]>
Commit | Line | Data |
---|---|---|
b7bcbe95 FB |
1 | /* |
2 | * ARM helper routines | |
5fafdf24 | 3 | * |
9ee6e8bb | 4 | * Copyright (c) 2005-2007 CodeSourcery, LLC |
b7bcbe95 FB |
5 | * |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
b7bcbe95 | 18 | */ |
74c21bd0 | 19 | #include "qemu/osdep.h" |
3e457172 | 20 | #include "cpu.h" |
2ef6175a | 21 | #include "exec/helper-proto.h" |
ccd38087 | 22 | #include "internals.h" |
f08b6170 | 23 | #include "exec/cpu_ldst.h" |
b7bcbe95 | 24 | |
ad69471c PB |
25 | #define SIGNBIT (uint32_t)0x80000000 |
26 | #define SIGNBIT64 ((uint64_t)1 << 63) | |
27 | ||
c6328599 PM |
28 | static void raise_exception(CPUARMState *env, uint32_t excp, |
29 | uint32_t syndrome, uint32_t target_el) | |
b7bcbe95 | 30 | { |
c6328599 | 31 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
27103424 | 32 | |
c6328599 PM |
33 | assert(!excp_is_internal(excp)); |
34 | cs->exception_index = excp; | |
35 | env->exception.syndrome = syndrome; | |
36 | env->exception.target_el = target_el; | |
5638d180 | 37 | cpu_loop_exit(cs); |
b7bcbe95 FB |
38 | } |
39 | ||
e3b1d480 GB |
40 | static int exception_target_el(CPUARMState *env) |
41 | { | |
42 | int target_el = MAX(1, arm_current_el(env)); | |
43 | ||
44 | /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL | |
45 | * to EL3 in this case. | |
46 | */ | |
47 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { | |
48 | target_el = 3; | |
49 | } | |
50 | ||
51 | return target_el; | |
52 | } | |
53 | ||
9ef39277 | 54 | uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def, |
8f8e3aa4 | 55 | uint32_t rn, uint32_t maxindex) |
9ee6e8bb PB |
56 | { |
57 | uint32_t val; | |
9ee6e8bb PB |
58 | uint32_t tmp; |
59 | int index; | |
60 | int shift; | |
61 | uint64_t *table; | |
62 | table = (uint64_t *)&env->vfp.regs[rn]; | |
63 | val = 0; | |
9ee6e8bb | 64 | for (shift = 0; shift < 32; shift += 8) { |
8f8e3aa4 PB |
65 | index = (ireg >> shift) & 0xff; |
66 | if (index < maxindex) { | |
3018f259 | 67 | tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff; |
9ee6e8bb PB |
68 | val |= tmp << shift; |
69 | } else { | |
8f8e3aa4 | 70 | val |= def & (0xff << shift); |
9ee6e8bb PB |
71 | } |
72 | } | |
8f8e3aa4 | 73 | return val; |
9ee6e8bb PB |
74 | } |
75 | ||
b5ff1b31 FB |
76 | #if !defined(CONFIG_USER_ONLY) |
77 | ||
b5ff1b31 | 78 | /* try to fill the TLB and return an exception if error. If retaddr is |
d5a11fef AF |
79 | * NULL, it means that the function was called in C code (i.e. not |
80 | * from generated code or from helper.c) | |
81 | */ | |
82 | void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx, | |
20503968 | 83 | uintptr_t retaddr) |
b5ff1b31 | 84 | { |
b7cc4e82 PC |
85 | bool ret; |
86 | uint32_t fsr = 0; | |
e14b5a23 | 87 | ARMMMUFaultInfo fi = {}; |
b5ff1b31 | 88 | |
e14b5a23 | 89 | ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi); |
551bd27f | 90 | if (unlikely(ret)) { |
d5a11fef AF |
91 | ARMCPU *cpu = ARM_CPU(cs); |
92 | CPUARMState *env = &cpu->env; | |
8c6084bf | 93 | uint32_t syn, exc; |
d759a457 EI |
94 | unsigned int target_el; |
95 | bool same_el; | |
d5a11fef | 96 | |
b5ff1b31 FB |
97 | if (retaddr) { |
98 | /* now we have a real cpu fault */ | |
3f38f309 | 99 | cpu_restore_state(cs, retaddr); |
b5ff1b31 | 100 | } |
8c6084bf | 101 | |
d759a457 EI |
102 | target_el = exception_target_el(env); |
103 | if (fi.stage2) { | |
104 | target_el = 2; | |
9b539263 | 105 | env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; |
d759a457 EI |
106 | } |
107 | same_el = arm_current_el(env) == target_el; | |
8c6084bf | 108 | /* AArch64 syndrome does not have an LPAE bit */ |
b7cc4e82 | 109 | syn = fsr & ~(1 << 9); |
8c6084bf PM |
110 | |
111 | /* For insn and data aborts we assume there is no instruction syndrome | |
112 | * information; this is always true for exceptions reported to EL1. | |
113 | */ | |
114 | if (is_write == 2) { | |
37785977 | 115 | syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn); |
8c6084bf PM |
116 | exc = EXCP_PREFETCH_ABORT; |
117 | } else { | |
37785977 | 118 | syn = syn_data_abort(same_el, 0, 0, fi.s1ptw, is_write == 1, syn); |
8c6084bf | 119 | if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) { |
b7cc4e82 | 120 | fsr |= (1 << 11); |
8c6084bf PM |
121 | } |
122 | exc = EXCP_DATA_ABORT; | |
123 | } | |
124 | ||
8c6084bf | 125 | env->exception.vaddress = addr; |
b7cc4e82 | 126 | env->exception.fsr = fsr; |
d759a457 | 127 | raise_exception(env, exc, syn, target_el); |
b5ff1b31 | 128 | } |
b5ff1b31 | 129 | } |
30901475 AB |
130 | |
131 | /* Raise a data fault alignment exception for the specified virtual address */ | |
132 | void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write, | |
133 | int is_user, uintptr_t retaddr) | |
134 | { | |
135 | ARMCPU *cpu = ARM_CPU(cs); | |
136 | CPUARMState *env = &cpu->env; | |
137 | int target_el; | |
138 | bool same_el; | |
139 | ||
140 | if (retaddr) { | |
141 | /* now we have a real cpu fault */ | |
142 | cpu_restore_state(cs, retaddr); | |
143 | } | |
144 | ||
145 | target_el = exception_target_el(env); | |
146 | same_el = (arm_current_el(env) == target_el); | |
147 | ||
148 | env->exception.vaddress = vaddr; | |
149 | ||
150 | /* the DFSR for an alignment fault depends on whether we're using | |
151 | * the LPAE long descriptor format, or the short descriptor format | |
152 | */ | |
deb2db99 | 153 | if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) { |
30901475 AB |
154 | env->exception.fsr = 0x21; |
155 | } else { | |
156 | env->exception.fsr = 0x1; | |
157 | } | |
158 | ||
159 | if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) { | |
160 | env->exception.fsr |= (1 << 11); | |
161 | } | |
162 | ||
163 | raise_exception(env, EXCP_DATA_ABORT, | |
164 | syn_data_abort(same_el, 0, 0, 0, is_write == 1, 0x21), | |
165 | target_el); | |
166 | } | |
167 | ||
168 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
1497c961 | 169 | |
9ef39277 | 170 | uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
171 | { |
172 | uint32_t res = a + b; | |
173 | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) | |
174 | env->QF = 1; | |
175 | return res; | |
176 | } | |
177 | ||
9ef39277 | 178 | uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
179 | { |
180 | uint32_t res = a + b; | |
181 | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { | |
182 | env->QF = 1; | |
183 | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | |
184 | } | |
185 | return res; | |
186 | } | |
187 | ||
9ef39277 | 188 | uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
189 | { |
190 | uint32_t res = a - b; | |
191 | if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { | |
192 | env->QF = 1; | |
193 | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | |
194 | } | |
195 | return res; | |
196 | } | |
197 | ||
9ef39277 | 198 | uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val) |
1497c961 PB |
199 | { |
200 | uint32_t res; | |
201 | if (val >= 0x40000000) { | |
202 | res = ~SIGNBIT; | |
203 | env->QF = 1; | |
204 | } else if (val <= (int32_t)0xc0000000) { | |
205 | res = SIGNBIT; | |
206 | env->QF = 1; | |
207 | } else { | |
208 | res = val << 1; | |
209 | } | |
210 | return res; | |
211 | } | |
212 | ||
9ef39277 | 213 | uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
214 | { |
215 | uint32_t res = a + b; | |
216 | if (res < a) { | |
217 | env->QF = 1; | |
218 | res = ~0; | |
219 | } | |
220 | return res; | |
221 | } | |
222 | ||
9ef39277 | 223 | uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
224 | { |
225 | uint32_t res = a - b; | |
226 | if (res > a) { | |
227 | env->QF = 1; | |
228 | res = 0; | |
229 | } | |
230 | return res; | |
231 | } | |
232 | ||
6ddbc6e4 | 233 | /* Signed saturation. */ |
9ef39277 | 234 | static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) |
6ddbc6e4 PB |
235 | { |
236 | int32_t top; | |
237 | uint32_t mask; | |
238 | ||
6ddbc6e4 PB |
239 | top = val >> shift; |
240 | mask = (1u << shift) - 1; | |
241 | if (top > 0) { | |
242 | env->QF = 1; | |
243 | return mask; | |
244 | } else if (top < -1) { | |
245 | env->QF = 1; | |
246 | return ~mask; | |
247 | } | |
248 | return val; | |
249 | } | |
250 | ||
251 | /* Unsigned saturation. */ | |
9ef39277 | 252 | static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) |
6ddbc6e4 PB |
253 | { |
254 | uint32_t max; | |
255 | ||
6ddbc6e4 PB |
256 | max = (1u << shift) - 1; |
257 | if (val < 0) { | |
258 | env->QF = 1; | |
259 | return 0; | |
260 | } else if (val > max) { | |
261 | env->QF = 1; | |
262 | return max; | |
263 | } | |
264 | return val; | |
265 | } | |
266 | ||
267 | /* Signed saturate. */ | |
9ef39277 | 268 | uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 | 269 | { |
9ef39277 | 270 | return do_ssat(env, x, shift); |
6ddbc6e4 PB |
271 | } |
272 | ||
273 | /* Dual halfword signed saturate. */ | |
9ef39277 | 274 | uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 PB |
275 | { |
276 | uint32_t res; | |
277 | ||
9ef39277 BS |
278 | res = (uint16_t)do_ssat(env, (int16_t)x, shift); |
279 | res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; | |
6ddbc6e4 PB |
280 | return res; |
281 | } | |
282 | ||
283 | /* Unsigned saturate. */ | |
9ef39277 | 284 | uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 | 285 | { |
9ef39277 | 286 | return do_usat(env, x, shift); |
6ddbc6e4 PB |
287 | } |
288 | ||
289 | /* Dual halfword unsigned saturate. */ | |
9ef39277 | 290 | uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 PB |
291 | { |
292 | uint32_t res; | |
293 | ||
9ef39277 BS |
294 | res = (uint16_t)do_usat(env, (int16_t)x, shift); |
295 | res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; | |
6ddbc6e4 PB |
296 | return res; |
297 | } | |
d9ba4830 | 298 | |
b1eced71 GB |
299 | /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. |
300 | * The function returns the target EL (1-3) if the instruction is to be trapped; | |
301 | * otherwise it returns 0 indicating it is not trapped. | |
302 | */ | |
303 | static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) | |
304 | { | |
305 | int cur_el = arm_current_el(env); | |
306 | uint64_t mask; | |
307 | ||
308 | /* If we are currently in EL0 then we need to check if SCTLR is set up for | |
309 | * WFx instructions being trapped to EL1. These trap bits don't exist in v7. | |
310 | */ | |
311 | if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { | |
312 | int target_el; | |
313 | ||
314 | mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; | |
315 | if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { | |
316 | /* Secure EL0 and Secure PL1 is at EL3 */ | |
317 | target_el = 3; | |
318 | } else { | |
319 | target_el = 1; | |
320 | } | |
321 | ||
322 | if (!(env->cp15.sctlr_el[target_el] & mask)) { | |
323 | return target_el; | |
324 | } | |
325 | } | |
326 | ||
327 | /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it | |
328 | * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the | |
329 | * bits will be zero indicating no trap. | |
330 | */ | |
331 | if (cur_el < 2 && !arm_is_secure(env)) { | |
332 | mask = (is_wfe) ? HCR_TWE : HCR_TWI; | |
333 | if (env->cp15.hcr_el2 & mask) { | |
334 | return 2; | |
335 | } | |
336 | } | |
337 | ||
338 | /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ | |
339 | if (cur_el < 3) { | |
340 | mask = (is_wfe) ? SCR_TWE : SCR_TWI; | |
341 | if (env->cp15.scr_el3 & mask) { | |
342 | return 3; | |
343 | } | |
344 | } | |
345 | ||
346 | return 0; | |
347 | } | |
348 | ||
1ce94f81 | 349 | void HELPER(wfi)(CPUARMState *env) |
d9ba4830 | 350 | { |
259186a7 | 351 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b1eced71 | 352 | int target_el = check_wfx_trap(env, false); |
259186a7 | 353 | |
84549b6d PM |
354 | if (cpu_has_work(cs)) { |
355 | /* Don't bother to go into our "low power state" if | |
356 | * we would just wake up immediately. | |
357 | */ | |
358 | return; | |
359 | } | |
360 | ||
b1eced71 GB |
361 | if (target_el) { |
362 | env->pc -= 4; | |
363 | raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el); | |
364 | } | |
365 | ||
27103424 | 366 | cs->exception_index = EXCP_HLT; |
259186a7 | 367 | cs->halted = 1; |
5638d180 | 368 | cpu_loop_exit(cs); |
d9ba4830 PB |
369 | } |
370 | ||
72c1d3af PM |
371 | void HELPER(wfe)(CPUARMState *env) |
372 | { | |
049e24a1 PM |
373 | /* This is a hint instruction that is semantically different |
374 | * from YIELD even though we currently implement it identically. | |
375 | * Don't actually halt the CPU, just yield back to top | |
b1eced71 GB |
376 | * level loop. This is not going into a "low power state" |
377 | * (ie halting until some event occurs), so we never take | |
378 | * a configurable trap to a different exception level. | |
72c1d3af | 379 | */ |
049e24a1 PM |
380 | HELPER(yield)(env); |
381 | } | |
382 | ||
383 | void HELPER(yield)(CPUARMState *env) | |
384 | { | |
385 | ARMCPU *cpu = arm_env_get_cpu(env); | |
386 | CPUState *cs = CPU(cpu); | |
387 | ||
388 | /* This is a non-trappable hint instruction that generally indicates | |
389 | * that the guest is currently busy-looping. Yield control back to the | |
390 | * top level loop so that a more deserving VCPU has a chance to run. | |
391 | */ | |
27103424 | 392 | cs->exception_index = EXCP_YIELD; |
5638d180 | 393 | cpu_loop_exit(cs); |
72c1d3af PM |
394 | } |
395 | ||
d4a2dc67 PM |
396 | /* Raise an internal-to-QEMU exception. This is limited to only |
397 | * those EXCP values which are special cases for QEMU to interrupt | |
398 | * execution and not to be used for exceptions which are passed to | |
399 | * the guest (those must all have syndrome information and thus should | |
400 | * use exception_with_syndrome). | |
401 | */ | |
402 | void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) | |
403 | { | |
404 | CPUState *cs = CPU(arm_env_get_cpu(env)); | |
405 | ||
406 | assert(excp_is_internal(excp)); | |
407 | cs->exception_index = excp; | |
408 | cpu_loop_exit(cs); | |
409 | } | |
410 | ||
411 | /* Raise an exception with the specified syndrome register value */ | |
412 | void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, | |
73710361 | 413 | uint32_t syndrome, uint32_t target_el) |
d9ba4830 | 414 | { |
c6328599 | 415 | raise_exception(env, excp, syndrome, target_el); |
d9ba4830 PB |
416 | } |
417 | ||
9ef39277 | 418 | uint32_t HELPER(cpsr_read)(CPUARMState *env) |
d9ba4830 | 419 | { |
4051e12c | 420 | return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED); |
d9ba4830 PB |
421 | } |
422 | ||
1ce94f81 | 423 | void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) |
d9ba4830 PB |
424 | { |
425 | cpsr_write(env, val, mask); | |
426 | } | |
b0109805 PB |
427 | |
428 | /* Access to user mode registers from privileged modes. */ | |
9ef39277 | 429 | uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) |
b0109805 PB |
430 | { |
431 | uint32_t val; | |
432 | ||
433 | if (regno == 13) { | |
99a99c1f | 434 | val = env->banked_r13[BANK_USRSYS]; |
b0109805 | 435 | } else if (regno == 14) { |
99a99c1f | 436 | val = env->banked_r14[BANK_USRSYS]; |
b0109805 PB |
437 | } else if (regno >= 8 |
438 | && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { | |
439 | val = env->usr_regs[regno - 8]; | |
440 | } else { | |
441 | val = env->regs[regno]; | |
442 | } | |
443 | return val; | |
444 | } | |
445 | ||
1ce94f81 | 446 | void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) |
b0109805 PB |
447 | { |
448 | if (regno == 13) { | |
99a99c1f | 449 | env->banked_r13[BANK_USRSYS] = val; |
b0109805 | 450 | } else if (regno == 14) { |
99a99c1f | 451 | env->banked_r14[BANK_USRSYS] = val; |
b0109805 PB |
452 | } else if (regno >= 8 |
453 | && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { | |
454 | env->usr_regs[regno - 8] = val; | |
455 | } else { | |
456 | env->regs[regno] = val; | |
457 | } | |
458 | } | |
4b6a83fb | 459 | |
8bcbf37c | 460 | void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome) |
f59df3f2 PM |
461 | { |
462 | const ARMCPRegInfo *ri = rip; | |
38836a2c | 463 | int target_el; |
c0f4af17 PM |
464 | |
465 | if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 | |
466 | && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { | |
c6328599 | 467 | raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); |
c0f4af17 PM |
468 | } |
469 | ||
470 | if (!ri->accessfn) { | |
471 | return; | |
472 | } | |
473 | ||
f59df3f2 PM |
474 | switch (ri->accessfn(env, ri)) { |
475 | case CP_ACCESS_OK: | |
476 | return; | |
477 | case CP_ACCESS_TRAP: | |
38836a2c PM |
478 | target_el = exception_target_el(env); |
479 | break; | |
480 | case CP_ACCESS_TRAP_EL2: | |
481 | /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is | |
482 | * a bug in the access function. | |
483 | */ | |
3fc827d5 | 484 | assert(!arm_is_secure(env) && arm_current_el(env) != 3); |
38836a2c PM |
485 | target_el = 2; |
486 | break; | |
487 | case CP_ACCESS_TRAP_EL3: | |
488 | target_el = 3; | |
8bcbf37c | 489 | break; |
f59df3f2 | 490 | case CP_ACCESS_TRAP_UNCATEGORIZED: |
38836a2c | 491 | target_el = exception_target_el(env); |
c6328599 | 492 | syndrome = syn_uncategorized(); |
f59df3f2 | 493 | break; |
e7615726 PM |
494 | case CP_ACCESS_TRAP_UNCATEGORIZED_EL2: |
495 | target_el = 2; | |
496 | syndrome = syn_uncategorized(); | |
497 | break; | |
498 | case CP_ACCESS_TRAP_UNCATEGORIZED_EL3: | |
499 | target_el = 3; | |
500 | syndrome = syn_uncategorized(); | |
501 | break; | |
f59df3f2 PM |
502 | default: |
503 | g_assert_not_reached(); | |
504 | } | |
c6328599 | 505 | |
38836a2c | 506 | raise_exception(env, EXCP_UDEF, syndrome, target_el); |
f59df3f2 PM |
507 | } |
508 | ||
4b6a83fb PM |
509 | void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value) |
510 | { | |
511 | const ARMCPRegInfo *ri = rip; | |
c4241c7d PM |
512 | |
513 | ri->writefn(env, ri, value); | |
4b6a83fb PM |
514 | } |
515 | ||
516 | uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip) | |
517 | { | |
518 | const ARMCPRegInfo *ri = rip; | |
c4241c7d PM |
519 | |
520 | return ri->readfn(env, ri); | |
4b6a83fb PM |
521 | } |
522 | ||
523 | void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value) | |
524 | { | |
525 | const ARMCPRegInfo *ri = rip; | |
c4241c7d PM |
526 | |
527 | ri->writefn(env, ri, value); | |
4b6a83fb PM |
528 | } |
529 | ||
530 | uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip) | |
531 | { | |
532 | const ARMCPRegInfo *ri = rip; | |
c4241c7d PM |
533 | |
534 | return ri->readfn(env, ri); | |
4b6a83fb | 535 | } |
b0109805 | 536 | |
9cfa0b4e PM |
537 | void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm) |
538 | { | |
539 | /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set. | |
540 | * Note that SPSel is never OK from EL0; we rely on handle_msr_i() | |
541 | * to catch that case at translate time. | |
542 | */ | |
137feaa9 | 543 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c6328599 PM |
544 | uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3), |
545 | extract32(op, 3, 3), 4, | |
546 | imm, 0x1f, 0); | |
547 | raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); | |
9cfa0b4e PM |
548 | } |
549 | ||
550 | switch (op) { | |
551 | case 0x05: /* SPSel */ | |
f502cfc2 | 552 | update_spsel(env, imm); |
9cfa0b4e PM |
553 | break; |
554 | case 0x1e: /* DAIFSet */ | |
555 | env->daif |= (imm << 6) & PSTATE_DAIF; | |
556 | break; | |
557 | case 0x1f: /* DAIFClear */ | |
558 | env->daif &= ~((imm << 6) & PSTATE_DAIF); | |
559 | break; | |
560 | default: | |
561 | g_assert_not_reached(); | |
562 | } | |
563 | } | |
564 | ||
7ea47fe7 PM |
565 | void HELPER(clear_pstate_ss)(CPUARMState *env) |
566 | { | |
567 | env->pstate &= ~PSTATE_SS; | |
568 | } | |
569 | ||
35979d71 EI |
570 | void HELPER(pre_hvc)(CPUARMState *env) |
571 | { | |
98128601 | 572 | ARMCPU *cpu = arm_env_get_cpu(env); |
dcbff19b | 573 | int cur_el = arm_current_el(env); |
35979d71 EI |
574 | /* FIXME: Use actual secure state. */ |
575 | bool secure = false; | |
576 | bool undef; | |
577 | ||
98128601 RH |
578 | if (arm_is_psci_call(cpu, EXCP_HVC)) { |
579 | /* If PSCI is enabled and this looks like a valid PSCI call then | |
580 | * that overrides the architecturally mandated HVC behaviour. | |
581 | */ | |
582 | return; | |
583 | } | |
584 | ||
39404338 PM |
585 | if (!arm_feature(env, ARM_FEATURE_EL2)) { |
586 | /* If EL2 doesn't exist, HVC always UNDEFs */ | |
587 | undef = true; | |
588 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
589 | /* EL3.HCE has priority over EL2.HCD. */ | |
35979d71 EI |
590 | undef = !(env->cp15.scr_el3 & SCR_HCE); |
591 | } else { | |
592 | undef = env->cp15.hcr_el2 & HCR_HCD; | |
593 | } | |
594 | ||
595 | /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. | |
596 | * For ARMv8/AArch64, HVC is allowed in EL3. | |
597 | * Note that we've already trapped HVC from EL0 at translation | |
598 | * time. | |
599 | */ | |
600 | if (secure && (!is_a64(env) || cur_el == 1)) { | |
601 | undef = true; | |
602 | } | |
603 | ||
604 | if (undef) { | |
c6328599 PM |
605 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
606 | exception_target_el(env)); | |
35979d71 EI |
607 | } |
608 | } | |
609 | ||
e0d6e6a5 EI |
610 | void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) |
611 | { | |
98128601 | 612 | ARMCPU *cpu = arm_env_get_cpu(env); |
dcbff19b | 613 | int cur_el = arm_current_el(env); |
dbe9d163 | 614 | bool secure = arm_is_secure(env); |
e0d6e6a5 EI |
615 | bool smd = env->cp15.scr_el3 & SCR_SMD; |
616 | /* On ARMv8 AArch32, SMD only applies to NS state. | |
617 | * On ARMv7 SMD only applies to NS state and only if EL2 is available. | |
618 | * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check | |
619 | * the EL2 condition here. | |
620 | */ | |
621 | bool undef = is_a64(env) ? smd : (!secure && smd); | |
622 | ||
98128601 RH |
623 | if (arm_is_psci_call(cpu, EXCP_SMC)) { |
624 | /* If PSCI is enabled and this looks like a valid PSCI call then | |
625 | * that overrides the architecturally mandated SMC behaviour. | |
626 | */ | |
627 | return; | |
628 | } | |
629 | ||
39404338 PM |
630 | if (!arm_feature(env, ARM_FEATURE_EL3)) { |
631 | /* If we have no EL3 then SMC always UNDEFs */ | |
632 | undef = true; | |
633 | } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) { | |
634 | /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */ | |
c6328599 | 635 | raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); |
e0d6e6a5 EI |
636 | } |
637 | ||
e0d6e6a5 | 638 | if (undef) { |
c6328599 PM |
639 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
640 | exception_target_el(env)); | |
e0d6e6a5 EI |
641 | } |
642 | } | |
643 | ||
3809951b PM |
644 | static int el_from_spsr(uint32_t spsr) |
645 | { | |
646 | /* Return the exception level that this SPSR is requesting a return to, | |
647 | * or -1 if it is invalid (an illegal return) | |
648 | */ | |
649 | if (spsr & PSTATE_nRW) { | |
650 | switch (spsr & CPSR_M) { | |
651 | case ARM_CPU_MODE_USR: | |
652 | return 0; | |
653 | case ARM_CPU_MODE_HYP: | |
654 | return 2; | |
655 | case ARM_CPU_MODE_FIQ: | |
656 | case ARM_CPU_MODE_IRQ: | |
657 | case ARM_CPU_MODE_SVC: | |
658 | case ARM_CPU_MODE_ABT: | |
659 | case ARM_CPU_MODE_UND: | |
660 | case ARM_CPU_MODE_SYS: | |
661 | return 1; | |
662 | case ARM_CPU_MODE_MON: | |
663 | /* Returning to Mon from AArch64 is never possible, | |
664 | * so this is an illegal return. | |
665 | */ | |
666 | default: | |
667 | return -1; | |
668 | } | |
669 | } else { | |
670 | if (extract32(spsr, 1, 1)) { | |
671 | /* Return with reserved M[1] bit set */ | |
672 | return -1; | |
673 | } | |
674 | if (extract32(spsr, 0, 4) == 1) { | |
675 | /* return to EL0 with M[0] bit set */ | |
676 | return -1; | |
677 | } | |
678 | return extract32(spsr, 2, 2); | |
679 | } | |
680 | } | |
681 | ||
52e60cdd RH |
682 | void HELPER(exception_return)(CPUARMState *env) |
683 | { | |
dcbff19b | 684 | int cur_el = arm_current_el(env); |
db6c3cd0 | 685 | unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el); |
2a923c4d | 686 | uint32_t spsr = env->banked_spsr[spsr_idx]; |
ce02049d | 687 | int new_el; |
3809951b | 688 | bool return_to_aa64 = (spsr & PSTATE_nRW) == 0; |
52e60cdd | 689 | |
9208b961 | 690 | aarch64_save_sp(env, cur_el); |
52e60cdd RH |
691 | |
692 | env->exclusive_addr = -1; | |
693 | ||
3a298203 PM |
694 | /* We must squash the PSTATE.SS bit to zero unless both of the |
695 | * following hold: | |
696 | * 1. debug exceptions are currently disabled | |
697 | * 2. singlestep will be active in the EL we return to | |
698 | * We check 1 here and 2 after we've done the pstate/cpsr write() to | |
699 | * transition to the EL we're going to. | |
700 | */ | |
701 | if (arm_generate_debug_exceptions(env)) { | |
702 | spsr &= ~PSTATE_SS; | |
703 | } | |
704 | ||
3809951b PM |
705 | new_el = el_from_spsr(spsr); |
706 | if (new_el == -1) { | |
707 | goto illegal_return; | |
708 | } | |
709 | if (new_el > cur_el | |
710 | || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) { | |
711 | /* Disallow return to an EL which is unimplemented or higher | |
712 | * than the current one. | |
713 | */ | |
714 | goto illegal_return; | |
715 | } | |
716 | ||
717 | if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) { | |
718 | /* Return to an EL which is configured for a different register width */ | |
719 | goto illegal_return; | |
720 | } | |
721 | ||
e393f339 PM |
722 | if (new_el == 2 && arm_is_secure_below_el3(env)) { |
723 | /* Return to the non-existent secure-EL2 */ | |
724 | goto illegal_return; | |
725 | } | |
726 | ||
727 | if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE) | |
728 | && !arm_is_secure_below_el3(env)) { | |
729 | goto illegal_return; | |
730 | } | |
731 | ||
3809951b | 732 | if (!return_to_aa64) { |
52e60cdd | 733 | env->aarch64 = 0; |
3809951b | 734 | env->uncached_cpsr = spsr & CPSR_M; |
52e60cdd | 735 | cpsr_write(env, spsr, ~0); |
3a298203 PM |
736 | if (!arm_singlestep_active(env)) { |
737 | env->uncached_cpsr &= ~PSTATE_SS; | |
738 | } | |
ce02049d | 739 | aarch64_sync_64_to_32(env); |
52e60cdd | 740 | |
c1e03714 PM |
741 | if (spsr & CPSR_T) { |
742 | env->regs[15] = env->elr_el[cur_el] & ~0x1; | |
743 | } else { | |
744 | env->regs[15] = env->elr_el[cur_el] & ~0x3; | |
745 | } | |
52e60cdd | 746 | } else { |
52e60cdd RH |
747 | env->aarch64 = 1; |
748 | pstate_write(env, spsr); | |
3a298203 PM |
749 | if (!arm_singlestep_active(env)) { |
750 | env->pstate &= ~PSTATE_SS; | |
751 | } | |
98ea5615 | 752 | aarch64_restore_sp(env, new_el); |
db6c3cd0 | 753 | env->pc = env->elr_el[cur_el]; |
52e60cdd RH |
754 | } |
755 | ||
756 | return; | |
757 | ||
758 | illegal_return: | |
759 | /* Illegal return events of various kinds have architecturally | |
760 | * mandated behaviour: | |
761 | * restore NZCV and DAIF from SPSR_ELx | |
762 | * set PSTATE.IL | |
763 | * restore PC from ELR_ELx | |
764 | * no change to exception level, execution state or stack pointer | |
765 | */ | |
766 | env->pstate |= PSTATE_IL; | |
db6c3cd0 | 767 | env->pc = env->elr_el[cur_el]; |
52e60cdd RH |
768 | spsr &= PSTATE_NZCV | PSTATE_DAIF; |
769 | spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); | |
770 | pstate_write(env, spsr); | |
3a298203 PM |
771 | if (!arm_singlestep_active(env)) { |
772 | env->pstate &= ~PSTATE_SS; | |
773 | } | |
52e60cdd RH |
774 | } |
775 | ||
3ff6fc91 PM |
776 | /* Return true if the linked breakpoint entry lbn passes its checks */ |
777 | static bool linked_bp_matches(ARMCPU *cpu, int lbn) | |
778 | { | |
779 | CPUARMState *env = &cpu->env; | |
780 | uint64_t bcr = env->cp15.dbgbcr[lbn]; | |
781 | int brps = extract32(cpu->dbgdidr, 24, 4); | |
782 | int ctx_cmps = extract32(cpu->dbgdidr, 20, 4); | |
783 | int bt; | |
784 | uint32_t contextidr; | |
785 | ||
786 | /* Links to unimplemented or non-context aware breakpoints are | |
787 | * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or | |
788 | * as if linked to an UNKNOWN context-aware breakpoint (in which | |
789 | * case DBGWCR<n>_EL1.LBN must indicate that breakpoint). | |
790 | * We choose the former. | |
791 | */ | |
792 | if (lbn > brps || lbn < (brps - ctx_cmps)) { | |
793 | return false; | |
794 | } | |
795 | ||
796 | bcr = env->cp15.dbgbcr[lbn]; | |
797 | ||
798 | if (extract64(bcr, 0, 1) == 0) { | |
799 | /* Linked breakpoint disabled : generate no events */ | |
800 | return false; | |
801 | } | |
802 | ||
803 | bt = extract64(bcr, 20, 4); | |
804 | ||
805 | /* We match the whole register even if this is AArch32 using the | |
806 | * short descriptor format (in which case it holds both PROCID and ASID), | |
807 | * since we don't implement the optional v7 context ID masking. | |
808 | */ | |
54bf36ed | 809 | contextidr = extract64(env->cp15.contextidr_el[1], 0, 32); |
3ff6fc91 PM |
810 | |
811 | switch (bt) { | |
812 | case 3: /* linked context ID match */ | |
dcbff19b | 813 | if (arm_current_el(env) > 1) { |
3ff6fc91 PM |
814 | /* Context matches never fire in EL2 or (AArch64) EL3 */ |
815 | return false; | |
816 | } | |
817 | return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32)); | |
818 | case 5: /* linked address mismatch (reserved in AArch64) */ | |
819 | case 9: /* linked VMID match (reserved if no EL2) */ | |
820 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
821 | default: | |
822 | /* Links to Unlinked context breakpoints must generate no | |
823 | * events; we choose to do the same for reserved values too. | |
824 | */ | |
825 | return false; | |
826 | } | |
827 | ||
828 | return false; | |
829 | } | |
830 | ||
0eacea70 | 831 | static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp) |
3ff6fc91 PM |
832 | { |
833 | CPUARMState *env = &cpu->env; | |
0eacea70 | 834 | uint64_t cr; |
3ff6fc91 | 835 | int pac, hmc, ssc, wt, lbn; |
ef7bab8d PM |
836 | /* Note that for watchpoints the check is against the CPU security |
837 | * state, not the S/NS attribute on the offending data access. | |
838 | */ | |
839 | bool is_secure = arm_is_secure(env); | |
9e1fc5bd | 840 | int access_el = arm_current_el(env); |
3ff6fc91 | 841 | |
0eacea70 | 842 | if (is_wp) { |
9e1fc5bd PM |
843 | CPUWatchpoint *wp = env->cpu_watchpoint[n]; |
844 | ||
845 | if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) { | |
0eacea70 PM |
846 | return false; |
847 | } | |
848 | cr = env->cp15.dbgwcr[n]; | |
9e1fc5bd PM |
849 | if (wp->hitattrs.user) { |
850 | /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should | |
851 | * match watchpoints as if they were accesses done at EL0, even if | |
852 | * the CPU is at EL1 or higher. | |
853 | */ | |
854 | access_el = 0; | |
855 | } | |
0eacea70 PM |
856 | } else { |
857 | uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; | |
3ff6fc91 | 858 | |
0eacea70 PM |
859 | if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) { |
860 | return false; | |
861 | } | |
862 | cr = env->cp15.dbgbcr[n]; | |
863 | } | |
3ff6fc91 | 864 | /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is |
0eacea70 PM |
865 | * enabled and that the address and access type match; for breakpoints |
866 | * we know the address matched; check the remaining fields, including | |
867 | * linked breakpoints. We rely on WCR and BCR having the same layout | |
868 | * for the LBN, SSC, HMC, PAC/PMC and is-linked fields. | |
869 | * Note that some combinations of {PAC, HMC, SSC} are reserved and | |
3ff6fc91 PM |
870 | * must act either like some valid combination or as if the watchpoint |
871 | * were disabled. We choose the former, and use this together with | |
872 | * the fact that EL3 must always be Secure and EL2 must always be | |
873 | * Non-Secure to simplify the code slightly compared to the full | |
874 | * table in the ARM ARM. | |
875 | */ | |
0eacea70 PM |
876 | pac = extract64(cr, 1, 2); |
877 | hmc = extract64(cr, 13, 1); | |
878 | ssc = extract64(cr, 14, 2); | |
3ff6fc91 PM |
879 | |
880 | switch (ssc) { | |
881 | case 0: | |
882 | break; | |
883 | case 1: | |
884 | case 3: | |
885 | if (is_secure) { | |
886 | return false; | |
887 | } | |
888 | break; | |
889 | case 2: | |
890 | if (!is_secure) { | |
891 | return false; | |
892 | } | |
893 | break; | |
894 | } | |
895 | ||
9e1fc5bd | 896 | switch (access_el) { |
3ff6fc91 PM |
897 | case 3: |
898 | case 2: | |
899 | if (!hmc) { | |
900 | return false; | |
901 | } | |
902 | break; | |
903 | case 1: | |
904 | if (extract32(pac, 0, 1) == 0) { | |
905 | return false; | |
906 | } | |
907 | break; | |
908 | case 0: | |
909 | if (extract32(pac, 1, 1) == 0) { | |
910 | return false; | |
911 | } | |
912 | break; | |
913 | default: | |
914 | g_assert_not_reached(); | |
915 | } | |
916 | ||
0eacea70 PM |
917 | wt = extract64(cr, 20, 1); |
918 | lbn = extract64(cr, 16, 4); | |
3ff6fc91 PM |
919 | |
920 | if (wt && !linked_bp_matches(cpu, lbn)) { | |
921 | return false; | |
922 | } | |
923 | ||
924 | return true; | |
925 | } | |
926 | ||
927 | static bool check_watchpoints(ARMCPU *cpu) | |
928 | { | |
929 | CPUARMState *env = &cpu->env; | |
930 | int n; | |
931 | ||
932 | /* If watchpoints are disabled globally or we can't take debug | |
933 | * exceptions here then watchpoint firings are ignored. | |
934 | */ | |
935 | if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 | |
936 | || !arm_generate_debug_exceptions(env)) { | |
937 | return false; | |
938 | } | |
939 | ||
940 | for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) { | |
0eacea70 PM |
941 | if (bp_wp_matches(cpu, n, true)) { |
942 | return true; | |
943 | } | |
944 | } | |
945 | return false; | |
946 | } | |
947 | ||
948 | static bool check_breakpoints(ARMCPU *cpu) | |
949 | { | |
950 | CPUARMState *env = &cpu->env; | |
951 | int n; | |
952 | ||
953 | /* If breakpoints are disabled globally or we can't take debug | |
954 | * exceptions here then breakpoint firings are ignored. | |
955 | */ | |
956 | if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 | |
957 | || !arm_generate_debug_exceptions(env)) { | |
958 | return false; | |
959 | } | |
960 | ||
961 | for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) { | |
962 | if (bp_wp_matches(cpu, n, false)) { | |
3ff6fc91 PM |
963 | return true; |
964 | } | |
965 | } | |
966 | return false; | |
967 | } | |
968 | ||
5d98bf8f SF |
969 | void HELPER(check_breakpoints)(CPUARMState *env) |
970 | { | |
971 | ARMCPU *cpu = arm_env_get_cpu(env); | |
972 | ||
973 | if (check_breakpoints(cpu)) { | |
974 | HELPER(exception_internal(env, EXCP_DEBUG)); | |
975 | } | |
976 | } | |
977 | ||
3ff6fc91 PM |
978 | void arm_debug_excp_handler(CPUState *cs) |
979 | { | |
980 | /* Called by core code when a watchpoint or breakpoint fires; | |
981 | * need to check which one and raise the appropriate exception. | |
982 | */ | |
983 | ARMCPU *cpu = ARM_CPU(cs); | |
984 | CPUARMState *env = &cpu->env; | |
985 | CPUWatchpoint *wp_hit = cs->watchpoint_hit; | |
986 | ||
987 | if (wp_hit) { | |
988 | if (wp_hit->flags & BP_CPU) { | |
989 | cs->watchpoint_hit = NULL; | |
990 | if (check_watchpoints(cpu)) { | |
991 | bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0; | |
dcbff19b | 992 | bool same_el = arm_debug_target_el(env) == arm_current_el(env); |
3ff6fc91 | 993 | |
3ff6fc91 PM |
994 | if (extended_addresses_enabled(env)) { |
995 | env->exception.fsr = (1 << 9) | 0x22; | |
996 | } else { | |
997 | env->exception.fsr = 0x2; | |
998 | } | |
999 | env->exception.vaddress = wp_hit->hitaddr; | |
c6328599 PM |
1000 | raise_exception(env, EXCP_DATA_ABORT, |
1001 | syn_watchpoint(same_el, 0, wnr), | |
1002 | arm_debug_target_el(env)); | |
3ff6fc91 PM |
1003 | } else { |
1004 | cpu_resume_from_signal(cs, NULL); | |
1005 | } | |
1006 | } | |
0eacea70 | 1007 | } else { |
e63a2d4d | 1008 | uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; |
5d98bf8f | 1009 | bool same_el = (arm_debug_target_el(env) == arm_current_el(env)); |
e63a2d4d | 1010 | |
5c629f4f SF |
1011 | /* (1) GDB breakpoints should be handled first. |
1012 | * (2) Do not raise a CPU exception if no CPU breakpoint has fired, | |
1013 | * since singlestep is also done by generating a debug internal | |
1014 | * exception. | |
1015 | */ | |
1016 | if (cpu_breakpoint_test(cs, pc, BP_GDB) | |
1017 | || !cpu_breakpoint_test(cs, pc, BP_CPU)) { | |
e63a2d4d SF |
1018 | return; |
1019 | } | |
1020 | ||
5d98bf8f SF |
1021 | if (extended_addresses_enabled(env)) { |
1022 | env->exception.fsr = (1 << 9) | 0x22; | |
1023 | } else { | |
1024 | env->exception.fsr = 0x2; | |
0eacea70 | 1025 | } |
5d98bf8f SF |
1026 | /* FAR is UNKNOWN, so doesn't need setting */ |
1027 | raise_exception(env, EXCP_PREFETCH_ABORT, | |
1028 | syn_breakpoint(same_el), | |
1029 | arm_debug_target_el(env)); | |
3ff6fc91 PM |
1030 | } |
1031 | } | |
1032 | ||
8984bd2e PB |
1033 | /* ??? Flag setting arithmetic is awkward because we need to do comparisons. |
1034 | The only way to do that in TCG is a conditional branch, which clobbers | |
1035 | all our temporaries. For now implement these as helper functions. */ | |
1036 | ||
8984bd2e PB |
1037 | /* Similarly for variable shift instructions. */ |
1038 | ||
9ef39277 | 1039 | uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1040 | { |
1041 | int shift = i & 0xff; | |
1042 | if (shift >= 32) { | |
1043 | if (shift == 32) | |
1044 | env->CF = x & 1; | |
1045 | else | |
1046 | env->CF = 0; | |
1047 | return 0; | |
1048 | } else if (shift != 0) { | |
1049 | env->CF = (x >> (32 - shift)) & 1; | |
1050 | return x << shift; | |
1051 | } | |
1052 | return x; | |
1053 | } | |
1054 | ||
9ef39277 | 1055 | uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1056 | { |
1057 | int shift = i & 0xff; | |
1058 | if (shift >= 32) { | |
1059 | if (shift == 32) | |
1060 | env->CF = (x >> 31) & 1; | |
1061 | else | |
1062 | env->CF = 0; | |
1063 | return 0; | |
1064 | } else if (shift != 0) { | |
1065 | env->CF = (x >> (shift - 1)) & 1; | |
1066 | return x >> shift; | |
1067 | } | |
1068 | return x; | |
1069 | } | |
1070 | ||
9ef39277 | 1071 | uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1072 | { |
1073 | int shift = i & 0xff; | |
1074 | if (shift >= 32) { | |
1075 | env->CF = (x >> 31) & 1; | |
1076 | return (int32_t)x >> 31; | |
1077 | } else if (shift != 0) { | |
1078 | env->CF = (x >> (shift - 1)) & 1; | |
1079 | return (int32_t)x >> shift; | |
1080 | } | |
1081 | return x; | |
1082 | } | |
1083 | ||
9ef39277 | 1084 | uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1085 | { |
1086 | int shift1, shift; | |
1087 | shift1 = i & 0xff; | |
1088 | shift = shift1 & 0x1f; | |
1089 | if (shift == 0) { | |
1090 | if (shift1 != 0) | |
1091 | env->CF = (x >> 31) & 1; | |
1092 | return x; | |
1093 | } else { | |
1094 | env->CF = (x >> (shift - 1)) & 1; | |
1095 | return ((uint32_t)x >> shift) | (x << (32 - shift)); | |
1096 | } | |
1097 | } |