | ||
6443 | /*---------------------------------------------------------------------------- | |
6444 | | Returns the result of subtracting the absolute values of the quadruple- | |
6445 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
6446 | | difference is negated before being returned. `zSign' is ignored if the | |
6447 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
6448 | | Standard for Binary Floating-Point Arithmetic. | |
6449 | *----------------------------------------------------------------------------*/ | |
6450 | ||
e5a41ffa PM |
6451 | static float128 subFloat128Sigs(float128 a, float128 b, flag zSign, |
6452 | float_status *status) | |
158142c2 | 6453 | { |
f4014512 | 6454 | int32_t aExp, bExp, zExp; |
bb98fe42 | 6455 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; |
f4014512 | 6456 | int32_t expDiff; |
158142c2 FB |
6457 | |
6458 | aSig1 = extractFloat128Frac1( a ); | |
6459 | aSig0 = extractFloat128Frac0( a ); | |
6460 | aExp = extractFloat128Exp( a ); | |
6461 | bSig1 = extractFloat128Frac1( b ); | |
6462 | bSig0 = extractFloat128Frac0( b ); | |
6463 | bExp = extractFloat128Exp( b ); | |
6464 | expDiff = aExp - bExp; | |
6465 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
6466 | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); | |
6467 | if ( 0 < expDiff ) goto aExpBigger; | |
6468 | if ( expDiff < 0 ) goto bExpBigger; | |
6469 | if ( aExp == 0x7FFF ) { | |
6470 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
ff32e16e | 6471 | return propagateFloat128NaN(a, b, status); |
158142c2 | 6472 | } |
ff32e16e | 6473 | float_raise(float_flag_invalid, status); |
af39bc8c | 6474 | return float128_default_nan(status); |
158142c2 FB |
6475 | } |
6476 | if ( aExp == 0 ) { | |
6477 | aExp = 1; | |
6478 | bExp = 1; | |
6479 | } | |
6480 | if ( bSig0 < aSig0 ) goto aBigger; | |
6481 | if ( aSig0 < bSig0 ) goto bBigger; | |
6482 | if ( bSig1 < aSig1 ) goto aBigger; | |
6483 | if ( aSig1 < bSig1 ) goto bBigger; | |
a2f2d288 PM |
6484 | return packFloat128(status->float_rounding_mode == float_round_down, |
6485 | 0, 0, 0); | |
158142c2 FB |
6486 | bExpBigger: |
6487 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6488 | if (bSig0 | bSig1) { |
6489 | return propagateFloat128NaN(a, b, status); | |
6490 | } | |
158142c2 FB |
6491 | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); |
6492 | } | |
6493 | if ( aExp == 0 ) { | |
6494 | ++expDiff; | |
6495 | } | |
6496 | else { | |
6497 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6498 | } | |
6499 | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6500 | bSig0 |= LIT64( 0x4000000000000000 ); | |
6501 | bBigger: | |
6502 | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
6503 | zExp = bExp; | |
6504 | zSign ^= 1; | |
6505 | goto normalizeRoundAndPack; | |
6506 | aExpBigger: | |
6507 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6508 | if (aSig0 | aSig1) { |
6509 | return propagateFloat128NaN(a, b, status); | |
6510 | } | |
158142c2 FB |
6511 | return a; |
6512 | } | |
6513 | if ( bExp == 0 ) { | |
6514 | --expDiff; | |
6515 | } | |
6516 | else { | |
6517 | bSig0 |= LIT64( 0x4000000000000000 ); | |
6518 | } | |
6519 | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); | |
6520 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6521 | aBigger: | |
6522 | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
6523 | zExp = aExp; | |
6524 | normalizeRoundAndPack: | |
6525 | --zExp; | |
ff32e16e PM |
6526 | return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1, |
6527 | status); | |
158142c2 FB |
6528 | |
6529 | } | |
6530 | ||
6531 | /*---------------------------------------------------------------------------- | |
6532 | | Returns the result of adding the quadruple-precision floating-point values | |
6533 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
6534 | | for Binary Floating-Point Arithmetic. | |
6535 | *----------------------------------------------------------------------------*/ | |
6536 | ||
e5a41ffa | 6537 | float128 float128_add(float128 a, float128 b, float_status *status) |
158142c2 FB |
6538 | { |
6539 | flag aSign, bSign; | |
6540 | ||
6541 | aSign = extractFloat128Sign( a ); | |
6542 | bSign = extractFloat128Sign( b ); | |
6543 | if ( aSign == bSign ) { | |
ff32e16e | 6544 | return addFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6545 | } |
6546 | else { | |
ff32e16e | 6547 | return subFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6548 | } |
6549 | ||
6550 | } | |
6551 | ||
6552 | /*---------------------------------------------------------------------------- | |
6553 | | Returns the result of subtracting the quadruple-precision floating-point | |
6554 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
6555 | | Standard for Binary Floating-Point Arithmetic. | |
6556 | *----------------------------------------------------------------------------*/ | |
6557 | ||
e5a41ffa | 6558 | float128 float128_sub(float128 a, float128 b, float_status *status) |
158142c2 FB |
6559 | { |
6560 | flag aSign, bSign; | |
6561 | ||
6562 | aSign = extractFloat128Sign( a ); | |
6563 | bSign = extractFloat128Sign( b ); | |
6564 | if ( aSign == bSign ) { | |
ff32e16e | 6565 | return subFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6566 | } |
6567 | else { | |
ff32e16e | 6568 | return addFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6569 | } |
6570 | ||
6571 | } | |
6572 | ||
6573 | /*---------------------------------------------------------------------------- | |
6574 | | Returns the result of multiplying the quadruple-precision floating-point | |
6575 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
6576 | | Standard for Binary Floating-Point Arithmetic. | |
6577 | *----------------------------------------------------------------------------*/ | |
6578 | ||
e5a41ffa | 6579 | float128 float128_mul(float128 a, float128 b, float_status *status) |
158142c2 FB |
6580 | { |
6581 | flag aSign, bSign, zSign; | |
f4014512 | 6582 | int32_t aExp, bExp, zExp; |
bb98fe42 | 6583 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; |
158142c2 FB |
6584 | |
6585 | aSig1 = extractFloat128Frac1( a ); | |
6586 | aSig0 = extractFloat128Frac0( a ); | |
6587 | aExp = extractFloat128Exp( a ); | |
6588 | aSign = extractFloat128Sign( a ); | |
6589 | bSig1 = extractFloat128Frac1( b ); | |
6590 | bSig0 = extractFloat128Frac0( b ); | |
6591 | bExp = extractFloat128Exp( b ); | |
6592 | bSign = extractFloat128Sign( b ); | |
6593 | zSign = aSign ^ bSign; | |
6594 | if ( aExp == 0x7FFF ) { | |
6595 | if ( ( aSig0 | aSig1 ) | |
6596 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
ff32e16e | 6597 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6598 | } |
6599 | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; | |
6600 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6601 | } | |
6602 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6603 | if (bSig0 | bSig1) { |
6604 | return propagateFloat128NaN(a, b, status); | |
6605 | } | |
158142c2 FB |
6606 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { |
6607 | invalid: | |
ff32e16e | 6608 | float_raise(float_flag_invalid, status); |
af39bc8c | 6609 | return float128_default_nan(status); |
158142c2 FB |
6610 | } |
6611 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6612 | } | |
6613 | if ( aExp == 0 ) { | |
6614 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6615 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6616 | } | |
6617 | if ( bExp == 0 ) { | |
6618 | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6619 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6620 | } | |
6621 | zExp = aExp + bExp - 0x4000; | |
6622 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6623 | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); | |
6624 | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); | |
6625 | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
6626 | zSig2 |= ( zSig3 != 0 ); | |
6627 | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { | |
6628 | shift128ExtraRightJamming( | |
6629 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
6630 | ++zExp; | |
6631 | } | |
ff32e16e | 6632 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6633 | |
6634 | } | |
6635 | ||
6636 | /*---------------------------------------------------------------------------- | |
6637 | | Returns the result of dividing the quadruple-precision floating-point value | |
6638 | | `a' by the corresponding value `b'. The operation is performed according to | |
6639 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6640 | *----------------------------------------------------------------------------*/ | |
6641 | ||
e5a41ffa | 6642 | float128 float128_div(float128 a, float128 b, float_status *status) |
158142c2 FB |
6643 | { |
6644 | flag aSign, bSign, zSign; | |
f4014512 | 6645 | int32_t aExp, bExp, zExp; |
bb98fe42 AF |
6646 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
6647 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6648 | |
6649 | aSig1 = extractFloat128Frac1( a ); | |
6650 | aSig0 = extractFloat128Frac0( a ); | |
6651 | aExp = extractFloat128Exp( a ); | |
6652 | aSign = extractFloat128Sign( a ); | |
6653 | bSig1 = extractFloat128Frac1( b ); | |
6654 | bSig0 = extractFloat128Frac0( b ); | |
6655 | bExp = extractFloat128Exp( b ); | |
6656 | bSign = extractFloat128Sign( b ); | |
6657 | zSign = aSign ^ bSign; | |
6658 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6659 | if (aSig0 | aSig1) { |
6660 | return propagateFloat128NaN(a, b, status); | |
6661 | } | |
158142c2 | 6662 | if ( bExp == 0x7FFF ) { |
ff32e16e PM |
6663 | if (bSig0 | bSig1) { |
6664 | return propagateFloat128NaN(a, b, status); | |
6665 | } | |
158142c2 FB |
6666 | goto invalid; |
6667 | } | |
6668 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6669 | } | |
6670 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6671 | if (bSig0 | bSig1) { |
6672 | return propagateFloat128NaN(a, b, status); | |
6673 | } | |
158142c2 FB |
6674 | return packFloat128( zSign, 0, 0, 0 ); |
6675 | } | |
6676 | if ( bExp == 0 ) { | |
6677 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6678 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
6679 | invalid: | |
ff32e16e | 6680 | float_raise(float_flag_invalid, status); |
af39bc8c | 6681 | return float128_default_nan(status); |
158142c2 | 6682 | } |
ff32e16e | 6683 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
6684 | return packFloat128( zSign, 0x7FFF, 0, 0 ); |
6685 | } | |
6686 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6687 | } | |
6688 | if ( aExp == 0 ) { | |
6689 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6690 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6691 | } | |
6692 | zExp = aExp - bExp + 0x3FFD; | |
6693 | shortShift128Left( | |
6694 | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); | |
6695 | shortShift128Left( | |
6696 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6697 | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { | |
6698 | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); | |
6699 | ++zExp; | |
6700 | } | |
6701 | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6702 | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); | |
6703 | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); | |
bb98fe42 | 6704 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6705 | --zSig0; |
6706 | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); | |
6707 | } | |
6708 | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); | |
6709 | if ( ( zSig1 & 0x3FFF ) <= 4 ) { | |
6710 | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); | |
6711 | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6712 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6713 | --zSig1; |
6714 | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); | |
6715 | } | |
6716 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6717 | } | |
6718 | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); | |
ff32e16e | 6719 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6720 | |
6721 | } | |
6722 | ||
6723 | /*---------------------------------------------------------------------------- | |
6724 | | Returns the remainder of the quadruple-precision floating-point value `a' | |
6725 | | with respect to the corresponding value `b'. The operation is performed | |
6726 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6727 | *----------------------------------------------------------------------------*/ | |
6728 | ||
e5a41ffa | 6729 | float128 float128_rem(float128 a, float128 b, float_status *status) |
158142c2 | 6730 | { |
ed086f3d | 6731 | flag aSign, zSign; |
f4014512 | 6732 | int32_t aExp, bExp, expDiff; |
bb98fe42 AF |
6733 | uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; |
6734 | uint64_t allZero, alternateASig0, alternateASig1, sigMean1; | |
6735 | int64_t sigMean0; | |
158142c2 FB |
6736 | |
6737 | aSig1 = extractFloat128Frac1( a ); | |
6738 | aSig0 = extractFloat128Frac0( a ); | |
6739 | aExp = extractFloat128Exp( a ); | |
6740 | aSign = extractFloat128Sign( a ); | |
6741 | bSig1 = extractFloat128Frac1( b ); | |
6742 | bSig0 = extractFloat128Frac0( b ); | |
6743 | bExp = extractFloat128Exp( b ); | |
158142c2 FB |
6744 | if ( aExp == 0x7FFF ) { |
6745 | if ( ( aSig0 | aSig1 ) | |
6746 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
ff32e16e | 6747 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6748 | } |
6749 | goto invalid; | |
6750 | } | |
6751 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6752 | if (bSig0 | bSig1) { |
6753 | return propagateFloat128NaN(a, b, status); | |
6754 | } | |
158142c2 FB |
6755 | return a; |
6756 | } | |
6757 | if ( bExp == 0 ) { | |
6758 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6759 | invalid: | |
ff32e16e | 6760 | float_raise(float_flag_invalid, status); |
af39bc8c | 6761 | return float128_default_nan(status); |
158142c2 FB |
6762 | } |
6763 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6764 | } | |
6765 | if ( aExp == 0 ) { | |
6766 | if ( ( aSig0 | aSig1 ) == 0 ) return a; | |
6767 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6768 | } | |
6769 | expDiff = aExp - bExp; | |
6770 | if ( expDiff < -1 ) return a; | |
6771 | shortShift128Left( | |
6772 | aSig0 | LIT64( 0x0001000000000000 ), | |
6773 | aSig1, | |
6774 | 15 - ( expDiff < 0 ), | |
6775 | &aSig0, | |
6776 | &aSig1 | |
6777 | ); | |
6778 | shortShift128Left( | |
6779 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6780 | q = le128( bSig0, bSig1, aSig0, aSig1 ); | |
6781 | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
6782 | expDiff -= 64; | |
6783 | while ( 0 < expDiff ) { | |
6784 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6785 | q = ( 4 < q ) ? q - 4 : 0; | |
6786 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6787 | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); | |
6788 | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); | |
6789 | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); | |
6790 | expDiff -= 61; | |
6791 | } | |
6792 | if ( -64 < expDiff ) { | |
6793 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6794 | q = ( 4 < q ) ? q - 4 : 0; | |
6795 | q >>= - expDiff; | |
6796 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6797 | expDiff += 52; | |
6798 | if ( expDiff < 0 ) { | |
6799 | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6800 | } | |
6801 | else { | |
6802 | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); | |
6803 | } | |
6804 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6805 | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); | |
6806 | } | |
6807 | else { | |
6808 | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); | |
6809 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6810 | } | |
6811 | do { | |
6812 | alternateASig0 = aSig0; | |
6813 | alternateASig1 = aSig1; | |
6814 | ++q; | |
6815 | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
bb98fe42 | 6816 | } while ( 0 <= (int64_t) aSig0 ); |
158142c2 | 6817 | add128( |
bb98fe42 | 6818 | aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); |
158142c2 FB |
6819 | if ( ( sigMean0 < 0 ) |
6820 | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { | |
6821 | aSig0 = alternateASig0; | |
6822 | aSig1 = alternateASig1; | |
6823 | } | |
bb98fe42 | 6824 | zSign = ( (int64_t) aSig0 < 0 ); |
158142c2 | 6825 | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); |
ff32e16e PM |
6826 | return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1, |
6827 | status); | |
158142c2 FB |
6828 | } |
6829 | ||
6830 | /*---------------------------------------------------------------------------- | |
6831 | | Returns the square root of the quadruple-precision floating-point value `a'. | |
6832 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
6833 | | Floating-Point Arithmetic. | |
6834 | *----------------------------------------------------------------------------*/ | |
6835 | ||
e5a41ffa | 6836 | float128 float128_sqrt(float128 a, float_status *status) |
158142c2 FB |
6837 | { |
6838 | flag aSign; | |
f4014512 | 6839 | int32_t aExp, zExp; |
bb98fe42 AF |
6840 | uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; |
6841 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6842 | |
6843 | aSig1 = extractFloat128Frac1( a ); | |
6844 | aSig0 = extractFloat128Frac0( a ); | |
6845 | aExp = extractFloat128Exp( a ); | |
6846 | aSign = extractFloat128Sign( a ); | |
6847 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6848 | if (aSig0 | aSig1) { |
6849 | return propagateFloat128NaN(a, a, status); | |
6850 | } | |
158142c2 FB |
6851 | if ( ! aSign ) return a; |
6852 | goto invalid; | |
6853 | } | |
6854 | if ( aSign ) { | |
6855 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; | |
6856 | invalid: | |
ff32e16e | 6857 | float_raise(float_flag_invalid, status); |
af39bc8c | 6858 | return float128_default_nan(status); |
158142c2 FB |
6859 | } |
6860 | if ( aExp == 0 ) { | |
6861 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
6862 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6863 | } | |
6864 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; | |
6865 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6866 | zSig0 = estimateSqrt32( aExp, aSig0>>17 ); | |
6867 | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); | |
6868 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
6869 | doubleZSig0 = zSig0<<1; | |
6870 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
6871 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 6872 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6873 | --zSig0; |
6874 | doubleZSig0 -= 2; | |
6875 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
6876 | } | |
6877 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
6878 | if ( ( zSig1 & 0x1FFF ) <= 5 ) { | |
6879 | if ( zSig1 == 0 ) zSig1 = 1; | |
6880 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
6881 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
6882 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
6883 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6884 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6885 | --zSig1; |
6886 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
6887 | term3 |= 1; | |
6888 | term2 |= doubleZSig0; | |
6889 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
6890 | } | |
6891 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6892 | } | |
6893 | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); | |
ff32e16e | 6894 | return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6895 | |
6896 | } | |
6897 | ||
6898 | /*---------------------------------------------------------------------------- | |
6899 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
b689362d AJ |
6900 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
6901 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
6902 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
6903 | *----------------------------------------------------------------------------*/ | |
6904 | ||
e5a41ffa | 6905 | int float128_eq(float128 a, float128 b, float_status *status) |
158142c2 FB |
6906 | { |
6907 | ||
6908 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6909 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6910 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6911 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6912 | ) { | |
ff32e16e | 6913 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6914 | return 0; |
6915 | } | |
6916 | return | |
6917 | ( a.low == b.low ) | |
6918 | && ( ( a.high == b.high ) | |
6919 | || ( ( a.low == 0 ) | |
bb98fe42 | 6920 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6921 | ); |
6922 | ||
6923 | } | |
6924 | ||
6925 | /*---------------------------------------------------------------------------- | |
6926 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
6927 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
6928 | | exception is raised if either operand is a NaN. The comparison is performed | |
6929 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6930 | *----------------------------------------------------------------------------*/ |
6931 | ||
e5a41ffa | 6932 | int float128_le(float128 a, float128 b, float_status *status) |
158142c2 FB |
6933 | { |
6934 | flag aSign, bSign; | |
6935 | ||
6936 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6937 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6938 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6939 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6940 | ) { | |
ff32e16e | 6941 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6942 | return 0; |
6943 | } | |
6944 | aSign = extractFloat128Sign( a ); | |
6945 | bSign = extractFloat128Sign( b ); | |
6946 | if ( aSign != bSign ) { | |
6947 | return | |
6948 | aSign | |
bb98fe42 | 6949 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6950 | == 0 ); |
6951 | } | |
6952 | return | |
6953 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
6954 | : le128( a.high, a.low, b.high, b.low ); | |
6955 | ||
6956 | } | |
6957 | ||
6958 | /*---------------------------------------------------------------------------- | |
6959 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
6960 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
6961 | | raised if either operand is a NaN. The comparison is performed according | |
6962 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6963 | *----------------------------------------------------------------------------*/ |
6964 | ||
e5a41ffa | 6965 | int float128_lt(float128 a, float128 b, float_status *status) |
158142c2 FB |
6966 | { |
6967 | flag aSign, bSign; | |
6968 | ||
6969 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6970 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6971 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6972 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6973 | ) { | |
ff32e16e | 6974 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6975 | return 0; |
6976 | } | |
6977 | aSign = extractFloat128Sign( a ); | |
6978 | bSign = extractFloat128Sign( b ); | |
6979 | if ( aSign != bSign ) { | |
6980 | return | |
6981 | aSign | |
bb98fe42 | 6982 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6983 | != 0 ); |
6984 | } | |
6985 | return | |
6986 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
6987 | : lt128( a.high, a.low, b.high, b.low ); | |
6988 | ||
6989 | } | |
6990 | ||
67b7861d AJ |
6991 | /*---------------------------------------------------------------------------- |
6992 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
6993 | | be compared, and 0 otherwise. The invalid exception is raised if either |
6994 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
6995 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
6996 | *----------------------------------------------------------------------------*/ |
6997 | ||
e5a41ffa | 6998 | int float128_unordered(float128 a, float128 b, float_status *status) |
67b7861d AJ |
6999 | { |
7000 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7001 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7002 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7003 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7004 | ) { | |
ff32e16e | 7005 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
7006 | return 1; |
7007 | } | |
7008 | return 0; | |
7009 | } | |
7010 | ||
158142c2 FB |
7011 | /*---------------------------------------------------------------------------- |
7012 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
f5a64251 AJ |
7013 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
7014 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
7015 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
7016 | *----------------------------------------------------------------------------*/ |
7017 | ||
e5a41ffa | 7018 | int float128_eq_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
7019 | { |
7020 | ||
7021 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7022 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7023 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7024 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7025 | ) { | |
af39bc8c AM |
7026 | if (float128_is_signaling_nan(a, status) |
7027 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7028 | float_raise(float_flag_invalid, status); |
b689362d | 7029 | } |
158142c2 FB |
7030 | return 0; |
7031 | } | |
7032 | return | |
7033 | ( a.low == b.low ) | |
7034 | && ( ( a.high == b.high ) | |
7035 | || ( ( a.low == 0 ) | |
bb98fe42 | 7036 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
7037 | ); |
7038 | ||
7039 | } | |
7040 | ||
7041 | /*---------------------------------------------------------------------------- | |
7042 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
7043 | | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
7044 | | cause an exception. Otherwise, the comparison is performed according to the | |
7045 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
7046 | *----------------------------------------------------------------------------*/ | |
7047 | ||
e5a41ffa | 7048 | int float128_le_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
7049 | { |
7050 | flag aSign, bSign; | |
7051 | ||
7052 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7053 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7054 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7055 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7056 | ) { | |
af39bc8c AM |
7057 | if (float128_is_signaling_nan(a, status) |
7058 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7059 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7060 | } |
7061 | return 0; | |
7062 | } | |
7063 | aSign = extractFloat128Sign( a ); | |
7064 | bSign = extractFloat128Sign( b ); | |
7065 | if ( aSign != bSign ) { | |
7066 | return | |
7067 | aSign | |
bb98fe42 | 7068 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7069 | == 0 ); |
7070 | } | |
7071 | return | |
7072 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
7073 | : le128( a.high, a.low, b.high, b.low ); | |
7074 | ||
7075 | } | |
7076 | ||
7077 | /*---------------------------------------------------------------------------- | |
7078 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
7079 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
7080 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
7081 | | Standard for Binary Floating-Point Arithmetic. | |
7082 | *----------------------------------------------------------------------------*/ | |
7083 | ||
e5a41ffa | 7084 | int float128_lt_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
7085 | { |
7086 | flag aSign, bSign; | |
7087 | ||
7088 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7089 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7090 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7091 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7092 | ) { | |
af39bc8c AM |
7093 | if (float128_is_signaling_nan(a, status) |
7094 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7095 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7096 | } |
7097 | return 0; | |
7098 | } | |
7099 | aSign = extractFloat128Sign( a ); | |
7100 | bSign = extractFloat128Sign( b ); | |
7101 | if ( aSign != bSign ) { | |
7102 | return | |
7103 | aSign | |
bb98fe42 | 7104 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7105 | != 0 ); |
7106 | } | |
7107 | return | |
7108 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
7109 | : lt128( a.high, a.low, b.high, b.low ); | |
7110 | ||
7111 | } | |
7112 | ||
67b7861d AJ |
7113 | /*---------------------------------------------------------------------------- |
7114 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
7115 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
7116 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
7117 | | Floating-Point Arithmetic. | |
7118 | *----------------------------------------------------------------------------*/ | |
7119 | ||
e5a41ffa | 7120 | int float128_unordered_quiet(float128 a, float128 b, float_status *status) |
67b7861d AJ |
7121 | { |
7122 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7123 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7124 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7125 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7126 | ) { | |
af39bc8c AM |
7127 | if (float128_is_signaling_nan(a, status) |
7128 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7129 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
7130 | } |
7131 | return 1; | |
7132 | } | |
7133 | return 0; | |
7134 | } | |
7135 | ||
1d6bda35 | 7136 | /* misc functions */ |
e5a41ffa | 7137 | float32 uint32_to_float32(uint32_t a, float_status *status) |
1d6bda35 | 7138 | { |
ff32e16e | 7139 | return int64_to_float32(a, status); |
1d6bda35 FB |
7140 | } |
7141 | ||
e5a41ffa | 7142 | float64 uint32_to_float64(uint32_t a, float_status *status) |
1d6bda35 | 7143 | { |
ff32e16e | 7144 | return int64_to_float64(a, status); |
1d6bda35 FB |
7145 | } |
7146 | ||
3a87d009 | 7147 | uint32_t float32_to_uint32(float32 a, float_status *status) |
1d6bda35 FB |
7148 | { |
7149 | int64_t v; | |
3a87d009 | 7150 | uint32_t res; |
34e1c27b | 7151 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7152 | |
ff32e16e | 7153 | v = float32_to_int64(a, status); |
1d6bda35 FB |
7154 | if (v < 0) { |
7155 | res = 0; | |
1d6bda35 FB |
7156 | } else if (v > 0xffffffff) { |
7157 | res = 0xffffffff; | |
1d6bda35 | 7158 | } else { |
34e1c27b | 7159 | return v; |
1d6bda35 | 7160 | } |
34e1c27b | 7161 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7162 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7163 | return res; |
7164 | } | |
7165 | ||
3a87d009 | 7166 | uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *status) |
1d6bda35 FB |
7167 | { |
7168 | int64_t v; | |
3a87d009 | 7169 | uint32_t res; |
34e1c27b | 7170 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7171 | |
ff32e16e | 7172 | v = float32_to_int64_round_to_zero(a, status); |
1d6bda35 FB |
7173 | if (v < 0) { |
7174 | res = 0; | |
1d6bda35 FB |
7175 | } else if (v > 0xffffffff) { |
7176 | res = 0xffffffff; | |
1d6bda35 | 7177 | } else { |
34e1c27b | 7178 | return v; |
1d6bda35 | 7179 | } |
34e1c27b | 7180 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7181 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7182 | return res; |
7183 | } | |
7184 | ||
0bb721d7 | 7185 | int16_t float32_to_int16(float32 a, float_status *status) |
f581bf54 WN |
7186 | { |
7187 | int32_t v; | |
0bb721d7 | 7188 | int16_t res; |
f581bf54 WN |
7189 | int old_exc_flags = get_float_exception_flags(status); |
7190 | ||
ff32e16e | 7191 | v = float32_to_int32(a, status); |
f581bf54 WN |
7192 | if (v < -0x8000) { |
7193 | res = -0x8000; | |
7194 | } else if (v > 0x7fff) { | |
7195 | res = 0x7fff; | |
7196 | } else { | |
7197 | return v; | |
7198 | } | |
7199 | ||
7200 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7201 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7202 | return res; |
7203 | } | |
7204 | ||
0bb721d7 | 7205 | uint16_t float32_to_uint16(float32 a, float_status *status) |
f581bf54 WN |
7206 | { |
7207 | int32_t v; | |
0bb721d7 | 7208 | uint16_t res; |
f581bf54 WN |
7209 | int old_exc_flags = get_float_exception_flags(status); |
7210 | ||
ff32e16e | 7211 | v = float32_to_int32(a, status); |
f581bf54 WN |
7212 | if (v < 0) { |
7213 | res = 0; | |
7214 | } else if (v > 0xffff) { | |
7215 | res = 0xffff; | |
7216 | } else { | |
7217 | return v; | |
7218 | } | |
7219 | ||
7220 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7221 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7222 | return res; |
7223 | } | |
7224 | ||
0bb721d7 | 7225 | uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *status) |
cbcef455 PM |
7226 | { |
7227 | int64_t v; | |
0bb721d7 | 7228 | uint16_t res; |
34e1c27b | 7229 | int old_exc_flags = get_float_exception_flags(status); |
cbcef455 | 7230 | |
ff32e16e | 7231 | v = float32_to_int64_round_to_zero(a, status); |
cbcef455 PM |
7232 | if (v < 0) { |
7233 | res = 0; | |
cbcef455 PM |
7234 | } else if (v > 0xffff) { |
7235 | res = 0xffff; | |
cbcef455 | 7236 | } else { |
34e1c27b | 7237 | return v; |
cbcef455 | 7238 | } |
34e1c27b | 7239 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7240 | float_raise(float_flag_invalid, status); |
cbcef455 PM |
7241 | return res; |
7242 | } | |
7243 | ||
3a87d009 | 7244 | uint32_t float64_to_uint32(float64 a, float_status *status) |
1d6bda35 | 7245 | { |
5e7f654f | 7246 | uint64_t v; |
3a87d009 | 7247 | uint32_t res; |
5e7f654f | 7248 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7249 | |
ff32e16e | 7250 | v = float64_to_uint64(a, status); |
5e7f654f | 7251 | if (v > 0xffffffff) { |
1d6bda35 | 7252 | res = 0xffffffff; |
1d6bda35 | 7253 | } else { |
5e7f654f | 7254 | return v; |
1d6bda35 | 7255 | } |
5e7f654f | 7256 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7257 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7258 | return res; |
7259 | } | |
7260 | ||
3a87d009 | 7261 | uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *status) |
1d6bda35 | 7262 | { |
fd728f2f | 7263 | uint64_t v; |
3a87d009 | 7264 | uint32_t res; |
fd728f2f | 7265 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7266 | |
ff32e16e | 7267 | v = float64_to_uint64_round_to_zero(a, status); |
fd728f2f | 7268 | if (v > 0xffffffff) { |
1d6bda35 | 7269 | res = 0xffffffff; |
1d6bda35 | 7270 | } else { |
fd728f2f | 7271 | return v; |
1d6bda35 | 7272 | } |
fd728f2f | 7273 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7274 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7275 | return res; |
7276 | } | |
7277 | ||
0bb721d7 | 7278 | int16_t float64_to_int16(float64 a, float_status *status) |
f581bf54 WN |
7279 | { |
7280 | int64_t v; | |
0bb721d7 | 7281 | int16_t res; |
f581bf54 WN |
7282 | int old_exc_flags = get_float_exception_flags(status); |
7283 | ||
ff32e16e | 7284 | v = float64_to_int32(a, status); |
f581bf54 WN |
7285 | if (v < -0x8000) { |
7286 | res = -0x8000; | |
7287 | } else if (v > 0x7fff) { | |
7288 | res = 0x7fff; | |
7289 | } else { | |
7290 | return v; | |
7291 | } | |
7292 | ||
7293 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7294 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7295 | return res; |
7296 | } | |
7297 | ||
0bb721d7 | 7298 | uint16_t float64_to_uint16(float64 a, float_status *status) |
f581bf54 WN |
7299 | { |
7300 | int64_t v; | |
0bb721d7 | 7301 | uint16_t res; |
f581bf54 WN |
7302 | int old_exc_flags = get_float_exception_flags(status); |
7303 | ||
ff32e16e | 7304 | v = float64_to_int32(a, status); |
f581bf54 WN |
7305 | if (v < 0) { |
7306 | res = 0; | |
7307 | } else if (v > 0xffff) { | |
7308 | res = 0xffff; | |
7309 | } else { | |
7310 | return v; | |
7311 | } | |
7312 | ||
7313 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7314 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7315 | return res; |
7316 | } | |
7317 | ||
0bb721d7 | 7318 | uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *status) |
cbcef455 PM |
7319 | { |
7320 | int64_t v; | |
0bb721d7 | 7321 | uint16_t res; |
34e1c27b | 7322 | int old_exc_flags = get_float_exception_flags(status); |
cbcef455 | 7323 | |
ff32e16e | 7324 | v = float64_to_int64_round_to_zero(a, status); |
cbcef455 PM |
7325 | if (v < 0) { |
7326 | res = 0; | |
cbcef455 PM |
7327 | } else if (v > 0xffff) { |
7328 | res = 0xffff; | |
cbcef455 | 7329 | } else { |
34e1c27b | 7330 | return v; |
cbcef455 | 7331 | } |
34e1c27b | 7332 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7333 | float_raise(float_flag_invalid, status); |
cbcef455 PM |
7334 | return res; |
7335 | } | |
7336 | ||
fb3ea83a TM |
7337 | /*---------------------------------------------------------------------------- |
7338 | | Returns the result of converting the double-precision floating-point value | |
7339 | | `a' to the 64-bit unsigned integer format. The conversion is | |
7340 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
7341 | | Arithmetic---which means in particular that the conversion is rounded | |
7342 | | according to the current rounding mode. If `a' is a NaN, the largest | |
7343 | | positive integer is returned. If the conversion overflows, the | |
7344 | | largest unsigned integer is returned. If 'a' is negative, the value is | |
7345 | | rounded and zero is returned; negative values that do not round to zero | |
7346 | | will raise the inexact exception. | |
7347 | *----------------------------------------------------------------------------*/ | |
75d62a58 | 7348 | |
e5a41ffa | 7349 | uint64_t float64_to_uint64(float64 a, float_status *status) |
fb3ea83a TM |
7350 | { |
7351 | flag aSign; | |
0c48262d | 7352 | int aExp; |
07d792d2 | 7353 | int shiftCount; |
fb3ea83a | 7354 | uint64_t aSig, aSigExtra; |
ff32e16e | 7355 | a = float64_squash_input_denormal(a, status); |
75d62a58 | 7356 | |
fb3ea83a TM |
7357 | aSig = extractFloat64Frac(a); |
7358 | aExp = extractFloat64Exp(a); | |
7359 | aSign = extractFloat64Sign(a); | |
7360 | if (aSign && (aExp > 1022)) { | |
ff32e16e | 7361 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
7362 | if (float64_is_any_nan(a)) { |
7363 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
7364 | } else { | |
7365 | return 0; | |
7366 | } | |
7367 | } | |
7368 | if (aExp) { | |
7369 | aSig |= LIT64(0x0010000000000000); | |
7370 | } | |
7371 | shiftCount = 0x433 - aExp; | |
7372 | if (shiftCount <= 0) { | |
7373 | if (0x43E < aExp) { | |
ff32e16e | 7374 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
7375 | return LIT64(0xFFFFFFFFFFFFFFFF); |
7376 | } | |
7377 | aSigExtra = 0; | |
7378 | aSig <<= -shiftCount; | |
7379 | } else { | |
7380 | shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra); | |
7381 | } | |
ff32e16e | 7382 | return roundAndPackUint64(aSign, aSig, aSigExtra, status); |
75d62a58 JM |
7383 | } |
7384 | ||
e5a41ffa | 7385 | uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status) |
75d62a58 | 7386 | { |
a2f2d288 | 7387 | signed char current_rounding_mode = status->float_rounding_mode; |
ff32e16e PM |
7388 | set_float_rounding_mode(float_round_to_zero, status); |
7389 | int64_t v = float64_to_uint64(a, status); | |
7390 | set_float_rounding_mode(current_rounding_mode, status); | |
0a87a310 | 7391 | return v; |
75d62a58 JM |
7392 | } |
7393 | ||
1d6bda35 | 7394 | #define COMPARE(s, nan_exp) \ |
e5a41ffa PM |
7395 | static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\ |
7396 | int is_quiet, float_status *status) \ | |
1d6bda35 FB |
7397 | { \ |
7398 | flag aSign, bSign; \ | |
bb98fe42 | 7399 | uint ## s ## _t av, bv; \ |
ff32e16e PM |
7400 | a = float ## s ## _squash_input_denormal(a, status); \ |
7401 | b = float ## s ## _squash_input_denormal(b, status); \ | |
1d6bda35 FB |
7402 | \ |
7403 | if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \ | |
7404 | extractFloat ## s ## Frac( a ) ) || \ | |
7405 | ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \ | |
7406 | extractFloat ## s ## Frac( b ) )) { \ | |
7407 | if (!is_quiet || \ | |
af39bc8c AM |
7408 | float ## s ## _is_signaling_nan(a, status) || \ |
7409 | float ## s ## _is_signaling_nan(b, status)) { \ | |
ff32e16e | 7410 | float_raise(float_flag_invalid, status); \ |
1d6bda35 FB |
7411 | } \ |
7412 | return float_relation_unordered; \ | |
7413 | } \ | |
7414 | aSign = extractFloat ## s ## Sign( a ); \ | |
7415 | bSign = extractFloat ## s ## Sign( b ); \ | |
f090c9d4 | 7416 | av = float ## s ## _val(a); \ |
cd8a2533 | 7417 | bv = float ## s ## _val(b); \ |
1d6bda35 | 7418 | if ( aSign != bSign ) { \ |
bb98fe42 | 7419 | if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \ |
1d6bda35 FB |
7420 | /* zero case */ \ |
7421 | return float_relation_equal; \ | |
7422 | } else { \ | |
7423 | return 1 - (2 * aSign); \ | |
7424 | } \ | |
7425 | } else { \ | |
f090c9d4 | 7426 | if (av == bv) { \ |
1d6bda35 FB |
7427 | return float_relation_equal; \ |
7428 | } else { \ | |
f090c9d4 | 7429 | return 1 - 2 * (aSign ^ ( av < bv )); \ |
1d6bda35 FB |
7430 | } \ |
7431 | } \ | |
7432 | } \ | |
7433 | \ | |
e5a41ffa | 7434 | int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \ |
1d6bda35 | 7435 | { \ |
ff32e16e | 7436 | return float ## s ## _compare_internal(a, b, 0, status); \ |
1d6bda35 FB |
7437 | } \ |
7438 | \ | |
e5a41ffa PM |
7439 | int float ## s ## _compare_quiet(float ## s a, float ## s b, \ |
7440 | float_status *status) \ | |
1d6bda35 | 7441 | { \ |
ff32e16e | 7442 | return float ## s ## _compare_internal(a, b, 1, status); \ |
1d6bda35 FB |
7443 | } |
7444 | ||
7445 | COMPARE(32, 0xff) | |
7446 | COMPARE(64, 0x7ff) | |
9ee6e8bb | 7447 | |
e5a41ffa PM |
7448 | static inline int floatx80_compare_internal(floatx80 a, floatx80 b, |
7449 | int is_quiet, float_status *status) | |
f6714d36 AJ |
7450 | { |
7451 | flag aSign, bSign; | |
7452 | ||
d1eb8f2a AD |
7453 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
7454 | float_raise(float_flag_invalid, status); | |
7455 | return float_relation_unordered; | |
7456 | } | |
f6714d36 AJ |
7457 | if (( ( extractFloatx80Exp( a ) == 0x7fff ) && |
7458 | ( extractFloatx80Frac( a )<<1 ) ) || | |
7459 | ( ( extractFloatx80Exp( b ) == 0x7fff ) && | |
7460 | ( extractFloatx80Frac( b )<<1 ) )) { | |
7461 | if (!is_quiet || | |
af39bc8c AM |
7462 | floatx80_is_signaling_nan(a, status) || |
7463 | floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 7464 | float_raise(float_flag_invalid, status); |
f6714d36 AJ |
7465 | } |
7466 | return float_relation_unordered; | |
7467 | } | |
7468 | aSign = extractFloatx80Sign( a ); | |
7469 | bSign = extractFloatx80Sign( b ); | |
7470 | if ( aSign != bSign ) { | |
7471 | ||
7472 | if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && | |
7473 | ( ( a.low | b.low ) == 0 ) ) { | |
7474 | /* zero case */ | |
7475 | return float_relation_equal; | |
7476 | } else { | |
7477 | return 1 - (2 * aSign); | |
7478 | } | |
7479 | } else { | |
7480 | if (a.low == b.low && a.high == b.high) { | |
7481 | return float_relation_equal; | |
7482 | } else { | |
7483 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
7484 | } | |
7485 | } | |
7486 | } | |
7487 | ||
e5a41ffa | 7488 | int floatx80_compare(floatx80 a, floatx80 b, float_status *status) |
f6714d36 | 7489 | { |
ff32e16e | 7490 | return floatx80_compare_internal(a, b, 0, status); |
f6714d36 AJ |
7491 | } |
7492 | ||
e5a41ffa | 7493 | int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status) |
f6714d36 | 7494 | { |
ff32e16e | 7495 | return floatx80_compare_internal(a, b, 1, status); |
f6714d36 AJ |
7496 | } |
7497 | ||
e5a41ffa PM |
7498 | static inline int float128_compare_internal(float128 a, float128 b, |
7499 | int is_quiet, float_status *status) | |
1f587329 BS |
7500 | { |
7501 | flag aSign, bSign; | |
7502 | ||
7503 | if (( ( extractFloat128Exp( a ) == 0x7fff ) && | |
7504 | ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || | |
7505 | ( ( extractFloat128Exp( b ) == 0x7fff ) && | |
7506 | ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { | |
7507 | if (!is_quiet || | |
af39bc8c AM |
7508 | float128_is_signaling_nan(a, status) || |
7509 | float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7510 | float_raise(float_flag_invalid, status); |
1f587329 BS |
7511 | } |
7512 | return float_relation_unordered; | |
7513 | } | |
7514 | aSign = extractFloat128Sign( a ); | |
7515 | bSign = extractFloat128Sign( b ); | |
7516 | if ( aSign != bSign ) { | |
7517 | if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { | |
7518 | /* zero case */ | |
7519 | return float_relation_equal; | |
7520 | } else { | |
7521 | return 1 - (2 * aSign); | |
7522 | } | |
7523 | } else { | |
7524 | if (a.low == b.low && a.high == b.high) { | |
7525 | return float_relation_equal; | |
7526 | } else { | |
7527 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
7528 | } | |
7529 | } | |
7530 | } | |
7531 | ||
e5a41ffa | 7532 | int float128_compare(float128 a, float128 b, float_status *status) |
1f587329 | 7533 | { |
ff32e16e | 7534 | return float128_compare_internal(a, b, 0, status); |
1f587329 BS |
7535 | } |
7536 | ||
e5a41ffa | 7537 | int float128_compare_quiet(float128 a, float128 b, float_status *status) |
1f587329 | 7538 | { |
ff32e16e | 7539 | return float128_compare_internal(a, b, 1, status); |
1f587329 BS |
7540 | } |
7541 | ||
274f1b04 PM |
7542 | /* min() and max() functions. These can't be implemented as |
7543 | * 'compare and pick one input' because that would mishandle | |
7544 | * NaNs and +0 vs -0. | |
e17ab310 WN |
7545 | * |
7546 | * minnum() and maxnum() functions. These are similar to the min() | |
7547 | * and max() functions but if one of the arguments is a QNaN and | |
7548 | * the other is numerical then the numerical argument is returned. | |
7549 | * minnum() and maxnum correspond to the IEEE 754-2008 minNum() | |
7550 | * and maxNum() operations. min() and max() are the typical min/max | |
7551 | * semantics provided by many CPUs which predate that specification. | |
2d31e060 LA |
7552 | * |
7553 | * minnummag() and maxnummag() functions correspond to minNumMag() | |
7554 | * and minNumMag() from the IEEE-754 2008. | |
274f1b04 | 7555 | */ |
e70614ea | 7556 | #define MINMAX(s) \ |
a49db98d | 7557 | static inline float ## s float ## s ## _minmax(float ## s a, float ## s b, \ |
2d31e060 | 7558 | int ismin, int isieee, \ |
e5a41ffa PM |
7559 | int ismag, \ |
7560 | float_status *status) \ | |
274f1b04 PM |
7561 | { \ |
7562 | flag aSign, bSign; \ | |
2d31e060 | 7563 | uint ## s ## _t av, bv, aav, abv; \ |
ff32e16e PM |
7564 | a = float ## s ## _squash_input_denormal(a, status); \ |
7565 | b = float ## s ## _squash_input_denormal(b, status); \ | |
274f1b04 PM |
7566 | if (float ## s ## _is_any_nan(a) || \ |
7567 | float ## s ## _is_any_nan(b)) { \ | |
e17ab310 | 7568 | if (isieee) { \ |
af39bc8c | 7569 | if (float ## s ## _is_quiet_nan(a, status) && \ |
e17ab310 WN |
7570 | !float ## s ##_is_any_nan(b)) { \ |
7571 | return b; \ | |
af39bc8c AM |
7572 | } else if (float ## s ## _is_quiet_nan(b, status) && \ |
7573 | !float ## s ## _is_any_nan(a)) { \ | |
e17ab310 WN |
7574 | return a; \ |
7575 | } \ | |
7576 | } \ | |
ff32e16e | 7577 | return propagateFloat ## s ## NaN(a, b, status); \ |
274f1b04 PM |
7578 | } \ |
7579 | aSign = extractFloat ## s ## Sign(a); \ | |
7580 | bSign = extractFloat ## s ## Sign(b); \ | |
7581 | av = float ## s ## _val(a); \ | |
7582 | bv = float ## s ## _val(b); \ | |
2d31e060 LA |
7583 | if (ismag) { \ |
7584 | aav = float ## s ## _abs(av); \ | |
7585 | abv = float ## s ## _abs(bv); \ | |
7586 | if (aav != abv) { \ | |
7587 | if (ismin) { \ | |
7588 | return (aav < abv) ? a : b; \ | |
7589 | } else { \ | |
7590 | return (aav < abv) ? b : a; \ | |
7591 | } \ | |
7592 | } \ | |
7593 | } \ | |
274f1b04 PM |
7594 | if (aSign != bSign) { \ |
7595 | if (ismin) { \ | |
7596 | return aSign ? a : b; \ | |
7597 | } else { \ | |
7598 | return aSign ? b : a; \ | |
7599 | } \ | |
7600 | } else { \ | |
7601 | if (ismin) { \ | |
7602 | return (aSign ^ (av < bv)) ? a : b; \ | |
7603 | } else { \ | |
7604 | return (aSign ^ (av < bv)) ? b : a; \ | |
7605 | } \ | |
7606 | } \ | |
7607 | } \ | |
7608 | \ | |
e5a41ffa PM |
7609 | float ## s float ## s ## _min(float ## s a, float ## s b, \ |
7610 | float_status *status) \ | |
274f1b04 | 7611 | { \ |
ff32e16e | 7612 | return float ## s ## _minmax(a, b, 1, 0, 0, status); \ |
274f1b04 PM |
7613 | } \ |
7614 | \ | |
e5a41ffa PM |
7615 | float ## s float ## s ## _max(float ## s a, float ## s b, \ |
7616 | float_status *status) \ | |
274f1b04 | 7617 | { \ |
ff32e16e | 7618 | return float ## s ## _minmax(a, b, 0, 0, 0, status); \ |
e17ab310 WN |
7619 | } \ |
7620 | \ | |
e5a41ffa PM |
7621 | float ## s float ## s ## _minnum(float ## s a, float ## s b, \ |
7622 | float_status *status) \ | |
e17ab310 | 7623 | { \ |
ff32e16e | 7624 | return float ## s ## _minmax(a, b, 1, 1, 0, status); \ |
e17ab310 WN |
7625 | } \ |
7626 | \ | |
e5a41ffa PM |
7627 | float ## s float ## s ## _maxnum(float ## s a, float ## s b, \ |
7628 | float_status *status) \ | |
e17ab310 | 7629 | { \ |
ff32e16e | 7630 | return float ## s ## _minmax(a, b, 0, 1, 0, status); \ |
2d31e060 LA |
7631 | } \ |
7632 | \ | |
e5a41ffa PM |
7633 | float ## s float ## s ## _minnummag(float ## s a, float ## s b, \ |
7634 | float_status *status) \ | |
2d31e060 | 7635 | { \ |
ff32e16e | 7636 | return float ## s ## _minmax(a, b, 1, 1, 1, status); \ |
2d31e060 LA |
7637 | } \ |
7638 | \ | |
e5a41ffa PM |
7639 | float ## s float ## s ## _maxnummag(float ## s a, float ## s b, \ |
7640 | float_status *status) \ | |
2d31e060 | 7641 | { \ |
ff32e16e | 7642 | return float ## s ## _minmax(a, b, 0, 1, 1, status); \ |
274f1b04 PM |
7643 | } |
7644 | ||
e70614ea WN |
7645 | MINMAX(32) |
7646 | MINMAX(64) | |
274f1b04 PM |
7647 | |
7648 | ||
9ee6e8bb | 7649 | /* Multiply A by 2 raised to the power N. */ |
e5a41ffa | 7650 | float32 float32_scalbn(float32 a, int n, float_status *status) |
9ee6e8bb PB |
7651 | { |
7652 | flag aSign; | |
326b9e98 | 7653 | int16_t aExp; |
bb98fe42 | 7654 | uint32_t aSig; |
9ee6e8bb | 7655 | |
ff32e16e | 7656 | a = float32_squash_input_denormal(a, status); |
9ee6e8bb PB |
7657 | aSig = extractFloat32Frac( a ); |
7658 | aExp = extractFloat32Exp( a ); | |
7659 | aSign = extractFloat32Sign( a ); | |
7660 | ||
7661 | if ( aExp == 0xFF ) { | |
326b9e98 | 7662 | if ( aSig ) { |
ff32e16e | 7663 | return propagateFloat32NaN(a, a, status); |
326b9e98 | 7664 | } |
9ee6e8bb PB |
7665 | return a; |
7666 | } | |
3c85c37f | 7667 | if (aExp != 0) { |
69397542 | 7668 | aSig |= 0x00800000; |
3c85c37f | 7669 | } else if (aSig == 0) { |
69397542 | 7670 | return a; |
3c85c37f PM |
7671 | } else { |
7672 | aExp++; | |
7673 | } | |
69397542 | 7674 | |
326b9e98 AJ |
7675 | if (n > 0x200) { |
7676 | n = 0x200; | |
7677 | } else if (n < -0x200) { | |
7678 | n = -0x200; | |
7679 | } | |
7680 | ||
69397542 PB |
7681 | aExp += n - 1; |
7682 | aSig <<= 7; | |
ff32e16e | 7683 | return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status); |
9ee6e8bb PB |
7684 | } |
7685 | ||
e5a41ffa | 7686 | float64 float64_scalbn(float64 a, int n, float_status *status) |
9ee6e8bb PB |
7687 | { |
7688 | flag aSign; | |
326b9e98 | 7689 | int16_t aExp; |
bb98fe42 | 7690 | uint64_t aSig; |
9ee6e8bb | 7691 | |
ff32e16e | 7692 | a = float64_squash_input_denormal(a, status); |
9ee6e8bb PB |
7693 | aSig = extractFloat64Frac( a ); |
7694 | aExp = extractFloat64Exp( a ); | |
7695 | aSign = extractFloat64Sign( a ); | |
7696 | ||
7697 | if ( aExp == 0x7FF ) { | |
326b9e98 | 7698 | if ( aSig ) { |
ff32e16e | 7699 | return propagateFloat64NaN(a, a, status); |
326b9e98 | 7700 | } |
9ee6e8bb PB |
7701 | return a; |
7702 | } | |
3c85c37f | 7703 | if (aExp != 0) { |
69397542 | 7704 | aSig |= LIT64( 0x0010000000000000 ); |
3c85c37f | 7705 | } else if (aSig == 0) { |
69397542 | 7706 | return a; |
3c85c37f PM |
7707 | } else { |
7708 | aExp++; | |
7709 | } | |
69397542 | 7710 | |
326b9e98 AJ |
7711 | if (n > 0x1000) { |
7712 | n = 0x1000; | |
7713 | } else if (n < -0x1000) { | |
7714 | n = -0x1000; | |
7715 | } | |
7716 | ||
69397542 PB |
7717 | aExp += n - 1; |
7718 | aSig <<= 10; | |
ff32e16e | 7719 | return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status); |
9ee6e8bb PB |
7720 | } |
7721 | ||
e5a41ffa | 7722 | floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status) |
9ee6e8bb PB |
7723 | { |
7724 | flag aSign; | |
326b9e98 | 7725 | int32_t aExp; |
bb98fe42 | 7726 | uint64_t aSig; |
9ee6e8bb | 7727 | |
d1eb8f2a AD |
7728 | if (floatx80_invalid_encoding(a)) { |
7729 | float_raise(float_flag_invalid, status); | |
7730 | return floatx80_default_nan(status); | |
7731 | } | |
9ee6e8bb PB |
7732 | aSig = extractFloatx80Frac( a ); |
7733 | aExp = extractFloatx80Exp( a ); | |
7734 | aSign = extractFloatx80Sign( a ); | |
7735 | ||
326b9e98 AJ |
7736 | if ( aExp == 0x7FFF ) { |
7737 | if ( aSig<<1 ) { | |
ff32e16e | 7738 | return propagateFloatx80NaN(a, a, status); |
326b9e98 | 7739 | } |
9ee6e8bb PB |
7740 | return a; |
7741 | } | |
326b9e98 | 7742 | |
3c85c37f PM |
7743 | if (aExp == 0) { |
7744 | if (aSig == 0) { | |
7745 | return a; | |
7746 | } | |
7747 | aExp++; | |
7748 | } | |
69397542 | 7749 | |
326b9e98 AJ |
7750 | if (n > 0x10000) { |
7751 | n = 0x10000; | |
7752 | } else if (n < -0x10000) { | |
7753 | n = -0x10000; | |
7754 | } | |
7755 | ||
9ee6e8bb | 7756 | aExp += n; |
a2f2d288 PM |
7757 | return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
7758 | aSign, aExp, aSig, 0, status); | |
9ee6e8bb | 7759 | } |
9ee6e8bb | 7760 | |
e5a41ffa | 7761 | float128 float128_scalbn(float128 a, int n, float_status *status) |
9ee6e8bb PB |
7762 | { |
7763 | flag aSign; | |
326b9e98 | 7764 | int32_t aExp; |
bb98fe42 | 7765 | uint64_t aSig0, aSig1; |
9ee6e8bb PB |
7766 | |
7767 | aSig1 = extractFloat128Frac1( a ); | |
7768 | aSig0 = extractFloat128Frac0( a ); | |
7769 | aExp = extractFloat128Exp( a ); | |
7770 | aSign = extractFloat128Sign( a ); | |
7771 | if ( aExp == 0x7FFF ) { | |
326b9e98 | 7772 | if ( aSig0 | aSig1 ) { |
ff32e16e | 7773 | return propagateFloat128NaN(a, a, status); |
326b9e98 | 7774 | } |
9ee6e8bb PB |
7775 | return a; |
7776 | } | |
3c85c37f | 7777 | if (aExp != 0) { |
69397542 | 7778 | aSig0 |= LIT64( 0x0001000000000000 ); |
3c85c37f | 7779 | } else if (aSig0 == 0 && aSig1 == 0) { |
69397542 | 7780 | return a; |
3c85c37f PM |
7781 | } else { |
7782 | aExp++; | |
7783 | } | |
69397542 | 7784 | |
326b9e98 AJ |
7785 | if (n > 0x10000) { |
7786 | n = 0x10000; | |
7787 | } else if (n < -0x10000) { | |
7788 | n = -0x10000; | |
7789 | } | |
7790 | ||
69397542 PB |
7791 | aExp += n - 1; |
7792 | return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 | |
ff32e16e | 7793 | , status); |
9ee6e8bb PB |
7794 | |
7795 | } |