]>
Commit | Line | Data |
---|---|---|
8d725fac AF |
1 | /* |
2 | * QEMU float support | |
3 | * | |
4 | * Derived from SoftFloat. | |
5 | */ | |
158142c2 FB |
6 | |
7 | /*============================================================================ | |
8 | ||
9 | This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic | |
10 | Package, Release 2b. | |
11 | ||
12 | Written by John R. Hauser. This work was made possible in part by the | |
13 | International Computer Science Institute, located at Suite 600, 1947 Center | |
14 | Street, Berkeley, California 94704. Funding was partially provided by the | |
15 | National Science Foundation under grant MIP-9311980. The original version | |
16 | of this code was written as part of a project to build a fixed-point vector | |
17 | processor in collaboration with the University of California at Berkeley, | |
18 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
19 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | |
20 | arithmetic/SoftFloat.html'. | |
21 | ||
22 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has | |
23 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | |
24 | RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | |
25 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | |
26 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | |
27 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | |
28 | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | |
29 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | |
30 | ||
31 | Derivative works are acceptable, even for commercial purposes, so long as | |
32 | (1) the source code for the derivative work includes prominent notice that | |
33 | the work is derivative, and (2) the source code includes prominent notice with | |
34 | these four paragraphs for those parts of this code that are retained. | |
35 | ||
36 | =============================================================================*/ | |
37 | ||
2ac8bd03 PM |
38 | /* softfloat (and in particular the code in softfloat-specialize.h) is |
39 | * target-dependent and needs the TARGET_* macros. | |
40 | */ | |
41 | #include "config.h" | |
42 | ||
6b4c305c | 43 | #include "fpu/softfloat.h" |
158142c2 | 44 | |
dc355b76 PM |
45 | /* We only need stdlib for abort() */ |
46 | #include <stdlib.h> | |
47 | ||
158142c2 FB |
48 | /*---------------------------------------------------------------------------- |
49 | | Primitive arithmetic functions, including multi-word arithmetic, and | |
50 | | division and square root approximations. (Can be specialized to target if | |
51 | | desired.) | |
52 | *----------------------------------------------------------------------------*/ | |
53 | #include "softfloat-macros.h" | |
54 | ||
55 | /*---------------------------------------------------------------------------- | |
56 | | Functions and definitions to determine: (1) whether tininess for underflow | |
57 | | is detected before or after rounding by default, (2) what (if anything) | |
58 | | happens when exceptions are raised, (3) how signaling NaNs are distinguished | |
59 | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | |
60 | | are propagated from function inputs to output. These details are target- | |
61 | | specific. | |
62 | *----------------------------------------------------------------------------*/ | |
63 | #include "softfloat-specialize.h" | |
64 | ||
bb4d4bb3 PM |
65 | /*---------------------------------------------------------------------------- |
66 | | Returns the fraction bits of the half-precision floating-point value `a'. | |
67 | *----------------------------------------------------------------------------*/ | |
68 | ||
69 | INLINE uint32_t extractFloat16Frac(float16 a) | |
70 | { | |
71 | return float16_val(a) & 0x3ff; | |
72 | } | |
73 | ||
74 | /*---------------------------------------------------------------------------- | |
75 | | Returns the exponent bits of the half-precision floating-point value `a'. | |
76 | *----------------------------------------------------------------------------*/ | |
77 | ||
94a49d86 | 78 | INLINE int_fast16_t extractFloat16Exp(float16 a) |
bb4d4bb3 PM |
79 | { |
80 | return (float16_val(a) >> 10) & 0x1f; | |
81 | } | |
82 | ||
83 | /*---------------------------------------------------------------------------- | |
84 | | Returns the sign bit of the single-precision floating-point value `a'. | |
85 | *----------------------------------------------------------------------------*/ | |
86 | ||
87 | INLINE flag extractFloat16Sign(float16 a) | |
88 | { | |
89 | return float16_val(a)>>15; | |
90 | } | |
91 | ||
158142c2 FB |
92 | /*---------------------------------------------------------------------------- |
93 | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | |
94 | | and 7, and returns the properly rounded 32-bit integer corresponding to the | |
95 | | input. If `zSign' is 1, the input is negated before being converted to an | |
96 | | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input | |
97 | | is simply rounded to an integer, with the inexact exception raised if the | |
98 | | input cannot be represented exactly as an integer. However, if the fixed- | |
99 | | point input is too large, the invalid exception is raised and the largest | |
100 | | positive or negative integer is returned. | |
101 | *----------------------------------------------------------------------------*/ | |
102 | ||
bb98fe42 | 103 | static int32 roundAndPackInt32( flag zSign, uint64_t absZ STATUS_PARAM) |
158142c2 FB |
104 | { |
105 | int8 roundingMode; | |
106 | flag roundNearestEven; | |
107 | int8 roundIncrement, roundBits; | |
760e1416 | 108 | int32_t z; |
158142c2 FB |
109 | |
110 | roundingMode = STATUS(float_rounding_mode); | |
111 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
dc355b76 PM |
112 | switch (roundingMode) { |
113 | case float_round_nearest_even: | |
f9288a76 | 114 | case float_round_ties_away: |
dc355b76 PM |
115 | roundIncrement = 0x40; |
116 | break; | |
117 | case float_round_to_zero: | |
118 | roundIncrement = 0; | |
119 | break; | |
120 | case float_round_up: | |
121 | roundIncrement = zSign ? 0 : 0x7f; | |
122 | break; | |
123 | case float_round_down: | |
124 | roundIncrement = zSign ? 0x7f : 0; | |
125 | break; | |
126 | default: | |
127 | abort(); | |
158142c2 FB |
128 | } |
129 | roundBits = absZ & 0x7F; | |
130 | absZ = ( absZ + roundIncrement )>>7; | |
131 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
132 | z = absZ; | |
133 | if ( zSign ) z = - z; | |
134 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | |
135 | float_raise( float_flag_invalid STATUS_VAR); | |
bb98fe42 | 136 | return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
137 | } |
138 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
139 | return z; | |
140 | ||
141 | } | |
142 | ||
143 | /*---------------------------------------------------------------------------- | |
144 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
145 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
146 | | and returns the properly rounded 64-bit integer corresponding to the input. | |
147 | | If `zSign' is 1, the input is negated before being converted to an integer. | |
148 | | Ordinarily, the fixed-point input is simply rounded to an integer, with | |
149 | | the inexact exception raised if the input cannot be represented exactly as | |
150 | | an integer. However, if the fixed-point input is too large, the invalid | |
151 | | exception is raised and the largest positive or negative integer is | |
152 | | returned. | |
153 | *----------------------------------------------------------------------------*/ | |
154 | ||
bb98fe42 | 155 | static int64 roundAndPackInt64( flag zSign, uint64_t absZ0, uint64_t absZ1 STATUS_PARAM) |
158142c2 FB |
156 | { |
157 | int8 roundingMode; | |
158 | flag roundNearestEven, increment; | |
760e1416 | 159 | int64_t z; |
158142c2 FB |
160 | |
161 | roundingMode = STATUS(float_rounding_mode); | |
162 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
dc355b76 PM |
163 | switch (roundingMode) { |
164 | case float_round_nearest_even: | |
f9288a76 | 165 | case float_round_ties_away: |
dc355b76 PM |
166 | increment = ((int64_t) absZ1 < 0); |
167 | break; | |
168 | case float_round_to_zero: | |
169 | increment = 0; | |
170 | break; | |
171 | case float_round_up: | |
172 | increment = !zSign && absZ1; | |
173 | break; | |
174 | case float_round_down: | |
175 | increment = zSign && absZ1; | |
176 | break; | |
177 | default: | |
178 | abort(); | |
158142c2 FB |
179 | } |
180 | if ( increment ) { | |
181 | ++absZ0; | |
182 | if ( absZ0 == 0 ) goto overflow; | |
bb98fe42 | 183 | absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
184 | } |
185 | z = absZ0; | |
186 | if ( zSign ) z = - z; | |
187 | if ( z && ( ( z < 0 ) ^ zSign ) ) { | |
188 | overflow: | |
189 | float_raise( float_flag_invalid STATUS_VAR); | |
190 | return | |
bb98fe42 | 191 | zSign ? (int64_t) LIT64( 0x8000000000000000 ) |
158142c2 FB |
192 | : LIT64( 0x7FFFFFFFFFFFFFFF ); |
193 | } | |
194 | if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
195 | return z; | |
196 | ||
197 | } | |
198 | ||
fb3ea83a TM |
199 | /*---------------------------------------------------------------------------- |
200 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
201 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
202 | | and returns the properly rounded 64-bit unsigned integer corresponding to the | |
203 | | input. Ordinarily, the fixed-point input is simply rounded to an integer, | |
204 | | with the inexact exception raised if the input cannot be represented exactly | |
205 | | as an integer. However, if the fixed-point input is too large, the invalid | |
206 | | exception is raised and the largest unsigned integer is returned. | |
207 | *----------------------------------------------------------------------------*/ | |
208 | ||
209 | static int64 roundAndPackUint64(flag zSign, uint64_t absZ0, | |
210 | uint64_t absZ1 STATUS_PARAM) | |
211 | { | |
212 | int8 roundingMode; | |
213 | flag roundNearestEven, increment; | |
214 | ||
215 | roundingMode = STATUS(float_rounding_mode); | |
216 | roundNearestEven = (roundingMode == float_round_nearest_even); | |
dc355b76 PM |
217 | switch (roundingMode) { |
218 | case float_round_nearest_even: | |
f9288a76 | 219 | case float_round_ties_away: |
dc355b76 PM |
220 | increment = ((int64_t)absZ1 < 0); |
221 | break; | |
222 | case float_round_to_zero: | |
223 | increment = 0; | |
224 | break; | |
225 | case float_round_up: | |
226 | increment = !zSign && absZ1; | |
227 | break; | |
228 | case float_round_down: | |
229 | increment = zSign && absZ1; | |
230 | break; | |
231 | default: | |
232 | abort(); | |
fb3ea83a TM |
233 | } |
234 | if (increment) { | |
235 | ++absZ0; | |
236 | if (absZ0 == 0) { | |
237 | float_raise(float_flag_invalid STATUS_VAR); | |
238 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
239 | } | |
240 | absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven); | |
241 | } | |
242 | ||
243 | if (zSign && absZ0) { | |
244 | float_raise(float_flag_invalid STATUS_VAR); | |
245 | return 0; | |
246 | } | |
247 | ||
248 | if (absZ1) { | |
249 | STATUS(float_exception_flags) |= float_flag_inexact; | |
250 | } | |
251 | return absZ0; | |
252 | } | |
253 | ||
158142c2 FB |
254 | /*---------------------------------------------------------------------------- |
255 | | Returns the fraction bits of the single-precision floating-point value `a'. | |
256 | *----------------------------------------------------------------------------*/ | |
257 | ||
bb98fe42 | 258 | INLINE uint32_t extractFloat32Frac( float32 a ) |
158142c2 FB |
259 | { |
260 | ||
f090c9d4 | 261 | return float32_val(a) & 0x007FFFFF; |
158142c2 FB |
262 | |
263 | } | |
264 | ||
265 | /*---------------------------------------------------------------------------- | |
266 | | Returns the exponent bits of the single-precision floating-point value `a'. | |
267 | *----------------------------------------------------------------------------*/ | |
268 | ||
94a49d86 | 269 | INLINE int_fast16_t extractFloat32Exp(float32 a) |
158142c2 FB |
270 | { |
271 | ||
f090c9d4 | 272 | return ( float32_val(a)>>23 ) & 0xFF; |
158142c2 FB |
273 | |
274 | } | |
275 | ||
276 | /*---------------------------------------------------------------------------- | |
277 | | Returns the sign bit of the single-precision floating-point value `a'. | |
278 | *----------------------------------------------------------------------------*/ | |
279 | ||
280 | INLINE flag extractFloat32Sign( float32 a ) | |
281 | { | |
282 | ||
f090c9d4 | 283 | return float32_val(a)>>31; |
158142c2 FB |
284 | |
285 | } | |
286 | ||
37d18660 PM |
287 | /*---------------------------------------------------------------------------- |
288 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
289 | | input-denormal exception and return zero. Otherwise just return the value. | |
290 | *----------------------------------------------------------------------------*/ | |
291 | static float32 float32_squash_input_denormal(float32 a STATUS_PARAM) | |
292 | { | |
293 | if (STATUS(flush_inputs_to_zero)) { | |
294 | if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { | |
295 | float_raise(float_flag_input_denormal STATUS_VAR); | |
296 | return make_float32(float32_val(a) & 0x80000000); | |
297 | } | |
298 | } | |
299 | return a; | |
300 | } | |
301 | ||
158142c2 FB |
302 | /*---------------------------------------------------------------------------- |
303 | | Normalizes the subnormal single-precision floating-point value represented | |
304 | | by the denormalized significand `aSig'. The normalized exponent and | |
305 | | significand are stored at the locations pointed to by `zExpPtr' and | |
306 | | `zSigPtr', respectively. | |
307 | *----------------------------------------------------------------------------*/ | |
308 | ||
309 | static void | |
94a49d86 | 310 | normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr) |
158142c2 FB |
311 | { |
312 | int8 shiftCount; | |
313 | ||
314 | shiftCount = countLeadingZeros32( aSig ) - 8; | |
315 | *zSigPtr = aSig<<shiftCount; | |
316 | *zExpPtr = 1 - shiftCount; | |
317 | ||
318 | } | |
319 | ||
320 | /*---------------------------------------------------------------------------- | |
321 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
322 | | single-precision floating-point value, returning the result. After being | |
323 | | shifted into the proper positions, the three fields are simply added | |
324 | | together to form the result. This means that any integer portion of `zSig' | |
325 | | will be added into the exponent. Since a properly normalized significand | |
326 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
327 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
328 | | significand. | |
329 | *----------------------------------------------------------------------------*/ | |
330 | ||
94a49d86 | 331 | INLINE float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig) |
158142c2 FB |
332 | { |
333 | ||
f090c9d4 | 334 | return make_float32( |
bb98fe42 | 335 | ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig); |
158142c2 FB |
336 | |
337 | } | |
338 | ||
339 | /*---------------------------------------------------------------------------- | |
340 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
341 | | and significand `zSig', and returns the proper single-precision floating- | |
342 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
343 | | value is simply rounded and packed into the single-precision format, with | |
344 | | the inexact exception raised if the abstract input cannot be represented | |
345 | | exactly. However, if the abstract value is too large, the overflow and | |
346 | | inexact exceptions are raised and an infinity or maximal finite value is | |
347 | | returned. If the abstract value is too small, the input value is rounded to | |
348 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
349 | | the abstract input cannot be represented exactly as a subnormal single- | |
350 | | precision floating-point number. | |
351 | | The input significand `zSig' has its binary point between bits 30 | |
352 | | and 29, which is 7 bits to the left of the usual location. This shifted | |
353 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
354 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
355 | | and it must not require rounding. In the usual case that `zSig' is | |
356 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
357 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
358 | | Binary Floating-Point Arithmetic. | |
359 | *----------------------------------------------------------------------------*/ | |
360 | ||
94a49d86 | 361 | static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM) |
158142c2 FB |
362 | { |
363 | int8 roundingMode; | |
364 | flag roundNearestEven; | |
365 | int8 roundIncrement, roundBits; | |
366 | flag isTiny; | |
367 | ||
368 | roundingMode = STATUS(float_rounding_mode); | |
369 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
dc355b76 PM |
370 | switch (roundingMode) { |
371 | case float_round_nearest_even: | |
f9288a76 | 372 | case float_round_ties_away: |
dc355b76 PM |
373 | roundIncrement = 0x40; |
374 | break; | |
375 | case float_round_to_zero: | |
376 | roundIncrement = 0; | |
377 | break; | |
378 | case float_round_up: | |
379 | roundIncrement = zSign ? 0 : 0x7f; | |
380 | break; | |
381 | case float_round_down: | |
382 | roundIncrement = zSign ? 0x7f : 0; | |
383 | break; | |
384 | default: | |
385 | abort(); | |
386 | break; | |
158142c2 FB |
387 | } |
388 | roundBits = zSig & 0x7F; | |
bb98fe42 | 389 | if ( 0xFD <= (uint16_t) zExp ) { |
158142c2 FB |
390 | if ( ( 0xFD < zExp ) |
391 | || ( ( zExp == 0xFD ) | |
bb98fe42 | 392 | && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 FB |
393 | ) { |
394 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
f090c9d4 | 395 | return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); |
158142c2 FB |
396 | } |
397 | if ( zExp < 0 ) { | |
e6afc87f PM |
398 | if (STATUS(flush_to_zero)) { |
399 | float_raise(float_flag_output_denormal STATUS_VAR); | |
400 | return packFloat32(zSign, 0, 0); | |
401 | } | |
158142c2 FB |
402 | isTiny = |
403 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
404 | || ( zExp < -1 ) | |
405 | || ( zSig + roundIncrement < 0x80000000 ); | |
406 | shift32RightJamming( zSig, - zExp, &zSig ); | |
407 | zExp = 0; | |
408 | roundBits = zSig & 0x7F; | |
409 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
410 | } | |
411 | } | |
412 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
413 | zSig = ( zSig + roundIncrement )>>7; | |
414 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
415 | if ( zSig == 0 ) zExp = 0; | |
416 | return packFloat32( zSign, zExp, zSig ); | |
417 | ||
418 | } | |
419 | ||
420 | /*---------------------------------------------------------------------------- | |
421 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
422 | | and significand `zSig', and returns the proper single-precision floating- | |
423 | | point value corresponding to the abstract input. This routine is just like | |
424 | | `roundAndPackFloat32' except that `zSig' does not have to be normalized. | |
425 | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
426 | | floating-point exponent. | |
427 | *----------------------------------------------------------------------------*/ | |
428 | ||
429 | static float32 | |
94a49d86 | 430 | normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM) |
158142c2 FB |
431 | { |
432 | int8 shiftCount; | |
433 | ||
434 | shiftCount = countLeadingZeros32( zSig ) - 1; | |
435 | return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); | |
436 | ||
437 | } | |
438 | ||
439 | /*---------------------------------------------------------------------------- | |
440 | | Returns the fraction bits of the double-precision floating-point value `a'. | |
441 | *----------------------------------------------------------------------------*/ | |
442 | ||
bb98fe42 | 443 | INLINE uint64_t extractFloat64Frac( float64 a ) |
158142c2 FB |
444 | { |
445 | ||
f090c9d4 | 446 | return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF ); |
158142c2 FB |
447 | |
448 | } | |
449 | ||
450 | /*---------------------------------------------------------------------------- | |
451 | | Returns the exponent bits of the double-precision floating-point value `a'. | |
452 | *----------------------------------------------------------------------------*/ | |
453 | ||
94a49d86 | 454 | INLINE int_fast16_t extractFloat64Exp(float64 a) |
158142c2 FB |
455 | { |
456 | ||
f090c9d4 | 457 | return ( float64_val(a)>>52 ) & 0x7FF; |
158142c2 FB |
458 | |
459 | } | |
460 | ||
461 | /*---------------------------------------------------------------------------- | |
462 | | Returns the sign bit of the double-precision floating-point value `a'. | |
463 | *----------------------------------------------------------------------------*/ | |
464 | ||
465 | INLINE flag extractFloat64Sign( float64 a ) | |
466 | { | |
467 | ||
f090c9d4 | 468 | return float64_val(a)>>63; |
158142c2 FB |
469 | |
470 | } | |
471 | ||
37d18660 PM |
472 | /*---------------------------------------------------------------------------- |
473 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
474 | | input-denormal exception and return zero. Otherwise just return the value. | |
475 | *----------------------------------------------------------------------------*/ | |
476 | static float64 float64_squash_input_denormal(float64 a STATUS_PARAM) | |
477 | { | |
478 | if (STATUS(flush_inputs_to_zero)) { | |
479 | if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { | |
480 | float_raise(float_flag_input_denormal STATUS_VAR); | |
481 | return make_float64(float64_val(a) & (1ULL << 63)); | |
482 | } | |
483 | } | |
484 | return a; | |
485 | } | |
486 | ||
158142c2 FB |
487 | /*---------------------------------------------------------------------------- |
488 | | Normalizes the subnormal double-precision floating-point value represented | |
489 | | by the denormalized significand `aSig'. The normalized exponent and | |
490 | | significand are stored at the locations pointed to by `zExpPtr' and | |
491 | | `zSigPtr', respectively. | |
492 | *----------------------------------------------------------------------------*/ | |
493 | ||
494 | static void | |
94a49d86 | 495 | normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr) |
158142c2 FB |
496 | { |
497 | int8 shiftCount; | |
498 | ||
499 | shiftCount = countLeadingZeros64( aSig ) - 11; | |
500 | *zSigPtr = aSig<<shiftCount; | |
501 | *zExpPtr = 1 - shiftCount; | |
502 | ||
503 | } | |
504 | ||
505 | /*---------------------------------------------------------------------------- | |
506 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
507 | | double-precision floating-point value, returning the result. After being | |
508 | | shifted into the proper positions, the three fields are simply added | |
509 | | together to form the result. This means that any integer portion of `zSig' | |
510 | | will be added into the exponent. Since a properly normalized significand | |
511 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
512 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
513 | | significand. | |
514 | *----------------------------------------------------------------------------*/ | |
515 | ||
94a49d86 | 516 | INLINE float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig) |
158142c2 FB |
517 | { |
518 | ||
f090c9d4 | 519 | return make_float64( |
bb98fe42 | 520 | ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); |
158142c2 FB |
521 | |
522 | } | |
523 | ||
524 | /*---------------------------------------------------------------------------- | |
525 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
526 | | and significand `zSig', and returns the proper double-precision floating- | |
527 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
528 | | value is simply rounded and packed into the double-precision format, with | |
529 | | the inexact exception raised if the abstract input cannot be represented | |
530 | | exactly. However, if the abstract value is too large, the overflow and | |
531 | | inexact exceptions are raised and an infinity or maximal finite value is | |
532 | | returned. If the abstract value is too small, the input value is rounded | |
533 | | to a subnormal number, and the underflow and inexact exceptions are raised | |
534 | | if the abstract input cannot be represented exactly as a subnormal double- | |
535 | | precision floating-point number. | |
536 | | The input significand `zSig' has its binary point between bits 62 | |
537 | | and 61, which is 10 bits to the left of the usual location. This shifted | |
538 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
539 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
540 | | and it must not require rounding. In the usual case that `zSig' is | |
541 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
542 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
543 | | Binary Floating-Point Arithmetic. | |
544 | *----------------------------------------------------------------------------*/ | |
545 | ||
94a49d86 | 546 | static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM) |
158142c2 FB |
547 | { |
548 | int8 roundingMode; | |
549 | flag roundNearestEven; | |
94a49d86 | 550 | int_fast16_t roundIncrement, roundBits; |
158142c2 FB |
551 | flag isTiny; |
552 | ||
553 | roundingMode = STATUS(float_rounding_mode); | |
554 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
dc355b76 PM |
555 | switch (roundingMode) { |
556 | case float_round_nearest_even: | |
f9288a76 | 557 | case float_round_ties_away: |
dc355b76 PM |
558 | roundIncrement = 0x200; |
559 | break; | |
560 | case float_round_to_zero: | |
561 | roundIncrement = 0; | |
562 | break; | |
563 | case float_round_up: | |
564 | roundIncrement = zSign ? 0 : 0x3ff; | |
565 | break; | |
566 | case float_round_down: | |
567 | roundIncrement = zSign ? 0x3ff : 0; | |
568 | break; | |
569 | default: | |
570 | abort(); | |
158142c2 FB |
571 | } |
572 | roundBits = zSig & 0x3FF; | |
bb98fe42 | 573 | if ( 0x7FD <= (uint16_t) zExp ) { |
158142c2 FB |
574 | if ( ( 0x7FD < zExp ) |
575 | || ( ( zExp == 0x7FD ) | |
bb98fe42 | 576 | && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 FB |
577 | ) { |
578 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
f090c9d4 | 579 | return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 )); |
158142c2 FB |
580 | } |
581 | if ( zExp < 0 ) { | |
e6afc87f PM |
582 | if (STATUS(flush_to_zero)) { |
583 | float_raise(float_flag_output_denormal STATUS_VAR); | |
584 | return packFloat64(zSign, 0, 0); | |
585 | } | |
158142c2 FB |
586 | isTiny = |
587 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
588 | || ( zExp < -1 ) | |
589 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | |
590 | shift64RightJamming( zSig, - zExp, &zSig ); | |
591 | zExp = 0; | |
592 | roundBits = zSig & 0x3FF; | |
593 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
594 | } | |
595 | } | |
596 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
597 | zSig = ( zSig + roundIncrement )>>10; | |
598 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | |
599 | if ( zSig == 0 ) zExp = 0; | |
600 | return packFloat64( zSign, zExp, zSig ); | |
601 | ||
602 | } | |
603 | ||
604 | /*---------------------------------------------------------------------------- | |
605 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
606 | | and significand `zSig', and returns the proper double-precision floating- | |
607 | | point value corresponding to the abstract input. This routine is just like | |
608 | | `roundAndPackFloat64' except that `zSig' does not have to be normalized. | |
609 | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
610 | | floating-point exponent. | |
611 | *----------------------------------------------------------------------------*/ | |
612 | ||
613 | static float64 | |
94a49d86 | 614 | normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM) |
158142c2 FB |
615 | { |
616 | int8 shiftCount; | |
617 | ||
618 | shiftCount = countLeadingZeros64( zSig ) - 1; | |
619 | return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); | |
620 | ||
621 | } | |
622 | ||
158142c2 FB |
623 | /*---------------------------------------------------------------------------- |
624 | | Returns the fraction bits of the extended double-precision floating-point | |
625 | | value `a'. | |
626 | *----------------------------------------------------------------------------*/ | |
627 | ||
bb98fe42 | 628 | INLINE uint64_t extractFloatx80Frac( floatx80 a ) |
158142c2 FB |
629 | { |
630 | ||
631 | return a.low; | |
632 | ||
633 | } | |
634 | ||
635 | /*---------------------------------------------------------------------------- | |
636 | | Returns the exponent bits of the extended double-precision floating-point | |
637 | | value `a'. | |
638 | *----------------------------------------------------------------------------*/ | |
639 | ||
640 | INLINE int32 extractFloatx80Exp( floatx80 a ) | |
641 | { | |
642 | ||
643 | return a.high & 0x7FFF; | |
644 | ||
645 | } | |
646 | ||
647 | /*---------------------------------------------------------------------------- | |
648 | | Returns the sign bit of the extended double-precision floating-point value | |
649 | | `a'. | |
650 | *----------------------------------------------------------------------------*/ | |
651 | ||
652 | INLINE flag extractFloatx80Sign( floatx80 a ) | |
653 | { | |
654 | ||
655 | return a.high>>15; | |
656 | ||
657 | } | |
658 | ||
659 | /*---------------------------------------------------------------------------- | |
660 | | Normalizes the subnormal extended double-precision floating-point value | |
661 | | represented by the denormalized significand `aSig'. The normalized exponent | |
662 | | and significand are stored at the locations pointed to by `zExpPtr' and | |
663 | | `zSigPtr', respectively. | |
664 | *----------------------------------------------------------------------------*/ | |
665 | ||
666 | static void | |
bb98fe42 | 667 | normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr ) |
158142c2 FB |
668 | { |
669 | int8 shiftCount; | |
670 | ||
671 | shiftCount = countLeadingZeros64( aSig ); | |
672 | *zSigPtr = aSig<<shiftCount; | |
673 | *zExpPtr = 1 - shiftCount; | |
674 | ||
675 | } | |
676 | ||
677 | /*---------------------------------------------------------------------------- | |
678 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | |
679 | | extended double-precision floating-point value, returning the result. | |
680 | *----------------------------------------------------------------------------*/ | |
681 | ||
bb98fe42 | 682 | INLINE floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig ) |
158142c2 FB |
683 | { |
684 | floatx80 z; | |
685 | ||
686 | z.low = zSig; | |
bb98fe42 | 687 | z.high = ( ( (uint16_t) zSign )<<15 ) + zExp; |
158142c2 FB |
688 | return z; |
689 | ||
690 | } | |
691 | ||
692 | /*---------------------------------------------------------------------------- | |
693 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
694 | | and extended significand formed by the concatenation of `zSig0' and `zSig1', | |
695 | | and returns the proper extended double-precision floating-point value | |
696 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
697 | | rounded and packed into the extended double-precision format, with the | |
698 | | inexact exception raised if the abstract input cannot be represented | |
699 | | exactly. However, if the abstract value is too large, the overflow and | |
700 | | inexact exceptions are raised and an infinity or maximal finite value is | |
701 | | returned. If the abstract value is too small, the input value is rounded to | |
702 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
703 | | the abstract input cannot be represented exactly as a subnormal extended | |
704 | | double-precision floating-point number. | |
705 | | If `roundingPrecision' is 32 or 64, the result is rounded to the same | |
706 | | number of bits as single or double precision, respectively. Otherwise, the | |
707 | | result is rounded to the full precision of the extended double-precision | |
708 | | format. | |
709 | | The input significand must be normalized or smaller. If the input | |
710 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
711 | | returned is a subnormal number, and it must not require rounding. The | |
712 | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | |
713 | | Floating-Point Arithmetic. | |
714 | *----------------------------------------------------------------------------*/ | |
715 | ||
716 | static floatx80 | |
717 | roundAndPackFloatx80( | |
bb98fe42 | 718 | int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 |
158142c2 FB |
719 | STATUS_PARAM) |
720 | { | |
721 | int8 roundingMode; | |
722 | flag roundNearestEven, increment, isTiny; | |
723 | int64 roundIncrement, roundMask, roundBits; | |
724 | ||
725 | roundingMode = STATUS(float_rounding_mode); | |
726 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
727 | if ( roundingPrecision == 80 ) goto precision80; | |
728 | if ( roundingPrecision == 64 ) { | |
729 | roundIncrement = LIT64( 0x0000000000000400 ); | |
730 | roundMask = LIT64( 0x00000000000007FF ); | |
731 | } | |
732 | else if ( roundingPrecision == 32 ) { | |
733 | roundIncrement = LIT64( 0x0000008000000000 ); | |
734 | roundMask = LIT64( 0x000000FFFFFFFFFF ); | |
735 | } | |
736 | else { | |
737 | goto precision80; | |
738 | } | |
739 | zSig0 |= ( zSig1 != 0 ); | |
dc355b76 PM |
740 | switch (roundingMode) { |
741 | case float_round_nearest_even: | |
f9288a76 | 742 | case float_round_ties_away: |
dc355b76 PM |
743 | break; |
744 | case float_round_to_zero: | |
745 | roundIncrement = 0; | |
746 | break; | |
747 | case float_round_up: | |
748 | roundIncrement = zSign ? 0 : roundMask; | |
749 | break; | |
750 | case float_round_down: | |
751 | roundIncrement = zSign ? roundMask : 0; | |
752 | break; | |
753 | default: | |
754 | abort(); | |
158142c2 FB |
755 | } |
756 | roundBits = zSig0 & roundMask; | |
bb98fe42 | 757 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
758 | if ( ( 0x7FFE < zExp ) |
759 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | |
760 | ) { | |
761 | goto overflow; | |
762 | } | |
763 | if ( zExp <= 0 ) { | |
e6afc87f PM |
764 | if (STATUS(flush_to_zero)) { |
765 | float_raise(float_flag_output_denormal STATUS_VAR); | |
766 | return packFloatx80(zSign, 0, 0); | |
767 | } | |
158142c2 FB |
768 | isTiny = |
769 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
770 | || ( zExp < 0 ) | |
771 | || ( zSig0 <= zSig0 + roundIncrement ); | |
772 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | |
773 | zExp = 0; | |
774 | roundBits = zSig0 & roundMask; | |
775 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
776 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
777 | zSig0 += roundIncrement; | |
bb98fe42 | 778 | if ( (int64_t) zSig0 < 0 ) zExp = 1; |
158142c2 FB |
779 | roundIncrement = roundMask + 1; |
780 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
781 | roundMask |= roundIncrement; | |
782 | } | |
783 | zSig0 &= ~ roundMask; | |
784 | return packFloatx80( zSign, zExp, zSig0 ); | |
785 | } | |
786 | } | |
787 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
788 | zSig0 += roundIncrement; | |
789 | if ( zSig0 < roundIncrement ) { | |
790 | ++zExp; | |
791 | zSig0 = LIT64( 0x8000000000000000 ); | |
792 | } | |
793 | roundIncrement = roundMask + 1; | |
794 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
795 | roundMask |= roundIncrement; | |
796 | } | |
797 | zSig0 &= ~ roundMask; | |
798 | if ( zSig0 == 0 ) zExp = 0; | |
799 | return packFloatx80( zSign, zExp, zSig0 ); | |
800 | precision80: | |
dc355b76 PM |
801 | switch (roundingMode) { |
802 | case float_round_nearest_even: | |
f9288a76 | 803 | case float_round_ties_away: |
dc355b76 PM |
804 | increment = ((int64_t)zSig1 < 0); |
805 | break; | |
806 | case float_round_to_zero: | |
807 | increment = 0; | |
808 | break; | |
809 | case float_round_up: | |
810 | increment = !zSign && zSig1; | |
811 | break; | |
812 | case float_round_down: | |
813 | increment = zSign && zSig1; | |
814 | break; | |
815 | default: | |
816 | abort(); | |
158142c2 | 817 | } |
bb98fe42 | 818 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
819 | if ( ( 0x7FFE < zExp ) |
820 | || ( ( zExp == 0x7FFE ) | |
821 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | |
822 | && increment | |
823 | ) | |
824 | ) { | |
825 | roundMask = 0; | |
826 | overflow: | |
827 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
828 | if ( ( roundingMode == float_round_to_zero ) | |
829 | || ( zSign && ( roundingMode == float_round_up ) ) | |
830 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
831 | ) { | |
832 | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | |
833 | } | |
834 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
835 | } | |
836 | if ( zExp <= 0 ) { | |
837 | isTiny = | |
838 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
839 | || ( zExp < 0 ) | |
840 | || ! increment | |
841 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | |
842 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | |
843 | zExp = 0; | |
844 | if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR); | |
845 | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
dc355b76 PM |
846 | switch (roundingMode) { |
847 | case float_round_nearest_even: | |
f9288a76 | 848 | case float_round_ties_away: |
dc355b76 PM |
849 | increment = ((int64_t)zSig1 < 0); |
850 | break; | |
851 | case float_round_to_zero: | |
852 | increment = 0; | |
853 | break; | |
854 | case float_round_up: | |
855 | increment = !zSign && zSig1; | |
856 | break; | |
857 | case float_round_down: | |
858 | increment = zSign && zSig1; | |
859 | break; | |
860 | default: | |
861 | abort(); | |
158142c2 FB |
862 | } |
863 | if ( increment ) { | |
864 | ++zSig0; | |
865 | zSig0 &= | |
bb98fe42 AF |
866 | ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
867 | if ( (int64_t) zSig0 < 0 ) zExp = 1; | |
158142c2 FB |
868 | } |
869 | return packFloatx80( zSign, zExp, zSig0 ); | |
870 | } | |
871 | } | |
872 | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
873 | if ( increment ) { | |
874 | ++zSig0; | |
875 | if ( zSig0 == 0 ) { | |
876 | ++zExp; | |
877 | zSig0 = LIT64( 0x8000000000000000 ); | |
878 | } | |
879 | else { | |
bb98fe42 | 880 | zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
881 | } |
882 | } | |
883 | else { | |
884 | if ( zSig0 == 0 ) zExp = 0; | |
885 | } | |
886 | return packFloatx80( zSign, zExp, zSig0 ); | |
887 | ||
888 | } | |
889 | ||
890 | /*---------------------------------------------------------------------------- | |
891 | | Takes an abstract floating-point value having sign `zSign', exponent | |
892 | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | |
893 | | and returns the proper extended double-precision floating-point value | |
894 | | corresponding to the abstract input. This routine is just like | |
895 | | `roundAndPackFloatx80' except that the input significand does not have to be | |
896 | | normalized. | |
897 | *----------------------------------------------------------------------------*/ | |
898 | ||
899 | static floatx80 | |
900 | normalizeRoundAndPackFloatx80( | |
bb98fe42 | 901 | int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 |
158142c2 FB |
902 | STATUS_PARAM) |
903 | { | |
904 | int8 shiftCount; | |
905 | ||
906 | if ( zSig0 == 0 ) { | |
907 | zSig0 = zSig1; | |
908 | zSig1 = 0; | |
909 | zExp -= 64; | |
910 | } | |
911 | shiftCount = countLeadingZeros64( zSig0 ); | |
912 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
913 | zExp -= shiftCount; | |
914 | return | |
915 | roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR); | |
916 | ||
917 | } | |
918 | ||
158142c2 FB |
919 | /*---------------------------------------------------------------------------- |
920 | | Returns the least-significant 64 fraction bits of the quadruple-precision | |
921 | | floating-point value `a'. | |
922 | *----------------------------------------------------------------------------*/ | |
923 | ||
bb98fe42 | 924 | INLINE uint64_t extractFloat128Frac1( float128 a ) |
158142c2 FB |
925 | { |
926 | ||
927 | return a.low; | |
928 | ||
929 | } | |
930 | ||
931 | /*---------------------------------------------------------------------------- | |
932 | | Returns the most-significant 48 fraction bits of the quadruple-precision | |
933 | | floating-point value `a'. | |
934 | *----------------------------------------------------------------------------*/ | |
935 | ||
bb98fe42 | 936 | INLINE uint64_t extractFloat128Frac0( float128 a ) |
158142c2 FB |
937 | { |
938 | ||
939 | return a.high & LIT64( 0x0000FFFFFFFFFFFF ); | |
940 | ||
941 | } | |
942 | ||
943 | /*---------------------------------------------------------------------------- | |
944 | | Returns the exponent bits of the quadruple-precision floating-point value | |
945 | | `a'. | |
946 | *----------------------------------------------------------------------------*/ | |
947 | ||
948 | INLINE int32 extractFloat128Exp( float128 a ) | |
949 | { | |
950 | ||
951 | return ( a.high>>48 ) & 0x7FFF; | |
952 | ||
953 | } | |
954 | ||
955 | /*---------------------------------------------------------------------------- | |
956 | | Returns the sign bit of the quadruple-precision floating-point value `a'. | |
957 | *----------------------------------------------------------------------------*/ | |
958 | ||
959 | INLINE flag extractFloat128Sign( float128 a ) | |
960 | { | |
961 | ||
962 | return a.high>>63; | |
963 | ||
964 | } | |
965 | ||
966 | /*---------------------------------------------------------------------------- | |
967 | | Normalizes the subnormal quadruple-precision floating-point value | |
968 | | represented by the denormalized significand formed by the concatenation of | |
969 | | `aSig0' and `aSig1'. The normalized exponent is stored at the location | |
970 | | pointed to by `zExpPtr'. The most significant 49 bits of the normalized | |
971 | | significand are stored at the location pointed to by `zSig0Ptr', and the | |
972 | | least significant 64 bits of the normalized significand are stored at the | |
973 | | location pointed to by `zSig1Ptr'. | |
974 | *----------------------------------------------------------------------------*/ | |
975 | ||
976 | static void | |
977 | normalizeFloat128Subnormal( | |
bb98fe42 AF |
978 | uint64_t aSig0, |
979 | uint64_t aSig1, | |
158142c2 | 980 | int32 *zExpPtr, |
bb98fe42 AF |
981 | uint64_t *zSig0Ptr, |
982 | uint64_t *zSig1Ptr | |
158142c2 FB |
983 | ) |
984 | { | |
985 | int8 shiftCount; | |
986 | ||
987 | if ( aSig0 == 0 ) { | |
988 | shiftCount = countLeadingZeros64( aSig1 ) - 15; | |
989 | if ( shiftCount < 0 ) { | |
990 | *zSig0Ptr = aSig1>>( - shiftCount ); | |
991 | *zSig1Ptr = aSig1<<( shiftCount & 63 ); | |
992 | } | |
993 | else { | |
994 | *zSig0Ptr = aSig1<<shiftCount; | |
995 | *zSig1Ptr = 0; | |
996 | } | |
997 | *zExpPtr = - shiftCount - 63; | |
998 | } | |
999 | else { | |
1000 | shiftCount = countLeadingZeros64( aSig0 ) - 15; | |
1001 | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); | |
1002 | *zExpPtr = 1 - shiftCount; | |
1003 | } | |
1004 | ||
1005 | } | |
1006 | ||
1007 | /*---------------------------------------------------------------------------- | |
1008 | | Packs the sign `zSign', the exponent `zExp', and the significand formed | |
1009 | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision | |
1010 | | floating-point value, returning the result. After being shifted into the | |
1011 | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply | |
1012 | | added together to form the most significant 32 bits of the result. This | |
1013 | | means that any integer portion of `zSig0' will be added into the exponent. | |
1014 | | Since a properly normalized significand will have an integer portion equal | |
1015 | | to 1, the `zExp' input should be 1 less than the desired result exponent | |
1016 | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized | |
1017 | | significand. | |
1018 | *----------------------------------------------------------------------------*/ | |
1019 | ||
1020 | INLINE float128 | |
bb98fe42 | 1021 | packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 ) |
158142c2 FB |
1022 | { |
1023 | float128 z; | |
1024 | ||
1025 | z.low = zSig1; | |
bb98fe42 | 1026 | z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; |
158142c2 FB |
1027 | return z; |
1028 | ||
1029 | } | |
1030 | ||
1031 | /*---------------------------------------------------------------------------- | |
1032 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1033 | | and extended significand formed by the concatenation of `zSig0', `zSig1', | |
1034 | | and `zSig2', and returns the proper quadruple-precision floating-point value | |
1035 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
1036 | | simply rounded and packed into the quadruple-precision format, with the | |
1037 | | inexact exception raised if the abstract input cannot be represented | |
1038 | | exactly. However, if the abstract value is too large, the overflow and | |
1039 | | inexact exceptions are raised and an infinity or maximal finite value is | |
1040 | | returned. If the abstract value is too small, the input value is rounded to | |
1041 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
1042 | | the abstract input cannot be represented exactly as a subnormal quadruple- | |
1043 | | precision floating-point number. | |
1044 | | The input significand must be normalized or smaller. If the input | |
1045 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
1046 | | returned is a subnormal number, and it must not require rounding. In the | |
1047 | | usual case that the input significand is normalized, `zExp' must be 1 less | |
1048 | | than the ``true'' floating-point exponent. The handling of underflow and | |
1049 | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1050 | *----------------------------------------------------------------------------*/ | |
1051 | ||
1052 | static float128 | |
1053 | roundAndPackFloat128( | |
bb98fe42 | 1054 | flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1, uint64_t zSig2 STATUS_PARAM) |
158142c2 FB |
1055 | { |
1056 | int8 roundingMode; | |
1057 | flag roundNearestEven, increment, isTiny; | |
1058 | ||
1059 | roundingMode = STATUS(float_rounding_mode); | |
1060 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
dc355b76 PM |
1061 | switch (roundingMode) { |
1062 | case float_round_nearest_even: | |
f9288a76 | 1063 | case float_round_ties_away: |
dc355b76 PM |
1064 | increment = ((int64_t)zSig2 < 0); |
1065 | break; | |
1066 | case float_round_to_zero: | |
1067 | increment = 0; | |
1068 | break; | |
1069 | case float_round_up: | |
1070 | increment = !zSign && zSig2; | |
1071 | break; | |
1072 | case float_round_down: | |
1073 | increment = zSign && zSig2; | |
1074 | break; | |
1075 | default: | |
1076 | abort(); | |
158142c2 | 1077 | } |
bb98fe42 | 1078 | if ( 0x7FFD <= (uint32_t) zExp ) { |
158142c2 FB |
1079 | if ( ( 0x7FFD < zExp ) |
1080 | || ( ( zExp == 0x7FFD ) | |
1081 | && eq128( | |
1082 | LIT64( 0x0001FFFFFFFFFFFF ), | |
1083 | LIT64( 0xFFFFFFFFFFFFFFFF ), | |
1084 | zSig0, | |
1085 | zSig1 | |
1086 | ) | |
1087 | && increment | |
1088 | ) | |
1089 | ) { | |
1090 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
1091 | if ( ( roundingMode == float_round_to_zero ) | |
1092 | || ( zSign && ( roundingMode == float_round_up ) ) | |
1093 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
1094 | ) { | |
1095 | return | |
1096 | packFloat128( | |
1097 | zSign, | |
1098 | 0x7FFE, | |
1099 | LIT64( 0x0000FFFFFFFFFFFF ), | |
1100 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
1101 | ); | |
1102 | } | |
1103 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
1104 | } | |
1105 | if ( zExp < 0 ) { | |
e6afc87f PM |
1106 | if (STATUS(flush_to_zero)) { |
1107 | float_raise(float_flag_output_denormal STATUS_VAR); | |
1108 | return packFloat128(zSign, 0, 0, 0); | |
1109 | } | |
158142c2 FB |
1110 | isTiny = |
1111 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
1112 | || ( zExp < -1 ) | |
1113 | || ! increment | |
1114 | || lt128( | |
1115 | zSig0, | |
1116 | zSig1, | |
1117 | LIT64( 0x0001FFFFFFFFFFFF ), | |
1118 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
1119 | ); | |
1120 | shift128ExtraRightJamming( | |
1121 | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); | |
1122 | zExp = 0; | |
1123 | if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR); | |
dc355b76 PM |
1124 | switch (roundingMode) { |
1125 | case float_round_nearest_even: | |
f9288a76 | 1126 | case float_round_ties_away: |
dc355b76 PM |
1127 | increment = ((int64_t)zSig2 < 0); |
1128 | break; | |
1129 | case float_round_to_zero: | |
1130 | increment = 0; | |
1131 | break; | |
1132 | case float_round_up: | |
1133 | increment = !zSign && zSig2; | |
1134 | break; | |
1135 | case float_round_down: | |
1136 | increment = zSign && zSig2; | |
1137 | break; | |
1138 | default: | |
1139 | abort(); | |
158142c2 FB |
1140 | } |
1141 | } | |
1142 | } | |
1143 | if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
1144 | if ( increment ) { | |
1145 | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); | |
1146 | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); | |
1147 | } | |
1148 | else { | |
1149 | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; | |
1150 | } | |
1151 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1152 | ||
1153 | } | |
1154 | ||
1155 | /*---------------------------------------------------------------------------- | |
1156 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1157 | | and significand formed by the concatenation of `zSig0' and `zSig1', and | |
1158 | | returns the proper quadruple-precision floating-point value corresponding | |
1159 | | to the abstract input. This routine is just like `roundAndPackFloat128' | |
1160 | | except that the input significand has fewer bits and does not have to be | |
1161 | | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
1162 | | point exponent. | |
1163 | *----------------------------------------------------------------------------*/ | |
1164 | ||
1165 | static float128 | |
1166 | normalizeRoundAndPackFloat128( | |
bb98fe42 | 1167 | flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 STATUS_PARAM) |
158142c2 FB |
1168 | { |
1169 | int8 shiftCount; | |
bb98fe42 | 1170 | uint64_t zSig2; |
158142c2 FB |
1171 | |
1172 | if ( zSig0 == 0 ) { | |
1173 | zSig0 = zSig1; | |
1174 | zSig1 = 0; | |
1175 | zExp -= 64; | |
1176 | } | |
1177 | shiftCount = countLeadingZeros64( zSig0 ) - 15; | |
1178 | if ( 0 <= shiftCount ) { | |
1179 | zSig2 = 0; | |
1180 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1181 | } | |
1182 | else { | |
1183 | shift128ExtraRightJamming( | |
1184 | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); | |
1185 | } | |
1186 | zExp -= shiftCount; | |
1187 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR); | |
1188 | ||
1189 | } | |
1190 | ||
158142c2 FB |
1191 | /*---------------------------------------------------------------------------- |
1192 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1193 | | to the single-precision floating-point format. The conversion is performed | |
1194 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1195 | *----------------------------------------------------------------------------*/ | |
1196 | ||
c4850f9e | 1197 | float32 int32_to_float32(int32_t a STATUS_PARAM) |
158142c2 FB |
1198 | { |
1199 | flag zSign; | |
1200 | ||
f090c9d4 | 1201 | if ( a == 0 ) return float32_zero; |
bb98fe42 | 1202 | if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); |
158142c2 FB |
1203 | zSign = ( a < 0 ); |
1204 | return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR ); | |
1205 | ||
1206 | } | |
1207 | ||
1208 | /*---------------------------------------------------------------------------- | |
1209 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1210 | | to the double-precision floating-point format. The conversion is performed | |
1211 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1212 | *----------------------------------------------------------------------------*/ | |
1213 | ||
c4850f9e | 1214 | float64 int32_to_float64(int32_t a STATUS_PARAM) |
158142c2 FB |
1215 | { |
1216 | flag zSign; | |
1217 | uint32 absA; | |
1218 | int8 shiftCount; | |
bb98fe42 | 1219 | uint64_t zSig; |
158142c2 | 1220 | |
f090c9d4 | 1221 | if ( a == 0 ) return float64_zero; |
158142c2 FB |
1222 | zSign = ( a < 0 ); |
1223 | absA = zSign ? - a : a; | |
1224 | shiftCount = countLeadingZeros32( absA ) + 21; | |
1225 | zSig = absA; | |
1226 | return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); | |
1227 | ||
1228 | } | |
1229 | ||
158142c2 FB |
1230 | /*---------------------------------------------------------------------------- |
1231 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1232 | | to the extended double-precision floating-point format. The conversion | |
1233 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1234 | | Arithmetic. | |
1235 | *----------------------------------------------------------------------------*/ | |
1236 | ||
c4850f9e | 1237 | floatx80 int32_to_floatx80(int32_t a STATUS_PARAM) |
158142c2 FB |
1238 | { |
1239 | flag zSign; | |
1240 | uint32 absA; | |
1241 | int8 shiftCount; | |
bb98fe42 | 1242 | uint64_t zSig; |
158142c2 FB |
1243 | |
1244 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
1245 | zSign = ( a < 0 ); | |
1246 | absA = zSign ? - a : a; | |
1247 | shiftCount = countLeadingZeros32( absA ) + 32; | |
1248 | zSig = absA; | |
1249 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | |
1250 | ||
1251 | } | |
1252 | ||
158142c2 FB |
1253 | /*---------------------------------------------------------------------------- |
1254 | | Returns the result of converting the 32-bit two's complement integer `a' to | |
1255 | | the quadruple-precision floating-point format. The conversion is performed | |
1256 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1257 | *----------------------------------------------------------------------------*/ | |
1258 | ||
c4850f9e | 1259 | float128 int32_to_float128(int32_t a STATUS_PARAM) |
158142c2 FB |
1260 | { |
1261 | flag zSign; | |
1262 | uint32 absA; | |
1263 | int8 shiftCount; | |
bb98fe42 | 1264 | uint64_t zSig0; |
158142c2 FB |
1265 | |
1266 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
1267 | zSign = ( a < 0 ); | |
1268 | absA = zSign ? - a : a; | |
1269 | shiftCount = countLeadingZeros32( absA ) + 17; | |
1270 | zSig0 = absA; | |
1271 | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); | |
1272 | ||
1273 | } | |
1274 | ||
158142c2 FB |
1275 | /*---------------------------------------------------------------------------- |
1276 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1277 | | to the single-precision floating-point format. The conversion is performed | |
1278 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1279 | *----------------------------------------------------------------------------*/ | |
1280 | ||
c4850f9e | 1281 | float32 int64_to_float32(int64_t a STATUS_PARAM) |
158142c2 FB |
1282 | { |
1283 | flag zSign; | |
1284 | uint64 absA; | |
1285 | int8 shiftCount; | |
1286 | ||
f090c9d4 | 1287 | if ( a == 0 ) return float32_zero; |
158142c2 FB |
1288 | zSign = ( a < 0 ); |
1289 | absA = zSign ? - a : a; | |
1290 | shiftCount = countLeadingZeros64( absA ) - 40; | |
1291 | if ( 0 <= shiftCount ) { | |
1292 | return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); | |
1293 | } | |
1294 | else { | |
1295 | shiftCount += 7; | |
1296 | if ( shiftCount < 0 ) { | |
1297 | shift64RightJamming( absA, - shiftCount, &absA ); | |
1298 | } | |
1299 | else { | |
1300 | absA <<= shiftCount; | |
1301 | } | |
1302 | return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR ); | |
1303 | } | |
1304 | ||
1305 | } | |
1306 | ||
c4850f9e | 1307 | float32 uint64_to_float32(uint64_t a STATUS_PARAM) |
75d62a58 JM |
1308 | { |
1309 | int8 shiftCount; | |
1310 | ||
f090c9d4 | 1311 | if ( a == 0 ) return float32_zero; |
75d62a58 JM |
1312 | shiftCount = countLeadingZeros64( a ) - 40; |
1313 | if ( 0 <= shiftCount ) { | |
e744c06f | 1314 | return packFloat32(0, 0x95 - shiftCount, a<<shiftCount); |
75d62a58 JM |
1315 | } |
1316 | else { | |
1317 | shiftCount += 7; | |
1318 | if ( shiftCount < 0 ) { | |
1319 | shift64RightJamming( a, - shiftCount, &a ); | |
1320 | } | |
1321 | else { | |
1322 | a <<= shiftCount; | |
1323 | } | |
e744c06f | 1324 | return roundAndPackFloat32(0, 0x9C - shiftCount, a STATUS_VAR); |
75d62a58 JM |
1325 | } |
1326 | } | |
1327 | ||
158142c2 FB |
1328 | /*---------------------------------------------------------------------------- |
1329 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1330 | | to the double-precision floating-point format. The conversion is performed | |
1331 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1332 | *----------------------------------------------------------------------------*/ | |
1333 | ||
c4850f9e | 1334 | float64 int64_to_float64(int64_t a STATUS_PARAM) |
158142c2 FB |
1335 | { |
1336 | flag zSign; | |
1337 | ||
f090c9d4 | 1338 | if ( a == 0 ) return float64_zero; |
bb98fe42 | 1339 | if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) { |
158142c2 FB |
1340 | return packFloat64( 1, 0x43E, 0 ); |
1341 | } | |
1342 | zSign = ( a < 0 ); | |
1343 | return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR ); | |
1344 | ||
1345 | } | |
1346 | ||
c4850f9e | 1347 | float64 uint64_to_float64(uint64_t a STATUS_PARAM) |
75d62a58 | 1348 | { |
17ed2293 | 1349 | int exp = 0x43C; |
75d62a58 | 1350 | |
17ed2293 RH |
1351 | if (a == 0) { |
1352 | return float64_zero; | |
1353 | } | |
1354 | if ((int64_t)a < 0) { | |
1355 | shift64RightJamming(a, 1, &a); | |
1356 | exp += 1; | |
1357 | } | |
1358 | return normalizeRoundAndPackFloat64(0, exp, a STATUS_VAR); | |
75d62a58 JM |
1359 | } |
1360 | ||
158142c2 FB |
1361 | /*---------------------------------------------------------------------------- |
1362 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1363 | | to the extended double-precision floating-point format. The conversion | |
1364 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1365 | | Arithmetic. | |
1366 | *----------------------------------------------------------------------------*/ | |
1367 | ||
c4850f9e | 1368 | floatx80 int64_to_floatx80(int64_t a STATUS_PARAM) |
158142c2 FB |
1369 | { |
1370 | flag zSign; | |
1371 | uint64 absA; | |
1372 | int8 shiftCount; | |
1373 | ||
1374 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
1375 | zSign = ( a < 0 ); | |
1376 | absA = zSign ? - a : a; | |
1377 | shiftCount = countLeadingZeros64( absA ); | |
1378 | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); | |
1379 | ||
1380 | } | |
1381 | ||
158142c2 FB |
1382 | /*---------------------------------------------------------------------------- |
1383 | | Returns the result of converting the 64-bit two's complement integer `a' to | |
1384 | | the quadruple-precision floating-point format. The conversion is performed | |
1385 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1386 | *----------------------------------------------------------------------------*/ | |
1387 | ||
c4850f9e | 1388 | float128 int64_to_float128(int64_t a STATUS_PARAM) |
158142c2 FB |
1389 | { |
1390 | flag zSign; | |
1391 | uint64 absA; | |
1392 | int8 shiftCount; | |
1393 | int32 zExp; | |
bb98fe42 | 1394 | uint64_t zSig0, zSig1; |
158142c2 FB |
1395 | |
1396 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
1397 | zSign = ( a < 0 ); | |
1398 | absA = zSign ? - a : a; | |
1399 | shiftCount = countLeadingZeros64( absA ) + 49; | |
1400 | zExp = 0x406E - shiftCount; | |
1401 | if ( 64 <= shiftCount ) { | |
1402 | zSig1 = 0; | |
1403 | zSig0 = absA; | |
1404 | shiftCount -= 64; | |
1405 | } | |
1406 | else { | |
1407 | zSig1 = absA; | |
1408 | zSig0 = 0; | |
1409 | } | |
1410 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1411 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1412 | ||
1413 | } | |
1414 | ||
c4850f9e | 1415 | float128 uint64_to_float128(uint64_t a STATUS_PARAM) |
1e397ead RH |
1416 | { |
1417 | if (a == 0) { | |
1418 | return float128_zero; | |
1419 | } | |
1420 | return normalizeRoundAndPackFloat128(0, 0x406E, a, 0 STATUS_VAR); | |
1421 | } | |
1422 | ||
158142c2 FB |
1423 | /*---------------------------------------------------------------------------- |
1424 | | Returns the result of converting the single-precision floating-point value | |
1425 | | `a' to the 32-bit two's complement integer format. The conversion is | |
1426 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1427 | | Arithmetic---which means in particular that the conversion is rounded | |
1428 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1429 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
1430 | | largest integer with the same sign as `a' is returned. | |
1431 | *----------------------------------------------------------------------------*/ | |
1432 | ||
1433 | int32 float32_to_int32( float32 a STATUS_PARAM ) | |
1434 | { | |
1435 | flag aSign; | |
94a49d86 | 1436 | int_fast16_t aExp, shiftCount; |
bb98fe42 AF |
1437 | uint32_t aSig; |
1438 | uint64_t aSig64; | |
158142c2 | 1439 | |
37d18660 | 1440 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1441 | aSig = extractFloat32Frac( a ); |
1442 | aExp = extractFloat32Exp( a ); | |
1443 | aSign = extractFloat32Sign( a ); | |
1444 | if ( ( aExp == 0xFF ) && aSig ) aSign = 0; | |
1445 | if ( aExp ) aSig |= 0x00800000; | |
1446 | shiftCount = 0xAF - aExp; | |
1447 | aSig64 = aSig; | |
1448 | aSig64 <<= 32; | |
1449 | if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); | |
1450 | return roundAndPackInt32( aSign, aSig64 STATUS_VAR ); | |
1451 | ||
1452 | } | |
1453 | ||
1454 | /*---------------------------------------------------------------------------- | |
1455 | | Returns the result of converting the single-precision floating-point value | |
1456 | | `a' to the 32-bit two's complement integer format. The conversion is | |
1457 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1458 | | Arithmetic, except that the conversion is always rounded toward zero. | |
1459 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
1460 | | the conversion overflows, the largest integer with the same sign as `a' is | |
1461 | | returned. | |
1462 | *----------------------------------------------------------------------------*/ | |
1463 | ||
1464 | int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM ) | |
1465 | { | |
1466 | flag aSign; | |
94a49d86 | 1467 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 1468 | uint32_t aSig; |
b3a6a2e0 | 1469 | int32_t z; |
37d18660 | 1470 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1471 | |
1472 | aSig = extractFloat32Frac( a ); | |
1473 | aExp = extractFloat32Exp( a ); | |
1474 | aSign = extractFloat32Sign( a ); | |
1475 | shiftCount = aExp - 0x9E; | |
1476 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 1477 | if ( float32_val(a) != 0xCF000000 ) { |
158142c2 FB |
1478 | float_raise( float_flag_invalid STATUS_VAR); |
1479 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; | |
1480 | } | |
bb98fe42 | 1481 | return (int32_t) 0x80000000; |
158142c2 FB |
1482 | } |
1483 | else if ( aExp <= 0x7E ) { | |
1484 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
1485 | return 0; | |
1486 | } | |
1487 | aSig = ( aSig | 0x00800000 )<<8; | |
1488 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 1489 | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { |
158142c2 FB |
1490 | STATUS(float_exception_flags) |= float_flag_inexact; |
1491 | } | |
1492 | if ( aSign ) z = - z; | |
1493 | return z; | |
1494 | ||
1495 | } | |
1496 | ||
cbcef455 PM |
1497 | /*---------------------------------------------------------------------------- |
1498 | | Returns the result of converting the single-precision floating-point value | |
1499 | | `a' to the 16-bit two's complement integer format. The conversion is | |
1500 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1501 | | Arithmetic, except that the conversion is always rounded toward zero. | |
1502 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
1503 | | the conversion overflows, the largest integer with the same sign as `a' is | |
1504 | | returned. | |
1505 | *----------------------------------------------------------------------------*/ | |
1506 | ||
94a49d86 | 1507 | int_fast16_t float32_to_int16_round_to_zero(float32 a STATUS_PARAM) |
cbcef455 PM |
1508 | { |
1509 | flag aSign; | |
94a49d86 | 1510 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 1511 | uint32_t aSig; |
cbcef455 PM |
1512 | int32 z; |
1513 | ||
1514 | aSig = extractFloat32Frac( a ); | |
1515 | aExp = extractFloat32Exp( a ); | |
1516 | aSign = extractFloat32Sign( a ); | |
1517 | shiftCount = aExp - 0x8E; | |
1518 | if ( 0 <= shiftCount ) { | |
1519 | if ( float32_val(a) != 0xC7000000 ) { | |
1520 | float_raise( float_flag_invalid STATUS_VAR); | |
1521 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | |
1522 | return 0x7FFF; | |
1523 | } | |
1524 | } | |
bb98fe42 | 1525 | return (int32_t) 0xffff8000; |
cbcef455 PM |
1526 | } |
1527 | else if ( aExp <= 0x7E ) { | |
1528 | if ( aExp | aSig ) { | |
1529 | STATUS(float_exception_flags) |= float_flag_inexact; | |
1530 | } | |
1531 | return 0; | |
1532 | } | |
1533 | shiftCount -= 0x10; | |
1534 | aSig = ( aSig | 0x00800000 )<<8; | |
1535 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 1536 | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { |
cbcef455 PM |
1537 | STATUS(float_exception_flags) |= float_flag_inexact; |
1538 | } | |
1539 | if ( aSign ) { | |
1540 | z = - z; | |
1541 | } | |
1542 | return z; | |
1543 | ||
1544 | } | |
1545 | ||
158142c2 FB |
1546 | /*---------------------------------------------------------------------------- |
1547 | | Returns the result of converting the single-precision floating-point value | |
1548 | | `a' to the 64-bit two's complement integer format. The conversion is | |
1549 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1550 | | Arithmetic---which means in particular that the conversion is rounded | |
1551 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1552 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
1553 | | largest integer with the same sign as `a' is returned. | |
1554 | *----------------------------------------------------------------------------*/ | |
1555 | ||
1556 | int64 float32_to_int64( float32 a STATUS_PARAM ) | |
1557 | { | |
1558 | flag aSign; | |
94a49d86 | 1559 | int_fast16_t aExp, shiftCount; |
bb98fe42 AF |
1560 | uint32_t aSig; |
1561 | uint64_t aSig64, aSigExtra; | |
37d18660 | 1562 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1563 | |
1564 | aSig = extractFloat32Frac( a ); | |
1565 | aExp = extractFloat32Exp( a ); | |
1566 | aSign = extractFloat32Sign( a ); | |
1567 | shiftCount = 0xBE - aExp; | |
1568 | if ( shiftCount < 0 ) { | |
1569 | float_raise( float_flag_invalid STATUS_VAR); | |
1570 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | |
1571 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
1572 | } | |
bb98fe42 | 1573 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
1574 | } |
1575 | if ( aExp ) aSig |= 0x00800000; | |
1576 | aSig64 = aSig; | |
1577 | aSig64 <<= 40; | |
1578 | shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); | |
1579 | return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR ); | |
1580 | ||
1581 | } | |
1582 | ||
2f18bbf9 TM |
1583 | /*---------------------------------------------------------------------------- |
1584 | | Returns the result of converting the single-precision floating-point value | |
1585 | | `a' to the 64-bit unsigned integer format. The conversion is | |
1586 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1587 | | Arithmetic---which means in particular that the conversion is rounded | |
1588 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1589 | | unsigned integer is returned. Otherwise, if the conversion overflows, the | |
1590 | | largest unsigned integer is returned. If the 'a' is negative, the result | |
1591 | | is rounded and zero is returned; values that do not round to zero will | |
1592 | | raise the inexact exception flag. | |
1593 | *----------------------------------------------------------------------------*/ | |
1594 | ||
1595 | uint64 float32_to_uint64(float32 a STATUS_PARAM) | |
1596 | { | |
1597 | flag aSign; | |
1598 | int_fast16_t aExp, shiftCount; | |
1599 | uint32_t aSig; | |
1600 | uint64_t aSig64, aSigExtra; | |
1601 | a = float32_squash_input_denormal(a STATUS_VAR); | |
1602 | ||
1603 | aSig = extractFloat32Frac(a); | |
1604 | aExp = extractFloat32Exp(a); | |
1605 | aSign = extractFloat32Sign(a); | |
1606 | if ((aSign) && (aExp > 126)) { | |
1607 | float_raise(float_flag_invalid STATUS_VAR); | |
1608 | if (float32_is_any_nan(a)) { | |
1609 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
1610 | } else { | |
1611 | return 0; | |
1612 | } | |
1613 | } | |
1614 | shiftCount = 0xBE - aExp; | |
1615 | if (aExp) { | |
1616 | aSig |= 0x00800000; | |
1617 | } | |
1618 | if (shiftCount < 0) { | |
1619 | float_raise(float_flag_invalid STATUS_VAR); | |
1620 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
1621 | } | |
1622 | ||
1623 | aSig64 = aSig; | |
1624 | aSig64 <<= 40; | |
1625 | shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra); | |
1626 | return roundAndPackUint64(aSign, aSig64, aSigExtra STATUS_VAR); | |
1627 | } | |
1628 | ||
158142c2 FB |
1629 | /*---------------------------------------------------------------------------- |
1630 | | Returns the result of converting the single-precision floating-point value | |
1631 | | `a' to the 64-bit two's complement integer format. The conversion is | |
1632 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1633 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
1634 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
1635 | | conversion overflows, the largest integer with the same sign as `a' is | |
1636 | | returned. | |
1637 | *----------------------------------------------------------------------------*/ | |
1638 | ||
1639 | int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM ) | |
1640 | { | |
1641 | flag aSign; | |
94a49d86 | 1642 | int_fast16_t aExp, shiftCount; |
bb98fe42 AF |
1643 | uint32_t aSig; |
1644 | uint64_t aSig64; | |
158142c2 | 1645 | int64 z; |
37d18660 | 1646 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1647 | |
1648 | aSig = extractFloat32Frac( a ); | |
1649 | aExp = extractFloat32Exp( a ); | |
1650 | aSign = extractFloat32Sign( a ); | |
1651 | shiftCount = aExp - 0xBE; | |
1652 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 1653 | if ( float32_val(a) != 0xDF000000 ) { |
158142c2 FB |
1654 | float_raise( float_flag_invalid STATUS_VAR); |
1655 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | |
1656 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
1657 | } | |
1658 | } | |
bb98fe42 | 1659 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
1660 | } |
1661 | else if ( aExp <= 0x7E ) { | |
1662 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
1663 | return 0; | |
1664 | } | |
1665 | aSig64 = aSig | 0x00800000; | |
1666 | aSig64 <<= 40; | |
1667 | z = aSig64>>( - shiftCount ); | |
bb98fe42 | 1668 | if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) { |
158142c2 FB |
1669 | STATUS(float_exception_flags) |= float_flag_inexact; |
1670 | } | |
1671 | if ( aSign ) z = - z; | |
1672 | return z; | |
1673 | ||
1674 | } | |
1675 | ||
1676 | /*---------------------------------------------------------------------------- | |
1677 | | Returns the result of converting the single-precision floating-point value | |
1678 | | `a' to the double-precision floating-point format. The conversion is | |
1679 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1680 | | Arithmetic. | |
1681 | *----------------------------------------------------------------------------*/ | |
1682 | ||
1683 | float64 float32_to_float64( float32 a STATUS_PARAM ) | |
1684 | { | |
1685 | flag aSign; | |
94a49d86 | 1686 | int_fast16_t aExp; |
bb98fe42 | 1687 | uint32_t aSig; |
37d18660 | 1688 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1689 | |
1690 | aSig = extractFloat32Frac( a ); | |
1691 | aExp = extractFloat32Exp( a ); | |
1692 | aSign = extractFloat32Sign( a ); | |
1693 | if ( aExp == 0xFF ) { | |
bcd4d9af | 1694 | if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
1695 | return packFloat64( aSign, 0x7FF, 0 ); |
1696 | } | |
1697 | if ( aExp == 0 ) { | |
1698 | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | |
1699 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1700 | --aExp; | |
1701 | } | |
bb98fe42 | 1702 | return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 ); |
158142c2 FB |
1703 | |
1704 | } | |
1705 | ||
158142c2 FB |
1706 | /*---------------------------------------------------------------------------- |
1707 | | Returns the result of converting the single-precision floating-point value | |
1708 | | `a' to the extended double-precision floating-point format. The conversion | |
1709 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1710 | | Arithmetic. | |
1711 | *----------------------------------------------------------------------------*/ | |
1712 | ||
1713 | floatx80 float32_to_floatx80( float32 a STATUS_PARAM ) | |
1714 | { | |
1715 | flag aSign; | |
94a49d86 | 1716 | int_fast16_t aExp; |
bb98fe42 | 1717 | uint32_t aSig; |
158142c2 | 1718 | |
37d18660 | 1719 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1720 | aSig = extractFloat32Frac( a ); |
1721 | aExp = extractFloat32Exp( a ); | |
1722 | aSign = extractFloat32Sign( a ); | |
1723 | if ( aExp == 0xFF ) { | |
bcd4d9af | 1724 | if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
1725 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
1726 | } | |
1727 | if ( aExp == 0 ) { | |
1728 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
1729 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1730 | } | |
1731 | aSig |= 0x00800000; | |
bb98fe42 | 1732 | return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); |
158142c2 FB |
1733 | |
1734 | } | |
1735 | ||
158142c2 FB |
1736 | /*---------------------------------------------------------------------------- |
1737 | | Returns the result of converting the single-precision floating-point value | |
1738 | | `a' to the double-precision floating-point format. The conversion is | |
1739 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1740 | | Arithmetic. | |
1741 | *----------------------------------------------------------------------------*/ | |
1742 | ||
1743 | float128 float32_to_float128( float32 a STATUS_PARAM ) | |
1744 | { | |
1745 | flag aSign; | |
94a49d86 | 1746 | int_fast16_t aExp; |
bb98fe42 | 1747 | uint32_t aSig; |
158142c2 | 1748 | |
37d18660 | 1749 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1750 | aSig = extractFloat32Frac( a ); |
1751 | aExp = extractFloat32Exp( a ); | |
1752 | aSign = extractFloat32Sign( a ); | |
1753 | if ( aExp == 0xFF ) { | |
bcd4d9af | 1754 | if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
1755 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
1756 | } | |
1757 | if ( aExp == 0 ) { | |
1758 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
1759 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1760 | --aExp; | |
1761 | } | |
bb98fe42 | 1762 | return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); |
158142c2 FB |
1763 | |
1764 | } | |
1765 | ||
158142c2 FB |
1766 | /*---------------------------------------------------------------------------- |
1767 | | Rounds the single-precision floating-point value `a' to an integer, and | |
1768 | | returns the result as a single-precision floating-point value. The | |
1769 | | operation is performed according to the IEC/IEEE Standard for Binary | |
1770 | | Floating-Point Arithmetic. | |
1771 | *----------------------------------------------------------------------------*/ | |
1772 | ||
1773 | float32 float32_round_to_int( float32 a STATUS_PARAM) | |
1774 | { | |
1775 | flag aSign; | |
94a49d86 | 1776 | int_fast16_t aExp; |
bb98fe42 | 1777 | uint32_t lastBitMask, roundBitsMask; |
bb98fe42 | 1778 | uint32_t z; |
37d18660 | 1779 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1780 | |
1781 | aExp = extractFloat32Exp( a ); | |
1782 | if ( 0x96 <= aExp ) { | |
1783 | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | |
1784 | return propagateFloat32NaN( a, a STATUS_VAR ); | |
1785 | } | |
1786 | return a; | |
1787 | } | |
1788 | if ( aExp <= 0x7E ) { | |
bb98fe42 | 1789 | if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a; |
158142c2 FB |
1790 | STATUS(float_exception_flags) |= float_flag_inexact; |
1791 | aSign = extractFloat32Sign( a ); | |
1792 | switch ( STATUS(float_rounding_mode) ) { | |
1793 | case float_round_nearest_even: | |
1794 | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | |
1795 | return packFloat32( aSign, 0x7F, 0 ); | |
1796 | } | |
1797 | break; | |
f9288a76 PM |
1798 | case float_round_ties_away: |
1799 | if (aExp == 0x7E) { | |
1800 | return packFloat32(aSign, 0x7F, 0); | |
1801 | } | |
1802 | break; | |
158142c2 | 1803 | case float_round_down: |
f090c9d4 | 1804 | return make_float32(aSign ? 0xBF800000 : 0); |
158142c2 | 1805 | case float_round_up: |
f090c9d4 | 1806 | return make_float32(aSign ? 0x80000000 : 0x3F800000); |
158142c2 FB |
1807 | } |
1808 | return packFloat32( aSign, 0, 0 ); | |
1809 | } | |
1810 | lastBitMask = 1; | |
1811 | lastBitMask <<= 0x96 - aExp; | |
1812 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 1813 | z = float32_val(a); |
dc355b76 PM |
1814 | switch (STATUS(float_rounding_mode)) { |
1815 | case float_round_nearest_even: | |
158142c2 | 1816 | z += lastBitMask>>1; |
dc355b76 PM |
1817 | if ((z & roundBitsMask) == 0) { |
1818 | z &= ~lastBitMask; | |
1819 | } | |
1820 | break; | |
f9288a76 PM |
1821 | case float_round_ties_away: |
1822 | z += lastBitMask >> 1; | |
1823 | break; | |
dc355b76 PM |
1824 | case float_round_to_zero: |
1825 | break; | |
1826 | case float_round_up: | |
1827 | if (!extractFloat32Sign(make_float32(z))) { | |
1828 | z += roundBitsMask; | |
1829 | } | |
1830 | break; | |
1831 | case float_round_down: | |
1832 | if (extractFloat32Sign(make_float32(z))) { | |
158142c2 FB |
1833 | z += roundBitsMask; |
1834 | } | |
dc355b76 PM |
1835 | break; |
1836 | default: | |
1837 | abort(); | |
158142c2 FB |
1838 | } |
1839 | z &= ~ roundBitsMask; | |
f090c9d4 PB |
1840 | if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact; |
1841 | return make_float32(z); | |
158142c2 FB |
1842 | |
1843 | } | |
1844 | ||
1845 | /*---------------------------------------------------------------------------- | |
1846 | | Returns the result of adding the absolute values of the single-precision | |
1847 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
1848 | | before being returned. `zSign' is ignored if the result is a NaN. | |
1849 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
1850 | | Floating-Point Arithmetic. | |
1851 | *----------------------------------------------------------------------------*/ | |
1852 | ||
1853 | static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) | |
1854 | { | |
94a49d86 | 1855 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 1856 | uint32_t aSig, bSig, zSig; |
94a49d86 | 1857 | int_fast16_t expDiff; |
158142c2 FB |
1858 | |
1859 | aSig = extractFloat32Frac( a ); | |
1860 | aExp = extractFloat32Exp( a ); | |
1861 | bSig = extractFloat32Frac( b ); | |
1862 | bExp = extractFloat32Exp( b ); | |
1863 | expDiff = aExp - bExp; | |
1864 | aSig <<= 6; | |
1865 | bSig <<= 6; | |
1866 | if ( 0 < expDiff ) { | |
1867 | if ( aExp == 0xFF ) { | |
1868 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1869 | return a; | |
1870 | } | |
1871 | if ( bExp == 0 ) { | |
1872 | --expDiff; | |
1873 | } | |
1874 | else { | |
1875 | bSig |= 0x20000000; | |
1876 | } | |
1877 | shift32RightJamming( bSig, expDiff, &bSig ); | |
1878 | zExp = aExp; | |
1879 | } | |
1880 | else if ( expDiff < 0 ) { | |
1881 | if ( bExp == 0xFF ) { | |
1882 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1883 | return packFloat32( zSign, 0xFF, 0 ); | |
1884 | } | |
1885 | if ( aExp == 0 ) { | |
1886 | ++expDiff; | |
1887 | } | |
1888 | else { | |
1889 | aSig |= 0x20000000; | |
1890 | } | |
1891 | shift32RightJamming( aSig, - expDiff, &aSig ); | |
1892 | zExp = bExp; | |
1893 | } | |
1894 | else { | |
1895 | if ( aExp == 0xFF ) { | |
1896 | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1897 | return a; | |
1898 | } | |
fe76d976 | 1899 | if ( aExp == 0 ) { |
e6afc87f PM |
1900 | if (STATUS(flush_to_zero)) { |
1901 | if (aSig | bSig) { | |
1902 | float_raise(float_flag_output_denormal STATUS_VAR); | |
1903 | } | |
1904 | return packFloat32(zSign, 0, 0); | |
1905 | } | |
fe76d976 PB |
1906 | return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); |
1907 | } | |
158142c2 FB |
1908 | zSig = 0x40000000 + aSig + bSig; |
1909 | zExp = aExp; | |
1910 | goto roundAndPack; | |
1911 | } | |
1912 | aSig |= 0x20000000; | |
1913 | zSig = ( aSig + bSig )<<1; | |
1914 | --zExp; | |
bb98fe42 | 1915 | if ( (int32_t) zSig < 0 ) { |
158142c2 FB |
1916 | zSig = aSig + bSig; |
1917 | ++zExp; | |
1918 | } | |
1919 | roundAndPack: | |
1920 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
1921 | ||
1922 | } | |
1923 | ||
1924 | /*---------------------------------------------------------------------------- | |
1925 | | Returns the result of subtracting the absolute values of the single- | |
1926 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
1927 | | difference is negated before being returned. `zSign' is ignored if the | |
1928 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
1929 | | Standard for Binary Floating-Point Arithmetic. | |
1930 | *----------------------------------------------------------------------------*/ | |
1931 | ||
1932 | static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) | |
1933 | { | |
94a49d86 | 1934 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 1935 | uint32_t aSig, bSig, zSig; |
94a49d86 | 1936 | int_fast16_t expDiff; |
158142c2 FB |
1937 | |
1938 | aSig = extractFloat32Frac( a ); | |
1939 | aExp = extractFloat32Exp( a ); | |
1940 | bSig = extractFloat32Frac( b ); | |
1941 | bExp = extractFloat32Exp( b ); | |
1942 | expDiff = aExp - bExp; | |
1943 | aSig <<= 7; | |
1944 | bSig <<= 7; | |
1945 | if ( 0 < expDiff ) goto aExpBigger; | |
1946 | if ( expDiff < 0 ) goto bExpBigger; | |
1947 | if ( aExp == 0xFF ) { | |
1948 | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1949 | float_raise( float_flag_invalid STATUS_VAR); | |
1950 | return float32_default_nan; | |
1951 | } | |
1952 | if ( aExp == 0 ) { | |
1953 | aExp = 1; | |
1954 | bExp = 1; | |
1955 | } | |
1956 | if ( bSig < aSig ) goto aBigger; | |
1957 | if ( aSig < bSig ) goto bBigger; | |
1958 | return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
1959 | bExpBigger: | |
1960 | if ( bExp == 0xFF ) { | |
1961 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1962 | return packFloat32( zSign ^ 1, 0xFF, 0 ); | |
1963 | } | |
1964 | if ( aExp == 0 ) { | |
1965 | ++expDiff; | |
1966 | } | |
1967 | else { | |
1968 | aSig |= 0x40000000; | |
1969 | } | |
1970 | shift32RightJamming( aSig, - expDiff, &aSig ); | |
1971 | bSig |= 0x40000000; | |
1972 | bBigger: | |
1973 | zSig = bSig - aSig; | |
1974 | zExp = bExp; | |
1975 | zSign ^= 1; | |
1976 | goto normalizeRoundAndPack; | |
1977 | aExpBigger: | |
1978 | if ( aExp == 0xFF ) { | |
1979 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1980 | return a; | |
1981 | } | |
1982 | if ( bExp == 0 ) { | |
1983 | --expDiff; | |
1984 | } | |
1985 | else { | |
1986 | bSig |= 0x40000000; | |
1987 | } | |
1988 | shift32RightJamming( bSig, expDiff, &bSig ); | |
1989 | aSig |= 0x40000000; | |
1990 | aBigger: | |
1991 | zSig = aSig - bSig; | |
1992 | zExp = aExp; | |
1993 | normalizeRoundAndPack: | |
1994 | --zExp; | |
1995 | return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
1996 | ||
1997 | } | |
1998 | ||
1999 | /*---------------------------------------------------------------------------- | |
2000 | | Returns the result of adding the single-precision floating-point values `a' | |
2001 | | and `b'. The operation is performed according to the IEC/IEEE Standard for | |
2002 | | Binary Floating-Point Arithmetic. | |
2003 | *----------------------------------------------------------------------------*/ | |
2004 | ||
2005 | float32 float32_add( float32 a, float32 b STATUS_PARAM ) | |
2006 | { | |
2007 | flag aSign, bSign; | |
37d18660 PM |
2008 | a = float32_squash_input_denormal(a STATUS_VAR); |
2009 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2010 | |
2011 | aSign = extractFloat32Sign( a ); | |
2012 | bSign = extractFloat32Sign( b ); | |
2013 | if ( aSign == bSign ) { | |
2014 | return addFloat32Sigs( a, b, aSign STATUS_VAR); | |
2015 | } | |
2016 | else { | |
2017 | return subFloat32Sigs( a, b, aSign STATUS_VAR ); | |
2018 | } | |
2019 | ||
2020 | } | |
2021 | ||
2022 | /*---------------------------------------------------------------------------- | |
2023 | | Returns the result of subtracting the single-precision floating-point values | |
2024 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
2025 | | for Binary Floating-Point Arithmetic. | |
2026 | *----------------------------------------------------------------------------*/ | |
2027 | ||
2028 | float32 float32_sub( float32 a, float32 b STATUS_PARAM ) | |
2029 | { | |
2030 | flag aSign, bSign; | |
37d18660 PM |
2031 | a = float32_squash_input_denormal(a STATUS_VAR); |
2032 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2033 | |
2034 | aSign = extractFloat32Sign( a ); | |
2035 | bSign = extractFloat32Sign( b ); | |
2036 | if ( aSign == bSign ) { | |
2037 | return subFloat32Sigs( a, b, aSign STATUS_VAR ); | |
2038 | } | |
2039 | else { | |
2040 | return addFloat32Sigs( a, b, aSign STATUS_VAR ); | |
2041 | } | |
2042 | ||
2043 | } | |
2044 | ||
2045 | /*---------------------------------------------------------------------------- | |
2046 | | Returns the result of multiplying the single-precision floating-point values | |
2047 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
2048 | | for Binary Floating-Point Arithmetic. | |
2049 | *----------------------------------------------------------------------------*/ | |
2050 | ||
2051 | float32 float32_mul( float32 a, float32 b STATUS_PARAM ) | |
2052 | { | |
2053 | flag aSign, bSign, zSign; | |
94a49d86 | 2054 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 AF |
2055 | uint32_t aSig, bSig; |
2056 | uint64_t zSig64; | |
2057 | uint32_t zSig; | |
158142c2 | 2058 | |
37d18660 PM |
2059 | a = float32_squash_input_denormal(a STATUS_VAR); |
2060 | b = float32_squash_input_denormal(b STATUS_VAR); | |
2061 | ||
158142c2 FB |
2062 | aSig = extractFloat32Frac( a ); |
2063 | aExp = extractFloat32Exp( a ); | |
2064 | aSign = extractFloat32Sign( a ); | |
2065 | bSig = extractFloat32Frac( b ); | |
2066 | bExp = extractFloat32Exp( b ); | |
2067 | bSign = extractFloat32Sign( b ); | |
2068 | zSign = aSign ^ bSign; | |
2069 | if ( aExp == 0xFF ) { | |
2070 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
2071 | return propagateFloat32NaN( a, b STATUS_VAR ); | |
2072 | } | |
2073 | if ( ( bExp | bSig ) == 0 ) { | |
2074 | float_raise( float_flag_invalid STATUS_VAR); | |
2075 | return float32_default_nan; | |
2076 | } | |
2077 | return packFloat32( zSign, 0xFF, 0 ); | |
2078 | } | |
2079 | if ( bExp == 0xFF ) { | |
2080 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
2081 | if ( ( aExp | aSig ) == 0 ) { | |
2082 | float_raise( float_flag_invalid STATUS_VAR); | |
2083 | return float32_default_nan; | |
2084 | } | |
2085 | return packFloat32( zSign, 0xFF, 0 ); | |
2086 | } | |
2087 | if ( aExp == 0 ) { | |
2088 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
2089 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2090 | } | |
2091 | if ( bExp == 0 ) { | |
2092 | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
2093 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2094 | } | |
2095 | zExp = aExp + bExp - 0x7F; | |
2096 | aSig = ( aSig | 0x00800000 )<<7; | |
2097 | bSig = ( bSig | 0x00800000 )<<8; | |
bb98fe42 | 2098 | shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 ); |
158142c2 | 2099 | zSig = zSig64; |
bb98fe42 | 2100 | if ( 0 <= (int32_t) ( zSig<<1 ) ) { |
158142c2 FB |
2101 | zSig <<= 1; |
2102 | --zExp; | |
2103 | } | |
2104 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
2105 | ||
2106 | } | |
2107 | ||
2108 | /*---------------------------------------------------------------------------- | |
2109 | | Returns the result of dividing the single-precision floating-point value `a' | |
2110 | | by the corresponding value `b'. The operation is performed according to the | |
2111 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2112 | *----------------------------------------------------------------------------*/ | |
2113 | ||
2114 | float32 float32_div( float32 a, float32 b STATUS_PARAM ) | |
2115 | { | |
2116 | flag aSign, bSign, zSign; | |
94a49d86 | 2117 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 2118 | uint32_t aSig, bSig, zSig; |
37d18660 PM |
2119 | a = float32_squash_input_denormal(a STATUS_VAR); |
2120 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2121 | |
2122 | aSig = extractFloat32Frac( a ); | |
2123 | aExp = extractFloat32Exp( a ); | |
2124 | aSign = extractFloat32Sign( a ); | |
2125 | bSig = extractFloat32Frac( b ); | |
2126 | bExp = extractFloat32Exp( b ); | |
2127 | bSign = extractFloat32Sign( b ); | |
2128 | zSign = aSign ^ bSign; | |
2129 | if ( aExp == 0xFF ) { | |
2130 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
2131 | if ( bExp == 0xFF ) { | |
2132 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
2133 | float_raise( float_flag_invalid STATUS_VAR); | |
2134 | return float32_default_nan; | |
2135 | } | |
2136 | return packFloat32( zSign, 0xFF, 0 ); | |
2137 | } | |
2138 | if ( bExp == 0xFF ) { | |
2139 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
2140 | return packFloat32( zSign, 0, 0 ); | |
2141 | } | |
2142 | if ( bExp == 0 ) { | |
2143 | if ( bSig == 0 ) { | |
2144 | if ( ( aExp | aSig ) == 0 ) { | |
2145 | float_raise( float_flag_invalid STATUS_VAR); | |
2146 | return float32_default_nan; | |
2147 | } | |
2148 | float_raise( float_flag_divbyzero STATUS_VAR); | |
2149 | return packFloat32( zSign, 0xFF, 0 ); | |
2150 | } | |
2151 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2152 | } | |
2153 | if ( aExp == 0 ) { | |
2154 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
2155 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2156 | } | |
2157 | zExp = aExp - bExp + 0x7D; | |
2158 | aSig = ( aSig | 0x00800000 )<<7; | |
2159 | bSig = ( bSig | 0x00800000 )<<8; | |
2160 | if ( bSig <= ( aSig + aSig ) ) { | |
2161 | aSig >>= 1; | |
2162 | ++zExp; | |
2163 | } | |
bb98fe42 | 2164 | zSig = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 | 2165 | if ( ( zSig & 0x3F ) == 0 ) { |
bb98fe42 | 2166 | zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 ); |
158142c2 FB |
2167 | } |
2168 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
2169 | ||
2170 | } | |
2171 | ||
2172 | /*---------------------------------------------------------------------------- | |
2173 | | Returns the remainder of the single-precision floating-point value `a' | |
2174 | | with respect to the corresponding value `b'. The operation is performed | |
2175 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2176 | *----------------------------------------------------------------------------*/ | |
2177 | ||
2178 | float32 float32_rem( float32 a, float32 b STATUS_PARAM ) | |
2179 | { | |
ed086f3d | 2180 | flag aSign, zSign; |
94a49d86 | 2181 | int_fast16_t aExp, bExp, expDiff; |
bb98fe42 AF |
2182 | uint32_t aSig, bSig; |
2183 | uint32_t q; | |
2184 | uint64_t aSig64, bSig64, q64; | |
2185 | uint32_t alternateASig; | |
2186 | int32_t sigMean; | |
37d18660 PM |
2187 | a = float32_squash_input_denormal(a STATUS_VAR); |
2188 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2189 | |
2190 | aSig = extractFloat32Frac( a ); | |
2191 | aExp = extractFloat32Exp( a ); | |
2192 | aSign = extractFloat32Sign( a ); | |
2193 | bSig = extractFloat32Frac( b ); | |
2194 | bExp = extractFloat32Exp( b ); | |
158142c2 FB |
2195 | if ( aExp == 0xFF ) { |
2196 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
2197 | return propagateFloat32NaN( a, b STATUS_VAR ); | |
2198 | } | |
2199 | float_raise( float_flag_invalid STATUS_VAR); | |
2200 | return float32_default_nan; | |
2201 | } | |
2202 | if ( bExp == 0xFF ) { | |
2203 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
2204 | return a; | |
2205 | } | |
2206 | if ( bExp == 0 ) { | |
2207 | if ( bSig == 0 ) { | |
2208 | float_raise( float_flag_invalid STATUS_VAR); | |
2209 | return float32_default_nan; | |
2210 | } | |
2211 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2212 | } | |
2213 | if ( aExp == 0 ) { | |
2214 | if ( aSig == 0 ) return a; | |
2215 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2216 | } | |
2217 | expDiff = aExp - bExp; | |
2218 | aSig |= 0x00800000; | |
2219 | bSig |= 0x00800000; | |
2220 | if ( expDiff < 32 ) { | |
2221 | aSig <<= 8; | |
2222 | bSig <<= 8; | |
2223 | if ( expDiff < 0 ) { | |
2224 | if ( expDiff < -1 ) return a; | |
2225 | aSig >>= 1; | |
2226 | } | |
2227 | q = ( bSig <= aSig ); | |
2228 | if ( q ) aSig -= bSig; | |
2229 | if ( 0 < expDiff ) { | |
bb98fe42 | 2230 | q = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 FB |
2231 | q >>= 32 - expDiff; |
2232 | bSig >>= 2; | |
2233 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
2234 | } | |
2235 | else { | |
2236 | aSig >>= 2; | |
2237 | bSig >>= 2; | |
2238 | } | |
2239 | } | |
2240 | else { | |
2241 | if ( bSig <= aSig ) aSig -= bSig; | |
bb98fe42 AF |
2242 | aSig64 = ( (uint64_t) aSig )<<40; |
2243 | bSig64 = ( (uint64_t) bSig )<<40; | |
158142c2 FB |
2244 | expDiff -= 64; |
2245 | while ( 0 < expDiff ) { | |
2246 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
2247 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
2248 | aSig64 = - ( ( bSig * q64 )<<38 ); | |
2249 | expDiff -= 62; | |
2250 | } | |
2251 | expDiff += 64; | |
2252 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
2253 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
2254 | q = q64>>( 64 - expDiff ); | |
2255 | bSig <<= 6; | |
2256 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | |
2257 | } | |
2258 | do { | |
2259 | alternateASig = aSig; | |
2260 | ++q; | |
2261 | aSig -= bSig; | |
bb98fe42 | 2262 | } while ( 0 <= (int32_t) aSig ); |
158142c2 FB |
2263 | sigMean = aSig + alternateASig; |
2264 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
2265 | aSig = alternateASig; | |
2266 | } | |
bb98fe42 | 2267 | zSign = ( (int32_t) aSig < 0 ); |
158142c2 FB |
2268 | if ( zSign ) aSig = - aSig; |
2269 | return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR ); | |
2270 | ||
2271 | } | |
2272 | ||
369be8f6 PM |
2273 | /*---------------------------------------------------------------------------- |
2274 | | Returns the result of multiplying the single-precision floating-point values | |
2275 | | `a' and `b' then adding 'c', with no intermediate rounding step after the | |
2276 | | multiplication. The operation is performed according to the IEC/IEEE | |
2277 | | Standard for Binary Floating-Point Arithmetic 754-2008. | |
2278 | | The flags argument allows the caller to select negation of the | |
2279 | | addend, the intermediate product, or the final result. (The difference | |
2280 | | between this and having the caller do a separate negation is that negating | |
2281 | | externally will flip the sign bit on NaNs.) | |
2282 | *----------------------------------------------------------------------------*/ | |
2283 | ||
2284 | float32 float32_muladd(float32 a, float32 b, float32 c, int flags STATUS_PARAM) | |
2285 | { | |
2286 | flag aSign, bSign, cSign, zSign; | |
94a49d86 | 2287 | int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff; |
369be8f6 PM |
2288 | uint32_t aSig, bSig, cSig; |
2289 | flag pInf, pZero, pSign; | |
2290 | uint64_t pSig64, cSig64, zSig64; | |
2291 | uint32_t pSig; | |
2292 | int shiftcount; | |
2293 | flag signflip, infzero; | |
2294 | ||
2295 | a = float32_squash_input_denormal(a STATUS_VAR); | |
2296 | b = float32_squash_input_denormal(b STATUS_VAR); | |
2297 | c = float32_squash_input_denormal(c STATUS_VAR); | |
2298 | aSig = extractFloat32Frac(a); | |
2299 | aExp = extractFloat32Exp(a); | |
2300 | aSign = extractFloat32Sign(a); | |
2301 | bSig = extractFloat32Frac(b); | |
2302 | bExp = extractFloat32Exp(b); | |
2303 | bSign = extractFloat32Sign(b); | |
2304 | cSig = extractFloat32Frac(c); | |
2305 | cExp = extractFloat32Exp(c); | |
2306 | cSign = extractFloat32Sign(c); | |
2307 | ||
2308 | infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) || | |
2309 | (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0)); | |
2310 | ||
2311 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
2312 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
2313 | * they return if they do), so we have to hand this information | |
2314 | * off to the target-specific pick-a-NaN routine. | |
2315 | */ | |
2316 | if (((aExp == 0xff) && aSig) || | |
2317 | ((bExp == 0xff) && bSig) || | |
2318 | ((cExp == 0xff) && cSig)) { | |
2319 | return propagateFloat32MulAddNaN(a, b, c, infzero STATUS_VAR); | |
2320 | } | |
2321 | ||
2322 | if (infzero) { | |
2323 | float_raise(float_flag_invalid STATUS_VAR); | |
2324 | return float32_default_nan; | |
2325 | } | |
2326 | ||
2327 | if (flags & float_muladd_negate_c) { | |
2328 | cSign ^= 1; | |
2329 | } | |
2330 | ||
2331 | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | |
2332 | ||
2333 | /* Work out the sign and type of the product */ | |
2334 | pSign = aSign ^ bSign; | |
2335 | if (flags & float_muladd_negate_product) { | |
2336 | pSign ^= 1; | |
2337 | } | |
2338 | pInf = (aExp == 0xff) || (bExp == 0xff); | |
2339 | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | |
2340 | ||
2341 | if (cExp == 0xff) { | |
2342 | if (pInf && (pSign ^ cSign)) { | |
2343 | /* addition of opposite-signed infinities => InvalidOperation */ | |
2344 | float_raise(float_flag_invalid STATUS_VAR); | |
2345 | return float32_default_nan; | |
2346 | } | |
2347 | /* Otherwise generate an infinity of the same sign */ | |
2348 | return packFloat32(cSign ^ signflip, 0xff, 0); | |
2349 | } | |
2350 | ||
2351 | if (pInf) { | |
2352 | return packFloat32(pSign ^ signflip, 0xff, 0); | |
2353 | } | |
2354 | ||
2355 | if (pZero) { | |
2356 | if (cExp == 0) { | |
2357 | if (cSig == 0) { | |
2358 | /* Adding two exact zeroes */ | |
2359 | if (pSign == cSign) { | |
2360 | zSign = pSign; | |
2361 | } else if (STATUS(float_rounding_mode) == float_round_down) { | |
2362 | zSign = 1; | |
2363 | } else { | |
2364 | zSign = 0; | |
2365 | } | |
2366 | return packFloat32(zSign ^ signflip, 0, 0); | |
2367 | } | |
2368 | /* Exact zero plus a denorm */ | |
2369 | if (STATUS(flush_to_zero)) { | |
2370 | float_raise(float_flag_output_denormal STATUS_VAR); | |
2371 | return packFloat32(cSign ^ signflip, 0, 0); | |
2372 | } | |
2373 | } | |
2374 | /* Zero plus something non-zero : just return the something */ | |
67d43538 PM |
2375 | if (flags & float_muladd_halve_result) { |
2376 | if (cExp == 0) { | |
2377 | normalizeFloat32Subnormal(cSig, &cExp, &cSig); | |
2378 | } | |
2379 | /* Subtract one to halve, and one again because roundAndPackFloat32 | |
2380 | * wants one less than the true exponent. | |
2381 | */ | |
2382 | cExp -= 2; | |
2383 | cSig = (cSig | 0x00800000) << 7; | |
2384 | return roundAndPackFloat32(cSign ^ signflip, cExp, cSig STATUS_VAR); | |
2385 | } | |
a6e7c184 | 2386 | return packFloat32(cSign ^ signflip, cExp, cSig); |
369be8f6 PM |
2387 | } |
2388 | ||
2389 | if (aExp == 0) { | |
2390 | normalizeFloat32Subnormal(aSig, &aExp, &aSig); | |
2391 | } | |
2392 | if (bExp == 0) { | |
2393 | normalizeFloat32Subnormal(bSig, &bExp, &bSig); | |
2394 | } | |
2395 | ||
2396 | /* Calculate the actual result a * b + c */ | |
2397 | ||
2398 | /* Multiply first; this is easy. */ | |
2399 | /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f | |
2400 | * because we want the true exponent, not the "one-less-than" | |
2401 | * flavour that roundAndPackFloat32() takes. | |
2402 | */ | |
2403 | pExp = aExp + bExp - 0x7e; | |
2404 | aSig = (aSig | 0x00800000) << 7; | |
2405 | bSig = (bSig | 0x00800000) << 8; | |
2406 | pSig64 = (uint64_t)aSig * bSig; | |
2407 | if ((int64_t)(pSig64 << 1) >= 0) { | |
2408 | pSig64 <<= 1; | |
2409 | pExp--; | |
2410 | } | |
2411 | ||
2412 | zSign = pSign ^ signflip; | |
2413 | ||
2414 | /* Now pSig64 is the significand of the multiply, with the explicit bit in | |
2415 | * position 62. | |
2416 | */ | |
2417 | if (cExp == 0) { | |
2418 | if (!cSig) { | |
2419 | /* Throw out the special case of c being an exact zero now */ | |
2420 | shift64RightJamming(pSig64, 32, &pSig64); | |
2421 | pSig = pSig64; | |
67d43538 PM |
2422 | if (flags & float_muladd_halve_result) { |
2423 | pExp--; | |
2424 | } | |
369be8f6 PM |
2425 | return roundAndPackFloat32(zSign, pExp - 1, |
2426 | pSig STATUS_VAR); | |
2427 | } | |
2428 | normalizeFloat32Subnormal(cSig, &cExp, &cSig); | |
2429 | } | |
2430 | ||
2431 | cSig64 = (uint64_t)cSig << (62 - 23); | |
2432 | cSig64 |= LIT64(0x4000000000000000); | |
2433 | expDiff = pExp - cExp; | |
2434 | ||
2435 | if (pSign == cSign) { | |
2436 | /* Addition */ | |
2437 | if (expDiff > 0) { | |
2438 | /* scale c to match p */ | |
2439 | shift64RightJamming(cSig64, expDiff, &cSig64); | |
2440 | zExp = pExp; | |
2441 | } else if (expDiff < 0) { | |
2442 | /* scale p to match c */ | |
2443 | shift64RightJamming(pSig64, -expDiff, &pSig64); | |
2444 | zExp = cExp; | |
2445 | } else { | |
2446 | /* no scaling needed */ | |
2447 | zExp = cExp; | |
2448 | } | |
2449 | /* Add significands and make sure explicit bit ends up in posn 62 */ | |
2450 | zSig64 = pSig64 + cSig64; | |
2451 | if ((int64_t)zSig64 < 0) { | |
2452 | shift64RightJamming(zSig64, 1, &zSig64); | |
2453 | } else { | |
2454 | zExp--; | |
2455 | } | |
2456 | } else { | |
2457 | /* Subtraction */ | |
2458 | if (expDiff > 0) { | |
2459 | shift64RightJamming(cSig64, expDiff, &cSig64); | |
2460 | zSig64 = pSig64 - cSig64; | |
2461 | zExp = pExp; | |
2462 | } else if (expDiff < 0) { | |
2463 | shift64RightJamming(pSig64, -expDiff, &pSig64); | |
2464 | zSig64 = cSig64 - pSig64; | |
2465 | zExp = cExp; | |
2466 | zSign ^= 1; | |
2467 | } else { | |
2468 | zExp = pExp; | |
2469 | if (cSig64 < pSig64) { | |
2470 | zSig64 = pSig64 - cSig64; | |
2471 | } else if (pSig64 < cSig64) { | |
2472 | zSig64 = cSig64 - pSig64; | |
2473 | zSign ^= 1; | |
2474 | } else { | |
2475 | /* Exact zero */ | |
2476 | zSign = signflip; | |
2477 | if (STATUS(float_rounding_mode) == float_round_down) { | |
2478 | zSign ^= 1; | |
2479 | } | |
2480 | return packFloat32(zSign, 0, 0); | |
2481 | } | |
2482 | } | |
2483 | --zExp; | |
2484 | /* Normalize to put the explicit bit back into bit 62. */ | |
2485 | shiftcount = countLeadingZeros64(zSig64) - 1; | |
2486 | zSig64 <<= shiftcount; | |
2487 | zExp -= shiftcount; | |
2488 | } | |
67d43538 PM |
2489 | if (flags & float_muladd_halve_result) { |
2490 | zExp--; | |
2491 | } | |
2492 | ||
369be8f6 PM |
2493 | shift64RightJamming(zSig64, 32, &zSig64); |
2494 | return roundAndPackFloat32(zSign, zExp, zSig64 STATUS_VAR); | |
2495 | } | |
2496 | ||
2497 | ||
158142c2 FB |
2498 | /*---------------------------------------------------------------------------- |
2499 | | Returns the square root of the single-precision floating-point value `a'. | |
2500 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
2501 | | Floating-Point Arithmetic. | |
2502 | *----------------------------------------------------------------------------*/ | |
2503 | ||
2504 | float32 float32_sqrt( float32 a STATUS_PARAM ) | |
2505 | { | |
2506 | flag aSign; | |
94a49d86 | 2507 | int_fast16_t aExp, zExp; |
bb98fe42 AF |
2508 | uint32_t aSig, zSig; |
2509 | uint64_t rem, term; | |
37d18660 | 2510 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
2511 | |
2512 | aSig = extractFloat32Frac( a ); | |
2513 | aExp = extractFloat32Exp( a ); | |
2514 | aSign = extractFloat32Sign( a ); | |
2515 | if ( aExp == 0xFF ) { | |
f090c9d4 | 2516 | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); |
158142c2 FB |
2517 | if ( ! aSign ) return a; |
2518 | float_raise( float_flag_invalid STATUS_VAR); | |
2519 | return float32_default_nan; | |
2520 | } | |
2521 | if ( aSign ) { | |
2522 | if ( ( aExp | aSig ) == 0 ) return a; | |
2523 | float_raise( float_flag_invalid STATUS_VAR); | |
2524 | return float32_default_nan; | |
2525 | } | |
2526 | if ( aExp == 0 ) { | |
f090c9d4 | 2527 | if ( aSig == 0 ) return float32_zero; |
158142c2 FB |
2528 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
2529 | } | |
2530 | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | |
2531 | aSig = ( aSig | 0x00800000 )<<8; | |
2532 | zSig = estimateSqrt32( aExp, aSig ) + 2; | |
2533 | if ( ( zSig & 0x7F ) <= 5 ) { | |
2534 | if ( zSig < 2 ) { | |
2535 | zSig = 0x7FFFFFFF; | |
2536 | goto roundAndPack; | |
2537 | } | |
2538 | aSig >>= aExp & 1; | |
bb98fe42 AF |
2539 | term = ( (uint64_t) zSig ) * zSig; |
2540 | rem = ( ( (uint64_t) aSig )<<32 ) - term; | |
2541 | while ( (int64_t) rem < 0 ) { | |
158142c2 | 2542 | --zSig; |
bb98fe42 | 2543 | rem += ( ( (uint64_t) zSig )<<1 ) | 1; |
158142c2 FB |
2544 | } |
2545 | zSig |= ( rem != 0 ); | |
2546 | } | |
2547 | shift32RightJamming( zSig, 1, &zSig ); | |
2548 | roundAndPack: | |
2549 | return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR ); | |
2550 | ||
2551 | } | |
2552 | ||
8229c991 AJ |
2553 | /*---------------------------------------------------------------------------- |
2554 | | Returns the binary exponential of the single-precision floating-point value | |
2555 | | `a'. The operation is performed according to the IEC/IEEE Standard for | |
2556 | | Binary Floating-Point Arithmetic. | |
2557 | | | |
2558 | | Uses the following identities: | |
2559 | | | |
2560 | | 1. ------------------------------------------------------------------------- | |
2561 | | x x*ln(2) | |
2562 | | 2 = e | |
2563 | | | |
2564 | | 2. ------------------------------------------------------------------------- | |
2565 | | 2 3 4 5 n | |
2566 | | x x x x x x x | |
2567 | | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... | |
2568 | | 1! 2! 3! 4! 5! n! | |
2569 | *----------------------------------------------------------------------------*/ | |
2570 | ||
2571 | static const float64 float32_exp2_coefficients[15] = | |
2572 | { | |
d5138cf4 PM |
2573 | const_float64( 0x3ff0000000000000ll ), /* 1 */ |
2574 | const_float64( 0x3fe0000000000000ll ), /* 2 */ | |
2575 | const_float64( 0x3fc5555555555555ll ), /* 3 */ | |
2576 | const_float64( 0x3fa5555555555555ll ), /* 4 */ | |
2577 | const_float64( 0x3f81111111111111ll ), /* 5 */ | |
2578 | const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ | |
2579 | const_float64( 0x3f2a01a01a01a01all ), /* 7 */ | |
2580 | const_float64( 0x3efa01a01a01a01all ), /* 8 */ | |
2581 | const_float64( 0x3ec71de3a556c734ll ), /* 9 */ | |
2582 | const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ | |
2583 | const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ | |
2584 | const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ | |
2585 | const_float64( 0x3de6124613a86d09ll ), /* 13 */ | |
2586 | const_float64( 0x3da93974a8c07c9dll ), /* 14 */ | |
2587 | const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ | |
8229c991 AJ |
2588 | }; |
2589 | ||
2590 | float32 float32_exp2( float32 a STATUS_PARAM ) | |
2591 | { | |
2592 | flag aSign; | |
94a49d86 | 2593 | int_fast16_t aExp; |
bb98fe42 | 2594 | uint32_t aSig; |
8229c991 AJ |
2595 | float64 r, x, xn; |
2596 | int i; | |
37d18660 | 2597 | a = float32_squash_input_denormal(a STATUS_VAR); |
8229c991 AJ |
2598 | |
2599 | aSig = extractFloat32Frac( a ); | |
2600 | aExp = extractFloat32Exp( a ); | |
2601 | aSign = extractFloat32Sign( a ); | |
2602 | ||
2603 | if ( aExp == 0xFF) { | |
2604 | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); | |
2605 | return (aSign) ? float32_zero : a; | |
2606 | } | |
2607 | if (aExp == 0) { | |
2608 | if (aSig == 0) return float32_one; | |
2609 | } | |
2610 | ||
2611 | float_raise( float_flag_inexact STATUS_VAR); | |
2612 | ||
2613 | /* ******************************* */ | |
2614 | /* using float64 for approximation */ | |
2615 | /* ******************************* */ | |
2616 | x = float32_to_float64(a STATUS_VAR); | |
2617 | x = float64_mul(x, float64_ln2 STATUS_VAR); | |
2618 | ||
2619 | xn = x; | |
2620 | r = float64_one; | |
2621 | for (i = 0 ; i < 15 ; i++) { | |
2622 | float64 f; | |
2623 | ||
2624 | f = float64_mul(xn, float32_exp2_coefficients[i] STATUS_VAR); | |
2625 | r = float64_add(r, f STATUS_VAR); | |
2626 | ||
2627 | xn = float64_mul(xn, x STATUS_VAR); | |
2628 | } | |
2629 | ||
2630 | return float64_to_float32(r, status); | |
2631 | } | |
2632 | ||
374dfc33 AJ |
2633 | /*---------------------------------------------------------------------------- |
2634 | | Returns the binary log of the single-precision floating-point value `a'. | |
2635 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
2636 | | Floating-Point Arithmetic. | |
2637 | *----------------------------------------------------------------------------*/ | |
2638 | float32 float32_log2( float32 a STATUS_PARAM ) | |
2639 | { | |
2640 | flag aSign, zSign; | |
94a49d86 | 2641 | int_fast16_t aExp; |
bb98fe42 | 2642 | uint32_t aSig, zSig, i; |
374dfc33 | 2643 | |
37d18660 | 2644 | a = float32_squash_input_denormal(a STATUS_VAR); |
374dfc33 AJ |
2645 | aSig = extractFloat32Frac( a ); |
2646 | aExp = extractFloat32Exp( a ); | |
2647 | aSign = extractFloat32Sign( a ); | |
2648 | ||
2649 | if ( aExp == 0 ) { | |
2650 | if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); | |
2651 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2652 | } | |
2653 | if ( aSign ) { | |
2654 | float_raise( float_flag_invalid STATUS_VAR); | |
2655 | return float32_default_nan; | |
2656 | } | |
2657 | if ( aExp == 0xFF ) { | |
2658 | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); | |
2659 | return a; | |
2660 | } | |
2661 | ||
2662 | aExp -= 0x7F; | |
2663 | aSig |= 0x00800000; | |
2664 | zSign = aExp < 0; | |
2665 | zSig = aExp << 23; | |
2666 | ||
2667 | for (i = 1 << 22; i > 0; i >>= 1) { | |
bb98fe42 | 2668 | aSig = ( (uint64_t)aSig * aSig ) >> 23; |
374dfc33 AJ |
2669 | if ( aSig & 0x01000000 ) { |
2670 | aSig >>= 1; | |
2671 | zSig |= i; | |
2672 | } | |
2673 | } | |
2674 | ||
2675 | if ( zSign ) | |
2676 | zSig = -zSig; | |
2677 | ||
2678 | return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR ); | |
2679 | } | |
2680 | ||
158142c2 FB |
2681 | /*---------------------------------------------------------------------------- |
2682 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
b689362d AJ |
2683 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
2684 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
2685 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
2686 | *----------------------------------------------------------------------------*/ | |
2687 | ||
b689362d | 2688 | int float32_eq( float32 a, float32 b STATUS_PARAM ) |
158142c2 | 2689 | { |
b689362d | 2690 | uint32_t av, bv; |
37d18660 PM |
2691 | a = float32_squash_input_denormal(a STATUS_VAR); |
2692 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2693 | |
2694 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2695 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2696 | ) { | |
b689362d | 2697 | float_raise( float_flag_invalid STATUS_VAR); |
158142c2 FB |
2698 | return 0; |
2699 | } | |
b689362d AJ |
2700 | av = float32_val(a); |
2701 | bv = float32_val(b); | |
2702 | return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); | |
158142c2 FB |
2703 | } |
2704 | ||
2705 | /*---------------------------------------------------------------------------- | |
2706 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
2707 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
2708 | | exception is raised if either operand is a NaN. The comparison is performed | |
2709 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2710 | *----------------------------------------------------------------------------*/ |
2711 | ||
750afe93 | 2712 | int float32_le( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2713 | { |
2714 | flag aSign, bSign; | |
bb98fe42 | 2715 | uint32_t av, bv; |
37d18660 PM |
2716 | a = float32_squash_input_denormal(a STATUS_VAR); |
2717 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2718 | |
2719 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2720 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2721 | ) { | |
2722 | float_raise( float_flag_invalid STATUS_VAR); | |
2723 | return 0; | |
2724 | } | |
2725 | aSign = extractFloat32Sign( a ); | |
2726 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2727 | av = float32_val(a); |
2728 | bv = float32_val(b); | |
bb98fe42 | 2729 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 2730 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2731 | |
2732 | } | |
2733 | ||
2734 | /*---------------------------------------------------------------------------- | |
2735 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
2736 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
2737 | | raised if either operand is a NaN. The comparison is performed according | |
2738 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2739 | *----------------------------------------------------------------------------*/ |
2740 | ||
750afe93 | 2741 | int float32_lt( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2742 | { |
2743 | flag aSign, bSign; | |
bb98fe42 | 2744 | uint32_t av, bv; |
37d18660 PM |
2745 | a = float32_squash_input_denormal(a STATUS_VAR); |
2746 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2747 | |
2748 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2749 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2750 | ) { | |
2751 | float_raise( float_flag_invalid STATUS_VAR); | |
2752 | return 0; | |
2753 | } | |
2754 | aSign = extractFloat32Sign( a ); | |
2755 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2756 | av = float32_val(a); |
2757 | bv = float32_val(b); | |
bb98fe42 | 2758 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 2759 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2760 | |
2761 | } | |
2762 | ||
67b7861d AJ |
2763 | /*---------------------------------------------------------------------------- |
2764 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
2765 | | be compared, and 0 otherwise. The invalid exception is raised if either |
2766 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
2767 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
2768 | *----------------------------------------------------------------------------*/ |
2769 | ||
2770 | int float32_unordered( float32 a, float32 b STATUS_PARAM ) | |
2771 | { | |
2772 | a = float32_squash_input_denormal(a STATUS_VAR); | |
2773 | b = float32_squash_input_denormal(b STATUS_VAR); | |
2774 | ||
2775 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2776 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2777 | ) { | |
2778 | float_raise( float_flag_invalid STATUS_VAR); | |
2779 | return 1; | |
2780 | } | |
2781 | return 0; | |
2782 | } | |
b689362d | 2783 | |
158142c2 FB |
2784 | /*---------------------------------------------------------------------------- |
2785 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
f5a64251 AJ |
2786 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
2787 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
2788 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2789 | *----------------------------------------------------------------------------*/ |
2790 | ||
b689362d | 2791 | int float32_eq_quiet( float32 a, float32 b STATUS_PARAM ) |
158142c2 | 2792 | { |
37d18660 PM |
2793 | a = float32_squash_input_denormal(a STATUS_VAR); |
2794 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2795 | |
2796 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2797 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2798 | ) { | |
b689362d AJ |
2799 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { |
2800 | float_raise( float_flag_invalid STATUS_VAR); | |
2801 | } | |
158142c2 FB |
2802 | return 0; |
2803 | } | |
b689362d AJ |
2804 | return ( float32_val(a) == float32_val(b) ) || |
2805 | ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); | |
158142c2 FB |
2806 | } |
2807 | ||
2808 | /*---------------------------------------------------------------------------- | |
2809 | | Returns 1 if the single-precision floating-point value `a' is less than or | |
2810 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
2811 | | cause an exception. Otherwise, the comparison is performed according to the | |
2812 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2813 | *----------------------------------------------------------------------------*/ | |
2814 | ||
750afe93 | 2815 | int float32_le_quiet( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2816 | { |
2817 | flag aSign, bSign; | |
bb98fe42 | 2818 | uint32_t av, bv; |
37d18660 PM |
2819 | a = float32_squash_input_denormal(a STATUS_VAR); |
2820 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2821 | |
2822 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2823 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2824 | ) { | |
2825 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
2826 | float_raise( float_flag_invalid STATUS_VAR); | |
2827 | } | |
2828 | return 0; | |
2829 | } | |
2830 | aSign = extractFloat32Sign( a ); | |
2831 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2832 | av = float32_val(a); |
2833 | bv = float32_val(b); | |
bb98fe42 | 2834 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 2835 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2836 | |
2837 | } | |
2838 | ||
2839 | /*---------------------------------------------------------------------------- | |
2840 | | Returns 1 if the single-precision floating-point value `a' is less than | |
2841 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
2842 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
2843 | | Standard for Binary Floating-Point Arithmetic. | |
2844 | *----------------------------------------------------------------------------*/ | |
2845 | ||
750afe93 | 2846 | int float32_lt_quiet( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2847 | { |
2848 | flag aSign, bSign; | |
bb98fe42 | 2849 | uint32_t av, bv; |
37d18660 PM |
2850 | a = float32_squash_input_denormal(a STATUS_VAR); |
2851 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2852 | |
2853 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2854 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2855 | ) { | |
2856 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
2857 | float_raise( float_flag_invalid STATUS_VAR); | |
2858 | } | |
2859 | return 0; | |
2860 | } | |
2861 | aSign = extractFloat32Sign( a ); | |
2862 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2863 | av = float32_val(a); |
2864 | bv = float32_val(b); | |
bb98fe42 | 2865 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 2866 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2867 | |
2868 | } | |
2869 | ||
67b7861d AJ |
2870 | /*---------------------------------------------------------------------------- |
2871 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
2872 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
2873 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
2874 | | Floating-Point Arithmetic. | |
2875 | *----------------------------------------------------------------------------*/ | |
2876 | ||
2877 | int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM ) | |
2878 | { | |
2879 | a = float32_squash_input_denormal(a STATUS_VAR); | |
2880 | b = float32_squash_input_denormal(b STATUS_VAR); | |
2881 | ||
2882 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2883 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2884 | ) { | |
2885 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
2886 | float_raise( float_flag_invalid STATUS_VAR); | |
2887 | } | |
2888 | return 1; | |
2889 | } | |
2890 | return 0; | |
2891 | } | |
2892 | ||
158142c2 FB |
2893 | /*---------------------------------------------------------------------------- |
2894 | | Returns the result of converting the double-precision floating-point value | |
2895 | | `a' to the 32-bit two's complement integer format. The conversion is | |
2896 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2897 | | Arithmetic---which means in particular that the conversion is rounded | |
2898 | | according to the current rounding mode. If `a' is a NaN, the largest | |
2899 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
2900 | | largest integer with the same sign as `a' is returned. | |
2901 | *----------------------------------------------------------------------------*/ | |
2902 | ||
2903 | int32 float64_to_int32( float64 a STATUS_PARAM ) | |
2904 | { | |
2905 | flag aSign; | |
94a49d86 | 2906 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 2907 | uint64_t aSig; |
37d18660 | 2908 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
2909 | |
2910 | aSig = extractFloat64Frac( a ); | |
2911 | aExp = extractFloat64Exp( a ); | |
2912 | aSign = extractFloat64Sign( a ); | |
2913 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
2914 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
2915 | shiftCount = 0x42C - aExp; | |
2916 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | |
2917 | return roundAndPackInt32( aSign, aSig STATUS_VAR ); | |
2918 | ||
2919 | } | |
2920 | ||
2921 | /*---------------------------------------------------------------------------- | |
2922 | | Returns the result of converting the double-precision floating-point value | |
2923 | | `a' to the 32-bit two's complement integer format. The conversion is | |
2924 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2925 | | Arithmetic, except that the conversion is always rounded toward zero. | |
2926 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
2927 | | the conversion overflows, the largest integer with the same sign as `a' is | |
2928 | | returned. | |
2929 | *----------------------------------------------------------------------------*/ | |
2930 | ||
2931 | int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM ) | |
2932 | { | |
2933 | flag aSign; | |
94a49d86 | 2934 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 2935 | uint64_t aSig, savedASig; |
b3a6a2e0 | 2936 | int32_t z; |
37d18660 | 2937 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
2938 | |
2939 | aSig = extractFloat64Frac( a ); | |
2940 | aExp = extractFloat64Exp( a ); | |
2941 | aSign = extractFloat64Sign( a ); | |
2942 | if ( 0x41E < aExp ) { | |
2943 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
2944 | goto invalid; | |
2945 | } | |
2946 | else if ( aExp < 0x3FF ) { | |
2947 | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
2948 | return 0; | |
2949 | } | |
2950 | aSig |= LIT64( 0x0010000000000000 ); | |
2951 | shiftCount = 0x433 - aExp; | |
2952 | savedASig = aSig; | |
2953 | aSig >>= shiftCount; | |
2954 | z = aSig; | |
2955 | if ( aSign ) z = - z; | |
2956 | if ( ( z < 0 ) ^ aSign ) { | |
2957 | invalid: | |
2958 | float_raise( float_flag_invalid STATUS_VAR); | |
bb98fe42 | 2959 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
2960 | } |
2961 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
2962 | STATUS(float_exception_flags) |= float_flag_inexact; | |
2963 | } | |
2964 | return z; | |
2965 | ||
2966 | } | |
2967 | ||
cbcef455 PM |
2968 | /*---------------------------------------------------------------------------- |
2969 | | Returns the result of converting the double-precision floating-point value | |
2970 | | `a' to the 16-bit two's complement integer format. The conversion is | |
2971 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2972 | | Arithmetic, except that the conversion is always rounded toward zero. | |
2973 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
2974 | | the conversion overflows, the largest integer with the same sign as `a' is | |
2975 | | returned. | |
2976 | *----------------------------------------------------------------------------*/ | |
2977 | ||
94a49d86 | 2978 | int_fast16_t float64_to_int16_round_to_zero(float64 a STATUS_PARAM) |
cbcef455 PM |
2979 | { |
2980 | flag aSign; | |
94a49d86 | 2981 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 2982 | uint64_t aSig, savedASig; |
cbcef455 PM |
2983 | int32 z; |
2984 | ||
2985 | aSig = extractFloat64Frac( a ); | |
2986 | aExp = extractFloat64Exp( a ); | |
2987 | aSign = extractFloat64Sign( a ); | |
2988 | if ( 0x40E < aExp ) { | |
2989 | if ( ( aExp == 0x7FF ) && aSig ) { | |
2990 | aSign = 0; | |
2991 | } | |
2992 | goto invalid; | |
2993 | } | |
2994 | else if ( aExp < 0x3FF ) { | |
2995 | if ( aExp || aSig ) { | |
2996 | STATUS(float_exception_flags) |= float_flag_inexact; | |
2997 | } | |
2998 | return 0; | |
2999 | } | |
3000 | aSig |= LIT64( 0x0010000000000000 ); | |
3001 | shiftCount = 0x433 - aExp; | |
3002 | savedASig = aSig; | |
3003 | aSig >>= shiftCount; | |
3004 | z = aSig; | |
3005 | if ( aSign ) { | |
3006 | z = - z; | |
3007 | } | |
3008 | if ( ( (int16_t)z < 0 ) ^ aSign ) { | |
3009 | invalid: | |
3010 | float_raise( float_flag_invalid STATUS_VAR); | |
bb98fe42 | 3011 | return aSign ? (int32_t) 0xffff8000 : 0x7FFF; |
cbcef455 PM |
3012 | } |
3013 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
3014 | STATUS(float_exception_flags) |= float_flag_inexact; | |
3015 | } | |
3016 | return z; | |
3017 | } | |
3018 | ||
158142c2 FB |
3019 | /*---------------------------------------------------------------------------- |
3020 | | Returns the result of converting the double-precision floating-point value | |
3021 | | `a' to the 64-bit two's complement integer format. The conversion is | |
3022 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3023 | | Arithmetic---which means in particular that the conversion is rounded | |
3024 | | according to the current rounding mode. If `a' is a NaN, the largest | |
3025 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
3026 | | largest integer with the same sign as `a' is returned. | |
3027 | *----------------------------------------------------------------------------*/ | |
3028 | ||
3029 | int64 float64_to_int64( float64 a STATUS_PARAM ) | |
3030 | { | |
3031 | flag aSign; | |
94a49d86 | 3032 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 3033 | uint64_t aSig, aSigExtra; |
37d18660 | 3034 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
3035 | |
3036 | aSig = extractFloat64Frac( a ); | |
3037 | aExp = extractFloat64Exp( a ); | |
3038 | aSign = extractFloat64Sign( a ); | |
3039 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3040 | shiftCount = 0x433 - aExp; | |
3041 | if ( shiftCount <= 0 ) { | |
3042 | if ( 0x43E < aExp ) { | |
3043 | float_raise( float_flag_invalid STATUS_VAR); | |
3044 | if ( ! aSign | |
3045 | || ( ( aExp == 0x7FF ) | |
3046 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
3047 | ) { | |
3048 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3049 | } | |
bb98fe42 | 3050 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
3051 | } |
3052 | aSigExtra = 0; | |
3053 | aSig <<= - shiftCount; | |
3054 | } | |
3055 | else { | |
3056 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
3057 | } | |
3058 | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); | |
3059 | ||
3060 | } | |
3061 | ||
3062 | /*---------------------------------------------------------------------------- | |
3063 | | Returns the result of converting the double-precision floating-point value | |
3064 | | `a' to the 64-bit two's complement integer format. The conversion is | |
3065 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3066 | | Arithmetic, except that the conversion is always rounded toward zero. | |
3067 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
3068 | | the conversion overflows, the largest integer with the same sign as `a' is | |
3069 | | returned. | |
3070 | *----------------------------------------------------------------------------*/ | |
3071 | ||
3072 | int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM ) | |
3073 | { | |
3074 | flag aSign; | |
94a49d86 | 3075 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 3076 | uint64_t aSig; |
158142c2 | 3077 | int64 z; |
37d18660 | 3078 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
3079 | |
3080 | aSig = extractFloat64Frac( a ); | |
3081 | aExp = extractFloat64Exp( a ); | |
3082 | aSign = extractFloat64Sign( a ); | |
3083 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3084 | shiftCount = aExp - 0x433; | |
3085 | if ( 0 <= shiftCount ) { | |
3086 | if ( 0x43E <= aExp ) { | |
f090c9d4 | 3087 | if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) { |
158142c2 FB |
3088 | float_raise( float_flag_invalid STATUS_VAR); |
3089 | if ( ! aSign | |
3090 | || ( ( aExp == 0x7FF ) | |
3091 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
3092 | ) { | |
3093 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3094 | } | |
3095 | } | |
bb98fe42 | 3096 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
3097 | } |
3098 | z = aSig<<shiftCount; | |
3099 | } | |
3100 | else { | |
3101 | if ( aExp < 0x3FE ) { | |
3102 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
3103 | return 0; | |
3104 | } | |
3105 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 3106 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
158142c2 FB |
3107 | STATUS(float_exception_flags) |= float_flag_inexact; |
3108 | } | |
3109 | } | |
3110 | if ( aSign ) z = - z; | |
3111 | return z; | |
3112 | ||
3113 | } | |
3114 | ||
3115 | /*---------------------------------------------------------------------------- | |
3116 | | Returns the result of converting the double-precision floating-point value | |
3117 | | `a' to the single-precision floating-point format. The conversion is | |
3118 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3119 | | Arithmetic. | |
3120 | *----------------------------------------------------------------------------*/ | |
3121 | ||
3122 | float32 float64_to_float32( float64 a STATUS_PARAM ) | |
3123 | { | |
3124 | flag aSign; | |
94a49d86 | 3125 | int_fast16_t aExp; |
bb98fe42 AF |
3126 | uint64_t aSig; |
3127 | uint32_t zSig; | |
37d18660 | 3128 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
3129 | |
3130 | aSig = extractFloat64Frac( a ); | |
3131 | aExp = extractFloat64Exp( a ); | |
3132 | aSign = extractFloat64Sign( a ); | |
3133 | if ( aExp == 0x7FF ) { | |
bcd4d9af | 3134 | if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
3135 | return packFloat32( aSign, 0xFF, 0 ); |
3136 | } | |
3137 | shift64RightJamming( aSig, 22, &aSig ); | |
3138 | zSig = aSig; | |
3139 | if ( aExp || zSig ) { | |
3140 | zSig |= 0x40000000; | |
3141 | aExp -= 0x381; | |
3142 | } | |
3143 | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); | |
3144 | ||
3145 | } | |
3146 | ||
60011498 PB |
3147 | |
3148 | /*---------------------------------------------------------------------------- | |
3149 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
3150 | | half-precision floating-point value, returning the result. After being | |
3151 | | shifted into the proper positions, the three fields are simply added | |
3152 | | together to form the result. This means that any integer portion of `zSig' | |
3153 | | will be added into the exponent. Since a properly normalized significand | |
3154 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
3155 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
3156 | | significand. | |
3157 | *----------------------------------------------------------------------------*/ | |
94a49d86 | 3158 | static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig) |
60011498 | 3159 | { |
bb4d4bb3 | 3160 | return make_float16( |
bb98fe42 | 3161 | (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig); |
60011498 PB |
3162 | } |
3163 | ||
c4a1c5e7 PM |
3164 | /*---------------------------------------------------------------------------- |
3165 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3166 | | and significand `zSig', and returns the proper half-precision floating- | |
3167 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
3168 | | value is simply rounded and packed into the half-precision format, with | |
3169 | | the inexact exception raised if the abstract input cannot be represented | |
3170 | | exactly. However, if the abstract value is too large, the overflow and | |
3171 | | inexact exceptions are raised and an infinity or maximal finite value is | |
3172 | | returned. If the abstract value is too small, the input value is rounded to | |
3173 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
3174 | | the abstract input cannot be represented exactly as a subnormal half- | |
3175 | | precision floating-point number. | |
3176 | | The `ieee' flag indicates whether to use IEEE standard half precision, or | |
3177 | | ARM-style "alternative representation", which omits the NaN and Inf | |
3178 | | encodings in order to raise the maximum representable exponent by one. | |
3179 | | The input significand `zSig' has its binary point between bits 22 | |
3180 | | and 23, which is 13 bits to the left of the usual location. This shifted | |
3181 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
3182 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
3183 | | and it must not require rounding. In the usual case that `zSig' is | |
3184 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
3185 | | Note the slightly odd position of the binary point in zSig compared with the | |
3186 | | other roundAndPackFloat functions. This should probably be fixed if we | |
3187 | | need to implement more float16 routines than just conversion. | |
3188 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
3189 | | Binary Floating-Point Arithmetic. | |
3190 | *----------------------------------------------------------------------------*/ | |
3191 | ||
3192 | static float32 roundAndPackFloat16(flag zSign, int_fast16_t zExp, | |
3193 | uint32_t zSig, flag ieee STATUS_PARAM) | |
3194 | { | |
3195 | int maxexp = ieee ? 29 : 30; | |
3196 | uint32_t mask; | |
3197 | uint32_t increment; | |
c4a1c5e7 PM |
3198 | bool rounding_bumps_exp; |
3199 | bool is_tiny = false; | |
3200 | ||
3201 | /* Calculate the mask of bits of the mantissa which are not | |
3202 | * representable in half-precision and will be lost. | |
3203 | */ | |
3204 | if (zExp < 1) { | |
3205 | /* Will be denormal in halfprec */ | |
3206 | mask = 0x00ffffff; | |
3207 | if (zExp >= -11) { | |
3208 | mask >>= 11 + zExp; | |
3209 | } | |
3210 | } else { | |
3211 | /* Normal number in halfprec */ | |
3212 | mask = 0x00001fff; | |
3213 | } | |
3214 | ||
dc355b76 | 3215 | switch (STATUS(float_rounding_mode)) { |
c4a1c5e7 PM |
3216 | case float_round_nearest_even: |
3217 | increment = (mask + 1) >> 1; | |
3218 | if ((zSig & mask) == increment) { | |
3219 | increment = zSig & (increment << 1); | |
3220 | } | |
3221 | break; | |
f9288a76 PM |
3222 | case float_round_ties_away: |
3223 | increment = (mask + 1) >> 1; | |
3224 | break; | |
c4a1c5e7 PM |
3225 | case float_round_up: |
3226 | increment = zSign ? 0 : mask; | |
3227 | break; | |
3228 | case float_round_down: | |
3229 | increment = zSign ? mask : 0; | |
3230 | break; | |
3231 | default: /* round_to_zero */ | |
3232 | increment = 0; | |
3233 | break; | |
3234 | } | |
3235 | ||
3236 | rounding_bumps_exp = (zSig + increment >= 0x01000000); | |
3237 | ||
3238 | if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) { | |
3239 | if (ieee) { | |
3240 | float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR); | |
3241 | return packFloat16(zSign, 0x1f, 0); | |
3242 | } else { | |
3243 | float_raise(float_flag_invalid STATUS_VAR); | |
3244 | return packFloat16(zSign, 0x1f, 0x3ff); | |
3245 | } | |
3246 | } | |
3247 | ||
3248 | if (zExp < 0) { | |
3249 | /* Note that flush-to-zero does not affect half-precision results */ | |
3250 | is_tiny = | |
3251 | (STATUS(float_detect_tininess) == float_tininess_before_rounding) | |
3252 | || (zExp < -1) | |
3253 | || (!rounding_bumps_exp); | |
3254 | } | |
3255 | if (zSig & mask) { | |
3256 | float_raise(float_flag_inexact STATUS_VAR); | |
3257 | if (is_tiny) { | |
3258 | float_raise(float_flag_underflow STATUS_VAR); | |
3259 | } | |
3260 | } | |
3261 | ||
3262 | zSig += increment; | |
3263 | if (rounding_bumps_exp) { | |
3264 | zSig >>= 1; | |
3265 | zExp++; | |
3266 | } | |
3267 | ||
3268 | if (zExp < -10) { | |
3269 | return packFloat16(zSign, 0, 0); | |
3270 | } | |
3271 | if (zExp < 0) { | |
3272 | zSig >>= -zExp; | |
3273 | zExp = 0; | |
3274 | } | |
3275 | return packFloat16(zSign, zExp, zSig >> 13); | |
3276 | } | |
3277 | ||
3278 | static void normalizeFloat16Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, | |
3279 | uint32_t *zSigPtr) | |
3280 | { | |
3281 | int8_t shiftCount = countLeadingZeros32(aSig) - 21; | |
3282 | *zSigPtr = aSig << shiftCount; | |
3283 | *zExpPtr = 1 - shiftCount; | |
3284 | } | |
3285 | ||
60011498 PB |
3286 | /* Half precision floats come in two formats: standard IEEE and "ARM" format. |
3287 | The latter gains extra exponent range by omitting the NaN/Inf encodings. */ | |
bb4d4bb3 PM |
3288 | |
3289 | float32 float16_to_float32(float16 a, flag ieee STATUS_PARAM) | |
60011498 PB |
3290 | { |
3291 | flag aSign; | |
94a49d86 | 3292 | int_fast16_t aExp; |
bb98fe42 | 3293 | uint32_t aSig; |
60011498 | 3294 | |
bb4d4bb3 PM |
3295 | aSign = extractFloat16Sign(a); |
3296 | aExp = extractFloat16Exp(a); | |
3297 | aSig = extractFloat16Frac(a); | |
60011498 PB |
3298 | |
3299 | if (aExp == 0x1f && ieee) { | |
3300 | if (aSig) { | |
f591e1be | 3301 | return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR) STATUS_VAR); |
60011498 | 3302 | } |
4be8eeac | 3303 | return packFloat32(aSign, 0xff, 0); |
60011498 PB |
3304 | } |
3305 | if (aExp == 0) { | |
60011498 PB |
3306 | if (aSig == 0) { |
3307 | return packFloat32(aSign, 0, 0); | |
3308 | } | |
3309 | ||
c4a1c5e7 PM |
3310 | normalizeFloat16Subnormal(aSig, &aExp, &aSig); |
3311 | aExp--; | |
60011498 PB |
3312 | } |
3313 | return packFloat32( aSign, aExp + 0x70, aSig << 13); | |
3314 | } | |
3315 | ||
bb4d4bb3 | 3316 | float16 float32_to_float16(float32 a, flag ieee STATUS_PARAM) |
60011498 PB |
3317 | { |
3318 | flag aSign; | |
94a49d86 | 3319 | int_fast16_t aExp; |
bb98fe42 | 3320 | uint32_t aSig; |
38970efa | 3321 | |
37d18660 | 3322 | a = float32_squash_input_denormal(a STATUS_VAR); |
60011498 PB |
3323 | |
3324 | aSig = extractFloat32Frac( a ); | |
3325 | aExp = extractFloat32Exp( a ); | |
3326 | aSign = extractFloat32Sign( a ); | |
3327 | if ( aExp == 0xFF ) { | |
3328 | if (aSig) { | |
600e30d2 | 3329 | /* Input is a NaN */ |
600e30d2 | 3330 | if (!ieee) { |
38970efa | 3331 | float_raise(float_flag_invalid STATUS_VAR); |
600e30d2 PM |
3332 | return packFloat16(aSign, 0, 0); |
3333 | } | |
38970efa PM |
3334 | return commonNaNToFloat16( |
3335 | float32ToCommonNaN(a STATUS_VAR) STATUS_VAR); | |
60011498 | 3336 | } |
600e30d2 PM |
3337 | /* Infinity */ |
3338 | if (!ieee) { | |
3339 | float_raise(float_flag_invalid STATUS_VAR); | |
3340 | return packFloat16(aSign, 0x1f, 0x3ff); | |
3341 | } | |
3342 | return packFloat16(aSign, 0x1f, 0); | |
60011498 | 3343 | } |
600e30d2 | 3344 | if (aExp == 0 && aSig == 0) { |
60011498 PB |
3345 | return packFloat16(aSign, 0, 0); |
3346 | } | |
38970efa PM |
3347 | /* Decimal point between bits 22 and 23. Note that we add the 1 bit |
3348 | * even if the input is denormal; however this is harmless because | |
3349 | * the largest possible single-precision denormal is still smaller | |
3350 | * than the smallest representable half-precision denormal, and so we | |
3351 | * will end up ignoring aSig and returning via the "always return zero" | |
3352 | * codepath. | |
3353 | */ | |
60011498 | 3354 | aSig |= 0x00800000; |
c4a1c5e7 | 3355 | aExp -= 0x71; |
60011498 | 3356 | |
c4a1c5e7 | 3357 | return roundAndPackFloat16(aSign, aExp, aSig, ieee STATUS_VAR); |
60011498 PB |
3358 | } |
3359 | ||
14c9a07e PM |
3360 | float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM) |
3361 | { | |
3362 | flag aSign; | |
3363 | int_fast16_t aExp; | |
3364 | uint32_t aSig; | |
3365 | ||
3366 | aSign = extractFloat16Sign(a); | |
3367 | aExp = extractFloat16Exp(a); | |
3368 | aSig = extractFloat16Frac(a); | |
3369 | ||
3370 | if (aExp == 0x1f && ieee) { | |
3371 | if (aSig) { | |
3372 | return commonNaNToFloat64( | |
3373 | float16ToCommonNaN(a STATUS_VAR) STATUS_VAR); | |
3374 | } | |
3375 | return packFloat64(aSign, 0x7ff, 0); | |
3376 | } | |
3377 | if (aExp == 0) { | |
3378 | if (aSig == 0) { | |
3379 | return packFloat64(aSign, 0, 0); | |
3380 | } | |
3381 | ||
3382 | normalizeFloat16Subnormal(aSig, &aExp, &aSig); | |
3383 | aExp--; | |
3384 | } | |
3385 | return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42); | |
3386 | } | |
3387 | ||
3388 | float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM) | |
3389 | { | |
3390 | flag aSign; | |
3391 | int_fast16_t aExp; | |
3392 | uint64_t aSig; | |
3393 | uint32_t zSig; | |
3394 | ||
3395 | a = float64_squash_input_denormal(a STATUS_VAR); | |
3396 | ||
3397 | aSig = extractFloat64Frac(a); | |
3398 | aExp = extractFloat64Exp(a); | |
3399 | aSign = extractFloat64Sign(a); | |
3400 | if (aExp == 0x7FF) { | |
3401 | if (aSig) { | |
3402 | /* Input is a NaN */ | |
3403 | if (!ieee) { | |
3404 | float_raise(float_flag_invalid STATUS_VAR); | |
3405 | return packFloat16(aSign, 0, 0); | |
3406 | } | |
3407 | return commonNaNToFloat16( | |
3408 | float64ToCommonNaN(a STATUS_VAR) STATUS_VAR); | |
3409 | } | |
3410 | /* Infinity */ | |
3411 | if (!ieee) { | |
3412 | float_raise(float_flag_invalid STATUS_VAR); | |
3413 | return packFloat16(aSign, 0x1f, 0x3ff); | |
3414 | } | |
3415 | return packFloat16(aSign, 0x1f, 0); | |
3416 | } | |
3417 | shift64RightJamming(aSig, 29, &aSig); | |
3418 | zSig = aSig; | |
3419 | if (aExp == 0 && zSig == 0) { | |
3420 | return packFloat16(aSign, 0, 0); | |
3421 | } | |
3422 | /* Decimal point between bits 22 and 23. Note that we add the 1 bit | |
3423 | * even if the input is denormal; however this is harmless because | |
3424 | * the largest possible single-precision denormal is still smaller | |
3425 | * than the smallest representable half-precision denormal, and so we | |
3426 | * will end up ignoring aSig and returning via the "always return zero" | |
3427 | * codepath. | |
3428 | */ | |
3429 | zSig |= 0x00800000; | |
3430 | aExp -= 0x3F1; | |
3431 | ||
3432 | return roundAndPackFloat16(aSign, aExp, zSig, ieee STATUS_VAR); | |
3433 | } | |
3434 | ||
158142c2 FB |
3435 | /*---------------------------------------------------------------------------- |
3436 | | Returns the result of converting the double-precision floating-point value | |
3437 | | `a' to the extended double-precision floating-point format. The conversion | |
3438 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3439 | | Arithmetic. | |
3440 | *----------------------------------------------------------------------------*/ | |
3441 | ||
3442 | floatx80 float64_to_floatx80( float64 a STATUS_PARAM ) | |
3443 | { | |
3444 | flag aSign; | |
94a49d86 | 3445 | int_fast16_t aExp; |
bb98fe42 | 3446 | uint64_t aSig; |
158142c2 | 3447 | |
37d18660 | 3448 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
3449 | aSig = extractFloat64Frac( a ); |
3450 | aExp = extractFloat64Exp( a ); | |
3451 | aSign = extractFloat64Sign( a ); | |
3452 | if ( aExp == 0x7FF ) { | |
bcd4d9af | 3453 | if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
3454 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
3455 | } | |
3456 | if ( aExp == 0 ) { | |
3457 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
3458 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3459 | } | |
3460 | return | |
3461 | packFloatx80( | |
3462 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | |
3463 | ||
3464 | } | |
3465 | ||
158142c2 FB |
3466 | /*---------------------------------------------------------------------------- |
3467 | | Returns the result of converting the double-precision floating-point value | |
3468 | | `a' to the quadruple-precision floating-point format. The conversion is | |
3469 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3470 | | Arithmetic. | |
3471 | *----------------------------------------------------------------------------*/ | |
3472 | ||
3473 | float128 float64_to_float128( float64 a STATUS_PARAM ) | |
3474 | { | |
3475 | flag aSign; | |
94a49d86 | 3476 | int_fast16_t aExp; |
bb98fe42 | 3477 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 3478 | |
37d18660 | 3479 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
3480 | aSig = extractFloat64Frac( a ); |
3481 | aExp = extractFloat64Exp( a ); | |
3482 | aSign = extractFloat64Sign( a ); | |
3483 | if ( aExp == 0x7FF ) { | |
bcd4d9af | 3484 | if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
3485 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
3486 | } | |
3487 | if ( aExp == 0 ) { | |
3488 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
3489 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3490 | --aExp; | |
3491 | } | |
3492 | shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); | |
3493 | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); | |
3494 | ||
3495 | } | |
3496 | ||
158142c2 FB |
3497 | /*---------------------------------------------------------------------------- |
3498 | | Rounds the double-precision floating-point value `a' to an integer, and | |
3499 | | returns the result as a double-precision floating-point value. The | |
3500 | | operation is performed according to the IEC/IEEE Standard for Binary | |
3501 | | Floating-Point Arithmetic. | |
3502 | *----------------------------------------------------------------------------*/ | |
3503 | ||
3504 | float64 float64_round_to_int( float64 a STATUS_PARAM ) | |
3505 | { | |
3506 | flag aSign; | |
94a49d86 | 3507 | int_fast16_t aExp; |
bb98fe42 | 3508 | uint64_t lastBitMask, roundBitsMask; |
bb98fe42 | 3509 | uint64_t z; |
37d18660 | 3510 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
3511 | |
3512 | aExp = extractFloat64Exp( a ); | |
3513 | if ( 0x433 <= aExp ) { | |
3514 | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | |
3515 | return propagateFloat64NaN( a, a STATUS_VAR ); | |
3516 | } | |
3517 | return a; | |
3518 | } | |
3519 | if ( aExp < 0x3FF ) { | |
bb98fe42 | 3520 | if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a; |
158142c2 FB |
3521 | STATUS(float_exception_flags) |= float_flag_inexact; |
3522 | aSign = extractFloat64Sign( a ); | |
3523 | switch ( STATUS(float_rounding_mode) ) { | |
3524 | case float_round_nearest_even: | |
3525 | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | |
3526 | return packFloat64( aSign, 0x3FF, 0 ); | |
3527 | } | |
3528 | break; | |
f9288a76 PM |
3529 | case float_round_ties_away: |
3530 | if (aExp == 0x3FE) { | |
3531 | return packFloat64(aSign, 0x3ff, 0); | |
3532 | } | |
3533 | break; | |
158142c2 | 3534 | case float_round_down: |
f090c9d4 | 3535 | return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0); |
158142c2 | 3536 | case float_round_up: |
f090c9d4 PB |
3537 | return make_float64( |
3538 | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 )); | |
158142c2 FB |
3539 | } |
3540 | return packFloat64( aSign, 0, 0 ); | |
3541 | } | |
3542 | lastBitMask = 1; | |
3543 | lastBitMask <<= 0x433 - aExp; | |
3544 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 3545 | z = float64_val(a); |
dc355b76 PM |
3546 | switch (STATUS(float_rounding_mode)) { |
3547 | case float_round_nearest_even: | |
3548 | z += lastBitMask >> 1; | |
3549 | if ((z & roundBitsMask) == 0) { | |
3550 | z &= ~lastBitMask; | |
3551 | } | |
3552 | break; | |
f9288a76 PM |
3553 | case float_round_ties_away: |
3554 | z += lastBitMask >> 1; | |
3555 | break; | |
dc355b76 PM |
3556 | case float_round_to_zero: |
3557 | break; | |
3558 | case float_round_up: | |
3559 | if (!extractFloat64Sign(make_float64(z))) { | |
3560 | z += roundBitsMask; | |
3561 | } | |
3562 | break; | |
3563 | case float_round_down: | |
3564 | if (extractFloat64Sign(make_float64(z))) { | |
158142c2 FB |
3565 | z += roundBitsMask; |
3566 | } | |
dc355b76 PM |
3567 | break; |
3568 | default: | |
3569 | abort(); | |
158142c2 FB |
3570 | } |
3571 | z &= ~ roundBitsMask; | |
f090c9d4 PB |
3572 | if ( z != float64_val(a) ) |
3573 | STATUS(float_exception_flags) |= float_flag_inexact; | |
3574 | return make_float64(z); | |
158142c2 FB |
3575 | |
3576 | } | |
3577 | ||
e6e5906b PB |
3578 | float64 float64_trunc_to_int( float64 a STATUS_PARAM) |
3579 | { | |
3580 | int oldmode; | |
3581 | float64 res; | |
3582 | oldmode = STATUS(float_rounding_mode); | |
3583 | STATUS(float_rounding_mode) = float_round_to_zero; | |
3584 | res = float64_round_to_int(a STATUS_VAR); | |
3585 | STATUS(float_rounding_mode) = oldmode; | |
3586 | return res; | |
3587 | } | |
3588 | ||
158142c2 FB |
3589 | /*---------------------------------------------------------------------------- |
3590 | | Returns the result of adding the absolute values of the double-precision | |
3591 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
3592 | | before being returned. `zSign' is ignored if the result is a NaN. | |
3593 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
3594 | | Floating-Point Arithmetic. | |
3595 | *----------------------------------------------------------------------------*/ | |
3596 | ||
3597 | static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) | |
3598 | { | |
94a49d86 | 3599 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 3600 | uint64_t aSig, bSig, zSig; |
94a49d86 | 3601 | int_fast16_t expDiff; |
158142c2 FB |
3602 | |
3603 | aSig = extractFloat64Frac( a ); | |
3604 | aExp = extractFloat64Exp( a ); | |
3605 | bSig = extractFloat64Frac( b ); | |
3606 | bExp = extractFloat64Exp( b ); | |
3607 | expDiff = aExp - bExp; | |
3608 | aSig <<= 9; | |
3609 | bSig <<= 9; | |
3610 | if ( 0 < expDiff ) { | |
3611 | if ( aExp == 0x7FF ) { | |
3612 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3613 | return a; | |
3614 | } | |
3615 | if ( bExp == 0 ) { | |
3616 | --expDiff; | |
3617 | } | |
3618 | else { | |
3619 | bSig |= LIT64( 0x2000000000000000 ); | |
3620 | } | |
3621 | shift64RightJamming( bSig, expDiff, &bSig ); | |
3622 | zExp = aExp; | |
3623 | } | |
3624 | else if ( expDiff < 0 ) { | |
3625 | if ( bExp == 0x7FF ) { | |
3626 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3627 | return packFloat64( zSign, 0x7FF, 0 ); | |
3628 | } | |
3629 | if ( aExp == 0 ) { | |
3630 | ++expDiff; | |
3631 | } | |
3632 | else { | |
3633 | aSig |= LIT64( 0x2000000000000000 ); | |
3634 | } | |
3635 | shift64RightJamming( aSig, - expDiff, &aSig ); | |
3636 | zExp = bExp; | |
3637 | } | |
3638 | else { | |
3639 | if ( aExp == 0x7FF ) { | |
3640 | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3641 | return a; | |
3642 | } | |
fe76d976 | 3643 | if ( aExp == 0 ) { |
e6afc87f PM |
3644 | if (STATUS(flush_to_zero)) { |
3645 | if (aSig | bSig) { | |
3646 | float_raise(float_flag_output_denormal STATUS_VAR); | |
3647 | } | |
3648 | return packFloat64(zSign, 0, 0); | |
3649 | } | |
fe76d976 PB |
3650 | return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); |
3651 | } | |
158142c2 FB |
3652 | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; |
3653 | zExp = aExp; | |
3654 | goto roundAndPack; | |
3655 | } | |
3656 | aSig |= LIT64( 0x2000000000000000 ); | |
3657 | zSig = ( aSig + bSig )<<1; | |
3658 | --zExp; | |
bb98fe42 | 3659 | if ( (int64_t) zSig < 0 ) { |
158142c2 FB |
3660 | zSig = aSig + bSig; |
3661 | ++zExp; | |
3662 | } | |
3663 | roundAndPack: | |
3664 | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
3665 | ||
3666 | } | |
3667 | ||
3668 | /*---------------------------------------------------------------------------- | |
3669 | | Returns the result of subtracting the absolute values of the double- | |
3670 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
3671 | | difference is negated before being returned. `zSign' is ignored if the | |
3672 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
3673 | | Standard for Binary Floating-Point Arithmetic. | |
3674 | *----------------------------------------------------------------------------*/ | |
3675 | ||
3676 | static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) | |
3677 | { | |
94a49d86 | 3678 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 3679 | uint64_t aSig, bSig, zSig; |
94a49d86 | 3680 | int_fast16_t expDiff; |
158142c2 FB |
3681 | |
3682 | aSig = extractFloat64Frac( a ); | |
3683 | aExp = extractFloat64Exp( a ); | |
3684 | bSig = extractFloat64Frac( b ); | |
3685 | bExp = extractFloat64Exp( b ); | |
3686 | expDiff = aExp - bExp; | |
3687 | aSig <<= 10; | |
3688 | bSig <<= 10; | |
3689 | if ( 0 < expDiff ) goto aExpBigger; | |
3690 | if ( expDiff < 0 ) goto bExpBigger; | |
3691 | if ( aExp == 0x7FF ) { | |
3692 | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3693 | float_raise( float_flag_invalid STATUS_VAR); | |
3694 | return float64_default_nan; | |
3695 | } | |
3696 | if ( aExp == 0 ) { | |
3697 | aExp = 1; | |
3698 | bExp = 1; | |
3699 | } | |
3700 | if ( bSig < aSig ) goto aBigger; | |
3701 | if ( aSig < bSig ) goto bBigger; | |
3702 | return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
3703 | bExpBigger: | |
3704 | if ( bExp == 0x7FF ) { | |
3705 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3706 | return packFloat64( zSign ^ 1, 0x7FF, 0 ); | |
3707 | } | |
3708 | if ( aExp == 0 ) { | |
3709 | ++expDiff; | |
3710 | } | |
3711 | else { | |
3712 | aSig |= LIT64( 0x4000000000000000 ); | |
3713 | } | |
3714 | shift64RightJamming( aSig, - expDiff, &aSig ); | |
3715 | bSig |= LIT64( 0x4000000000000000 ); | |
3716 | bBigger: | |
3717 | zSig = bSig - aSig; | |
3718 | zExp = bExp; | |
3719 | zSign ^= 1; | |
3720 | goto normalizeRoundAndPack; | |
3721 | aExpBigger: | |
3722 | if ( aExp == 0x7FF ) { | |
3723 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3724 | return a; | |
3725 | } | |
3726 | if ( bExp == 0 ) { | |
3727 | --expDiff; | |
3728 | } | |
3729 | else { | |
3730 | bSig |= LIT64( 0x4000000000000000 ); | |
3731 | } | |
3732 | shift64RightJamming( bSig, expDiff, &bSig ); | |
3733 | aSig |= LIT64( 0x4000000000000000 ); | |
3734 | aBigger: | |
3735 | zSig = aSig - bSig; | |
3736 | zExp = aExp; | |
3737 | normalizeRoundAndPack: | |
3738 | --zExp; | |
3739 | return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
3740 | ||
3741 | } | |
3742 | ||
3743 | /*---------------------------------------------------------------------------- | |
3744 | | Returns the result of adding the double-precision floating-point values `a' | |
3745 | | and `b'. The operation is performed according to the IEC/IEEE Standard for | |
3746 | | Binary Floating-Point Arithmetic. | |
3747 | *----------------------------------------------------------------------------*/ | |
3748 | ||
3749 | float64 float64_add( float64 a, float64 b STATUS_PARAM ) | |
3750 | { | |
3751 | flag aSign, bSign; | |
37d18660 PM |
3752 | a = float64_squash_input_denormal(a STATUS_VAR); |
3753 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
3754 | |
3755 | aSign = extractFloat64Sign( a ); | |
3756 | bSign = extractFloat64Sign( b ); | |
3757 | if ( aSign == bSign ) { | |
3758 | return addFloat64Sigs( a, b, aSign STATUS_VAR ); | |
3759 | } | |
3760 | else { | |
3761 | return subFloat64Sigs( a, b, aSign STATUS_VAR ); | |
3762 | } | |
3763 | ||
3764 | } | |
3765 | ||
3766 | /*---------------------------------------------------------------------------- | |
3767 | | Returns the result of subtracting the double-precision floating-point values | |
3768 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
3769 | | for Binary Floating-Point Arithmetic. | |
3770 | *----------------------------------------------------------------------------*/ | |
3771 | ||
3772 | float64 float64_sub( float64 a, float64 b STATUS_PARAM ) | |
3773 | { | |
3774 | flag aSign, bSign; | |
37d18660 PM |
3775 | a = float64_squash_input_denormal(a STATUS_VAR); |
3776 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
3777 | |
3778 | aSign = extractFloat64Sign( a ); | |
3779 | bSign = extractFloat64Sign( b ); | |
3780 | if ( aSign == bSign ) { | |
3781 | return subFloat64Sigs( a, b, aSign STATUS_VAR ); | |
3782 | } | |
3783 | else { | |
3784 | return addFloat64Sigs( a, b, aSign STATUS_VAR ); | |
3785 | } | |
3786 | ||
3787 | } | |
3788 | ||
3789 | /*---------------------------------------------------------------------------- | |
3790 | | Returns the result of multiplying the double-precision floating-point values | |
3791 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
3792 | | for Binary Floating-Point Arithmetic. | |
3793 | *----------------------------------------------------------------------------*/ | |
3794 | ||
3795 | float64 float64_mul( float64 a, float64 b STATUS_PARAM ) | |
3796 | { | |
3797 | flag aSign, bSign, zSign; | |
94a49d86 | 3798 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 3799 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 | 3800 | |
37d18660 PM |
3801 | a = float64_squash_input_denormal(a STATUS_VAR); |
3802 | b = float64_squash_input_denormal(b STATUS_VAR); | |
3803 | ||
158142c2 FB |
3804 | aSig = extractFloat64Frac( a ); |
3805 | aExp = extractFloat64Exp( a ); | |
3806 | aSign = extractFloat64Sign( a ); | |
3807 | bSig = extractFloat64Frac( b ); | |
3808 | bExp = extractFloat64Exp( b ); | |
3809 | bSign = extractFloat64Sign( b ); | |
3810 | zSign = aSign ^ bSign; | |
3811 | if ( aExp == 0x7FF ) { | |
3812 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
3813 | return propagateFloat64NaN( a, b STATUS_VAR ); | |
3814 | } | |
3815 | if ( ( bExp | bSig ) == 0 ) { | |
3816 | float_raise( float_flag_invalid STATUS_VAR); | |
3817 | return float64_default_nan; | |
3818 | } | |
3819 | return packFloat64( zSign, 0x7FF, 0 ); | |
3820 | } | |
3821 | if ( bExp == 0x7FF ) { | |
3822 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3823 | if ( ( aExp | aSig ) == 0 ) { | |
3824 | float_raise( float_flag_invalid STATUS_VAR); | |
3825 | return float64_default_nan; | |
3826 | } | |
3827 | return packFloat64( zSign, 0x7FF, 0 ); | |
3828 | } | |
3829 | if ( aExp == 0 ) { | |
3830 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
3831 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3832 | } | |
3833 | if ( bExp == 0 ) { | |
3834 | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
3835 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
3836 | } | |
3837 | zExp = aExp + bExp - 0x3FF; | |
3838 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
3839 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
3840 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
3841 | zSig0 |= ( zSig1 != 0 ); | |
bb98fe42 | 3842 | if ( 0 <= (int64_t) ( zSig0<<1 ) ) { |
158142c2 FB |
3843 | zSig0 <<= 1; |
3844 | --zExp; | |
3845 | } | |
3846 | return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR ); | |
3847 | ||
3848 | } | |
3849 | ||
3850 | /*---------------------------------------------------------------------------- | |
3851 | | Returns the result of dividing the double-precision floating-point value `a' | |
3852 | | by the corresponding value `b'. The operation is performed according to | |
3853 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3854 | *----------------------------------------------------------------------------*/ | |
3855 | ||
3856 | float64 float64_div( float64 a, float64 b STATUS_PARAM ) | |
3857 | { | |
3858 | flag aSign, bSign, zSign; | |
94a49d86 | 3859 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 AF |
3860 | uint64_t aSig, bSig, zSig; |
3861 | uint64_t rem0, rem1; | |
3862 | uint64_t term0, term1; | |
37d18660 PM |
3863 | a = float64_squash_input_denormal(a STATUS_VAR); |
3864 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
3865 | |
3866 | aSig = extractFloat64Frac( a ); | |
3867 | aExp = extractFloat64Exp( a ); | |
3868 | aSign = extractFloat64Sign( a ); | |
3869 | bSig = extractFloat64Frac( b ); | |
3870 | bExp = extractFloat64Exp( b ); | |
3871 | bSign = extractFloat64Sign( b ); | |
3872 | zSign = aSign ^ bSign; | |
3873 | if ( aExp == 0x7FF ) { | |
3874 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3875 | if ( bExp == 0x7FF ) { | |
3876 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3877 | float_raise( float_flag_invalid STATUS_VAR); | |
3878 | return float64_default_nan; | |
3879 | } | |
3880 | return packFloat64( zSign, 0x7FF, 0 ); | |
3881 | } | |
3882 | if ( bExp == 0x7FF ) { | |
3883 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3884 | return packFloat64( zSign, 0, 0 ); | |
3885 | } | |
3886 | if ( bExp == 0 ) { | |
3887 | if ( bSig == 0 ) { | |
3888 | if ( ( aExp | aSig ) == 0 ) { | |
3889 | float_raise( float_flag_invalid STATUS_VAR); | |
3890 | return float64_default_nan; | |
3891 | } | |
3892 | float_raise( float_flag_divbyzero STATUS_VAR); | |
3893 | return packFloat64( zSign, 0x7FF, 0 ); | |
3894 | } | |
3895 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
3896 | } | |
3897 | if ( aExp == 0 ) { | |
3898 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
3899 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3900 | } | |
3901 | zExp = aExp - bExp + 0x3FD; | |
3902 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
3903 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
3904 | if ( bSig <= ( aSig + aSig ) ) { | |
3905 | aSig >>= 1; | |
3906 | ++zExp; | |
3907 | } | |
3908 | zSig = estimateDiv128To64( aSig, 0, bSig ); | |
3909 | if ( ( zSig & 0x1FF ) <= 2 ) { | |
3910 | mul64To128( bSig, zSig, &term0, &term1 ); | |
3911 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 3912 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
3913 | --zSig; |
3914 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
3915 | } | |
3916 | zSig |= ( rem1 != 0 ); | |
3917 | } | |
3918 | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
3919 | ||
3920 | } | |
3921 | ||
3922 | /*---------------------------------------------------------------------------- | |
3923 | | Returns the remainder of the double-precision floating-point value `a' | |
3924 | | with respect to the corresponding value `b'. The operation is performed | |
3925 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3926 | *----------------------------------------------------------------------------*/ | |
3927 | ||
3928 | float64 float64_rem( float64 a, float64 b STATUS_PARAM ) | |
3929 | { | |
ed086f3d | 3930 | flag aSign, zSign; |
94a49d86 | 3931 | int_fast16_t aExp, bExp, expDiff; |
bb98fe42 AF |
3932 | uint64_t aSig, bSig; |
3933 | uint64_t q, alternateASig; | |
3934 | int64_t sigMean; | |
158142c2 | 3935 | |
37d18660 PM |
3936 | a = float64_squash_input_denormal(a STATUS_VAR); |
3937 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
3938 | aSig = extractFloat64Frac( a ); |
3939 | aExp = extractFloat64Exp( a ); | |
3940 | aSign = extractFloat64Sign( a ); | |
3941 | bSig = extractFloat64Frac( b ); | |
3942 | bExp = extractFloat64Exp( b ); | |
158142c2 FB |
3943 | if ( aExp == 0x7FF ) { |
3944 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
3945 | return propagateFloat64NaN( a, b STATUS_VAR ); | |
3946 | } | |
3947 | float_raise( float_flag_invalid STATUS_VAR); | |
3948 | return float64_default_nan; | |
3949 | } | |
3950 | if ( bExp == 0x7FF ) { | |
3951 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3952 | return a; | |
3953 | } | |
3954 | if ( bExp == 0 ) { | |
3955 | if ( bSig == 0 ) { | |
3956 | float_raise( float_flag_invalid STATUS_VAR); | |
3957 | return float64_default_nan; | |
3958 | } | |
3959 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
3960 | } | |
3961 | if ( aExp == 0 ) { | |
3962 | if ( aSig == 0 ) return a; | |
3963 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3964 | } | |
3965 | expDiff = aExp - bExp; | |
3966 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | |
3967 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
3968 | if ( expDiff < 0 ) { | |
3969 | if ( expDiff < -1 ) return a; | |
3970 | aSig >>= 1; | |
3971 | } | |
3972 | q = ( bSig <= aSig ); | |
3973 | if ( q ) aSig -= bSig; | |
3974 | expDiff -= 64; | |
3975 | while ( 0 < expDiff ) { | |
3976 | q = estimateDiv128To64( aSig, 0, bSig ); | |
3977 | q = ( 2 < q ) ? q - 2 : 0; | |
3978 | aSig = - ( ( bSig>>2 ) * q ); | |
3979 | expDiff -= 62; | |
3980 | } | |
3981 | expDiff += 64; | |
3982 | if ( 0 < expDiff ) { | |
3983 | q = estimateDiv128To64( aSig, 0, bSig ); | |
3984 | q = ( 2 < q ) ? q - 2 : 0; | |
3985 | q >>= 64 - expDiff; | |
3986 | bSig >>= 2; | |
3987 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
3988 | } | |
3989 | else { | |
3990 | aSig >>= 2; | |
3991 | bSig >>= 2; | |
3992 | } | |
3993 | do { | |
3994 | alternateASig = aSig; | |
3995 | ++q; | |
3996 | aSig -= bSig; | |
bb98fe42 | 3997 | } while ( 0 <= (int64_t) aSig ); |
158142c2 FB |
3998 | sigMean = aSig + alternateASig; |
3999 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
4000 | aSig = alternateASig; | |
4001 | } | |
bb98fe42 | 4002 | zSign = ( (int64_t) aSig < 0 ); |
158142c2 FB |
4003 | if ( zSign ) aSig = - aSig; |
4004 | return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR ); | |
4005 | ||
4006 | } | |
4007 | ||
369be8f6 PM |
4008 | /*---------------------------------------------------------------------------- |
4009 | | Returns the result of multiplying the double-precision floating-point values | |
4010 | | `a' and `b' then adding 'c', with no intermediate rounding step after the | |
4011 | | multiplication. The operation is performed according to the IEC/IEEE | |
4012 | | Standard for Binary Floating-Point Arithmetic 754-2008. | |
4013 | | The flags argument allows the caller to select negation of the | |
4014 | | addend, the intermediate product, or the final result. (The difference | |
4015 | | between this and having the caller do a separate negation is that negating | |
4016 | | externally will flip the sign bit on NaNs.) | |
4017 | *----------------------------------------------------------------------------*/ | |
4018 | ||
4019 | float64 float64_muladd(float64 a, float64 b, float64 c, int flags STATUS_PARAM) | |
4020 | { | |
4021 | flag aSign, bSign, cSign, zSign; | |
94a49d86 | 4022 | int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff; |
369be8f6 PM |
4023 | uint64_t aSig, bSig, cSig; |
4024 | flag pInf, pZero, pSign; | |
4025 | uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1; | |
4026 | int shiftcount; | |
4027 | flag signflip, infzero; | |
4028 | ||
4029 | a = float64_squash_input_denormal(a STATUS_VAR); | |
4030 | b = float64_squash_input_denormal(b STATUS_VAR); | |
4031 | c = float64_squash_input_denormal(c STATUS_VAR); | |
4032 | aSig = extractFloat64Frac(a); | |
4033 | aExp = extractFloat64Exp(a); | |
4034 | aSign = extractFloat64Sign(a); | |
4035 | bSig = extractFloat64Frac(b); | |
4036 | bExp = extractFloat64Exp(b); | |
4037 | bSign = extractFloat64Sign(b); | |
4038 | cSig = extractFloat64Frac(c); | |
4039 | cExp = extractFloat64Exp(c); | |
4040 | cSign = extractFloat64Sign(c); | |
4041 | ||
4042 | infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) || | |
4043 | (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0)); | |
4044 | ||
4045 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
4046 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
4047 | * they return if they do), so we have to hand this information | |
4048 | * off to the target-specific pick-a-NaN routine. | |
4049 | */ | |
4050 | if (((aExp == 0x7ff) && aSig) || | |
4051 | ((bExp == 0x7ff) && bSig) || | |
4052 | ((cExp == 0x7ff) && cSig)) { | |
4053 | return propagateFloat64MulAddNaN(a, b, c, infzero STATUS_VAR); | |
4054 | } | |
4055 | ||
4056 | if (infzero) { | |
4057 | float_raise(float_flag_invalid STATUS_VAR); | |
4058 | return float64_default_nan; | |
4059 | } | |
4060 | ||
4061 | if (flags & float_muladd_negate_c) { | |
4062 | cSign ^= 1; | |
4063 | } | |
4064 | ||
4065 | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | |
4066 | ||
4067 | /* Work out the sign and type of the product */ | |
4068 | pSign = aSign ^ bSign; | |
4069 | if (flags & float_muladd_negate_product) { | |
4070 | pSign ^= 1; | |
4071 | } | |
4072 | pInf = (aExp == 0x7ff) || (bExp == 0x7ff); | |
4073 | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | |
4074 | ||
4075 | if (cExp == 0x7ff) { | |
4076 | if (pInf && (pSign ^ cSign)) { | |
4077 | /* addition of opposite-signed infinities => InvalidOperation */ | |
4078 | float_raise(float_flag_invalid STATUS_VAR); | |
4079 | return float64_default_nan; | |
4080 | } | |
4081 | /* Otherwise generate an infinity of the same sign */ | |
4082 | return packFloat64(cSign ^ signflip, 0x7ff, 0); | |
4083 | } | |
4084 | ||
4085 | if (pInf) { | |
4086 | return packFloat64(pSign ^ signflip, 0x7ff, 0); | |
4087 | } | |
4088 | ||
4089 | if (pZero) { | |
4090 | if (cExp == 0) { | |
4091 | if (cSig == 0) { | |
4092 | /* Adding two exact zeroes */ | |
4093 | if (pSign == cSign) { | |
4094 | zSign = pSign; | |
4095 | } else if (STATUS(float_rounding_mode) == float_round_down) { | |
4096 | zSign = 1; | |
4097 | } else { | |
4098 | zSign = 0; | |
4099 | } | |
4100 | return packFloat64(zSign ^ signflip, 0, 0); | |
4101 | } | |
4102 | /* Exact zero plus a denorm */ | |
4103 | if (STATUS(flush_to_zero)) { | |
4104 | float_raise(float_flag_output_denormal STATUS_VAR); | |
4105 | return packFloat64(cSign ^ signflip, 0, 0); | |
4106 | } | |
4107 | } | |
4108 | /* Zero plus something non-zero : just return the something */ | |
67d43538 PM |
4109 | if (flags & float_muladd_halve_result) { |
4110 | if (cExp == 0) { | |
4111 | normalizeFloat64Subnormal(cSig, &cExp, &cSig); | |
4112 | } | |
4113 | /* Subtract one to halve, and one again because roundAndPackFloat64 | |
4114 | * wants one less than the true exponent. | |
4115 | */ | |
4116 | cExp -= 2; | |
4117 | cSig = (cSig | 0x0010000000000000ULL) << 10; | |
4118 | return roundAndPackFloat64(cSign ^ signflip, cExp, cSig STATUS_VAR); | |
4119 | } | |
a6e7c184 | 4120 | return packFloat64(cSign ^ signflip, cExp, cSig); |
369be8f6 PM |
4121 | } |
4122 | ||
4123 | if (aExp == 0) { | |
4124 | normalizeFloat64Subnormal(aSig, &aExp, &aSig); | |
4125 | } | |
4126 | if (bExp == 0) { | |
4127 | normalizeFloat64Subnormal(bSig, &bExp, &bSig); | |
4128 | } | |
4129 | ||
4130 | /* Calculate the actual result a * b + c */ | |
4131 | ||
4132 | /* Multiply first; this is easy. */ | |
4133 | /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff | |
4134 | * because we want the true exponent, not the "one-less-than" | |
4135 | * flavour that roundAndPackFloat64() takes. | |
4136 | */ | |
4137 | pExp = aExp + bExp - 0x3fe; | |
4138 | aSig = (aSig | LIT64(0x0010000000000000))<<10; | |
4139 | bSig = (bSig | LIT64(0x0010000000000000))<<11; | |
4140 | mul64To128(aSig, bSig, &pSig0, &pSig1); | |
4141 | if ((int64_t)(pSig0 << 1) >= 0) { | |
4142 | shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1); | |
4143 | pExp--; | |
4144 | } | |
4145 | ||
4146 | zSign = pSign ^ signflip; | |
4147 | ||
4148 | /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit | |
4149 | * bit in position 126. | |
4150 | */ | |
4151 | if (cExp == 0) { | |
4152 | if (!cSig) { | |
4153 | /* Throw out the special case of c being an exact zero now */ | |
4154 | shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1); | |
67d43538 PM |
4155 | if (flags & float_muladd_halve_result) { |
4156 | pExp--; | |
4157 | } | |
369be8f6 PM |
4158 | return roundAndPackFloat64(zSign, pExp - 1, |
4159 | pSig1 STATUS_VAR); | |
4160 | } | |
4161 | normalizeFloat64Subnormal(cSig, &cExp, &cSig); | |
4162 | } | |
4163 | ||
4164 | /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the | |
4165 | * significand of the addend, with the explicit bit in position 126. | |
4166 | */ | |
4167 | cSig0 = cSig << (126 - 64 - 52); | |
4168 | cSig1 = 0; | |
4169 | cSig0 |= LIT64(0x4000000000000000); | |
4170 | expDiff = pExp - cExp; | |
4171 | ||
4172 | if (pSign == cSign) { | |
4173 | /* Addition */ | |
4174 | if (expDiff > 0) { | |
4175 | /* scale c to match p */ | |
4176 | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | |
4177 | zExp = pExp; | |
4178 | } else if (expDiff < 0) { | |
4179 | /* scale p to match c */ | |
4180 | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | |
4181 | zExp = cExp; | |
4182 | } else { | |
4183 | /* no scaling needed */ | |
4184 | zExp = cExp; | |
4185 | } | |
4186 | /* Add significands and make sure explicit bit ends up in posn 126 */ | |
4187 | add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4188 | if ((int64_t)zSig0 < 0) { | |
4189 | shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1); | |
4190 | } else { | |
4191 | zExp--; | |
4192 | } | |
4193 | shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1); | |
67d43538 PM |
4194 | if (flags & float_muladd_halve_result) { |
4195 | zExp--; | |
4196 | } | |
369be8f6 PM |
4197 | return roundAndPackFloat64(zSign, zExp, zSig1 STATUS_VAR); |
4198 | } else { | |
4199 | /* Subtraction */ | |
4200 | if (expDiff > 0) { | |
4201 | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | |
4202 | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4203 | zExp = pExp; | |
4204 | } else if (expDiff < 0) { | |
4205 | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | |
4206 | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | |
4207 | zExp = cExp; | |
4208 | zSign ^= 1; | |
4209 | } else { | |
4210 | zExp = pExp; | |
4211 | if (lt128(cSig0, cSig1, pSig0, pSig1)) { | |
4212 | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4213 | } else if (lt128(pSig0, pSig1, cSig0, cSig1)) { | |
4214 | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | |
4215 | zSign ^= 1; | |
4216 | } else { | |
4217 | /* Exact zero */ | |
4218 | zSign = signflip; | |
4219 | if (STATUS(float_rounding_mode) == float_round_down) { | |
4220 | zSign ^= 1; | |
4221 | } | |
4222 | return packFloat64(zSign, 0, 0); | |
4223 | } | |
4224 | } | |
4225 | --zExp; | |
4226 | /* Do the equivalent of normalizeRoundAndPackFloat64() but | |
4227 | * starting with the significand in a pair of uint64_t. | |
4228 | */ | |
4229 | if (zSig0) { | |
4230 | shiftcount = countLeadingZeros64(zSig0) - 1; | |
4231 | shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1); | |
4232 | if (zSig1) { | |
4233 | zSig0 |= 1; | |
4234 | } | |
4235 | zExp -= shiftcount; | |
4236 | } else { | |
e3d142d0 PM |
4237 | shiftcount = countLeadingZeros64(zSig1); |
4238 | if (shiftcount == 0) { | |
4239 | zSig0 = (zSig1 >> 1) | (zSig1 & 1); | |
4240 | zExp -= 63; | |
4241 | } else { | |
4242 | shiftcount--; | |
4243 | zSig0 = zSig1 << shiftcount; | |
4244 | zExp -= (shiftcount + 64); | |
4245 | } | |
369be8f6 | 4246 | } |
67d43538 PM |
4247 | if (flags & float_muladd_halve_result) { |
4248 | zExp--; | |
4249 | } | |
369be8f6 PM |
4250 | return roundAndPackFloat64(zSign, zExp, zSig0 STATUS_VAR); |
4251 | } | |
4252 | } | |
4253 | ||
158142c2 FB |
4254 | /*---------------------------------------------------------------------------- |
4255 | | Returns the square root of the double-precision floating-point value `a'. | |
4256 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
4257 | | Floating-Point Arithmetic. | |
4258 | *----------------------------------------------------------------------------*/ | |
4259 | ||
4260 | float64 float64_sqrt( float64 a STATUS_PARAM ) | |
4261 | { | |
4262 | flag aSign; | |
94a49d86 | 4263 | int_fast16_t aExp, zExp; |
bb98fe42 AF |
4264 | uint64_t aSig, zSig, doubleZSig; |
4265 | uint64_t rem0, rem1, term0, term1; | |
37d18660 | 4266 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
4267 | |
4268 | aSig = extractFloat64Frac( a ); | |
4269 | aExp = extractFloat64Exp( a ); | |
4270 | aSign = extractFloat64Sign( a ); | |
4271 | if ( aExp == 0x7FF ) { | |
4272 | if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR ); | |
4273 | if ( ! aSign ) return a; | |
4274 | float_raise( float_flag_invalid STATUS_VAR); | |
4275 | return float64_default_nan; | |
4276 | } | |
4277 | if ( aSign ) { | |
4278 | if ( ( aExp | aSig ) == 0 ) return a; | |
4279 | float_raise( float_flag_invalid STATUS_VAR); | |
4280 | return float64_default_nan; | |
4281 | } | |
4282 | if ( aExp == 0 ) { | |
f090c9d4 | 4283 | if ( aSig == 0 ) return float64_zero; |
158142c2 FB |
4284 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
4285 | } | |
4286 | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | |
4287 | aSig |= LIT64( 0x0010000000000000 ); | |
4288 | zSig = estimateSqrt32( aExp, aSig>>21 ); | |
4289 | aSig <<= 9 - ( aExp & 1 ); | |
4290 | zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); | |
4291 | if ( ( zSig & 0x1FF ) <= 5 ) { | |
4292 | doubleZSig = zSig<<1; | |
4293 | mul64To128( zSig, zSig, &term0, &term1 ); | |
4294 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 4295 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
4296 | --zSig; |
4297 | doubleZSig -= 2; | |
4298 | add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); | |
4299 | } | |
4300 | zSig |= ( ( rem0 | rem1 ) != 0 ); | |
4301 | } | |
4302 | return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR ); | |
4303 | ||
4304 | } | |
4305 | ||
374dfc33 AJ |
4306 | /*---------------------------------------------------------------------------- |
4307 | | Returns the binary log of the double-precision floating-point value `a'. | |
4308 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
4309 | | Floating-Point Arithmetic. | |
4310 | *----------------------------------------------------------------------------*/ | |
4311 | float64 float64_log2( float64 a STATUS_PARAM ) | |
4312 | { | |
4313 | flag aSign, zSign; | |
94a49d86 | 4314 | int_fast16_t aExp; |
bb98fe42 | 4315 | uint64_t aSig, aSig0, aSig1, zSig, i; |
37d18660 | 4316 | a = float64_squash_input_denormal(a STATUS_VAR); |
374dfc33 AJ |
4317 | |
4318 | aSig = extractFloat64Frac( a ); | |
4319 | aExp = extractFloat64Exp( a ); | |
4320 | aSign = extractFloat64Sign( a ); | |
4321 | ||
4322 | if ( aExp == 0 ) { | |
4323 | if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); | |
4324 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4325 | } | |
4326 | if ( aSign ) { | |
4327 | float_raise( float_flag_invalid STATUS_VAR); | |
4328 | return float64_default_nan; | |
4329 | } | |
4330 | if ( aExp == 0x7FF ) { | |
4331 | if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR ); | |
4332 | return a; | |
4333 | } | |
4334 | ||
4335 | aExp -= 0x3FF; | |
4336 | aSig |= LIT64( 0x0010000000000000 ); | |
4337 | zSign = aExp < 0; | |
bb98fe42 | 4338 | zSig = (uint64_t)aExp << 52; |
374dfc33 AJ |
4339 | for (i = 1LL << 51; i > 0; i >>= 1) { |
4340 | mul64To128( aSig, aSig, &aSig0, &aSig1 ); | |
4341 | aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); | |
4342 | if ( aSig & LIT64( 0x0020000000000000 ) ) { | |
4343 | aSig >>= 1; | |
4344 | zSig |= i; | |
4345 | } | |
4346 | } | |
4347 | ||
4348 | if ( zSign ) | |
4349 | zSig = -zSig; | |
4350 | return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR ); | |
4351 | } | |
4352 | ||
158142c2 FB |
4353 | /*---------------------------------------------------------------------------- |
4354 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
b689362d AJ |
4355 | | corresponding value `b', and 0 otherwise. The invalid exception is raised |
4356 | | if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
4357 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
4358 | *----------------------------------------------------------------------------*/ | |
4359 | ||
b689362d | 4360 | int float64_eq( float64 a, float64 b STATUS_PARAM ) |
158142c2 | 4361 | { |
bb98fe42 | 4362 | uint64_t av, bv; |
37d18660 PM |
4363 | a = float64_squash_input_denormal(a STATUS_VAR); |
4364 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4365 | |
4366 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4367 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4368 | ) { | |
b689362d | 4369 | float_raise( float_flag_invalid STATUS_VAR); |
158142c2 FB |
4370 | return 0; |
4371 | } | |
f090c9d4 | 4372 | av = float64_val(a); |
a1b91bb4 | 4373 | bv = float64_val(b); |
bb98fe42 | 4374 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4375 | |
4376 | } | |
4377 | ||
4378 | /*---------------------------------------------------------------------------- | |
4379 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
f5a64251 AJ |
4380 | | equal to the corresponding value `b', and 0 otherwise. The invalid |
4381 | | exception is raised if either operand is a NaN. The comparison is performed | |
4382 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4383 | *----------------------------------------------------------------------------*/ |
4384 | ||
750afe93 | 4385 | int float64_le( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
4386 | { |
4387 | flag aSign, bSign; | |
bb98fe42 | 4388 | uint64_t av, bv; |
37d18660 PM |
4389 | a = float64_squash_input_denormal(a STATUS_VAR); |
4390 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4391 | |
4392 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4393 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4394 | ) { | |
4395 | float_raise( float_flag_invalid STATUS_VAR); | |
4396 | return 0; | |
4397 | } | |
4398 | aSign = extractFloat64Sign( a ); | |
4399 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4400 | av = float64_val(a); |
a1b91bb4 | 4401 | bv = float64_val(b); |
bb98fe42 | 4402 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4403 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4404 | |
4405 | } | |
4406 | ||
4407 | /*---------------------------------------------------------------------------- | |
4408 | | Returns 1 if the double-precision floating-point value `a' is less than | |
f5a64251 AJ |
4409 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
4410 | | raised if either operand is a NaN. The comparison is performed according | |
4411 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4412 | *----------------------------------------------------------------------------*/ |
4413 | ||
750afe93 | 4414 | int float64_lt( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
4415 | { |
4416 | flag aSign, bSign; | |
bb98fe42 | 4417 | uint64_t av, bv; |
158142c2 | 4418 | |
37d18660 PM |
4419 | a = float64_squash_input_denormal(a STATUS_VAR); |
4420 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4421 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
4422 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4423 | ) { | |
4424 | float_raise( float_flag_invalid STATUS_VAR); | |
4425 | return 0; | |
4426 | } | |
4427 | aSign = extractFloat64Sign( a ); | |
4428 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4429 | av = float64_val(a); |
a1b91bb4 | 4430 | bv = float64_val(b); |
bb98fe42 | 4431 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4432 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4433 | |
4434 | } | |
4435 | ||
67b7861d AJ |
4436 | /*---------------------------------------------------------------------------- |
4437 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
4438 | | be compared, and 0 otherwise. The invalid exception is raised if either |
4439 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
4440 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
4441 | *----------------------------------------------------------------------------*/ |
4442 | ||
4443 | int float64_unordered( float64 a, float64 b STATUS_PARAM ) | |
4444 | { | |
4445 | a = float64_squash_input_denormal(a STATUS_VAR); | |
4446 | b = float64_squash_input_denormal(b STATUS_VAR); | |
4447 | ||
4448 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4449 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4450 | ) { | |
4451 | float_raise( float_flag_invalid STATUS_VAR); | |
4452 | return 1; | |
4453 | } | |
4454 | return 0; | |
4455 | } | |
4456 | ||
158142c2 FB |
4457 | /*---------------------------------------------------------------------------- |
4458 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
f5a64251 AJ |
4459 | | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
4460 | | exception.The comparison is performed according to the IEC/IEEE Standard | |
4461 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4462 | *----------------------------------------------------------------------------*/ |
4463 | ||
b689362d | 4464 | int float64_eq_quiet( float64 a, float64 b STATUS_PARAM ) |
158142c2 | 4465 | { |
bb98fe42 | 4466 | uint64_t av, bv; |
37d18660 PM |
4467 | a = float64_squash_input_denormal(a STATUS_VAR); |
4468 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4469 | |
4470 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4471 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4472 | ) { | |
b689362d AJ |
4473 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { |
4474 | float_raise( float_flag_invalid STATUS_VAR); | |
4475 | } | |
158142c2 FB |
4476 | return 0; |
4477 | } | |
f090c9d4 | 4478 | av = float64_val(a); |
a1b91bb4 | 4479 | bv = float64_val(b); |
bb98fe42 | 4480 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4481 | |
4482 | } | |
4483 | ||
4484 | /*---------------------------------------------------------------------------- | |
4485 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
4486 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
4487 | | cause an exception. Otherwise, the comparison is performed according to the | |
4488 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4489 | *----------------------------------------------------------------------------*/ | |
4490 | ||
750afe93 | 4491 | int float64_le_quiet( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
4492 | { |
4493 | flag aSign, bSign; | |
bb98fe42 | 4494 | uint64_t av, bv; |
37d18660 PM |
4495 | a = float64_squash_input_denormal(a STATUS_VAR); |
4496 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4497 | |
4498 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4499 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4500 | ) { | |
4501 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
4502 | float_raise( float_flag_invalid STATUS_VAR); | |
4503 | } | |
4504 | return 0; | |
4505 | } | |
4506 | aSign = extractFloat64Sign( a ); | |
4507 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4508 | av = float64_val(a); |
a1b91bb4 | 4509 | bv = float64_val(b); |
bb98fe42 | 4510 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4511 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4512 | |
4513 | } | |
4514 | ||
4515 | /*---------------------------------------------------------------------------- | |
4516 | | Returns 1 if the double-precision floating-point value `a' is less than | |
4517 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
4518 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
4519 | | Standard for Binary Floating-Point Arithmetic. | |
4520 | *----------------------------------------------------------------------------*/ | |
4521 | ||
750afe93 | 4522 | int float64_lt_quiet( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
4523 | { |
4524 | flag aSign, bSign; | |
bb98fe42 | 4525 | uint64_t av, bv; |
37d18660 PM |
4526 | a = float64_squash_input_denormal(a STATUS_VAR); |
4527 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4528 | |
4529 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4530 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4531 | ) { | |
4532 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
4533 | float_raise( float_flag_invalid STATUS_VAR); | |
4534 | } | |
4535 | return 0; | |
4536 | } | |
4537 | aSign = extractFloat64Sign( a ); | |
4538 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4539 | av = float64_val(a); |
a1b91bb4 | 4540 | bv = float64_val(b); |
bb98fe42 | 4541 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4542 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4543 | |
4544 | } | |
4545 | ||
67b7861d AJ |
4546 | /*---------------------------------------------------------------------------- |
4547 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
4548 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
4549 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
4550 | | Floating-Point Arithmetic. | |
4551 | *----------------------------------------------------------------------------*/ | |
4552 | ||
4553 | int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM ) | |
4554 | { | |
4555 | a = float64_squash_input_denormal(a STATUS_VAR); | |
4556 | b = float64_squash_input_denormal(b STATUS_VAR); | |
4557 | ||
4558 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4559 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4560 | ) { | |
4561 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
4562 | float_raise( float_flag_invalid STATUS_VAR); | |
4563 | } | |
4564 | return 1; | |
4565 | } | |
4566 | return 0; | |
4567 | } | |
4568 | ||
158142c2 FB |
4569 | /*---------------------------------------------------------------------------- |
4570 | | Returns the result of converting the extended double-precision floating- | |
4571 | | point value `a' to the 32-bit two's complement integer format. The | |
4572 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4573 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4574 | | is rounded according to the current rounding mode. If `a' is a NaN, the | |
4575 | | largest positive integer is returned. Otherwise, if the conversion | |
4576 | | overflows, the largest integer with the same sign as `a' is returned. | |
4577 | *----------------------------------------------------------------------------*/ | |
4578 | ||
4579 | int32 floatx80_to_int32( floatx80 a STATUS_PARAM ) | |
4580 | { | |
4581 | flag aSign; | |
4582 | int32 aExp, shiftCount; | |
bb98fe42 | 4583 | uint64_t aSig; |
158142c2 FB |
4584 | |
4585 | aSig = extractFloatx80Frac( a ); | |
4586 | aExp = extractFloatx80Exp( a ); | |
4587 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 4588 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4589 | shiftCount = 0x4037 - aExp; |
4590 | if ( shiftCount <= 0 ) shiftCount = 1; | |
4591 | shift64RightJamming( aSig, shiftCount, &aSig ); | |
4592 | return roundAndPackInt32( aSign, aSig STATUS_VAR ); | |
4593 | ||
4594 | } | |
4595 | ||
4596 | /*---------------------------------------------------------------------------- | |
4597 | | Returns the result of converting the extended double-precision floating- | |
4598 | | point value `a' to the 32-bit two's complement integer format. The | |
4599 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4600 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4601 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4602 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4603 | | sign as `a' is returned. | |
4604 | *----------------------------------------------------------------------------*/ | |
4605 | ||
4606 | int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM ) | |
4607 | { | |
4608 | flag aSign; | |
4609 | int32 aExp, shiftCount; | |
bb98fe42 | 4610 | uint64_t aSig, savedASig; |
b3a6a2e0 | 4611 | int32_t z; |
158142c2 FB |
4612 | |
4613 | aSig = extractFloatx80Frac( a ); | |
4614 | aExp = extractFloatx80Exp( a ); | |
4615 | aSign = extractFloatx80Sign( a ); | |
4616 | if ( 0x401E < aExp ) { | |
bb98fe42 | 4617 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4618 | goto invalid; |
4619 | } | |
4620 | else if ( aExp < 0x3FFF ) { | |
4621 | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
4622 | return 0; | |
4623 | } | |
4624 | shiftCount = 0x403E - aExp; | |
4625 | savedASig = aSig; | |
4626 | aSig >>= shiftCount; | |
4627 | z = aSig; | |
4628 | if ( aSign ) z = - z; | |
4629 | if ( ( z < 0 ) ^ aSign ) { | |
4630 | invalid: | |
4631 | float_raise( float_flag_invalid STATUS_VAR); | |
bb98fe42 | 4632 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
4633 | } |
4634 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
4635 | STATUS(float_exception_flags) |= float_flag_inexact; | |
4636 | } | |
4637 | return z; | |
4638 | ||
4639 | } | |
4640 | ||
4641 | /*---------------------------------------------------------------------------- | |
4642 | | Returns the result of converting the extended double-precision floating- | |
4643 | | point value `a' to the 64-bit two's complement integer format. The | |
4644 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4645 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4646 | | is rounded according to the current rounding mode. If `a' is a NaN, | |
4647 | | the largest positive integer is returned. Otherwise, if the conversion | |
4648 | | overflows, the largest integer with the same sign as `a' is returned. | |
4649 | *----------------------------------------------------------------------------*/ | |
4650 | ||
4651 | int64 floatx80_to_int64( floatx80 a STATUS_PARAM ) | |
4652 | { | |
4653 | flag aSign; | |
4654 | int32 aExp, shiftCount; | |
bb98fe42 | 4655 | uint64_t aSig, aSigExtra; |
158142c2 FB |
4656 | |
4657 | aSig = extractFloatx80Frac( a ); | |
4658 | aExp = extractFloatx80Exp( a ); | |
4659 | aSign = extractFloatx80Sign( a ); | |
4660 | shiftCount = 0x403E - aExp; | |
4661 | if ( shiftCount <= 0 ) { | |
4662 | if ( shiftCount ) { | |
4663 | float_raise( float_flag_invalid STATUS_VAR); | |
4664 | if ( ! aSign | |
4665 | || ( ( aExp == 0x7FFF ) | |
4666 | && ( aSig != LIT64( 0x8000000000000000 ) ) ) | |
4667 | ) { | |
4668 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4669 | } | |
bb98fe42 | 4670 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4671 | } |
4672 | aSigExtra = 0; | |
4673 | } | |
4674 | else { | |
4675 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
4676 | } | |
4677 | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); | |
4678 | ||
4679 | } | |
4680 | ||
4681 | /*---------------------------------------------------------------------------- | |
4682 | | Returns the result of converting the extended double-precision floating- | |
4683 | | point value `a' to the 64-bit two's complement integer format. The | |
4684 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4685 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4686 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4687 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4688 | | sign as `a' is returned. | |
4689 | *----------------------------------------------------------------------------*/ | |
4690 | ||
4691 | int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM ) | |
4692 | { | |
4693 | flag aSign; | |
4694 | int32 aExp, shiftCount; | |
bb98fe42 | 4695 | uint64_t aSig; |
158142c2 FB |
4696 | int64 z; |
4697 | ||
4698 | aSig = extractFloatx80Frac( a ); | |
4699 | aExp = extractFloatx80Exp( a ); | |
4700 | aSign = extractFloatx80Sign( a ); | |
4701 | shiftCount = aExp - 0x403E; | |
4702 | if ( 0 <= shiftCount ) { | |
4703 | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4704 | if ( ( a.high != 0xC03E ) || aSig ) { | |
4705 | float_raise( float_flag_invalid STATUS_VAR); | |
4706 | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { | |
4707 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4708 | } | |
4709 | } | |
bb98fe42 | 4710 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4711 | } |
4712 | else if ( aExp < 0x3FFF ) { | |
4713 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
4714 | return 0; | |
4715 | } | |
4716 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 4717 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
158142c2 FB |
4718 | STATUS(float_exception_flags) |= float_flag_inexact; |
4719 | } | |
4720 | if ( aSign ) z = - z; | |
4721 | return z; | |
4722 | ||
4723 | } | |
4724 | ||
4725 | /*---------------------------------------------------------------------------- | |
4726 | | Returns the result of converting the extended double-precision floating- | |
4727 | | point value `a' to the single-precision floating-point format. The | |
4728 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4729 | | Floating-Point Arithmetic. | |
4730 | *----------------------------------------------------------------------------*/ | |
4731 | ||
4732 | float32 floatx80_to_float32( floatx80 a STATUS_PARAM ) | |
4733 | { | |
4734 | flag aSign; | |
4735 | int32 aExp; | |
bb98fe42 | 4736 | uint64_t aSig; |
158142c2 FB |
4737 | |
4738 | aSig = extractFloatx80Frac( a ); | |
4739 | aExp = extractFloatx80Exp( a ); | |
4740 | aSign = extractFloatx80Sign( a ); | |
4741 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4742 | if ( (uint64_t) ( aSig<<1 ) ) { |
bcd4d9af | 4743 | return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
4744 | } |
4745 | return packFloat32( aSign, 0xFF, 0 ); | |
4746 | } | |
4747 | shift64RightJamming( aSig, 33, &aSig ); | |
4748 | if ( aExp || aSig ) aExp -= 0x3F81; | |
4749 | return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); | |
4750 | ||
4751 | } | |
4752 | ||
4753 | /*---------------------------------------------------------------------------- | |
4754 | | Returns the result of converting the extended double-precision floating- | |
4755 | | point value `a' to the double-precision floating-point format. The | |
4756 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4757 | | Floating-Point Arithmetic. | |
4758 | *----------------------------------------------------------------------------*/ | |
4759 | ||
4760 | float64 floatx80_to_float64( floatx80 a STATUS_PARAM ) | |
4761 | { | |
4762 | flag aSign; | |
4763 | int32 aExp; | |
bb98fe42 | 4764 | uint64_t aSig, zSig; |
158142c2 FB |
4765 | |
4766 | aSig = extractFloatx80Frac( a ); | |
4767 | aExp = extractFloatx80Exp( a ); | |
4768 | aSign = extractFloatx80Sign( a ); | |
4769 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4770 | if ( (uint64_t) ( aSig<<1 ) ) { |
bcd4d9af | 4771 | return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
4772 | } |
4773 | return packFloat64( aSign, 0x7FF, 0 ); | |
4774 | } | |
4775 | shift64RightJamming( aSig, 1, &zSig ); | |
4776 | if ( aExp || aSig ) aExp -= 0x3C01; | |
4777 | return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR ); | |
4778 | ||
4779 | } | |
4780 | ||
158142c2 FB |
4781 | /*---------------------------------------------------------------------------- |
4782 | | Returns the result of converting the extended double-precision floating- | |
4783 | | point value `a' to the quadruple-precision floating-point format. The | |
4784 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4785 | | Floating-Point Arithmetic. | |
4786 | *----------------------------------------------------------------------------*/ | |
4787 | ||
4788 | float128 floatx80_to_float128( floatx80 a STATUS_PARAM ) | |
4789 | { | |
4790 | flag aSign; | |
94a49d86 | 4791 | int_fast16_t aExp; |
bb98fe42 | 4792 | uint64_t aSig, zSig0, zSig1; |
158142c2 FB |
4793 | |
4794 | aSig = extractFloatx80Frac( a ); | |
4795 | aExp = extractFloatx80Exp( a ); | |
4796 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 4797 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { |
bcd4d9af | 4798 | return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
4799 | } |
4800 | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); | |
4801 | return packFloat128( aSign, aExp, zSig0, zSig1 ); | |
4802 | ||
4803 | } | |
4804 | ||
158142c2 FB |
4805 | /*---------------------------------------------------------------------------- |
4806 | | Rounds the extended double-precision floating-point value `a' to an integer, | |
4807 | | and returns the result as an extended quadruple-precision floating-point | |
4808 | | value. The operation is performed according to the IEC/IEEE Standard for | |
4809 | | Binary Floating-Point Arithmetic. | |
4810 | *----------------------------------------------------------------------------*/ | |
4811 | ||
4812 | floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM ) | |
4813 | { | |
4814 | flag aSign; | |
4815 | int32 aExp; | |
bb98fe42 | 4816 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
4817 | floatx80 z; |
4818 | ||
4819 | aExp = extractFloatx80Exp( a ); | |
4820 | if ( 0x403E <= aExp ) { | |
bb98fe42 | 4821 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { |
158142c2 FB |
4822 | return propagateFloatx80NaN( a, a STATUS_VAR ); |
4823 | } | |
4824 | return a; | |
4825 | } | |
4826 | if ( aExp < 0x3FFF ) { | |
4827 | if ( ( aExp == 0 ) | |
bb98fe42 | 4828 | && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { |
158142c2 FB |
4829 | return a; |
4830 | } | |
4831 | STATUS(float_exception_flags) |= float_flag_inexact; | |
4832 | aSign = extractFloatx80Sign( a ); | |
4833 | switch ( STATUS(float_rounding_mode) ) { | |
4834 | case float_round_nearest_even: | |
bb98fe42 | 4835 | if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) |
158142c2 FB |
4836 | ) { |
4837 | return | |
4838 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
4839 | } | |
4840 | break; | |
f9288a76 PM |
4841 | case float_round_ties_away: |
4842 | if (aExp == 0x3FFE) { | |
4843 | return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000)); | |
4844 | } | |
4845 | break; | |
158142c2 FB |
4846 | case float_round_down: |
4847 | return | |
4848 | aSign ? | |
4849 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | |
4850 | : packFloatx80( 0, 0, 0 ); | |
4851 | case float_round_up: | |
4852 | return | |
4853 | aSign ? packFloatx80( 1, 0, 0 ) | |
4854 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
4855 | } | |
4856 | return packFloatx80( aSign, 0, 0 ); | |
4857 | } | |
4858 | lastBitMask = 1; | |
4859 | lastBitMask <<= 0x403E - aExp; | |
4860 | roundBitsMask = lastBitMask - 1; | |
4861 | z = a; | |
dc355b76 PM |
4862 | switch (STATUS(float_rounding_mode)) { |
4863 | case float_round_nearest_even: | |
158142c2 | 4864 | z.low += lastBitMask>>1; |
dc355b76 PM |
4865 | if ((z.low & roundBitsMask) == 0) { |
4866 | z.low &= ~lastBitMask; | |
4867 | } | |
4868 | break; | |
f9288a76 PM |
4869 | case float_round_ties_away: |
4870 | z.low += lastBitMask >> 1; | |
4871 | break; | |
dc355b76 PM |
4872 | case float_round_to_zero: |
4873 | break; | |
4874 | case float_round_up: | |
4875 | if (!extractFloatx80Sign(z)) { | |
4876 | z.low += roundBitsMask; | |
4877 | } | |
4878 | break; | |
4879 | case float_round_down: | |
4880 | if (extractFloatx80Sign(z)) { | |
158142c2 FB |
4881 | z.low += roundBitsMask; |
4882 | } | |
dc355b76 PM |
4883 | break; |
4884 | default: | |
4885 | abort(); | |
158142c2 FB |
4886 | } |
4887 | z.low &= ~ roundBitsMask; | |
4888 | if ( z.low == 0 ) { | |
4889 | ++z.high; | |
4890 | z.low = LIT64( 0x8000000000000000 ); | |
4891 | } | |
4892 | if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact; | |
4893 | return z; | |
4894 | ||
4895 | } | |
4896 | ||
4897 | /*---------------------------------------------------------------------------- | |
4898 | | Returns the result of adding the absolute values of the extended double- | |
4899 | | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is | |
4900 | | negated before being returned. `zSign' is ignored if the result is a NaN. | |
4901 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
4902 | | Floating-Point Arithmetic. | |
4903 | *----------------------------------------------------------------------------*/ | |
4904 | ||
4905 | static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM) | |
4906 | { | |
4907 | int32 aExp, bExp, zExp; | |
bb98fe42 | 4908 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 FB |
4909 | int32 expDiff; |
4910 | ||
4911 | aSig = extractFloatx80Frac( a ); | |
4912 | aExp = extractFloatx80Exp( a ); | |
4913 | bSig = extractFloatx80Frac( b ); | |
4914 | bExp = extractFloatx80Exp( b ); | |
4915 | expDiff = aExp - bExp; | |
4916 | if ( 0 < expDiff ) { | |
4917 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4918 | if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
4919 | return a; |
4920 | } | |
4921 | if ( bExp == 0 ) --expDiff; | |
4922 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
4923 | zExp = aExp; | |
4924 | } | |
4925 | else if ( expDiff < 0 ) { | |
4926 | if ( bExp == 0x7FFF ) { | |
bb98fe42 | 4927 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
4928 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
4929 | } | |
4930 | if ( aExp == 0 ) ++expDiff; | |
4931 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
4932 | zExp = bExp; | |
4933 | } | |
4934 | else { | |
4935 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4936 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
158142c2 FB |
4937 | return propagateFloatx80NaN( a, b STATUS_VAR ); |
4938 | } | |
4939 | return a; | |
4940 | } | |
4941 | zSig1 = 0; | |
4942 | zSig0 = aSig + bSig; | |
4943 | if ( aExp == 0 ) { | |
4944 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | |
4945 | goto roundAndPack; | |
4946 | } | |
4947 | zExp = aExp; | |
4948 | goto shiftRight1; | |
4949 | } | |
4950 | zSig0 = aSig + bSig; | |
bb98fe42 | 4951 | if ( (int64_t) zSig0 < 0 ) goto roundAndPack; |
158142c2 FB |
4952 | shiftRight1: |
4953 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
4954 | zSig0 |= LIT64( 0x8000000000000000 ); | |
4955 | ++zExp; | |
4956 | roundAndPack: | |
4957 | return | |
4958 | roundAndPackFloatx80( | |
4959 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
4960 | ||
4961 | } | |
4962 | ||
4963 | /*---------------------------------------------------------------------------- | |
4964 | | Returns the result of subtracting the absolute values of the extended | |
4965 | | double-precision floating-point values `a' and `b'. If `zSign' is 1, the | |
4966 | | difference is negated before being returned. `zSign' is ignored if the | |
4967 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
4968 | | Standard for Binary Floating-Point Arithmetic. | |
4969 | *----------------------------------------------------------------------------*/ | |
4970 | ||
4971 | static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM ) | |
4972 | { | |
4973 | int32 aExp, bExp, zExp; | |
bb98fe42 | 4974 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 FB |
4975 | int32 expDiff; |
4976 | floatx80 z; | |
4977 | ||
4978 | aSig = extractFloatx80Frac( a ); | |
4979 | aExp = extractFloatx80Exp( a ); | |
4980 | bSig = extractFloatx80Frac( b ); | |
4981 | bExp = extractFloatx80Exp( b ); | |
4982 | expDiff = aExp - bExp; | |
4983 | if ( 0 < expDiff ) goto aExpBigger; | |
4984 | if ( expDiff < 0 ) goto bExpBigger; | |
4985 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4986 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
158142c2 FB |
4987 | return propagateFloatx80NaN( a, b STATUS_VAR ); |
4988 | } | |
4989 | float_raise( float_flag_invalid STATUS_VAR); | |
4990 | z.low = floatx80_default_nan_low; | |
4991 | z.high = floatx80_default_nan_high; | |
4992 | return z; | |
4993 | } | |
4994 | if ( aExp == 0 ) { | |
4995 | aExp = 1; | |
4996 | bExp = 1; | |
4997 | } | |
4998 | zSig1 = 0; | |
4999 | if ( bSig < aSig ) goto aBigger; | |
5000 | if ( aSig < bSig ) goto bBigger; | |
5001 | return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
5002 | bExpBigger: | |
5003 | if ( bExp == 0x7FFF ) { | |
bb98fe42 | 5004 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
5005 | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
5006 | } | |
5007 | if ( aExp == 0 ) ++expDiff; | |
5008 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
5009 | bBigger: | |
5010 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | |
5011 | zExp = bExp; | |
5012 | zSign ^= 1; | |
5013 | goto normalizeRoundAndPack; | |
5014 | aExpBigger: | |
5015 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5016 | if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
5017 | return a; |
5018 | } | |
5019 | if ( bExp == 0 ) --expDiff; | |
5020 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
5021 | aBigger: | |
5022 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | |
5023 | zExp = aExp; | |
5024 | normalizeRoundAndPack: | |
5025 | return | |
5026 | normalizeRoundAndPackFloatx80( | |
5027 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
5028 | ||
5029 | } | |
5030 | ||
5031 | /*---------------------------------------------------------------------------- | |
5032 | | Returns the result of adding the extended double-precision floating-point | |
5033 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
5034 | | Standard for Binary Floating-Point Arithmetic. | |
5035 | *----------------------------------------------------------------------------*/ | |
5036 | ||
5037 | floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM ) | |
5038 | { | |
5039 | flag aSign, bSign; | |
5040 | ||
5041 | aSign = extractFloatx80Sign( a ); | |
5042 | bSign = extractFloatx80Sign( b ); | |
5043 | if ( aSign == bSign ) { | |
5044 | return addFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
5045 | } | |
5046 | else { | |
5047 | return subFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
5048 | } | |
5049 | ||
5050 | } | |
5051 | ||
5052 | /*---------------------------------------------------------------------------- | |
5053 | | Returns the result of subtracting the extended double-precision floating- | |
5054 | | point values `a' and `b'. The operation is performed according to the | |
5055 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5056 | *----------------------------------------------------------------------------*/ | |
5057 | ||
5058 | floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM ) | |
5059 | { | |
5060 | flag aSign, bSign; | |
5061 | ||
5062 | aSign = extractFloatx80Sign( a ); | |
5063 | bSign = extractFloatx80Sign( b ); | |
5064 | if ( aSign == bSign ) { | |
5065 | return subFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
5066 | } | |
5067 | else { | |
5068 | return addFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
5069 | } | |
5070 | ||
5071 | } | |
5072 | ||
5073 | /*---------------------------------------------------------------------------- | |
5074 | | Returns the result of multiplying the extended double-precision floating- | |
5075 | | point values `a' and `b'. The operation is performed according to the | |
5076 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5077 | *----------------------------------------------------------------------------*/ | |
5078 | ||
5079 | floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM ) | |
5080 | { | |
5081 | flag aSign, bSign, zSign; | |
5082 | int32 aExp, bExp, zExp; | |
bb98fe42 | 5083 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 FB |
5084 | floatx80 z; |
5085 | ||
5086 | aSig = extractFloatx80Frac( a ); | |
5087 | aExp = extractFloatx80Exp( a ); | |
5088 | aSign = extractFloatx80Sign( a ); | |
5089 | bSig = extractFloatx80Frac( b ); | |
5090 | bExp = extractFloatx80Exp( b ); | |
5091 | bSign = extractFloatx80Sign( b ); | |
5092 | zSign = aSign ^ bSign; | |
5093 | if ( aExp == 0x7FFF ) { | |
bb98fe42 AF |
5094 | if ( (uint64_t) ( aSig<<1 ) |
5095 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
158142c2 FB |
5096 | return propagateFloatx80NaN( a, b STATUS_VAR ); |
5097 | } | |
5098 | if ( ( bExp | bSig ) == 0 ) goto invalid; | |
5099 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5100 | } | |
5101 | if ( bExp == 0x7FFF ) { | |
bb98fe42 | 5102 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
5103 | if ( ( aExp | aSig ) == 0 ) { |
5104 | invalid: | |
5105 | float_raise( float_flag_invalid STATUS_VAR); | |
5106 | z.low = floatx80_default_nan_low; | |
5107 | z.high = floatx80_default_nan_high; | |
5108 | return z; | |
5109 | } | |
5110 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5111 | } | |
5112 | if ( aExp == 0 ) { | |
5113 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5114 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
5115 | } | |
5116 | if ( bExp == 0 ) { | |
5117 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5118 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5119 | } | |
5120 | zExp = aExp + bExp - 0x3FFE; | |
5121 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
bb98fe42 | 5122 | if ( 0 < (int64_t) zSig0 ) { |
158142c2 FB |
5123 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
5124 | --zExp; | |
5125 | } | |
5126 | return | |
5127 | roundAndPackFloatx80( | |
5128 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
5129 | ||
5130 | } | |
5131 | ||
5132 | /*---------------------------------------------------------------------------- | |
5133 | | Returns the result of dividing the extended double-precision floating-point | |
5134 | | value `a' by the corresponding value `b'. The operation is performed | |
5135 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5136 | *----------------------------------------------------------------------------*/ | |
5137 | ||
5138 | floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM ) | |
5139 | { | |
5140 | flag aSign, bSign, zSign; | |
5141 | int32 aExp, bExp, zExp; | |
bb98fe42 AF |
5142 | uint64_t aSig, bSig, zSig0, zSig1; |
5143 | uint64_t rem0, rem1, rem2, term0, term1, term2; | |
158142c2 FB |
5144 | floatx80 z; |
5145 | ||
5146 | aSig = extractFloatx80Frac( a ); | |
5147 | aExp = extractFloatx80Exp( a ); | |
5148 | aSign = extractFloatx80Sign( a ); | |
5149 | bSig = extractFloatx80Frac( b ); | |
5150 | bExp = extractFloatx80Exp( b ); | |
5151 | bSign = extractFloatx80Sign( b ); | |
5152 | zSign = aSign ^ bSign; | |
5153 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5154 | if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 | 5155 | if ( bExp == 0x7FFF ) { |
bb98fe42 | 5156 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
5157 | goto invalid; |
5158 | } | |
5159 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5160 | } | |
5161 | if ( bExp == 0x7FFF ) { | |
bb98fe42 | 5162 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
5163 | return packFloatx80( zSign, 0, 0 ); |
5164 | } | |
5165 | if ( bExp == 0 ) { | |
5166 | if ( bSig == 0 ) { | |
5167 | if ( ( aExp | aSig ) == 0 ) { | |
5168 | invalid: | |
5169 | float_raise( float_flag_invalid STATUS_VAR); | |
5170 | z.low = floatx80_default_nan_low; | |
5171 | z.high = floatx80_default_nan_high; | |
5172 | return z; | |
5173 | } | |
5174 | float_raise( float_flag_divbyzero STATUS_VAR); | |
5175 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5176 | } | |
5177 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5178 | } | |
5179 | if ( aExp == 0 ) { | |
5180 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5181 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
5182 | } | |
5183 | zExp = aExp - bExp + 0x3FFE; | |
5184 | rem1 = 0; | |
5185 | if ( bSig <= aSig ) { | |
5186 | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | |
5187 | ++zExp; | |
5188 | } | |
5189 | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | |
5190 | mul64To128( bSig, zSig0, &term0, &term1 ); | |
5191 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 5192 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
5193 | --zSig0; |
5194 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
5195 | } | |
5196 | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | |
bb98fe42 | 5197 | if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { |
158142c2 FB |
5198 | mul64To128( bSig, zSig1, &term1, &term2 ); |
5199 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
bb98fe42 | 5200 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5201 | --zSig1; |
5202 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | |
5203 | } | |
5204 | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | |
5205 | } | |
5206 | return | |
5207 | roundAndPackFloatx80( | |
5208 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
5209 | ||
5210 | } | |
5211 | ||
5212 | /*---------------------------------------------------------------------------- | |
5213 | | Returns the remainder of the extended double-precision floating-point value | |
5214 | | `a' with respect to the corresponding value `b'. The operation is performed | |
5215 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5216 | *----------------------------------------------------------------------------*/ | |
5217 | ||
5218 | floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM ) | |
5219 | { | |
ed086f3d | 5220 | flag aSign, zSign; |
158142c2 | 5221 | int32 aExp, bExp, expDiff; |
bb98fe42 AF |
5222 | uint64_t aSig0, aSig1, bSig; |
5223 | uint64_t q, term0, term1, alternateASig0, alternateASig1; | |
158142c2 FB |
5224 | floatx80 z; |
5225 | ||
5226 | aSig0 = extractFloatx80Frac( a ); | |
5227 | aExp = extractFloatx80Exp( a ); | |
5228 | aSign = extractFloatx80Sign( a ); | |
5229 | bSig = extractFloatx80Frac( b ); | |
5230 | bExp = extractFloatx80Exp( b ); | |
158142c2 | 5231 | if ( aExp == 0x7FFF ) { |
bb98fe42 AF |
5232 | if ( (uint64_t) ( aSig0<<1 ) |
5233 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
158142c2 FB |
5234 | return propagateFloatx80NaN( a, b STATUS_VAR ); |
5235 | } | |
5236 | goto invalid; | |
5237 | } | |
5238 | if ( bExp == 0x7FFF ) { | |
bb98fe42 | 5239 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
5240 | return a; |
5241 | } | |
5242 | if ( bExp == 0 ) { | |
5243 | if ( bSig == 0 ) { | |
5244 | invalid: | |
5245 | float_raise( float_flag_invalid STATUS_VAR); | |
5246 | z.low = floatx80_default_nan_low; | |
5247 | z.high = floatx80_default_nan_high; | |
5248 | return z; | |
5249 | } | |
5250 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5251 | } | |
5252 | if ( aExp == 0 ) { | |
bb98fe42 | 5253 | if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; |
158142c2 FB |
5254 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
5255 | } | |
5256 | bSig |= LIT64( 0x8000000000000000 ); | |
5257 | zSign = aSign; | |
5258 | expDiff = aExp - bExp; | |
5259 | aSig1 = 0; | |
5260 | if ( expDiff < 0 ) { | |
5261 | if ( expDiff < -1 ) return a; | |
5262 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | |
5263 | expDiff = 0; | |
5264 | } | |
5265 | q = ( bSig <= aSig0 ); | |
5266 | if ( q ) aSig0 -= bSig; | |
5267 | expDiff -= 64; | |
5268 | while ( 0 < expDiff ) { | |
5269 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
5270 | q = ( 2 < q ) ? q - 2 : 0; | |
5271 | mul64To128( bSig, q, &term0, &term1 ); | |
5272 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5273 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | |
5274 | expDiff -= 62; | |
5275 | } | |
5276 | expDiff += 64; | |
5277 | if ( 0 < expDiff ) { | |
5278 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
5279 | q = ( 2 < q ) ? q - 2 : 0; | |
5280 | q >>= 64 - expDiff; | |
5281 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | |
5282 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5283 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | |
5284 | while ( le128( term0, term1, aSig0, aSig1 ) ) { | |
5285 | ++q; | |
5286 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5287 | } | |
5288 | } | |
5289 | else { | |
5290 | term1 = 0; | |
5291 | term0 = bSig; | |
5292 | } | |
5293 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | |
5294 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
5295 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
5296 | && ( q & 1 ) ) | |
5297 | ) { | |
5298 | aSig0 = alternateASig0; | |
5299 | aSig1 = alternateASig1; | |
5300 | zSign = ! zSign; | |
5301 | } | |
5302 | return | |
5303 | normalizeRoundAndPackFloatx80( | |
5304 | 80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR ); | |
5305 | ||
5306 | } | |
5307 | ||
5308 | /*---------------------------------------------------------------------------- | |
5309 | | Returns the square root of the extended double-precision floating-point | |
5310 | | value `a'. The operation is performed according to the IEC/IEEE Standard | |
5311 | | for Binary Floating-Point Arithmetic. | |
5312 | *----------------------------------------------------------------------------*/ | |
5313 | ||
5314 | floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM ) | |
5315 | { | |
5316 | flag aSign; | |
5317 | int32 aExp, zExp; | |
bb98fe42 AF |
5318 | uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; |
5319 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
5320 | floatx80 z; |
5321 | ||
5322 | aSig0 = extractFloatx80Frac( a ); | |
5323 | aExp = extractFloatx80Exp( a ); | |
5324 | aSign = extractFloatx80Sign( a ); | |
5325 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5326 | if ( (uint64_t) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR ); |
158142c2 FB |
5327 | if ( ! aSign ) return a; |
5328 | goto invalid; | |
5329 | } | |
5330 | if ( aSign ) { | |
5331 | if ( ( aExp | aSig0 ) == 0 ) return a; | |
5332 | invalid: | |
5333 | float_raise( float_flag_invalid STATUS_VAR); | |
5334 | z.low = floatx80_default_nan_low; | |
5335 | z.high = floatx80_default_nan_high; | |
5336 | return z; | |
5337 | } | |
5338 | if ( aExp == 0 ) { | |
5339 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | |
5340 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
5341 | } | |
5342 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | |
5343 | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | |
5344 | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); | |
5345 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
5346 | doubleZSig0 = zSig0<<1; | |
5347 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
5348 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 5349 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
5350 | --zSig0; |
5351 | doubleZSig0 -= 2; | |
5352 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
5353 | } | |
5354 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
5355 | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { | |
5356 | if ( zSig1 == 0 ) zSig1 = 1; | |
5357 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
5358 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
5359 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
5360 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 5361 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5362 | --zSig1; |
5363 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
5364 | term3 |= 1; | |
5365 | term2 |= doubleZSig0; | |
5366 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
5367 | } | |
5368 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
5369 | } | |
5370 | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); | |
5371 | zSig0 |= doubleZSig0; | |
5372 | return | |
5373 | roundAndPackFloatx80( | |
5374 | STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR ); | |
5375 | ||
5376 | } | |
5377 | ||
5378 | /*---------------------------------------------------------------------------- | |
b689362d AJ |
5379 | | Returns 1 if the extended double-precision floating-point value `a' is equal |
5380 | | to the corresponding value `b', and 0 otherwise. The invalid exception is | |
5381 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
5382 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5383 | *----------------------------------------------------------------------------*/ |
5384 | ||
b689362d | 5385 | int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5386 | { |
5387 | ||
5388 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5389 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5390 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5391 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5392 | ) { |
b689362d | 5393 | float_raise( float_flag_invalid STATUS_VAR); |
158142c2 FB |
5394 | return 0; |
5395 | } | |
5396 | return | |
5397 | ( a.low == b.low ) | |
5398 | && ( ( a.high == b.high ) | |
5399 | || ( ( a.low == 0 ) | |
bb98fe42 | 5400 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5401 | ); |
5402 | ||
5403 | } | |
5404 | ||
5405 | /*---------------------------------------------------------------------------- | |
5406 | | Returns 1 if the extended double-precision floating-point value `a' is | |
5407 | | less than or equal to the corresponding value `b', and 0 otherwise. The | |
f5a64251 AJ |
5408 | | invalid exception is raised if either operand is a NaN. The comparison is |
5409 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5410 | | Arithmetic. | |
158142c2 FB |
5411 | *----------------------------------------------------------------------------*/ |
5412 | ||
750afe93 | 5413 | int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5414 | { |
5415 | flag aSign, bSign; | |
5416 | ||
5417 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5418 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5419 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5420 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 FB |
5421 | ) { |
5422 | float_raise( float_flag_invalid STATUS_VAR); | |
5423 | return 0; | |
5424 | } | |
5425 | aSign = extractFloatx80Sign( a ); | |
5426 | bSign = extractFloatx80Sign( b ); | |
5427 | if ( aSign != bSign ) { | |
5428 | return | |
5429 | aSign | |
bb98fe42 | 5430 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5431 | == 0 ); |
5432 | } | |
5433 | return | |
5434 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5435 | : le128( a.high, a.low, b.high, b.low ); | |
5436 | ||
5437 | } | |
5438 | ||
5439 | /*---------------------------------------------------------------------------- | |
5440 | | Returns 1 if the extended double-precision floating-point value `a' is | |
f5a64251 AJ |
5441 | | less than the corresponding value `b', and 0 otherwise. The invalid |
5442 | | exception is raised if either operand is a NaN. The comparison is performed | |
5443 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5444 | *----------------------------------------------------------------------------*/ |
5445 | ||
750afe93 | 5446 | int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5447 | { |
5448 | flag aSign, bSign; | |
5449 | ||
5450 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5451 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5452 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5453 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 FB |
5454 | ) { |
5455 | float_raise( float_flag_invalid STATUS_VAR); | |
5456 | return 0; | |
5457 | } | |
5458 | aSign = extractFloatx80Sign( a ); | |
5459 | bSign = extractFloatx80Sign( b ); | |
5460 | if ( aSign != bSign ) { | |
5461 | return | |
5462 | aSign | |
bb98fe42 | 5463 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5464 | != 0 ); |
5465 | } | |
5466 | return | |
5467 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5468 | : lt128( a.high, a.low, b.high, b.low ); | |
5469 | ||
5470 | } | |
5471 | ||
67b7861d AJ |
5472 | /*---------------------------------------------------------------------------- |
5473 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
f5a64251 AJ |
5474 | | cannot be compared, and 0 otherwise. The invalid exception is raised if |
5475 | | either operand is a NaN. The comparison is performed according to the | |
5476 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
5477 | *----------------------------------------------------------------------------*/ |
5478 | int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM ) | |
5479 | { | |
5480 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
5481 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | |
5482 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
5483 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | |
5484 | ) { | |
5485 | float_raise( float_flag_invalid STATUS_VAR); | |
5486 | return 1; | |
5487 | } | |
5488 | return 0; | |
5489 | } | |
5490 | ||
158142c2 | 5491 | /*---------------------------------------------------------------------------- |
b689362d | 5492 | | Returns 1 if the extended double-precision floating-point value `a' is |
f5a64251 AJ |
5493 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
5494 | | cause an exception. The comparison is performed according to the IEC/IEEE | |
5495 | | Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5496 | *----------------------------------------------------------------------------*/ |
5497 | ||
b689362d | 5498 | int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5499 | { |
5500 | ||
5501 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5502 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5503 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5504 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5505 | ) { |
b689362d AJ |
5506 | if ( floatx80_is_signaling_nan( a ) |
5507 | || floatx80_is_signaling_nan( b ) ) { | |
5508 | float_raise( float_flag_invalid STATUS_VAR); | |
5509 | } | |
158142c2 FB |
5510 | return 0; |
5511 | } | |
5512 | return | |
5513 | ( a.low == b.low ) | |
5514 | && ( ( a.high == b.high ) | |
5515 | || ( ( a.low == 0 ) | |
bb98fe42 | 5516 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5517 | ); |
5518 | ||
5519 | } | |
5520 | ||
5521 | /*---------------------------------------------------------------------------- | |
5522 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5523 | | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | |
5524 | | do not cause an exception. Otherwise, the comparison is performed according | |
5525 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5526 | *----------------------------------------------------------------------------*/ | |
5527 | ||
750afe93 | 5528 | int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5529 | { |
5530 | flag aSign, bSign; | |
5531 | ||
5532 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5533 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5534 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5535 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 FB |
5536 | ) { |
5537 | if ( floatx80_is_signaling_nan( a ) | |
5538 | || floatx80_is_signaling_nan( b ) ) { | |
5539 | float_raise( float_flag_invalid STATUS_VAR); | |
5540 | } | |
5541 | return 0; | |
5542 | } | |
5543 | aSign = extractFloatx80Sign( a ); | |
5544 | bSign = extractFloatx80Sign( b ); | |
5545 | if ( aSign != bSign ) { | |
5546 | return | |
5547 | aSign | |
bb98fe42 | 5548 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5549 | == 0 ); |
5550 | } | |
5551 | return | |
5552 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5553 | : le128( a.high, a.low, b.high, b.low ); | |
5554 | ||
5555 | } | |
5556 | ||
5557 | /*---------------------------------------------------------------------------- | |
5558 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5559 | | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | |
5560 | | an exception. Otherwise, the comparison is performed according to the | |
5561 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5562 | *----------------------------------------------------------------------------*/ | |
5563 | ||
750afe93 | 5564 | int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5565 | { |
5566 | flag aSign, bSign; | |
5567 | ||
5568 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5569 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5570 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5571 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 FB |
5572 | ) { |
5573 | if ( floatx80_is_signaling_nan( a ) | |
5574 | || floatx80_is_signaling_nan( b ) ) { | |
5575 | float_raise( float_flag_invalid STATUS_VAR); | |
5576 | } | |
5577 | return 0; | |
5578 | } | |
5579 | aSign = extractFloatx80Sign( a ); | |
5580 | bSign = extractFloatx80Sign( b ); | |
5581 | if ( aSign != bSign ) { | |
5582 | return | |
5583 | aSign | |
bb98fe42 | 5584 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5585 | != 0 ); |
5586 | } | |
5587 | return | |
5588 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5589 | : lt128( a.high, a.low, b.high, b.low ); | |
5590 | ||
5591 | } | |
5592 | ||
67b7861d AJ |
5593 | /*---------------------------------------------------------------------------- |
5594 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
5595 | | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. | |
5596 | | The comparison is performed according to the IEC/IEEE Standard for Binary | |
5597 | | Floating-Point Arithmetic. | |
5598 | *----------------------------------------------------------------------------*/ | |
5599 | int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | |
5600 | { | |
5601 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
5602 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | |
5603 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
5604 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | |
5605 | ) { | |
5606 | if ( floatx80_is_signaling_nan( a ) | |
5607 | || floatx80_is_signaling_nan( b ) ) { | |
5608 | float_raise( float_flag_invalid STATUS_VAR); | |
5609 | } | |
5610 | return 1; | |
5611 | } | |
5612 | return 0; | |
5613 | } | |
5614 | ||
158142c2 FB |
5615 | /*---------------------------------------------------------------------------- |
5616 | | Returns the result of converting the quadruple-precision floating-point | |
5617 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5618 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5619 | | Arithmetic---which means in particular that the conversion is rounded | |
5620 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5621 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
5622 | | largest integer with the same sign as `a' is returned. | |
5623 | *----------------------------------------------------------------------------*/ | |
5624 | ||
5625 | int32 float128_to_int32( float128 a STATUS_PARAM ) | |
5626 | { | |
5627 | flag aSign; | |
5628 | int32 aExp, shiftCount; | |
bb98fe42 | 5629 | uint64_t aSig0, aSig1; |
158142c2 FB |
5630 | |
5631 | aSig1 = extractFloat128Frac1( a ); | |
5632 | aSig0 = extractFloat128Frac0( a ); | |
5633 | aExp = extractFloat128Exp( a ); | |
5634 | aSign = extractFloat128Sign( a ); | |
5635 | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; | |
5636 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5637 | aSig0 |= ( aSig1 != 0 ); | |
5638 | shiftCount = 0x4028 - aExp; | |
5639 | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); | |
5640 | return roundAndPackInt32( aSign, aSig0 STATUS_VAR ); | |
5641 | ||
5642 | } | |
5643 | ||
5644 | /*---------------------------------------------------------------------------- | |
5645 | | Returns the result of converting the quadruple-precision floating-point | |
5646 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5647 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5648 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
5649 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
5650 | | conversion overflows, the largest integer with the same sign as `a' is | |
5651 | | returned. | |
5652 | *----------------------------------------------------------------------------*/ | |
5653 | ||
5654 | int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM ) | |
5655 | { | |
5656 | flag aSign; | |
5657 | int32 aExp, shiftCount; | |
bb98fe42 | 5658 | uint64_t aSig0, aSig1, savedASig; |
b3a6a2e0 | 5659 | int32_t z; |
158142c2 FB |
5660 | |
5661 | aSig1 = extractFloat128Frac1( a ); | |
5662 | aSig0 = extractFloat128Frac0( a ); | |
5663 | aExp = extractFloat128Exp( a ); | |
5664 | aSign = extractFloat128Sign( a ); | |
5665 | aSig0 |= ( aSig1 != 0 ); | |
5666 | if ( 0x401E < aExp ) { | |
5667 | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; | |
5668 | goto invalid; | |
5669 | } | |
5670 | else if ( aExp < 0x3FFF ) { | |
5671 | if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
5672 | return 0; | |
5673 | } | |
5674 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5675 | shiftCount = 0x402F - aExp; | |
5676 | savedASig = aSig0; | |
5677 | aSig0 >>= shiftCount; | |
5678 | z = aSig0; | |
5679 | if ( aSign ) z = - z; | |
5680 | if ( ( z < 0 ) ^ aSign ) { | |
5681 | invalid: | |
5682 | float_raise( float_flag_invalid STATUS_VAR); | |
bb98fe42 | 5683 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
5684 | } |
5685 | if ( ( aSig0<<shiftCount ) != savedASig ) { | |
5686 | STATUS(float_exception_flags) |= float_flag_inexact; | |
5687 | } | |
5688 | return z; | |
5689 | ||
5690 | } | |
5691 | ||
5692 | /*---------------------------------------------------------------------------- | |
5693 | | Returns the result of converting the quadruple-precision floating-point | |
5694 | | value `a' to the 64-bit two's complement integer format. The conversion | |
5695 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5696 | | Arithmetic---which means in particular that the conversion is rounded | |
5697 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5698 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
5699 | | largest integer with the same sign as `a' is returned. | |
5700 | *----------------------------------------------------------------------------*/ | |
5701 | ||
5702 | int64 float128_to_int64( float128 a STATUS_PARAM ) | |
5703 | { | |
5704 | flag aSign; | |
5705 | int32 aExp, shiftCount; | |
bb98fe42 | 5706 | uint64_t aSig0, aSig1; |
158142c2 FB |
5707 | |
5708 | aSig1 = extractFloat128Frac1( a ); | |
5709 | aSig0 = extractFloat128Frac0( a ); | |
5710 | aExp = extractFloat128Exp( a ); | |
5711 | aSign = extractFloat128Sign( a ); | |
5712 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5713 | shiftCount = 0x402F - aExp; | |
5714 | if ( shiftCount <= 0 ) { | |
5715 | if ( 0x403E < aExp ) { | |
5716 | float_raise( float_flag_invalid STATUS_VAR); | |
5717 | if ( ! aSign | |
5718 | || ( ( aExp == 0x7FFF ) | |
5719 | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) | |
5720 | ) | |
5721 | ) { | |
5722 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
5723 | } | |
bb98fe42 | 5724 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
5725 | } |
5726 | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); | |
5727 | } | |
5728 | else { | |
5729 | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); | |
5730 | } | |
5731 | return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR ); | |
5732 | ||
5733 | } | |
5734 | ||
5735 | /*---------------------------------------------------------------------------- | |
5736 | | Returns the result of converting the quadruple-precision floating-point | |
5737 | | value `a' to the 64-bit two's complement integer format. The conversion | |
5738 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5739 | | Arithmetic, except that the conversion is always rounded toward zero. | |
5740 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
5741 | | the conversion overflows, the largest integer with the same sign as `a' is | |
5742 | | returned. | |
5743 | *----------------------------------------------------------------------------*/ | |
5744 | ||
5745 | int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM ) | |
5746 | { | |
5747 | flag aSign; | |
5748 | int32 aExp, shiftCount; | |
bb98fe42 | 5749 | uint64_t aSig0, aSig1; |
158142c2 FB |
5750 | int64 z; |
5751 | ||
5752 | aSig1 = extractFloat128Frac1( a ); | |
5753 | aSig0 = extractFloat128Frac0( a ); | |
5754 | aExp = extractFloat128Exp( a ); | |
5755 | aSign = extractFloat128Sign( a ); | |
5756 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5757 | shiftCount = aExp - 0x402F; | |
5758 | if ( 0 < shiftCount ) { | |
5759 | if ( 0x403E <= aExp ) { | |
5760 | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); | |
5761 | if ( ( a.high == LIT64( 0xC03E000000000000 ) ) | |
5762 | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { | |
5763 | if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
5764 | } | |
5765 | else { | |
5766 | float_raise( float_flag_invalid STATUS_VAR); | |
5767 | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { | |
5768 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
5769 | } | |
5770 | } | |
bb98fe42 | 5771 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
5772 | } |
5773 | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); | |
bb98fe42 | 5774 | if ( (uint64_t) ( aSig1<<shiftCount ) ) { |
158142c2 FB |
5775 | STATUS(float_exception_flags) |= float_flag_inexact; |
5776 | } | |
5777 | } | |
5778 | else { | |
5779 | if ( aExp < 0x3FFF ) { | |
5780 | if ( aExp | aSig0 | aSig1 ) { | |
5781 | STATUS(float_exception_flags) |= float_flag_inexact; | |
5782 | } | |
5783 | return 0; | |
5784 | } | |
5785 | z = aSig0>>( - shiftCount ); | |
5786 | if ( aSig1 | |
bb98fe42 | 5787 | || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { |
158142c2 FB |
5788 | STATUS(float_exception_flags) |= float_flag_inexact; |
5789 | } | |
5790 | } | |
5791 | if ( aSign ) z = - z; | |
5792 | return z; | |
5793 | ||
5794 | } | |
5795 | ||
5796 | /*---------------------------------------------------------------------------- | |
5797 | | Returns the result of converting the quadruple-precision floating-point | |
5798 | | value `a' to the single-precision floating-point format. The conversion | |
5799 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5800 | | Arithmetic. | |
5801 | *----------------------------------------------------------------------------*/ | |
5802 | ||
5803 | float32 float128_to_float32( float128 a STATUS_PARAM ) | |
5804 | { | |
5805 | flag aSign; | |
5806 | int32 aExp; | |
bb98fe42 AF |
5807 | uint64_t aSig0, aSig1; |
5808 | uint32_t zSig; | |
158142c2 FB |
5809 | |
5810 | aSig1 = extractFloat128Frac1( a ); | |
5811 | aSig0 = extractFloat128Frac0( a ); | |
5812 | aExp = extractFloat128Exp( a ); | |
5813 | aSign = extractFloat128Sign( a ); | |
5814 | if ( aExp == 0x7FFF ) { | |
5815 | if ( aSig0 | aSig1 ) { | |
bcd4d9af | 5816 | return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
5817 | } |
5818 | return packFloat32( aSign, 0xFF, 0 ); | |
5819 | } | |
5820 | aSig0 |= ( aSig1 != 0 ); | |
5821 | shift64RightJamming( aSig0, 18, &aSig0 ); | |
5822 | zSig = aSig0; | |
5823 | if ( aExp || zSig ) { | |
5824 | zSig |= 0x40000000; | |
5825 | aExp -= 0x3F81; | |
5826 | } | |
5827 | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); | |
5828 | ||
5829 | } | |
5830 | ||
5831 | /*---------------------------------------------------------------------------- | |
5832 | | Returns the result of converting the quadruple-precision floating-point | |
5833 | | value `a' to the double-precision floating-point format. The conversion | |
5834 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5835 | | Arithmetic. | |
5836 | *----------------------------------------------------------------------------*/ | |
5837 | ||
5838 | float64 float128_to_float64( float128 a STATUS_PARAM ) | |
5839 | { | |
5840 | flag aSign; | |
5841 | int32 aExp; | |
bb98fe42 | 5842 | uint64_t aSig0, aSig1; |
158142c2 FB |
5843 | |
5844 | aSig1 = extractFloat128Frac1( a ); | |
5845 | aSig0 = extractFloat128Frac0( a ); | |
5846 | aExp = extractFloat128Exp( a ); | |
5847 | aSign = extractFloat128Sign( a ); | |
5848 | if ( aExp == 0x7FFF ) { | |
5849 | if ( aSig0 | aSig1 ) { | |
bcd4d9af | 5850 | return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
5851 | } |
5852 | return packFloat64( aSign, 0x7FF, 0 ); | |
5853 | } | |
5854 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
5855 | aSig0 |= ( aSig1 != 0 ); | |
5856 | if ( aExp || aSig0 ) { | |
5857 | aSig0 |= LIT64( 0x4000000000000000 ); | |
5858 | aExp -= 0x3C01; | |
5859 | } | |
5860 | return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR ); | |
5861 | ||
5862 | } | |
5863 | ||
158142c2 FB |
5864 | /*---------------------------------------------------------------------------- |
5865 | | Returns the result of converting the quadruple-precision floating-point | |
5866 | | value `a' to the extended double-precision floating-point format. The | |
5867 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5868 | | Floating-Point Arithmetic. | |
5869 | *----------------------------------------------------------------------------*/ | |
5870 | ||
5871 | floatx80 float128_to_floatx80( float128 a STATUS_PARAM ) | |
5872 | { | |
5873 | flag aSign; | |
5874 | int32 aExp; | |
bb98fe42 | 5875 | uint64_t aSig0, aSig1; |
158142c2 FB |
5876 | |
5877 | aSig1 = extractFloat128Frac1( a ); | |
5878 | aSig0 = extractFloat128Frac0( a ); | |
5879 | aExp = extractFloat128Exp( a ); | |
5880 | aSign = extractFloat128Sign( a ); | |
5881 | if ( aExp == 0x7FFF ) { | |
5882 | if ( aSig0 | aSig1 ) { | |
bcd4d9af | 5883 | return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
5884 | } |
5885 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5886 | } | |
5887 | if ( aExp == 0 ) { | |
5888 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); | |
5889 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
5890 | } | |
5891 | else { | |
5892 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5893 | } | |
5894 | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); | |
5895 | return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR ); | |
5896 | ||
5897 | } | |
5898 | ||
158142c2 FB |
5899 | /*---------------------------------------------------------------------------- |
5900 | | Rounds the quadruple-precision floating-point value `a' to an integer, and | |
5901 | | returns the result as a quadruple-precision floating-point value. The | |
5902 | | operation is performed according to the IEC/IEEE Standard for Binary | |
5903 | | Floating-Point Arithmetic. | |
5904 | *----------------------------------------------------------------------------*/ | |
5905 | ||
5906 | float128 float128_round_to_int( float128 a STATUS_PARAM ) | |
5907 | { | |
5908 | flag aSign; | |
5909 | int32 aExp; | |
bb98fe42 | 5910 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
5911 | float128 z; |
5912 | ||
5913 | aExp = extractFloat128Exp( a ); | |
5914 | if ( 0x402F <= aExp ) { | |
5915 | if ( 0x406F <= aExp ) { | |
5916 | if ( ( aExp == 0x7FFF ) | |
5917 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) | |
5918 | ) { | |
5919 | return propagateFloat128NaN( a, a STATUS_VAR ); | |
5920 | } | |
5921 | return a; | |
5922 | } | |
5923 | lastBitMask = 1; | |
5924 | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; | |
5925 | roundBitsMask = lastBitMask - 1; | |
5926 | z = a; | |
dc355b76 PM |
5927 | switch (STATUS(float_rounding_mode)) { |
5928 | case float_round_nearest_even: | |
158142c2 FB |
5929 | if ( lastBitMask ) { |
5930 | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); | |
5931 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
5932 | } | |
5933 | else { | |
bb98fe42 | 5934 | if ( (int64_t) z.low < 0 ) { |
158142c2 | 5935 | ++z.high; |
bb98fe42 | 5936 | if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; |
158142c2 FB |
5937 | } |
5938 | } | |
dc355b76 | 5939 | break; |
f9288a76 PM |
5940 | case float_round_ties_away: |
5941 | if (lastBitMask) { | |
5942 | add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low); | |
5943 | } else { | |
5944 | if ((int64_t) z.low < 0) { | |
5945 | ++z.high; | |
5946 | } | |
5947 | } | |
5948 | break; | |
dc355b76 PM |
5949 | case float_round_to_zero: |
5950 | break; | |
5951 | case float_round_up: | |
5952 | if (!extractFloat128Sign(z)) { | |
5953 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
5954 | } | |
5955 | break; | |
5956 | case float_round_down: | |
5957 | if (extractFloat128Sign(z)) { | |
5958 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
158142c2 | 5959 | } |
dc355b76 PM |
5960 | break; |
5961 | default: | |
5962 | abort(); | |
158142c2 FB |
5963 | } |
5964 | z.low &= ~ roundBitsMask; | |
5965 | } | |
5966 | else { | |
5967 | if ( aExp < 0x3FFF ) { | |
bb98fe42 | 5968 | if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; |
158142c2 FB |
5969 | STATUS(float_exception_flags) |= float_flag_inexact; |
5970 | aSign = extractFloat128Sign( a ); | |
5971 | switch ( STATUS(float_rounding_mode) ) { | |
5972 | case float_round_nearest_even: | |
5973 | if ( ( aExp == 0x3FFE ) | |
5974 | && ( extractFloat128Frac0( a ) | |
5975 | | extractFloat128Frac1( a ) ) | |
5976 | ) { | |
5977 | return packFloat128( aSign, 0x3FFF, 0, 0 ); | |
5978 | } | |
5979 | break; | |
f9288a76 PM |
5980 | case float_round_ties_away: |
5981 | if (aExp == 0x3FFE) { | |
5982 | return packFloat128(aSign, 0x3FFF, 0, 0); | |
5983 | } | |
5984 | break; | |
158142c2 FB |
5985 | case float_round_down: |
5986 | return | |
5987 | aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) | |
5988 | : packFloat128( 0, 0, 0, 0 ); | |
5989 | case float_round_up: | |
5990 | return | |
5991 | aSign ? packFloat128( 1, 0, 0, 0 ) | |
5992 | : packFloat128( 0, 0x3FFF, 0, 0 ); | |
5993 | } | |
5994 | return packFloat128( aSign, 0, 0, 0 ); | |
5995 | } | |
5996 | lastBitMask = 1; | |
5997 | lastBitMask <<= 0x402F - aExp; | |
5998 | roundBitsMask = lastBitMask - 1; | |
5999 | z.low = 0; | |
6000 | z.high = a.high; | |
dc355b76 PM |
6001 | switch (STATUS(float_rounding_mode)) { |
6002 | case float_round_nearest_even: | |
158142c2 FB |
6003 | z.high += lastBitMask>>1; |
6004 | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { | |
6005 | z.high &= ~ lastBitMask; | |
6006 | } | |
dc355b76 | 6007 | break; |
f9288a76 PM |
6008 | case float_round_ties_away: |
6009 | z.high += lastBitMask>>1; | |
6010 | break; | |
dc355b76 PM |
6011 | case float_round_to_zero: |
6012 | break; | |
6013 | case float_round_up: | |
6014 | if (!extractFloat128Sign(z)) { | |
158142c2 FB |
6015 | z.high |= ( a.low != 0 ); |
6016 | z.high += roundBitsMask; | |
6017 | } | |
dc355b76 PM |
6018 | break; |
6019 | case float_round_down: | |
6020 | if (extractFloat128Sign(z)) { | |
6021 | z.high |= (a.low != 0); | |
6022 | z.high += roundBitsMask; | |
6023 | } | |
6024 | break; | |
6025 | default: | |
6026 | abort(); | |
158142c2 FB |
6027 | } |
6028 | z.high &= ~ roundBitsMask; | |
6029 | } | |
6030 | if ( ( z.low != a.low ) || ( z.high != a.high ) ) { | |
6031 | STATUS(float_exception_flags) |= float_flag_inexact; | |
6032 | } | |
6033 | return z; | |
6034 | ||
6035 | } | |
6036 | ||
6037 | /*---------------------------------------------------------------------------- | |
6038 | | Returns the result of adding the absolute values of the quadruple-precision | |
6039 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
6040 | | before being returned. `zSign' is ignored if the result is a NaN. | |
6041 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
6042 | | Floating-Point Arithmetic. | |
6043 | *----------------------------------------------------------------------------*/ | |
6044 | ||
6045 | static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) | |
6046 | { | |
6047 | int32 aExp, bExp, zExp; | |
bb98fe42 | 6048 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
158142c2 FB |
6049 | int32 expDiff; |
6050 | ||
6051 | aSig1 = extractFloat128Frac1( a ); | |
6052 | aSig0 = extractFloat128Frac0( a ); | |
6053 | aExp = extractFloat128Exp( a ); | |
6054 | bSig1 = extractFloat128Frac1( b ); | |
6055 | bSig0 = extractFloat128Frac0( b ); | |
6056 | bExp = extractFloat128Exp( b ); | |
6057 | expDiff = aExp - bExp; | |
6058 | if ( 0 < expDiff ) { | |
6059 | if ( aExp == 0x7FFF ) { | |
6060 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
6061 | return a; | |
6062 | } | |
6063 | if ( bExp == 0 ) { | |
6064 | --expDiff; | |
6065 | } | |
6066 | else { | |
6067 | bSig0 |= LIT64( 0x0001000000000000 ); | |
6068 | } | |
6069 | shift128ExtraRightJamming( | |
6070 | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); | |
6071 | zExp = aExp; | |
6072 | } | |
6073 | else if ( expDiff < 0 ) { | |
6074 | if ( bExp == 0x7FFF ) { | |
6075 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
6076 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6077 | } | |
6078 | if ( aExp == 0 ) { | |
6079 | ++expDiff; | |
6080 | } | |
6081 | else { | |
6082 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6083 | } | |
6084 | shift128ExtraRightJamming( | |
6085 | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); | |
6086 | zExp = bExp; | |
6087 | } | |
6088 | else { | |
6089 | if ( aExp == 0x7FFF ) { | |
6090 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
6091 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
6092 | } | |
6093 | return a; | |
6094 | } | |
6095 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
fe76d976 | 6096 | if ( aExp == 0 ) { |
e6afc87f PM |
6097 | if (STATUS(flush_to_zero)) { |
6098 | if (zSig0 | zSig1) { | |
6099 | float_raise(float_flag_output_denormal STATUS_VAR); | |
6100 | } | |
6101 | return packFloat128(zSign, 0, 0, 0); | |
6102 | } | |
fe76d976 PB |
6103 | return packFloat128( zSign, 0, zSig0, zSig1 ); |
6104 | } | |
158142c2 FB |
6105 | zSig2 = 0; |
6106 | zSig0 |= LIT64( 0x0002000000000000 ); | |
6107 | zExp = aExp; | |
6108 | goto shiftRight1; | |
6109 | } | |
6110 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6111 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
6112 | --zExp; | |
6113 | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; | |
6114 | ++zExp; | |
6115 | shiftRight1: | |
6116 | shift128ExtraRightJamming( | |
6117 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
6118 | roundAndPack: | |
6119 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
6120 | ||
6121 | } | |
6122 | ||
6123 | /*---------------------------------------------------------------------------- | |
6124 | | Returns the result of subtracting the absolute values of the quadruple- | |
6125 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
6126 | | difference is negated before being returned. `zSign' is ignored if the | |
6127 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
6128 | | Standard for Binary Floating-Point Arithmetic. | |
6129 | *----------------------------------------------------------------------------*/ | |
6130 | ||
6131 | static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) | |
6132 | { | |
6133 | int32 aExp, bExp, zExp; | |
bb98fe42 | 6134 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; |
158142c2 FB |
6135 | int32 expDiff; |
6136 | float128 z; | |
6137 | ||
6138 | aSig1 = extractFloat128Frac1( a ); | |
6139 | aSig0 = extractFloat128Frac0( a ); | |
6140 | aExp = extractFloat128Exp( a ); | |
6141 | bSig1 = extractFloat128Frac1( b ); | |
6142 | bSig0 = extractFloat128Frac0( b ); | |
6143 | bExp = extractFloat128Exp( b ); | |
6144 | expDiff = aExp - bExp; | |
6145 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
6146 | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); | |
6147 | if ( 0 < expDiff ) goto aExpBigger; | |
6148 | if ( expDiff < 0 ) goto bExpBigger; | |
6149 | if ( aExp == 0x7FFF ) { | |
6150 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
6151 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
6152 | } | |
6153 | float_raise( float_flag_invalid STATUS_VAR); | |
6154 | z.low = float128_default_nan_low; | |
6155 | z.high = float128_default_nan_high; | |
6156 | return z; | |
6157 | } | |
6158 | if ( aExp == 0 ) { | |
6159 | aExp = 1; | |
6160 | bExp = 1; | |
6161 | } | |
6162 | if ( bSig0 < aSig0 ) goto aBigger; | |
6163 | if ( aSig0 < bSig0 ) goto bBigger; | |
6164 | if ( bSig1 < aSig1 ) goto aBigger; | |
6165 | if ( aSig1 < bSig1 ) goto bBigger; | |
6166 | return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 ); | |
6167 | bExpBigger: | |
6168 | if ( bExp == 0x7FFF ) { | |
6169 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
6170 | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); | |
6171 | } | |
6172 | if ( aExp == 0 ) { | |
6173 | ++expDiff; | |
6174 | } | |
6175 | else { | |
6176 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6177 | } | |
6178 | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6179 | bSig0 |= LIT64( 0x4000000000000000 ); | |
6180 | bBigger: | |
6181 | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
6182 | zExp = bExp; | |
6183 | zSign ^= 1; | |
6184 | goto normalizeRoundAndPack; | |
6185 | aExpBigger: | |
6186 | if ( aExp == 0x7FFF ) { | |
6187 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
6188 | return a; | |
6189 | } | |
6190 | if ( bExp == 0 ) { | |
6191 | --expDiff; | |
6192 | } | |
6193 | else { | |
6194 | bSig0 |= LIT64( 0x4000000000000000 ); | |
6195 | } | |
6196 | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); | |
6197 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6198 | aBigger: | |
6199 | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
6200 | zExp = aExp; | |
6201 | normalizeRoundAndPack: | |
6202 | --zExp; | |
6203 | return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR ); | |
6204 | ||
6205 | } | |
6206 | ||
6207 | /*---------------------------------------------------------------------------- | |
6208 | | Returns the result of adding the quadruple-precision floating-point values | |
6209 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
6210 | | for Binary Floating-Point Arithmetic. | |
6211 | *----------------------------------------------------------------------------*/ | |
6212 | ||
6213 | float128 float128_add( float128 a, float128 b STATUS_PARAM ) | |
6214 | { | |
6215 | flag aSign, bSign; | |
6216 | ||
6217 | aSign = extractFloat128Sign( a ); | |
6218 | bSign = extractFloat128Sign( b ); | |
6219 | if ( aSign == bSign ) { | |
6220 | return addFloat128Sigs( a, b, aSign STATUS_VAR ); | |
6221 | } | |
6222 | else { | |
6223 | return subFloat128Sigs( a, b, aSign STATUS_VAR ); | |
6224 | } | |
6225 | ||
6226 | } | |
6227 | ||
6228 | /*---------------------------------------------------------------------------- | |
6229 | | Returns the result of subtracting the quadruple-precision floating-point | |
6230 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
6231 | | Standard for Binary Floating-Point Arithmetic. | |
6232 | *----------------------------------------------------------------------------*/ | |
6233 | ||
6234 | float128 float128_sub( float128 a, float128 b STATUS_PARAM ) | |
6235 | { | |
6236 | flag aSign, bSign; | |
6237 | ||
6238 | aSign = extractFloat128Sign( a ); | |
6239 | bSign = extractFloat128Sign( b ); | |
6240 | if ( aSign == bSign ) { | |
6241 | return subFloat128Sigs( a, b, aSign STATUS_VAR ); | |
6242 | } | |
6243 | else { | |
6244 | return addFloat128Sigs( a, b, aSign STATUS_VAR ); | |
6245 | } | |
6246 | ||
6247 | } | |
6248 | ||
6249 | /*---------------------------------------------------------------------------- | |
6250 | | Returns the result of multiplying the quadruple-precision floating-point | |
6251 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
6252 | | Standard for Binary Floating-Point Arithmetic. | |
6253 | *----------------------------------------------------------------------------*/ | |
6254 | ||
6255 | float128 float128_mul( float128 a, float128 b STATUS_PARAM ) | |
6256 | { | |
6257 | flag aSign, bSign, zSign; | |
6258 | int32 aExp, bExp, zExp; | |
bb98fe42 | 6259 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; |
158142c2 FB |
6260 | float128 z; |
6261 | ||
6262 | aSig1 = extractFloat128Frac1( a ); | |
6263 | aSig0 = extractFloat128Frac0( a ); | |
6264 | aExp = extractFloat128Exp( a ); | |
6265 | aSign = extractFloat128Sign( a ); | |
6266 | bSig1 = extractFloat128Frac1( b ); | |
6267 | bSig0 = extractFloat128Frac0( b ); | |
6268 | bExp = extractFloat128Exp( b ); | |
6269 | bSign = extractFloat128Sign( b ); | |
6270 | zSign = aSign ^ bSign; | |
6271 | if ( aExp == 0x7FFF ) { | |
6272 | if ( ( aSig0 | aSig1 ) | |
6273 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
6274 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
6275 | } | |
6276 | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; | |
6277 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6278 | } | |
6279 | if ( bExp == 0x7FFF ) { | |
6280 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
6281 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
6282 | invalid: | |
6283 | float_raise( float_flag_invalid STATUS_VAR); | |
6284 | z.low = float128_default_nan_low; | |
6285 | z.high = float128_default_nan_high; | |
6286 | return z; | |
6287 | } | |
6288 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6289 | } | |
6290 | if ( aExp == 0 ) { | |
6291 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6292 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6293 | } | |
6294 | if ( bExp == 0 ) { | |
6295 | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6296 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6297 | } | |
6298 | zExp = aExp + bExp - 0x4000; | |
6299 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6300 | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); | |
6301 | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); | |
6302 | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
6303 | zSig2 |= ( zSig3 != 0 ); | |
6304 | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { | |
6305 | shift128ExtraRightJamming( | |
6306 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
6307 | ++zExp; | |
6308 | } | |
6309 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
6310 | ||
6311 | } | |
6312 | ||
6313 | /*---------------------------------------------------------------------------- | |
6314 | | Returns the result of dividing the quadruple-precision floating-point value | |
6315 | | `a' by the corresponding value `b'. The operation is performed according to | |
6316 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6317 | *----------------------------------------------------------------------------*/ | |
6318 | ||
6319 | float128 float128_div( float128 a, float128 b STATUS_PARAM ) | |
6320 | { | |
6321 | flag aSign, bSign, zSign; | |
6322 | int32 aExp, bExp, zExp; | |
bb98fe42 AF |
6323 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
6324 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6325 | float128 z; |
6326 | ||
6327 | aSig1 = extractFloat128Frac1( a ); | |
6328 | aSig0 = extractFloat128Frac0( a ); | |
6329 | aExp = extractFloat128Exp( a ); | |
6330 | aSign = extractFloat128Sign( a ); | |
6331 | bSig1 = extractFloat128Frac1( b ); | |
6332 | bSig0 = extractFloat128Frac0( b ); | |
6333 | bExp = extractFloat128Exp( b ); | |
6334 | bSign = extractFloat128Sign( b ); | |
6335 | zSign = aSign ^ bSign; | |
6336 | if ( aExp == 0x7FFF ) { | |
6337 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
6338 | if ( bExp == 0x7FFF ) { | |
6339 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
6340 | goto invalid; | |
6341 | } | |
6342 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6343 | } | |
6344 | if ( bExp == 0x7FFF ) { | |
6345 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
6346 | return packFloat128( zSign, 0, 0, 0 ); | |
6347 | } | |
6348 | if ( bExp == 0 ) { | |
6349 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6350 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
6351 | invalid: | |
6352 | float_raise( float_flag_invalid STATUS_VAR); | |
6353 | z.low = float128_default_nan_low; | |
6354 | z.high = float128_default_nan_high; | |
6355 | return z; | |
6356 | } | |
6357 | float_raise( float_flag_divbyzero STATUS_VAR); | |
6358 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6359 | } | |
6360 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6361 | } | |
6362 | if ( aExp == 0 ) { | |
6363 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6364 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6365 | } | |
6366 | zExp = aExp - bExp + 0x3FFD; | |
6367 | shortShift128Left( | |
6368 | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); | |
6369 | shortShift128Left( | |
6370 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6371 | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { | |
6372 | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); | |
6373 | ++zExp; | |
6374 | } | |
6375 | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6376 | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); | |
6377 | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); | |
bb98fe42 | 6378 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6379 | --zSig0; |
6380 | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); | |
6381 | } | |
6382 | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); | |
6383 | if ( ( zSig1 & 0x3FFF ) <= 4 ) { | |
6384 | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); | |
6385 | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6386 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6387 | --zSig1; |
6388 | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); | |
6389 | } | |
6390 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6391 | } | |
6392 | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); | |
6393 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
6394 | ||
6395 | } | |
6396 | ||
6397 | /*---------------------------------------------------------------------------- | |
6398 | | Returns the remainder of the quadruple-precision floating-point value `a' | |
6399 | | with respect to the corresponding value `b'. The operation is performed | |
6400 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6401 | *----------------------------------------------------------------------------*/ | |
6402 | ||
6403 | float128 float128_rem( float128 a, float128 b STATUS_PARAM ) | |
6404 | { | |
ed086f3d | 6405 | flag aSign, zSign; |
158142c2 | 6406 | int32 aExp, bExp, expDiff; |
bb98fe42 AF |
6407 | uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; |
6408 | uint64_t allZero, alternateASig0, alternateASig1, sigMean1; | |
6409 | int64_t sigMean0; | |
158142c2 FB |
6410 | float128 z; |
6411 | ||
6412 | aSig1 = extractFloat128Frac1( a ); | |
6413 | aSig0 = extractFloat128Frac0( a ); | |
6414 | aExp = extractFloat128Exp( a ); | |
6415 | aSign = extractFloat128Sign( a ); | |
6416 | bSig1 = extractFloat128Frac1( b ); | |
6417 | bSig0 = extractFloat128Frac0( b ); | |
6418 | bExp = extractFloat128Exp( b ); | |
158142c2 FB |
6419 | if ( aExp == 0x7FFF ) { |
6420 | if ( ( aSig0 | aSig1 ) | |
6421 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
6422 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
6423 | } | |
6424 | goto invalid; | |
6425 | } | |
6426 | if ( bExp == 0x7FFF ) { | |
6427 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
6428 | return a; | |
6429 | } | |
6430 | if ( bExp == 0 ) { | |
6431 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6432 | invalid: | |
6433 | float_raise( float_flag_invalid STATUS_VAR); | |
6434 | z.low = float128_default_nan_low; | |
6435 | z.high = float128_default_nan_high; | |
6436 | return z; | |
6437 | } | |
6438 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6439 | } | |
6440 | if ( aExp == 0 ) { | |
6441 | if ( ( aSig0 | aSig1 ) == 0 ) return a; | |
6442 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6443 | } | |
6444 | expDiff = aExp - bExp; | |
6445 | if ( expDiff < -1 ) return a; | |
6446 | shortShift128Left( | |
6447 | aSig0 | LIT64( 0x0001000000000000 ), | |
6448 | aSig1, | |
6449 | 15 - ( expDiff < 0 ), | |
6450 | &aSig0, | |
6451 | &aSig1 | |
6452 | ); | |
6453 | shortShift128Left( | |
6454 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6455 | q = le128( bSig0, bSig1, aSig0, aSig1 ); | |
6456 | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
6457 | expDiff -= 64; | |
6458 | while ( 0 < expDiff ) { | |
6459 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6460 | q = ( 4 < q ) ? q - 4 : 0; | |
6461 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6462 | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); | |
6463 | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); | |
6464 | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); | |
6465 | expDiff -= 61; | |
6466 | } | |
6467 | if ( -64 < expDiff ) { | |
6468 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6469 | q = ( 4 < q ) ? q - 4 : 0; | |
6470 | q >>= - expDiff; | |
6471 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6472 | expDiff += 52; | |
6473 | if ( expDiff < 0 ) { | |
6474 | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6475 | } | |
6476 | else { | |
6477 | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); | |
6478 | } | |
6479 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6480 | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); | |
6481 | } | |
6482 | else { | |
6483 | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); | |
6484 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6485 | } | |
6486 | do { | |
6487 | alternateASig0 = aSig0; | |
6488 | alternateASig1 = aSig1; | |
6489 | ++q; | |
6490 | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
bb98fe42 | 6491 | } while ( 0 <= (int64_t) aSig0 ); |
158142c2 | 6492 | add128( |
bb98fe42 | 6493 | aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); |
158142c2 FB |
6494 | if ( ( sigMean0 < 0 ) |
6495 | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { | |
6496 | aSig0 = alternateASig0; | |
6497 | aSig1 = alternateASig1; | |
6498 | } | |
bb98fe42 | 6499 | zSign = ( (int64_t) aSig0 < 0 ); |
158142c2 FB |
6500 | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); |
6501 | return | |
6502 | normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR ); | |
6503 | ||
6504 | } | |
6505 | ||
6506 | /*---------------------------------------------------------------------------- | |
6507 | | Returns the square root of the quadruple-precision floating-point value `a'. | |
6508 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
6509 | | Floating-Point Arithmetic. | |
6510 | *----------------------------------------------------------------------------*/ | |
6511 | ||
6512 | float128 float128_sqrt( float128 a STATUS_PARAM ) | |
6513 | { | |
6514 | flag aSign; | |
6515 | int32 aExp, zExp; | |
bb98fe42 AF |
6516 | uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; |
6517 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6518 | float128 z; |
6519 | ||
6520 | aSig1 = extractFloat128Frac1( a ); | |
6521 | aSig0 = extractFloat128Frac0( a ); | |
6522 | aExp = extractFloat128Exp( a ); | |
6523 | aSign = extractFloat128Sign( a ); | |
6524 | if ( aExp == 0x7FFF ) { | |
6525 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR ); | |
6526 | if ( ! aSign ) return a; | |
6527 | goto invalid; | |
6528 | } | |
6529 | if ( aSign ) { | |
6530 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; | |
6531 | invalid: | |
6532 | float_raise( float_flag_invalid STATUS_VAR); | |
6533 | z.low = float128_default_nan_low; | |
6534 | z.high = float128_default_nan_high; | |
6535 | return z; | |
6536 | } | |
6537 | if ( aExp == 0 ) { | |
6538 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
6539 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6540 | } | |
6541 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; | |
6542 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6543 | zSig0 = estimateSqrt32( aExp, aSig0>>17 ); | |
6544 | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); | |
6545 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
6546 | doubleZSig0 = zSig0<<1; | |
6547 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
6548 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 6549 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6550 | --zSig0; |
6551 | doubleZSig0 -= 2; | |
6552 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
6553 | } | |
6554 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
6555 | if ( ( zSig1 & 0x1FFF ) <= 5 ) { | |
6556 | if ( zSig1 == 0 ) zSig1 = 1; | |
6557 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
6558 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
6559 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
6560 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6561 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6562 | --zSig1; |
6563 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
6564 | term3 |= 1; | |
6565 | term2 |= doubleZSig0; | |
6566 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
6567 | } | |
6568 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6569 | } | |
6570 | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); | |
6571 | return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
6572 | ||
6573 | } | |
6574 | ||
6575 | /*---------------------------------------------------------------------------- | |
6576 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
b689362d AJ |
6577 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
6578 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
6579 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
6580 | *----------------------------------------------------------------------------*/ | |
6581 | ||
b689362d | 6582 | int float128_eq( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6583 | { |
6584 | ||
6585 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6586 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6587 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6588 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6589 | ) { | |
b689362d | 6590 | float_raise( float_flag_invalid STATUS_VAR); |
158142c2 FB |
6591 | return 0; |
6592 | } | |
6593 | return | |
6594 | ( a.low == b.low ) | |
6595 | && ( ( a.high == b.high ) | |
6596 | || ( ( a.low == 0 ) | |
bb98fe42 | 6597 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6598 | ); |
6599 | ||
6600 | } | |
6601 | ||
6602 | /*---------------------------------------------------------------------------- | |
6603 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
6604 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
6605 | | exception is raised if either operand is a NaN. The comparison is performed | |
6606 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6607 | *----------------------------------------------------------------------------*/ |
6608 | ||
750afe93 | 6609 | int float128_le( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6610 | { |
6611 | flag aSign, bSign; | |
6612 | ||
6613 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6614 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6615 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6616 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6617 | ) { | |
6618 | float_raise( float_flag_invalid STATUS_VAR); | |
6619 | return 0; | |
6620 | } | |
6621 | aSign = extractFloat128Sign( a ); | |
6622 | bSign = extractFloat128Sign( b ); | |
6623 | if ( aSign != bSign ) { | |
6624 | return | |
6625 | aSign | |
bb98fe42 | 6626 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6627 | == 0 ); |
6628 | } | |
6629 | return | |
6630 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
6631 | : le128( a.high, a.low, b.high, b.low ); | |
6632 | ||
6633 | } | |
6634 | ||
6635 | /*---------------------------------------------------------------------------- | |
6636 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
6637 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
6638 | | raised if either operand is a NaN. The comparison is performed according | |
6639 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6640 | *----------------------------------------------------------------------------*/ |
6641 | ||
750afe93 | 6642 | int float128_lt( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6643 | { |
6644 | flag aSign, bSign; | |
6645 | ||
6646 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6647 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6648 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6649 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6650 | ) { | |
6651 | float_raise( float_flag_invalid STATUS_VAR); | |
6652 | return 0; | |
6653 | } | |
6654 | aSign = extractFloat128Sign( a ); | |
6655 | bSign = extractFloat128Sign( b ); | |
6656 | if ( aSign != bSign ) { | |
6657 | return | |
6658 | aSign | |
bb98fe42 | 6659 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6660 | != 0 ); |
6661 | } | |
6662 | return | |
6663 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
6664 | : lt128( a.high, a.low, b.high, b.low ); | |
6665 | ||
6666 | } | |
6667 | ||
67b7861d AJ |
6668 | /*---------------------------------------------------------------------------- |
6669 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
6670 | | be compared, and 0 otherwise. The invalid exception is raised if either |
6671 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
6672 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
6673 | *----------------------------------------------------------------------------*/ |
6674 | ||
6675 | int float128_unordered( float128 a, float128 b STATUS_PARAM ) | |
6676 | { | |
6677 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6678 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6679 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6680 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6681 | ) { | |
6682 | float_raise( float_flag_invalid STATUS_VAR); | |
6683 | return 1; | |
6684 | } | |
6685 | return 0; | |
6686 | } | |
6687 | ||
158142c2 FB |
6688 | /*---------------------------------------------------------------------------- |
6689 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
f5a64251 AJ |
6690 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
6691 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
6692 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6693 | *----------------------------------------------------------------------------*/ |
6694 | ||
b689362d | 6695 | int float128_eq_quiet( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6696 | { |
6697 | ||
6698 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6699 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6700 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6701 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6702 | ) { | |
b689362d AJ |
6703 | if ( float128_is_signaling_nan( a ) |
6704 | || float128_is_signaling_nan( b ) ) { | |
6705 | float_raise( float_flag_invalid STATUS_VAR); | |
6706 | } | |
158142c2 FB |
6707 | return 0; |
6708 | } | |
6709 | return | |
6710 | ( a.low == b.low ) | |
6711 | && ( ( a.high == b.high ) | |
6712 | || ( ( a.low == 0 ) | |
bb98fe42 | 6713 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6714 | ); |
6715 | ||
6716 | } | |
6717 | ||
6718 | /*---------------------------------------------------------------------------- | |
6719 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
6720 | | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
6721 | | cause an exception. Otherwise, the comparison is performed according to the | |
6722 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6723 | *----------------------------------------------------------------------------*/ | |
6724 | ||
750afe93 | 6725 | int float128_le_quiet( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6726 | { |
6727 | flag aSign, bSign; | |
6728 | ||
6729 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6730 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6731 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6732 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6733 | ) { | |
6734 | if ( float128_is_signaling_nan( a ) | |
6735 | || float128_is_signaling_nan( b ) ) { | |
6736 | float_raise( float_flag_invalid STATUS_VAR); | |
6737 | } | |
6738 | return 0; | |
6739 | } | |
6740 | aSign = extractFloat128Sign( a ); | |
6741 | bSign = extractFloat128Sign( b ); | |
6742 | if ( aSign != bSign ) { | |
6743 | return | |
6744 | aSign | |
bb98fe42 | 6745 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6746 | == 0 ); |
6747 | } | |
6748 | return | |
6749 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
6750 | : le128( a.high, a.low, b.high, b.low ); | |
6751 | ||
6752 | } | |
6753 | ||
6754 | /*---------------------------------------------------------------------------- | |
6755 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
6756 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
6757 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
6758 | | Standard for Binary Floating-Point Arithmetic. | |
6759 | *----------------------------------------------------------------------------*/ | |
6760 | ||
750afe93 | 6761 | int float128_lt_quiet( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6762 | { |
6763 | flag aSign, bSign; | |
6764 | ||
6765 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6766 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6767 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6768 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6769 | ) { | |
6770 | if ( float128_is_signaling_nan( a ) | |
6771 | || float128_is_signaling_nan( b ) ) { | |
6772 | float_raise( float_flag_invalid STATUS_VAR); | |
6773 | } | |
6774 | return 0; | |
6775 | } | |
6776 | aSign = extractFloat128Sign( a ); | |
6777 | bSign = extractFloat128Sign( b ); | |
6778 | if ( aSign != bSign ) { | |
6779 | return | |
6780 | aSign | |
bb98fe42 | 6781 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6782 | != 0 ); |
6783 | } | |
6784 | return | |
6785 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
6786 | : lt128( a.high, a.low, b.high, b.low ); | |
6787 | ||
6788 | } | |
6789 | ||
67b7861d AJ |
6790 | /*---------------------------------------------------------------------------- |
6791 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
6792 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
6793 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
6794 | | Floating-Point Arithmetic. | |
6795 | *----------------------------------------------------------------------------*/ | |
6796 | ||
6797 | int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM ) | |
6798 | { | |
6799 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6800 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6801 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6802 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6803 | ) { | |
6804 | if ( float128_is_signaling_nan( a ) | |
6805 | || float128_is_signaling_nan( b ) ) { | |
6806 | float_raise( float_flag_invalid STATUS_VAR); | |
6807 | } | |
6808 | return 1; | |
6809 | } | |
6810 | return 0; | |
6811 | } | |
6812 | ||
1d6bda35 | 6813 | /* misc functions */ |
c4850f9e | 6814 | float32 uint32_to_float32(uint32_t a STATUS_PARAM) |
1d6bda35 FB |
6815 | { |
6816 | return int64_to_float32(a STATUS_VAR); | |
6817 | } | |
6818 | ||
c4850f9e | 6819 | float64 uint32_to_float64(uint32_t a STATUS_PARAM) |
1d6bda35 FB |
6820 | { |
6821 | return int64_to_float64(a STATUS_VAR); | |
6822 | } | |
6823 | ||
9f8d2a09 | 6824 | uint32 float32_to_uint32( float32 a STATUS_PARAM ) |
1d6bda35 FB |
6825 | { |
6826 | int64_t v; | |
9f8d2a09 | 6827 | uint32 res; |
34e1c27b | 6828 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 FB |
6829 | |
6830 | v = float32_to_int64(a STATUS_VAR); | |
6831 | if (v < 0) { | |
6832 | res = 0; | |
1d6bda35 FB |
6833 | } else if (v > 0xffffffff) { |
6834 | res = 0xffffffff; | |
1d6bda35 | 6835 | } else { |
34e1c27b | 6836 | return v; |
1d6bda35 | 6837 | } |
34e1c27b PM |
6838 | set_float_exception_flags(old_exc_flags, status); |
6839 | float_raise(float_flag_invalid STATUS_VAR); | |
1d6bda35 FB |
6840 | return res; |
6841 | } | |
6842 | ||
9f8d2a09 | 6843 | uint32 float32_to_uint32_round_to_zero( float32 a STATUS_PARAM ) |
1d6bda35 FB |
6844 | { |
6845 | int64_t v; | |
9f8d2a09 | 6846 | uint32 res; |
34e1c27b | 6847 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 FB |
6848 | |
6849 | v = float32_to_int64_round_to_zero(a STATUS_VAR); | |
6850 | if (v < 0) { | |
6851 | res = 0; | |
1d6bda35 FB |
6852 | } else if (v > 0xffffffff) { |
6853 | res = 0xffffffff; | |
1d6bda35 | 6854 | } else { |
34e1c27b | 6855 | return v; |
1d6bda35 | 6856 | } |
34e1c27b PM |
6857 | set_float_exception_flags(old_exc_flags, status); |
6858 | float_raise(float_flag_invalid STATUS_VAR); | |
1d6bda35 FB |
6859 | return res; |
6860 | } | |
6861 | ||
f581bf54 WN |
6862 | int_fast16_t float32_to_int16(float32 a STATUS_PARAM) |
6863 | { | |
6864 | int32_t v; | |
6865 | int_fast16_t res; | |
6866 | int old_exc_flags = get_float_exception_flags(status); | |
6867 | ||
6868 | v = float32_to_int32(a STATUS_VAR); | |
6869 | if (v < -0x8000) { | |
6870 | res = -0x8000; | |
6871 | } else if (v > 0x7fff) { | |
6872 | res = 0x7fff; | |
6873 | } else { | |
6874 | return v; | |
6875 | } | |
6876 | ||
6877 | set_float_exception_flags(old_exc_flags, status); | |
6878 | float_raise(float_flag_invalid STATUS_VAR); | |
6879 | return res; | |
6880 | } | |
6881 | ||
6882 | uint_fast16_t float32_to_uint16(float32 a STATUS_PARAM) | |
6883 | { | |
6884 | int32_t v; | |
6885 | uint_fast16_t res; | |
6886 | int old_exc_flags = get_float_exception_flags(status); | |
6887 | ||
6888 | v = float32_to_int32(a STATUS_VAR); | |
6889 | if (v < 0) { | |
6890 | res = 0; | |
6891 | } else if (v > 0xffff) { | |
6892 | res = 0xffff; | |
6893 | } else { | |
6894 | return v; | |
6895 | } | |
6896 | ||
6897 | set_float_exception_flags(old_exc_flags, status); | |
6898 | float_raise(float_flag_invalid STATUS_VAR); | |
6899 | return res; | |
6900 | } | |
6901 | ||
5aea4c58 | 6902 | uint_fast16_t float32_to_uint16_round_to_zero(float32 a STATUS_PARAM) |
cbcef455 PM |
6903 | { |
6904 | int64_t v; | |
5aea4c58 | 6905 | uint_fast16_t res; |
34e1c27b | 6906 | int old_exc_flags = get_float_exception_flags(status); |
cbcef455 PM |
6907 | |
6908 | v = float32_to_int64_round_to_zero(a STATUS_VAR); | |
6909 | if (v < 0) { | |
6910 | res = 0; | |
cbcef455 PM |
6911 | } else if (v > 0xffff) { |
6912 | res = 0xffff; | |
cbcef455 | 6913 | } else { |
34e1c27b | 6914 | return v; |
cbcef455 | 6915 | } |
34e1c27b PM |
6916 | set_float_exception_flags(old_exc_flags, status); |
6917 | float_raise(float_flag_invalid STATUS_VAR); | |
cbcef455 PM |
6918 | return res; |
6919 | } | |
6920 | ||
9f8d2a09 | 6921 | uint32 float64_to_uint32( float64 a STATUS_PARAM ) |
1d6bda35 | 6922 | { |
5e7f654f | 6923 | uint64_t v; |
9f8d2a09 | 6924 | uint32 res; |
5e7f654f | 6925 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 6926 | |
5e7f654f TM |
6927 | v = float64_to_uint64(a STATUS_VAR); |
6928 | if (v > 0xffffffff) { | |
1d6bda35 | 6929 | res = 0xffffffff; |
1d6bda35 | 6930 | } else { |
5e7f654f | 6931 | return v; |
1d6bda35 | 6932 | } |
5e7f654f TM |
6933 | set_float_exception_flags(old_exc_flags, status); |
6934 | float_raise(float_flag_invalid STATUS_VAR); | |
1d6bda35 FB |
6935 | return res; |
6936 | } | |
6937 | ||
9f8d2a09 | 6938 | uint32 float64_to_uint32_round_to_zero( float64 a STATUS_PARAM ) |
1d6bda35 | 6939 | { |
fd728f2f | 6940 | uint64_t v; |
9f8d2a09 | 6941 | uint32 res; |
fd728f2f | 6942 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 6943 | |
fd728f2f TM |
6944 | v = float64_to_uint64_round_to_zero(a STATUS_VAR); |
6945 | if (v > 0xffffffff) { | |
1d6bda35 | 6946 | res = 0xffffffff; |
1d6bda35 | 6947 | } else { |
fd728f2f | 6948 | return v; |
1d6bda35 | 6949 | } |
fd728f2f TM |
6950 | set_float_exception_flags(old_exc_flags, status); |
6951 | float_raise(float_flag_invalid STATUS_VAR); | |
1d6bda35 FB |
6952 | return res; |
6953 | } | |
6954 | ||
f581bf54 WN |
6955 | int_fast16_t float64_to_int16(float64 a STATUS_PARAM) |
6956 | { | |
6957 | int64_t v; | |
6958 | int_fast16_t res; | |
6959 | int old_exc_flags = get_float_exception_flags(status); | |
6960 | ||
6961 | v = float64_to_int32(a STATUS_VAR); | |
6962 | if (v < -0x8000) { | |
6963 | res = -0x8000; | |
6964 | } else if (v > 0x7fff) { | |
6965 | res = 0x7fff; | |
6966 | } else { | |
6967 | return v; | |
6968 | } | |
6969 | ||
6970 | set_float_exception_flags(old_exc_flags, status); | |
6971 | float_raise(float_flag_invalid STATUS_VAR); | |
6972 | return res; | |
6973 | } | |
6974 | ||
6975 | uint_fast16_t float64_to_uint16(float64 a STATUS_PARAM) | |
6976 | { | |
6977 | int64_t v; | |
6978 | uint_fast16_t res; | |
6979 | int old_exc_flags = get_float_exception_flags(status); | |
6980 | ||
6981 | v = float64_to_int32(a STATUS_VAR); | |
6982 | if (v < 0) { | |
6983 | res = 0; | |
6984 | } else if (v > 0xffff) { | |
6985 | res = 0xffff; | |
6986 | } else { | |
6987 | return v; | |
6988 | } | |
6989 | ||
6990 | set_float_exception_flags(old_exc_flags, status); | |
6991 | float_raise(float_flag_invalid STATUS_VAR); | |
6992 | return res; | |
6993 | } | |
6994 | ||
5aea4c58 | 6995 | uint_fast16_t float64_to_uint16_round_to_zero(float64 a STATUS_PARAM) |
cbcef455 PM |
6996 | { |
6997 | int64_t v; | |
5aea4c58 | 6998 | uint_fast16_t res; |
34e1c27b | 6999 | int old_exc_flags = get_float_exception_flags(status); |
cbcef455 PM |
7000 | |
7001 | v = float64_to_int64_round_to_zero(a STATUS_VAR); | |
7002 | if (v < 0) { | |
7003 | res = 0; | |
cbcef455 PM |
7004 | } else if (v > 0xffff) { |
7005 | res = 0xffff; | |
cbcef455 | 7006 | } else { |
34e1c27b | 7007 | return v; |
cbcef455 | 7008 | } |
34e1c27b PM |
7009 | set_float_exception_flags(old_exc_flags, status); |
7010 | float_raise(float_flag_invalid STATUS_VAR); | |
cbcef455 PM |
7011 | return res; |
7012 | } | |
7013 | ||
fb3ea83a TM |
7014 | /*---------------------------------------------------------------------------- |
7015 | | Returns the result of converting the double-precision floating-point value | |
7016 | | `a' to the 64-bit unsigned integer format. The conversion is | |
7017 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
7018 | | Arithmetic---which means in particular that the conversion is rounded | |
7019 | | according to the current rounding mode. If `a' is a NaN, the largest | |
7020 | | positive integer is returned. If the conversion overflows, the | |
7021 | | largest unsigned integer is returned. If 'a' is negative, the value is | |
7022 | | rounded and zero is returned; negative values that do not round to zero | |
7023 | | will raise the inexact exception. | |
7024 | *----------------------------------------------------------------------------*/ | |
75d62a58 | 7025 | |
fb3ea83a TM |
7026 | uint64_t float64_to_uint64(float64 a STATUS_PARAM) |
7027 | { | |
7028 | flag aSign; | |
7029 | int_fast16_t aExp, shiftCount; | |
7030 | uint64_t aSig, aSigExtra; | |
7031 | a = float64_squash_input_denormal(a STATUS_VAR); | |
75d62a58 | 7032 | |
fb3ea83a TM |
7033 | aSig = extractFloat64Frac(a); |
7034 | aExp = extractFloat64Exp(a); | |
7035 | aSign = extractFloat64Sign(a); | |
7036 | if (aSign && (aExp > 1022)) { | |
7037 | float_raise(float_flag_invalid STATUS_VAR); | |
7038 | if (float64_is_any_nan(a)) { | |
7039 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
7040 | } else { | |
7041 | return 0; | |
7042 | } | |
7043 | } | |
7044 | if (aExp) { | |
7045 | aSig |= LIT64(0x0010000000000000); | |
7046 | } | |
7047 | shiftCount = 0x433 - aExp; | |
7048 | if (shiftCount <= 0) { | |
7049 | if (0x43E < aExp) { | |
7050 | float_raise(float_flag_invalid STATUS_VAR); | |
7051 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
7052 | } | |
7053 | aSigExtra = 0; | |
7054 | aSig <<= -shiftCount; | |
7055 | } else { | |
7056 | shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra); | |
7057 | } | |
7058 | return roundAndPackUint64(aSign, aSig, aSigExtra STATUS_VAR); | |
75d62a58 JM |
7059 | } |
7060 | ||
7061 | uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM) | |
7062 | { | |
0a87a310 TM |
7063 | signed char current_rounding_mode = STATUS(float_rounding_mode); |
7064 | set_float_rounding_mode(float_round_to_zero STATUS_VAR); | |
7065 | int64_t v = float64_to_uint64(a STATUS_VAR); | |
7066 | set_float_rounding_mode(current_rounding_mode STATUS_VAR); | |
7067 | return v; | |
75d62a58 JM |
7068 | } |
7069 | ||
1d6bda35 | 7070 | #define COMPARE(s, nan_exp) \ |
750afe93 | 7071 | INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \ |
1d6bda35 FB |
7072 | int is_quiet STATUS_PARAM ) \ |
7073 | { \ | |
7074 | flag aSign, bSign; \ | |
bb98fe42 | 7075 | uint ## s ## _t av, bv; \ |
37d18660 PM |
7076 | a = float ## s ## _squash_input_denormal(a STATUS_VAR); \ |
7077 | b = float ## s ## _squash_input_denormal(b STATUS_VAR); \ | |
1d6bda35 FB |
7078 | \ |
7079 | if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \ | |
7080 | extractFloat ## s ## Frac( a ) ) || \ | |
7081 | ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \ | |
7082 | extractFloat ## s ## Frac( b ) )) { \ | |
7083 | if (!is_quiet || \ | |
7084 | float ## s ## _is_signaling_nan( a ) || \ | |
7085 | float ## s ## _is_signaling_nan( b ) ) { \ | |
7086 | float_raise( float_flag_invalid STATUS_VAR); \ | |
7087 | } \ | |
7088 | return float_relation_unordered; \ | |
7089 | } \ | |
7090 | aSign = extractFloat ## s ## Sign( a ); \ | |
7091 | bSign = extractFloat ## s ## Sign( b ); \ | |
f090c9d4 | 7092 | av = float ## s ## _val(a); \ |
cd8a2533 | 7093 | bv = float ## s ## _val(b); \ |
1d6bda35 | 7094 | if ( aSign != bSign ) { \ |
bb98fe42 | 7095 | if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \ |
1d6bda35 FB |
7096 | /* zero case */ \ |
7097 | return float_relation_equal; \ | |
7098 | } else { \ | |
7099 | return 1 - (2 * aSign); \ | |
7100 | } \ | |
7101 | } else { \ | |
f090c9d4 | 7102 | if (av == bv) { \ |
1d6bda35 FB |
7103 | return float_relation_equal; \ |
7104 | } else { \ | |
f090c9d4 | 7105 | return 1 - 2 * (aSign ^ ( av < bv )); \ |
1d6bda35 FB |
7106 | } \ |
7107 | } \ | |
7108 | } \ | |
7109 | \ | |
750afe93 | 7110 | int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM ) \ |
1d6bda35 FB |
7111 | { \ |
7112 | return float ## s ## _compare_internal(a, b, 0 STATUS_VAR); \ | |
7113 | } \ | |
7114 | \ | |
750afe93 | 7115 | int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \ |
1d6bda35 FB |
7116 | { \ |
7117 | return float ## s ## _compare_internal(a, b, 1 STATUS_VAR); \ | |
7118 | } | |
7119 | ||
7120 | COMPARE(32, 0xff) | |
7121 | COMPARE(64, 0x7ff) | |
9ee6e8bb | 7122 | |
f6714d36 AJ |
7123 | INLINE int floatx80_compare_internal( floatx80 a, floatx80 b, |
7124 | int is_quiet STATUS_PARAM ) | |
7125 | { | |
7126 | flag aSign, bSign; | |
7127 | ||
7128 | if (( ( extractFloatx80Exp( a ) == 0x7fff ) && | |
7129 | ( extractFloatx80Frac( a )<<1 ) ) || | |
7130 | ( ( extractFloatx80Exp( b ) == 0x7fff ) && | |
7131 | ( extractFloatx80Frac( b )<<1 ) )) { | |
7132 | if (!is_quiet || | |
7133 | floatx80_is_signaling_nan( a ) || | |
7134 | floatx80_is_signaling_nan( b ) ) { | |
7135 | float_raise( float_flag_invalid STATUS_VAR); | |
7136 | } | |
7137 | return float_relation_unordered; | |
7138 | } | |
7139 | aSign = extractFloatx80Sign( a ); | |
7140 | bSign = extractFloatx80Sign( b ); | |
7141 | if ( aSign != bSign ) { | |
7142 | ||
7143 | if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && | |
7144 | ( ( a.low | b.low ) == 0 ) ) { | |
7145 | /* zero case */ | |
7146 | return float_relation_equal; | |
7147 | } else { | |
7148 | return 1 - (2 * aSign); | |
7149 | } | |
7150 | } else { | |
7151 | if (a.low == b.low && a.high == b.high) { | |
7152 | return float_relation_equal; | |
7153 | } else { | |
7154 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
7155 | } | |
7156 | } | |
7157 | } | |
7158 | ||
7159 | int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM ) | |
7160 | { | |
7161 | return floatx80_compare_internal(a, b, 0 STATUS_VAR); | |
7162 | } | |
7163 | ||
7164 | int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | |
7165 | { | |
7166 | return floatx80_compare_internal(a, b, 1 STATUS_VAR); | |
7167 | } | |
7168 | ||
1f587329 BS |
7169 | INLINE int float128_compare_internal( float128 a, float128 b, |
7170 | int is_quiet STATUS_PARAM ) | |
7171 | { | |
7172 | flag aSign, bSign; | |
7173 | ||
7174 | if (( ( extractFloat128Exp( a ) == 0x7fff ) && | |
7175 | ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || | |
7176 | ( ( extractFloat128Exp( b ) == 0x7fff ) && | |
7177 | ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { | |
7178 | if (!is_quiet || | |
7179 | float128_is_signaling_nan( a ) || | |
7180 | float128_is_signaling_nan( b ) ) { | |
7181 | float_raise( float_flag_invalid STATUS_VAR); | |
7182 | } | |
7183 | return float_relation_unordered; | |
7184 | } | |
7185 | aSign = extractFloat128Sign( a ); | |
7186 | bSign = extractFloat128Sign( b ); | |
7187 | if ( aSign != bSign ) { | |
7188 | if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { | |
7189 | /* zero case */ | |
7190 | return float_relation_equal; | |
7191 | } else { | |
7192 | return 1 - (2 * aSign); | |
7193 | } | |
7194 | } else { | |
7195 | if (a.low == b.low && a.high == b.high) { | |
7196 | return float_relation_equal; | |
7197 | } else { | |
7198 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
7199 | } | |
7200 | } | |
7201 | } | |
7202 | ||
7203 | int float128_compare( float128 a, float128 b STATUS_PARAM ) | |
7204 | { | |
7205 | return float128_compare_internal(a, b, 0 STATUS_VAR); | |
7206 | } | |
7207 | ||
7208 | int float128_compare_quiet( float128 a, float128 b STATUS_PARAM ) | |
7209 | { | |
7210 | return float128_compare_internal(a, b, 1 STATUS_VAR); | |
7211 | } | |
7212 | ||
274f1b04 PM |
7213 | /* min() and max() functions. These can't be implemented as |
7214 | * 'compare and pick one input' because that would mishandle | |
7215 | * NaNs and +0 vs -0. | |
e17ab310 WN |
7216 | * |
7217 | * minnum() and maxnum() functions. These are similar to the min() | |
7218 | * and max() functions but if one of the arguments is a QNaN and | |
7219 | * the other is numerical then the numerical argument is returned. | |
7220 | * minnum() and maxnum correspond to the IEEE 754-2008 minNum() | |
7221 | * and maxNum() operations. min() and max() are the typical min/max | |
7222 | * semantics provided by many CPUs which predate that specification. | |
274f1b04 | 7223 | */ |
e70614ea | 7224 | #define MINMAX(s) \ |
274f1b04 | 7225 | INLINE float ## s float ## s ## _minmax(float ## s a, float ## s b, \ |
e17ab310 | 7226 | int ismin, int isieee STATUS_PARAM) \ |
274f1b04 PM |
7227 | { \ |
7228 | flag aSign, bSign; \ | |
7229 | uint ## s ## _t av, bv; \ | |
7230 | a = float ## s ## _squash_input_denormal(a STATUS_VAR); \ | |
7231 | b = float ## s ## _squash_input_denormal(b STATUS_VAR); \ | |
7232 | if (float ## s ## _is_any_nan(a) || \ | |
7233 | float ## s ## _is_any_nan(b)) { \ | |
e17ab310 WN |
7234 | if (isieee) { \ |
7235 | if (float ## s ## _is_quiet_nan(a) && \ | |
7236 | !float ## s ##_is_any_nan(b)) { \ | |
7237 | return b; \ | |
7238 | } else if (float ## s ## _is_quiet_nan(b) && \ | |
7239 | !float ## s ## _is_any_nan(a)) { \ | |
7240 | return a; \ | |
7241 | } \ | |
7242 | } \ | |
274f1b04 PM |
7243 | return propagateFloat ## s ## NaN(a, b STATUS_VAR); \ |
7244 | } \ | |
7245 | aSign = extractFloat ## s ## Sign(a); \ | |
7246 | bSign = extractFloat ## s ## Sign(b); \ | |
7247 | av = float ## s ## _val(a); \ | |
7248 | bv = float ## s ## _val(b); \ | |
7249 | if (aSign != bSign) { \ | |
7250 | if (ismin) { \ | |
7251 | return aSign ? a : b; \ | |
7252 | } else { \ | |
7253 | return aSign ? b : a; \ | |
7254 | } \ | |
7255 | } else { \ | |
7256 | if (ismin) { \ | |
7257 | return (aSign ^ (av < bv)) ? a : b; \ | |
7258 | } else { \ | |
7259 | return (aSign ^ (av < bv)) ? b : a; \ | |
7260 | } \ | |
7261 | } \ | |
7262 | } \ | |
7263 | \ | |
7264 | float ## s float ## s ## _min(float ## s a, float ## s b STATUS_PARAM) \ | |
7265 | { \ | |
e17ab310 | 7266 | return float ## s ## _minmax(a, b, 1, 0 STATUS_VAR); \ |
274f1b04 PM |
7267 | } \ |
7268 | \ | |
7269 | float ## s float ## s ## _max(float ## s a, float ## s b STATUS_PARAM) \ | |
7270 | { \ | |
e17ab310 WN |
7271 | return float ## s ## _minmax(a, b, 0, 0 STATUS_VAR); \ |
7272 | } \ | |
7273 | \ | |
7274 | float ## s float ## s ## _minnum(float ## s a, float ## s b STATUS_PARAM) \ | |
7275 | { \ | |
7276 | return float ## s ## _minmax(a, b, 1, 1 STATUS_VAR); \ | |
7277 | } \ | |
7278 | \ | |
7279 | float ## s float ## s ## _maxnum(float ## s a, float ## s b STATUS_PARAM) \ | |
7280 | { \ | |
7281 | return float ## s ## _minmax(a, b, 0, 1 STATUS_VAR); \ | |
274f1b04 PM |
7282 | } |
7283 | ||
e70614ea WN |
7284 | MINMAX(32) |
7285 | MINMAX(64) | |
274f1b04 PM |
7286 | |
7287 | ||
9ee6e8bb PB |
7288 | /* Multiply A by 2 raised to the power N. */ |
7289 | float32 float32_scalbn( float32 a, int n STATUS_PARAM ) | |
7290 | { | |
7291 | flag aSign; | |
326b9e98 | 7292 | int16_t aExp; |
bb98fe42 | 7293 | uint32_t aSig; |
9ee6e8bb | 7294 | |
37d18660 | 7295 | a = float32_squash_input_denormal(a STATUS_VAR); |
9ee6e8bb PB |
7296 | aSig = extractFloat32Frac( a ); |
7297 | aExp = extractFloat32Exp( a ); | |
7298 | aSign = extractFloat32Sign( a ); | |
7299 | ||
7300 | if ( aExp == 0xFF ) { | |
326b9e98 AJ |
7301 | if ( aSig ) { |
7302 | return propagateFloat32NaN( a, a STATUS_VAR ); | |
7303 | } | |
9ee6e8bb PB |
7304 | return a; |
7305 | } | |
3c85c37f | 7306 | if (aExp != 0) { |
69397542 | 7307 | aSig |= 0x00800000; |
3c85c37f | 7308 | } else if (aSig == 0) { |
69397542 | 7309 | return a; |
3c85c37f PM |
7310 | } else { |
7311 | aExp++; | |
7312 | } | |
69397542 | 7313 | |
326b9e98 AJ |
7314 | if (n > 0x200) { |
7315 | n = 0x200; | |
7316 | } else if (n < -0x200) { | |
7317 | n = -0x200; | |
7318 | } | |
7319 | ||
69397542 PB |
7320 | aExp += n - 1; |
7321 | aSig <<= 7; | |
7322 | return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); | |
9ee6e8bb PB |
7323 | } |
7324 | ||
7325 | float64 float64_scalbn( float64 a, int n STATUS_PARAM ) | |
7326 | { | |
7327 | flag aSign; | |
326b9e98 | 7328 | int16_t aExp; |
bb98fe42 | 7329 | uint64_t aSig; |
9ee6e8bb | 7330 | |
37d18660 | 7331 | a = float64_squash_input_denormal(a STATUS_VAR); |
9ee6e8bb PB |
7332 | aSig = extractFloat64Frac( a ); |
7333 | aExp = extractFloat64Exp( a ); | |
7334 | aSign = extractFloat64Sign( a ); | |
7335 | ||
7336 | if ( aExp == 0x7FF ) { | |
326b9e98 AJ |
7337 | if ( aSig ) { |
7338 | return propagateFloat64NaN( a, a STATUS_VAR ); | |
7339 | } | |
9ee6e8bb PB |
7340 | return a; |
7341 | } | |
3c85c37f | 7342 | if (aExp != 0) { |
69397542 | 7343 | aSig |= LIT64( 0x0010000000000000 ); |
3c85c37f | 7344 | } else if (aSig == 0) { |
69397542 | 7345 | return a; |
3c85c37f PM |
7346 | } else { |
7347 | aExp++; | |
7348 | } | |
69397542 | 7349 | |
326b9e98 AJ |
7350 | if (n > 0x1000) { |
7351 | n = 0x1000; | |
7352 | } else if (n < -0x1000) { | |
7353 | n = -0x1000; | |
7354 | } | |
7355 | ||
69397542 PB |
7356 | aExp += n - 1; |
7357 | aSig <<= 10; | |
7358 | return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR ); | |
9ee6e8bb PB |
7359 | } |
7360 | ||
9ee6e8bb PB |
7361 | floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM ) |
7362 | { | |
7363 | flag aSign; | |
326b9e98 | 7364 | int32_t aExp; |
bb98fe42 | 7365 | uint64_t aSig; |
9ee6e8bb PB |
7366 | |
7367 | aSig = extractFloatx80Frac( a ); | |
7368 | aExp = extractFloatx80Exp( a ); | |
7369 | aSign = extractFloatx80Sign( a ); | |
7370 | ||
326b9e98 AJ |
7371 | if ( aExp == 0x7FFF ) { |
7372 | if ( aSig<<1 ) { | |
7373 | return propagateFloatx80NaN( a, a STATUS_VAR ); | |
7374 | } | |
9ee6e8bb PB |
7375 | return a; |
7376 | } | |
326b9e98 | 7377 | |
3c85c37f PM |
7378 | if (aExp == 0) { |
7379 | if (aSig == 0) { | |
7380 | return a; | |
7381 | } | |
7382 | aExp++; | |
7383 | } | |
69397542 | 7384 | |
326b9e98 AJ |
7385 | if (n > 0x10000) { |
7386 | n = 0x10000; | |
7387 | } else if (n < -0x10000) { | |
7388 | n = -0x10000; | |
7389 | } | |
7390 | ||
9ee6e8bb | 7391 | aExp += n; |
69397542 PB |
7392 | return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision), |
7393 | aSign, aExp, aSig, 0 STATUS_VAR ); | |
9ee6e8bb | 7394 | } |
9ee6e8bb | 7395 | |
9ee6e8bb PB |
7396 | float128 float128_scalbn( float128 a, int n STATUS_PARAM ) |
7397 | { | |
7398 | flag aSign; | |
326b9e98 | 7399 | int32_t aExp; |
bb98fe42 | 7400 | uint64_t aSig0, aSig1; |
9ee6e8bb PB |
7401 | |
7402 | aSig1 = extractFloat128Frac1( a ); | |
7403 | aSig0 = extractFloat128Frac0( a ); | |
7404 | aExp = extractFloat128Exp( a ); | |
7405 | aSign = extractFloat128Sign( a ); | |
7406 | if ( aExp == 0x7FFF ) { | |
326b9e98 AJ |
7407 | if ( aSig0 | aSig1 ) { |
7408 | return propagateFloat128NaN( a, a STATUS_VAR ); | |
7409 | } | |
9ee6e8bb PB |
7410 | return a; |
7411 | } | |
3c85c37f | 7412 | if (aExp != 0) { |
69397542 | 7413 | aSig0 |= LIT64( 0x0001000000000000 ); |
3c85c37f | 7414 | } else if (aSig0 == 0 && aSig1 == 0) { |
69397542 | 7415 | return a; |
3c85c37f PM |
7416 | } else { |
7417 | aExp++; | |
7418 | } | |
69397542 | 7419 | |
326b9e98 AJ |
7420 | if (n > 0x10000) { |
7421 | n = 0x10000; | |
7422 | } else if (n < -0x10000) { | |
7423 | n = -0x10000; | |
7424 | } | |
7425 | ||
69397542 PB |
7426 | aExp += n - 1; |
7427 | return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 | |
7428 | STATUS_VAR ); | |
9ee6e8bb PB |
7429 | |
7430 | } |