]> Git Repo - qemu.git/blame - translate-all.c
block/qapi: Set s->device in bdrv_query_stats()
[qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
5b6dd868
BS
22#include <sys/mman.h>
23#endif
7b31bbc2 24#include "qemu/osdep.h"
d19893da 25
2054396a 26
5b6dd868 27#include "qemu-common.h"
af5ad107 28#define NO_CPU_IO_DEFS
d3eead2e 29#include "cpu.h"
6db8b538 30#include "trace.h"
76cad711 31#include "disas/disas.h"
57fec1fe 32#include "tcg.h"
5b6dd868
BS
33#if defined(CONFIG_USER_ONLY)
34#include "qemu.h"
35#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36#include <sys/param.h>
37#if __FreeBSD_version >= 700104
38#define HAVE_KINFO_GETVMMAP
39#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
40#include <sys/proc.h>
41#include <machine/profile.h>
42#define _KERNEL
43#include <sys/user.h>
44#undef _KERNEL
45#undef sigqueue
46#include <libutil.h>
47#endif
48#endif
0bc3cd62
PB
49#else
50#include "exec/address-spaces.h"
5b6dd868
BS
51#endif
52
022c62cb 53#include "exec/cputlb.h"
e1b89321 54#include "exec/tb-hash.h"
5b6dd868 55#include "translate-all.h"
510a647f 56#include "qemu/bitmap.h"
0aa09897 57#include "qemu/timer.h"
508127e2 58#include "exec/log.h"
5b6dd868
BS
59
60//#define DEBUG_TB_INVALIDATE
61//#define DEBUG_FLUSH
62/* make various TB consistency checks */
63//#define DEBUG_TB_CHECK
64
65#if !defined(CONFIG_USER_ONLY)
66/* TB consistency checks only implemented for usermode emulation. */
67#undef DEBUG_TB_CHECK
68#endif
69
70#define SMC_BITMAP_USE_THRESHOLD 10
71
5b6dd868
BS
72typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
510a647f 78 unsigned long *code_bitmap;
5b6dd868
BS
79#if defined(CONFIG_USER_ONLY)
80 unsigned long flags;
81#endif
82} PageDesc;
83
84/* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86#if !defined(CONFIG_USER_ONLY)
87#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89#else
90# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91#endif
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94#endif
95
03f49957
PB
96/* Size of the L2 (and L3, etc) page tables. */
97#define V_L2_BITS 10
98#define V_L2_SIZE (1 << V_L2_BITS)
99
5b6dd868
BS
100/* The bits remaining after N lower levels of page tables. */
101#define V_L1_BITS_REM \
03f49957 102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
103
104#if V_L1_BITS_REM < 4
03f49957 105#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
106#else
107#define V_L1_BITS V_L1_BITS_REM
108#endif
109
110#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
5b6dd868 114uintptr_t qemu_host_page_size;
0c2d70c4 115intptr_t qemu_host_page_mask;
5b6dd868 116
d1142fb8 117/* The bottom level has pointers to PageDesc */
5b6dd868
BS
118static void *l1_map[V_L1_SIZE];
119
57fec1fe
FB
120/* code generation context */
121TCGContext tcg_ctx;
d19893da 122
677ef623
FK
123/* translation block context */
124#ifdef CONFIG_USER_ONLY
125__thread int have_tb_lock;
126#endif
127
128void tb_lock(void)
129{
130#ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134#endif
135}
136
137void tb_unlock(void)
138{
139#ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143#endif
144}
145
146void tb_lock_reset(void)
147{
148#ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153#endif
154}
155
5b6dd868
BS
156static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
157 tb_page_addr_t phys_page2);
a8a826a3 158static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 159
57fec1fe
FB
160void cpu_gen_init(void)
161{
162 tcg_context_init(&tcg_ctx);
57fec1fe
FB
163}
164
fca8a500
RH
165/* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167static uint8_t *encode_sleb128(uint8_t *p, target_long val)
168{
169 int more, byte;
170
171 do {
172 byte = val & 0x7f;
173 val >>= 7;
174 more = !((val == 0 && (byte & 0x40) == 0)
175 || (val == -1 && (byte & 0x40) != 0));
176 if (more) {
177 byte |= 0x80;
178 }
179 *p++ = byte;
180 } while (more);
181
182 return p;
183}
184
185/* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187static target_long decode_sleb128(uint8_t **pp)
188{
189 uint8_t *p = *pp;
190 target_long val = 0;
191 int byte, shift = 0;
192
193 do {
194 byte = *p++;
195 val |= (target_ulong)(byte & 0x7f) << shift;
196 shift += 7;
197 } while (byte & 0x80);
198 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
199 val |= -(target_ulong)1 << shift;
200 }
201
202 *pp = p;
203 return val;
204}
205
206/* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
208
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
212
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
217
218static int encode_search(TranslationBlock *tb, uint8_t *block)
219{
b125f9dc 220 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
221 uint8_t *p = block;
222 int i, j, n;
223
224 tb->tc_search = block;
225
226 for (i = 0, n = tb->icount; i < n; ++i) {
227 target_ulong prev;
228
229 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
230 if (i == 0) {
231 prev = (j == 0 ? tb->pc : 0);
232 } else {
233 prev = tcg_ctx.gen_insn_data[i - 1][j];
234 }
235 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
236 }
237 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
238 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
239
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p > highwater)) {
245 return -1;
246 }
fca8a500
RH
247 }
248
249 return p - block;
250}
251
fec88f64 252/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 253static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 254 uintptr_t searched_pc)
d19893da 255{
fca8a500
RH
256 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
257 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 258 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
259 uint8_t *p = tb->tc_search;
260 int i, j, num_insns = tb->icount;
57fec1fe 261#ifdef CONFIG_PROFILER
fca8a500 262 int64_t ti = profile_getclock();
57fec1fe
FB
263#endif
264
fca8a500
RH
265 if (searched_pc < host_pc) {
266 return -1;
267 }
d19893da 268
fca8a500
RH
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
274 }
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
278 }
279 }
280 return -1;
3b46e624 281
fca8a500 282 found:
bd79255d 283 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 284 assert(use_icount);
2e70f6ef 285 /* Reset the cycle counter to the start of the block. */
fca8a500 286 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 287 /* Clear the IO flag. */
99df7dce 288 cpu->can_do_io = 0;
2e70f6ef 289 }
fca8a500
RH
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
57fec1fe
FB
292
293#ifdef CONFIG_PROFILER
fca8a500
RH
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
57fec1fe 296#endif
d19893da
FB
297 return 0;
298}
5b6dd868 299
3f38f309 300bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
301{
302 TranslationBlock *tb;
303
304 tb = tb_find_pc(retaddr);
305 if (tb) {
74f10515 306 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
309 cpu->current_tb = NULL;
310 tb_phys_invalidate(tb, -1);
311 tb_free(tb);
312 }
a8a826a3
BS
313 return true;
314 }
315 return false;
316}
317
47c16ed5 318void page_size_init(void)
5b6dd868
BS
319{
320 /* NOTE: we can always suppose that qemu_host_page_size >=
321 TARGET_PAGE_SIZE */
5b6dd868 322 qemu_real_host_page_size = getpagesize();
0c2d70c4 323 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
324 if (qemu_host_page_size == 0) {
325 qemu_host_page_size = qemu_real_host_page_size;
326 }
327 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
328 qemu_host_page_size = TARGET_PAGE_SIZE;
329 }
0c2d70c4 330 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 331}
5b6dd868 332
47c16ed5
AK
333static void page_init(void)
334{
335 page_size_init();
5b6dd868
BS
336#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
337 {
338#ifdef HAVE_KINFO_GETVMMAP
339 struct kinfo_vmentry *freep;
340 int i, cnt;
341
342 freep = kinfo_getvmmap(getpid(), &cnt);
343 if (freep) {
344 mmap_lock();
345 for (i = 0; i < cnt; i++) {
346 unsigned long startaddr, endaddr;
347
348 startaddr = freep[i].kve_start;
349 endaddr = freep[i].kve_end;
350 if (h2g_valid(startaddr)) {
351 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
352
353 if (h2g_valid(endaddr)) {
354 endaddr = h2g(endaddr);
355 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
356 } else {
357#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
358 endaddr = ~0ul;
359 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
360#endif
361 }
362 }
363 }
364 free(freep);
365 mmap_unlock();
366 }
367#else
368 FILE *f;
369
370 last_brk = (unsigned long)sbrk(0);
371
372 f = fopen("/compat/linux/proc/self/maps", "r");
373 if (f) {
374 mmap_lock();
375
376 do {
377 unsigned long startaddr, endaddr;
378 int n;
379
380 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
381
382 if (n == 2 && h2g_valid(startaddr)) {
383 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
384
385 if (h2g_valid(endaddr)) {
386 endaddr = h2g(endaddr);
387 } else {
388 endaddr = ~0ul;
389 }
390 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
391 }
392 } while (!feof(f));
393
394 fclose(f);
395 mmap_unlock();
396 }
397#endif
398 }
399#endif
400}
401
75692087
PB
402/* If alloc=1:
403 * Called with mmap_lock held for user-mode emulation.
404 */
5b6dd868
BS
405static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
406{
407 PageDesc *pd;
408 void **lp;
409 int i;
410
5b6dd868
BS
411 /* Level 1. Always allocated. */
412 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
413
414 /* Level 2..N-1. */
03f49957 415 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 416 void **p = atomic_rcu_read(lp);
5b6dd868
BS
417
418 if (p == NULL) {
419 if (!alloc) {
420 return NULL;
421 }
e3a0abfd 422 p = g_new0(void *, V_L2_SIZE);
6940fab8 423 atomic_rcu_set(lp, p);
5b6dd868
BS
424 }
425
03f49957 426 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
427 }
428
6940fab8 429 pd = atomic_rcu_read(lp);
5b6dd868
BS
430 if (pd == NULL) {
431 if (!alloc) {
432 return NULL;
433 }
e3a0abfd 434 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 435 atomic_rcu_set(lp, pd);
5b6dd868
BS
436 }
437
03f49957 438 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
439}
440
441static inline PageDesc *page_find(tb_page_addr_t index)
442{
443 return page_find_alloc(index, 0);
444}
445
5b6dd868
BS
446#if defined(CONFIG_USER_ONLY)
447/* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449/* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451#define USE_STATIC_CODE_GEN_BUFFER
452#endif
453
5b6dd868
BS
454/* Minimum size of the code gen buffer. This number is randomly chosen,
455 but not so small that we can't have a fair number of TB's live. */
456#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
457
458/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
459 indicated, this is constrained by the range of direct branches on the
460 host cpu, as used by the TCG implementation of goto_tb. */
461#if defined(__x86_64__)
462# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463#elif defined(__sparc__)
464# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
465#elif defined(__powerpc64__)
466# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
467#elif defined(__aarch64__)
468# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
469#elif defined(__arm__)
470# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
471#elif defined(__s390x__)
472 /* We have a +- 4GB range on the branches; leave some slop. */
473# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
474#elif defined(__mips__)
475 /* We have a 256MB branch region, but leave room to make sure the
476 main executable is also within that region. */
477# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
478#else
479# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
480#endif
481
482#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
483
484#define DEFAULT_CODE_GEN_BUFFER_SIZE \
485 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
486 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
487
488static inline size_t size_code_gen_buffer(size_t tb_size)
489{
490 /* Size the buffer. */
491 if (tb_size == 0) {
492#ifdef USE_STATIC_CODE_GEN_BUFFER
493 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
494#else
495 /* ??? Needs adjustments. */
496 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
497 static buffer, we could size this on RESERVED_VA, on the text
498 segment size of the executable, or continue to use the default. */
499 tb_size = (unsigned long)(ram_size / 4);
500#endif
501 }
502 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
504 }
505 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
506 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
507 }
0b0d3320 508 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
509 return tb_size;
510}
511
483c76e1
RH
512#ifdef __mips__
513/* In order to use J and JAL within the code_gen_buffer, we require
514 that the buffer not cross a 256MB boundary. */
515static inline bool cross_256mb(void *addr, size_t size)
516{
517 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
518}
519
520/* We weren't able to allocate a buffer without crossing that boundary,
521 so make do with the larger portion of the buffer that doesn't cross.
522 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
523static inline void *split_cross_256mb(void *buf1, size_t size1)
524{
525 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
526 size_t size2 = buf1 + size1 - buf2;
527
528 size1 = buf2 - buf1;
529 if (size1 < size2) {
530 size1 = size2;
531 buf1 = buf2;
532 }
533
534 tcg_ctx.code_gen_buffer_size = size1;
535 return buf1;
536}
537#endif
538
5b6dd868
BS
539#ifdef USE_STATIC_CODE_GEN_BUFFER
540static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
541 __attribute__((aligned(CODE_GEN_ALIGN)));
542
f293709c
RH
543# ifdef _WIN32
544static inline void do_protect(void *addr, long size, int prot)
545{
546 DWORD old_protect;
547 VirtualProtect(addr, size, prot, &old_protect);
548}
549
550static inline void map_exec(void *addr, long size)
551{
552 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
553}
554
555static inline void map_none(void *addr, long size)
556{
557 do_protect(addr, size, PAGE_NOACCESS);
558}
559# else
560static inline void do_protect(void *addr, long size, int prot)
561{
562 uintptr_t start, end;
563
564 start = (uintptr_t)addr;
565 start &= qemu_real_host_page_mask;
566
567 end = (uintptr_t)addr + size;
568 end = ROUND_UP(end, qemu_real_host_page_size);
569
570 mprotect((void *)start, end - start, prot);
571}
572
573static inline void map_exec(void *addr, long size)
574{
575 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
576}
577
578static inline void map_none(void *addr, long size)
579{
580 do_protect(addr, size, PROT_NONE);
581}
582# endif /* WIN32 */
583
5b6dd868
BS
584static inline void *alloc_code_gen_buffer(void)
585{
483c76e1 586 void *buf = static_code_gen_buffer;
f293709c
RH
587 size_t full_size, size;
588
589 /* The size of the buffer, rounded down to end on a page boundary. */
590 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
591 & qemu_real_host_page_mask) - (uintptr_t)buf;
592
593 /* Reserve a guard page. */
594 size = full_size - qemu_real_host_page_size;
595
596 /* Honor a command-line option limiting the size of the buffer. */
597 if (size > tcg_ctx.code_gen_buffer_size) {
598 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
599 & qemu_real_host_page_mask) - (uintptr_t)buf;
600 }
601 tcg_ctx.code_gen_buffer_size = size;
602
483c76e1 603#ifdef __mips__
f293709c
RH
604 if (cross_256mb(buf, size)) {
605 buf = split_cross_256mb(buf, size);
606 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
607 }
608#endif
f293709c
RH
609
610 map_exec(buf, size);
611 map_none(buf + size, qemu_real_host_page_size);
612 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
613
483c76e1 614 return buf;
5b6dd868 615}
f293709c
RH
616#elif defined(_WIN32)
617static inline void *alloc_code_gen_buffer(void)
618{
619 size_t size = tcg_ctx.code_gen_buffer_size;
620 void *buf1, *buf2;
621
622 /* Perform the allocation in two steps, so that the guard page
623 is reserved but uncommitted. */
624 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
625 MEM_RESERVE, PAGE_NOACCESS);
626 if (buf1 != NULL) {
627 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
628 assert(buf1 == buf2);
629 }
630
631 return buf1;
632}
633#else
5b6dd868
BS
634static inline void *alloc_code_gen_buffer(void)
635{
636 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
637 uintptr_t start = 0;
f293709c 638 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
639 void *buf;
640
641 /* Constrain the position of the buffer based on the host cpu.
642 Note that these addresses are chosen in concert with the
643 addresses assigned in the relevant linker script file. */
644# if defined(__PIE__) || defined(__PIC__)
645 /* Don't bother setting a preferred location if we're building
646 a position-independent executable. We're more likely to get
647 an address near the main executable if we let the kernel
648 choose the address. */
649# elif defined(__x86_64__) && defined(MAP_32BIT)
650 /* Force the memory down into low memory with the executable.
651 Leave the choice of exact location with the kernel. */
652 flags |= MAP_32BIT;
653 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
654 if (size > 800u * 1024 * 1024) {
655 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
656 }
657# elif defined(__sparc__)
658 start = 0x40000000ul;
659# elif defined(__s390x__)
660 start = 0x90000000ul;
479eb121 661# elif defined(__mips__)
f293709c 662# if _MIPS_SIM == _ABI64
479eb121
RH
663 start = 0x128000000ul;
664# else
665 start = 0x08000000ul;
666# endif
5b6dd868
BS
667# endif
668
f293709c
RH
669 buf = mmap((void *)start, size + qemu_real_host_page_size,
670 PROT_NONE, flags, -1, 0);
483c76e1
RH
671 if (buf == MAP_FAILED) {
672 return NULL;
673 }
674
675#ifdef __mips__
f293709c 676 if (cross_256mb(buf, size)) {
5d831be2 677 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 678 that 256mb crossing. This time don't specify an address. */
f293709c
RH
679 size_t size2;
680 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
681 PROT_NONE, flags, -1, 0);
682 switch (buf2 != MAP_FAILED) {
683 case 1:
684 if (!cross_256mb(buf2, size)) {
483c76e1 685 /* Success! Use the new buffer. */
f293709c
RH
686 munmap(buf, size);
687 break;
483c76e1
RH
688 }
689 /* Failure. Work with what we had. */
f293709c
RH
690 munmap(buf2, size);
691 /* fallthru */
692 default:
693 /* Split the original buffer. Free the smaller half. */
694 buf2 = split_cross_256mb(buf, size);
695 size2 = tcg_ctx.code_gen_buffer_size;
696 if (buf == buf2) {
697 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
698 } else {
699 munmap(buf, size - size2);
700 }
701 size = size2;
702 break;
483c76e1 703 }
f293709c 704 buf = buf2;
483c76e1
RH
705 }
706#endif
707
f293709c
RH
708 /* Make the final buffer accessible. The guard page at the end
709 will remain inaccessible with PROT_NONE. */
710 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 711
f293709c
RH
712 /* Request large pages for the buffer. */
713 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 714
5b6dd868
BS
715 return buf;
716}
f293709c 717#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
718
719static inline void code_gen_alloc(size_t tb_size)
720{
0b0d3320
EV
721 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
722 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
723 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
724 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
725 exit(1);
726 }
727
8163b749
RH
728 /* Estimate a good size for the number of TBs we can support. We
729 still haven't deducted the prologue from the buffer size here,
730 but that's minimal and won't affect the estimate much. */
731 tcg_ctx.code_gen_max_blocks
732 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
733 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
734
677ef623 735 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
736}
737
738/* Must be called before using the QEMU cpus. 'tb_size' is the size
739 (in bytes) allocated to the translation buffer. Zero means default
740 size. */
741void tcg_exec_init(unsigned long tb_size)
742{
743 cpu_gen_init();
5b6dd868 744 page_init();
f293709c 745 code_gen_alloc(tb_size);
4cbea598 746#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
747 /* There's no guest base to take into account, so go ahead and
748 initialize the prologue now. */
749 tcg_prologue_init(&tcg_ctx);
750#endif
751}
752
753bool tcg_enabled(void)
754{
0b0d3320 755 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
756}
757
758/* Allocate a new translation block. Flush the translation buffer if
759 too many translation blocks or too much generated code. */
760static TranslationBlock *tb_alloc(target_ulong pc)
761{
762 TranslationBlock *tb;
763
b125f9dc 764 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
765 return NULL;
766 }
5e5f07e0 767 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
768 tb->pc = pc;
769 tb->cflags = 0;
770 return tb;
771}
772
773void tb_free(TranslationBlock *tb)
774{
775 /* In practice this is mostly used for single use temporary TB
776 Ignore the hard cases and just back up if this TB happens to
777 be the last one generated. */
5e5f07e0
EV
778 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
779 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 780 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 781 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
782 }
783}
784
785static inline void invalidate_page_bitmap(PageDesc *p)
786{
012aef07
MA
787 g_free(p->code_bitmap);
788 p->code_bitmap = NULL;
5b6dd868
BS
789 p->code_write_count = 0;
790}
791
792/* Set to NULL all the 'first_tb' fields in all PageDescs. */
793static void page_flush_tb_1(int level, void **lp)
794{
795 int i;
796
797 if (*lp == NULL) {
798 return;
799 }
800 if (level == 0) {
801 PageDesc *pd = *lp;
802
03f49957 803 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
804 pd[i].first_tb = NULL;
805 invalidate_page_bitmap(pd + i);
806 }
807 } else {
808 void **pp = *lp;
809
03f49957 810 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
811 page_flush_tb_1(level - 1, pp + i);
812 }
813 }
814}
815
816static void page_flush_tb(void)
817{
818 int i;
819
820 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 821 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
822 }
823}
824
825/* flush all the translation blocks */
826/* XXX: tb_flush is currently not thread safe */
bbd77c18 827void tb_flush(CPUState *cpu)
5b6dd868 828{
5b6dd868
BS
829#if defined(DEBUG_FLUSH)
830 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 831 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 832 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 833 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 834 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 835#endif
0b0d3320
EV
836 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
837 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 838 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 839 }
5e5f07e0 840 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 841
bdc44640 842 CPU_FOREACH(cpu) {
8cd70437 843 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
844 }
845
eb2535f4 846 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
847 page_flush_tb();
848
0b0d3320 849 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
850 /* XXX: flush processor icache at this point if cache flush is
851 expensive */
5e5f07e0 852 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
853}
854
855#ifdef DEBUG_TB_CHECK
856
857static void tb_invalidate_check(target_ulong address)
858{
859 TranslationBlock *tb;
860 int i;
861
862 address &= TARGET_PAGE_MASK;
863 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 864 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
865 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
866 address >= tb->pc + tb->size)) {
867 printf("ERROR invalidate: address=" TARGET_FMT_lx
868 " PC=%08lx size=%04x\n",
869 address, (long)tb->pc, tb->size);
870 }
871 }
872 }
873}
874
875/* verify that all the pages have correct rights for code */
876static void tb_page_check(void)
877{
878 TranslationBlock *tb;
879 int i, flags1, flags2;
880
881 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
882 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
883 tb = tb->phys_hash_next) {
5b6dd868
BS
884 flags1 = page_get_flags(tb->pc);
885 flags2 = page_get_flags(tb->pc + tb->size - 1);
886 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
887 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
888 (long)tb->pc, tb->size, flags1, flags2);
889 }
890 }
891 }
892}
893
894#endif
895
0c884d16 896static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
897{
898 TranslationBlock *tb1;
899
900 for (;;) {
901 tb1 = *ptb;
902 if (tb1 == tb) {
0c884d16 903 *ptb = tb1->phys_hash_next;
5b6dd868
BS
904 break;
905 }
0c884d16 906 ptb = &tb1->phys_hash_next;
5b6dd868
BS
907 }
908}
909
910static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
911{
912 TranslationBlock *tb1;
913 unsigned int n1;
914
915 for (;;) {
916 tb1 = *ptb;
917 n1 = (uintptr_t)tb1 & 3;
918 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
919 if (tb1 == tb) {
920 *ptb = tb1->page_next[n1];
921 break;
922 }
923 ptb = &tb1->page_next[n1];
924 }
925}
926
927static inline void tb_jmp_remove(TranslationBlock *tb, int n)
928{
929 TranslationBlock *tb1, **ptb;
930 unsigned int n1;
931
932 ptb = &tb->jmp_next[n];
933 tb1 = *ptb;
934 if (tb1) {
935 /* find tb(n) in circular list */
936 for (;;) {
937 tb1 = *ptb;
938 n1 = (uintptr_t)tb1 & 3;
939 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
940 if (n1 == n && tb1 == tb) {
941 break;
942 }
943 if (n1 == 2) {
944 ptb = &tb1->jmp_first;
945 } else {
946 ptb = &tb1->jmp_next[n1];
947 }
948 }
949 /* now we can suppress tb(n) from the list */
950 *ptb = tb->jmp_next[n];
951
952 tb->jmp_next[n] = NULL;
953 }
954}
955
956/* reset the jump entry 'n' of a TB so that it is not chained to
957 another TB */
958static inline void tb_reset_jump(TranslationBlock *tb, int n)
959{
960 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
961}
962
0c884d16 963/* invalidate one TB */
5b6dd868
BS
964void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
965{
182735ef 966 CPUState *cpu;
5b6dd868
BS
967 PageDesc *p;
968 unsigned int h, n1;
969 tb_page_addr_t phys_pc;
970 TranslationBlock *tb1, *tb2;
971
972 /* remove the TB from the hash list */
973 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
974 h = tb_phys_hash_func(phys_pc);
5e5f07e0 975 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
976
977 /* remove the TB from the page list */
978 if (tb->page_addr[0] != page_addr) {
979 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
980 tb_page_remove(&p->first_tb, tb);
981 invalidate_page_bitmap(p);
982 }
983 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
984 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
985 tb_page_remove(&p->first_tb, tb);
986 invalidate_page_bitmap(p);
987 }
988
5e5f07e0 989 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
990
991 /* remove the TB from the hash list */
992 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 993 CPU_FOREACH(cpu) {
8cd70437
AF
994 if (cpu->tb_jmp_cache[h] == tb) {
995 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
996 }
997 }
998
999 /* suppress this TB from the two jump lists */
1000 tb_jmp_remove(tb, 0);
1001 tb_jmp_remove(tb, 1);
1002
1003 /* suppress any remaining jumps to this TB */
1004 tb1 = tb->jmp_first;
1005 for (;;) {
1006 n1 = (uintptr_t)tb1 & 3;
1007 if (n1 == 2) {
1008 break;
1009 }
1010 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1011 tb2 = tb1->jmp_next[n1];
1012 tb_reset_jump(tb1, n1);
1013 tb1->jmp_next[n1] = NULL;
1014 tb1 = tb2;
1015 }
1016 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1017
5e5f07e0 1018 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1019}
1020
5b6dd868
BS
1021static void build_page_bitmap(PageDesc *p)
1022{
1023 int n, tb_start, tb_end;
1024 TranslationBlock *tb;
1025
510a647f 1026 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1027
1028 tb = p->first_tb;
1029 while (tb != NULL) {
1030 n = (uintptr_t)tb & 3;
1031 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1032 /* NOTE: this is subtle as a TB may span two physical pages */
1033 if (n == 0) {
1034 /* NOTE: tb_end may be after the end of the page, but
1035 it is not a problem */
1036 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1037 tb_end = tb_start + tb->size;
1038 if (tb_end > TARGET_PAGE_SIZE) {
1039 tb_end = TARGET_PAGE_SIZE;
1040 }
1041 } else {
1042 tb_start = 0;
1043 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1044 }
510a647f 1045 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1046 tb = tb->page_next[n];
1047 }
1048}
1049
75692087 1050/* Called with mmap_lock held for user mode emulation. */
648f034c 1051TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
1052 target_ulong pc, target_ulong cs_base,
1053 int flags, int cflags)
1054{
648f034c 1055 CPUArchState *env = cpu->env_ptr;
5b6dd868 1056 TranslationBlock *tb;
5b6dd868
BS
1057 tb_page_addr_t phys_pc, phys_page2;
1058 target_ulong virt_page2;
fec88f64 1059 tcg_insn_unit *gen_code_buf;
fca8a500 1060 int gen_code_size, search_size;
fec88f64
RH
1061#ifdef CONFIG_PROFILER
1062 int64_t ti;
1063#endif
5b6dd868
BS
1064
1065 phys_pc = get_page_addr_code(env, pc);
56c0269a 1066 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1067 cflags |= CF_USE_ICOUNT;
1068 }
b125f9dc 1069
5b6dd868 1070 tb = tb_alloc(pc);
b125f9dc
RH
1071 if (unlikely(!tb)) {
1072 buffer_overflow:
5b6dd868 1073 /* flush must be done */
bbd77c18 1074 tb_flush(cpu);
5b6dd868
BS
1075 /* cannot fail at this point */
1076 tb = tb_alloc(pc);
b125f9dc 1077 assert(tb != NULL);
5b6dd868 1078 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1079 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1080 }
fec88f64
RH
1081
1082 gen_code_buf = tcg_ctx.code_gen_ptr;
1083 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1084 tb->cs_base = cs_base;
1085 tb->flags = flags;
1086 tb->cflags = cflags;
fec88f64
RH
1087
1088#ifdef CONFIG_PROFILER
1089 tcg_ctx.tb_count1++; /* includes aborted translations because of
1090 exceptions */
1091 ti = profile_getclock();
1092#endif
1093
1094 tcg_func_start(&tcg_ctx);
1095
1096 gen_intermediate_code(env, tb);
1097
1098 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1099
1100 /* generate machine code */
1101 tb->tb_next_offset[0] = 0xffff;
1102 tb->tb_next_offset[1] = 0xffff;
1103 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1104#ifdef USE_DIRECT_JUMP
1105 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1106 tcg_ctx.tb_next = NULL;
1107#else
1108 tcg_ctx.tb_jmp_offset = NULL;
1109 tcg_ctx.tb_next = tb->tb_next;
1110#endif
1111
1112#ifdef CONFIG_PROFILER
1113 tcg_ctx.tb_count++;
1114 tcg_ctx.interm_time += profile_getclock() - ti;
1115 tcg_ctx.code_time -= profile_getclock();
1116#endif
1117
b125f9dc
RH
1118 /* ??? Overflow could be handled better here. In particular, we
1119 don't need to re-do gen_intermediate_code, nor should we re-do
1120 the tcg optimization currently hidden inside tcg_gen_code. All
1121 that should be required is to flush the TBs, allocate a new TB,
1122 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1123 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1124 if (unlikely(gen_code_size < 0)) {
1125 goto buffer_overflow;
1126 }
fca8a500 1127 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1128 if (unlikely(search_size < 0)) {
1129 goto buffer_overflow;
1130 }
fec88f64
RH
1131
1132#ifdef CONFIG_PROFILER
1133 tcg_ctx.code_time += profile_getclock();
1134 tcg_ctx.code_in_len += tb->size;
1135 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1136 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1137#endif
1138
1139#ifdef DEBUG_DISAS
d977e1c2
AB
1140 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1141 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1142 qemu_log("OUT: [size=%d]\n", gen_code_size);
1143 log_disas(tb->tc_ptr, gen_code_size);
1144 qemu_log("\n");
1145 qemu_log_flush();
1146 }
1147#endif
1148
fca8a500
RH
1149 tcg_ctx.code_gen_ptr = (void *)
1150 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1151 CODE_GEN_ALIGN);
5b6dd868
BS
1152
1153 /* check next page if needed */
1154 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1155 phys_page2 = -1;
1156 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1157 phys_page2 = get_page_addr_code(env, virt_page2);
1158 }
1159 tb_link_page(tb, phys_pc, phys_page2);
1160 return tb;
1161}
1162
1163/*
1164 * Invalidate all TBs which intersect with the target physical address range
1165 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1166 * 'is_cpu_write_access' should be true if called from a real cpu write
1167 * access: the virtual CPU will exit the current TB if code is modified inside
1168 * this TB.
75692087
PB
1169 *
1170 * Called with mmap_lock held for user-mode emulation
5b6dd868 1171 */
35865339 1172void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1173{
1174 while (start < end) {
35865339 1175 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1176 start &= TARGET_PAGE_MASK;
1177 start += TARGET_PAGE_SIZE;
1178 }
1179}
1180
1181/*
1182 * Invalidate all TBs which intersect with the target physical address range
1183 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1184 * 'is_cpu_write_access' should be true if called from a real cpu write
1185 * access: the virtual CPU will exit the current TB if code is modified inside
1186 * this TB.
75692087
PB
1187 *
1188 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1189 */
1190void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1191 int is_cpu_write_access)
1192{
1193 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1194 CPUState *cpu = current_cpu;
baea4fae 1195#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1196 CPUArchState *env = NULL;
1197#endif
5b6dd868
BS
1198 tb_page_addr_t tb_start, tb_end;
1199 PageDesc *p;
1200 int n;
1201#ifdef TARGET_HAS_PRECISE_SMC
1202 int current_tb_not_found = is_cpu_write_access;
1203 TranslationBlock *current_tb = NULL;
1204 int current_tb_modified = 0;
1205 target_ulong current_pc = 0;
1206 target_ulong current_cs_base = 0;
1207 int current_flags = 0;
1208#endif /* TARGET_HAS_PRECISE_SMC */
1209
1210 p = page_find(start >> TARGET_PAGE_BITS);
1211 if (!p) {
1212 return;
1213 }
baea4fae 1214#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1215 if (cpu != NULL) {
1216 env = cpu->env_ptr;
d77953b9 1217 }
4917cf44 1218#endif
5b6dd868
BS
1219
1220 /* we remove all the TBs in the range [start, end[ */
1221 /* XXX: see if in some cases it could be faster to invalidate all
1222 the code */
1223 tb = p->first_tb;
1224 while (tb != NULL) {
1225 n = (uintptr_t)tb & 3;
1226 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1227 tb_next = tb->page_next[n];
1228 /* NOTE: this is subtle as a TB may span two physical pages */
1229 if (n == 0) {
1230 /* NOTE: tb_end may be after the end of the page, but
1231 it is not a problem */
1232 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1233 tb_end = tb_start + tb->size;
1234 } else {
1235 tb_start = tb->page_addr[1];
1236 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1237 }
1238 if (!(tb_end <= start || tb_start >= end)) {
1239#ifdef TARGET_HAS_PRECISE_SMC
1240 if (current_tb_not_found) {
1241 current_tb_not_found = 0;
1242 current_tb = NULL;
93afeade 1243 if (cpu->mem_io_pc) {
5b6dd868 1244 /* now we have a real cpu fault */
93afeade 1245 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1246 }
1247 }
1248 if (current_tb == tb &&
1249 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1250 /* If we are modifying the current TB, we must stop
1251 its execution. We could be more precise by checking
1252 that the modification is after the current PC, but it
1253 would require a specialized function to partially
1254 restore the CPU state */
1255
1256 current_tb_modified = 1;
74f10515 1257 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1258 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1259 &current_flags);
1260 }
1261#endif /* TARGET_HAS_PRECISE_SMC */
1262 /* we need to do that to handle the case where a signal
1263 occurs while doing tb_phys_invalidate() */
1264 saved_tb = NULL;
d77953b9
AF
1265 if (cpu != NULL) {
1266 saved_tb = cpu->current_tb;
1267 cpu->current_tb = NULL;
5b6dd868
BS
1268 }
1269 tb_phys_invalidate(tb, -1);
d77953b9
AF
1270 if (cpu != NULL) {
1271 cpu->current_tb = saved_tb;
c3affe56
AF
1272 if (cpu->interrupt_request && cpu->current_tb) {
1273 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1274 }
1275 }
1276 }
1277 tb = tb_next;
1278 }
1279#if !defined(CONFIG_USER_ONLY)
1280 /* if no code remaining, no need to continue to use slow writes */
1281 if (!p->first_tb) {
1282 invalidate_page_bitmap(p);
fc377bcf 1283 tlb_unprotect_code(start);
5b6dd868
BS
1284 }
1285#endif
1286#ifdef TARGET_HAS_PRECISE_SMC
1287 if (current_tb_modified) {
1288 /* we generate a block containing just the instruction
1289 modifying the memory. It will ensure that it cannot modify
1290 itself */
d77953b9 1291 cpu->current_tb = NULL;
648f034c 1292 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1293 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1294 }
1295#endif
1296}
1297
1298/* len must be <= 8 and start must be a multiple of len */
1299void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1300{
1301 PageDesc *p;
5b6dd868
BS
1302
1303#if 0
1304 if (1) {
1305 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1306 cpu_single_env->mem_io_vaddr, len,
1307 cpu_single_env->eip,
1308 cpu_single_env->eip +
1309 (intptr_t)cpu_single_env->segs[R_CS].base);
1310 }
1311#endif
1312 p = page_find(start >> TARGET_PAGE_BITS);
1313 if (!p) {
1314 return;
1315 }
fc377bcf
PB
1316 if (!p->code_bitmap &&
1317 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1318 /* build code bitmap */
1319 build_page_bitmap(p);
1320 }
5b6dd868 1321 if (p->code_bitmap) {
510a647f
EC
1322 unsigned int nr;
1323 unsigned long b;
1324
1325 nr = start & ~TARGET_PAGE_MASK;
1326 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1327 if (b & ((1 << len) - 1)) {
1328 goto do_invalidate;
1329 }
1330 } else {
1331 do_invalidate:
1332 tb_invalidate_phys_page_range(start, start + len, 1);
1333 }
1334}
1335
1336#if !defined(CONFIG_SOFTMMU)
75692087 1337/* Called with mmap_lock held. */
5b6dd868 1338static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1339 uintptr_t pc, void *puc,
1340 bool locked)
5b6dd868
BS
1341{
1342 TranslationBlock *tb;
1343 PageDesc *p;
1344 int n;
1345#ifdef TARGET_HAS_PRECISE_SMC
1346 TranslationBlock *current_tb = NULL;
4917cf44
AF
1347 CPUState *cpu = current_cpu;
1348 CPUArchState *env = NULL;
5b6dd868
BS
1349 int current_tb_modified = 0;
1350 target_ulong current_pc = 0;
1351 target_ulong current_cs_base = 0;
1352 int current_flags = 0;
1353#endif
1354
1355 addr &= TARGET_PAGE_MASK;
1356 p = page_find(addr >> TARGET_PAGE_BITS);
1357 if (!p) {
1358 return;
1359 }
1360 tb = p->first_tb;
1361#ifdef TARGET_HAS_PRECISE_SMC
1362 if (tb && pc != 0) {
1363 current_tb = tb_find_pc(pc);
1364 }
4917cf44
AF
1365 if (cpu != NULL) {
1366 env = cpu->env_ptr;
d77953b9 1367 }
5b6dd868
BS
1368#endif
1369 while (tb != NULL) {
1370 n = (uintptr_t)tb & 3;
1371 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1372#ifdef TARGET_HAS_PRECISE_SMC
1373 if (current_tb == tb &&
1374 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1375 /* If we are modifying the current TB, we must stop
1376 its execution. We could be more precise by checking
1377 that the modification is after the current PC, but it
1378 would require a specialized function to partially
1379 restore the CPU state */
1380
1381 current_tb_modified = 1;
74f10515 1382 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1383 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1384 &current_flags);
1385 }
1386#endif /* TARGET_HAS_PRECISE_SMC */
1387 tb_phys_invalidate(tb, addr);
1388 tb = tb->page_next[n];
1389 }
1390 p->first_tb = NULL;
1391#ifdef TARGET_HAS_PRECISE_SMC
1392 if (current_tb_modified) {
1393 /* we generate a block containing just the instruction
1394 modifying the memory. It will ensure that it cannot modify
1395 itself */
d77953b9 1396 cpu->current_tb = NULL;
648f034c 1397 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1398 if (locked) {
1399 mmap_unlock();
1400 }
0ea8cb88 1401 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1402 }
1403#endif
1404}
1405#endif
1406
75692087
PB
1407/* add the tb in the target page and protect it if necessary
1408 *
1409 * Called with mmap_lock held for user-mode emulation.
1410 */
5b6dd868
BS
1411static inline void tb_alloc_page(TranslationBlock *tb,
1412 unsigned int n, tb_page_addr_t page_addr)
1413{
1414 PageDesc *p;
1415#ifndef CONFIG_USER_ONLY
1416 bool page_already_protected;
1417#endif
1418
1419 tb->page_addr[n] = page_addr;
1420 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1421 tb->page_next[n] = p->first_tb;
1422#ifndef CONFIG_USER_ONLY
1423 page_already_protected = p->first_tb != NULL;
1424#endif
1425 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1426 invalidate_page_bitmap(p);
1427
5b6dd868
BS
1428#if defined(CONFIG_USER_ONLY)
1429 if (p->flags & PAGE_WRITE) {
1430 target_ulong addr;
1431 PageDesc *p2;
1432 int prot;
1433
1434 /* force the host page as non writable (writes will have a
1435 page fault + mprotect overhead) */
1436 page_addr &= qemu_host_page_mask;
1437 prot = 0;
1438 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1439 addr += TARGET_PAGE_SIZE) {
1440
1441 p2 = page_find(addr >> TARGET_PAGE_BITS);
1442 if (!p2) {
1443 continue;
1444 }
1445 prot |= p2->flags;
1446 p2->flags &= ~PAGE_WRITE;
1447 }
1448 mprotect(g2h(page_addr), qemu_host_page_size,
1449 (prot & PAGE_BITS) & ~PAGE_WRITE);
1450#ifdef DEBUG_TB_INVALIDATE
1451 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1452 page_addr);
1453#endif
1454 }
1455#else
1456 /* if some code is already present, then the pages are already
1457 protected. So we handle the case where only the first TB is
1458 allocated in a physical page */
1459 if (!page_already_protected) {
1460 tlb_protect_code(page_addr);
1461 }
1462#endif
5b6dd868
BS
1463}
1464
1465/* add a new TB and link it to the physical page tables. phys_page2 is
75692087 1466 * (-1) to indicate that only one page contains the TB.
9fd1a948
PB
1467 *
1468 * Called with mmap_lock held for user-mode emulation.
75692087 1469 */
5b6dd868
BS
1470static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1471 tb_page_addr_t phys_page2)
1472{
1473 unsigned int h;
1474 TranslationBlock **ptb;
1475
5b6dd868
BS
1476 /* add in the physical hash table */
1477 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1478 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1479 tb->phys_hash_next = *ptb;
1480 *ptb = tb;
1481
1482 /* add in the page list */
1483 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1484 if (phys_page2 != -1) {
1485 tb_alloc_page(tb, 1, phys_page2);
1486 } else {
1487 tb->page_addr[1] = -1;
1488 }
1489
1490 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1491 tb->jmp_next[0] = NULL;
1492 tb->jmp_next[1] = NULL;
1493
1494 /* init original jump addresses */
1495 if (tb->tb_next_offset[0] != 0xffff) {
1496 tb_reset_jump(tb, 0);
1497 }
1498 if (tb->tb_next_offset[1] != 0xffff) {
1499 tb_reset_jump(tb, 1);
1500 }
1501
1502#ifdef DEBUG_TB_CHECK
1503 tb_page_check();
1504#endif
5b6dd868
BS
1505}
1506
5b6dd868
BS
1507/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1508 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1509static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1510{
1511 int m_min, m_max, m;
1512 uintptr_t v;
1513 TranslationBlock *tb;
1514
5e5f07e0 1515 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1516 return NULL;
1517 }
0b0d3320
EV
1518 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1519 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1520 return NULL;
1521 }
1522 /* binary search (cf Knuth) */
1523 m_min = 0;
5e5f07e0 1524 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1525 while (m_min <= m_max) {
1526 m = (m_min + m_max) >> 1;
5e5f07e0 1527 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1528 v = (uintptr_t)tb->tc_ptr;
1529 if (v == tc_ptr) {
1530 return tb;
1531 } else if (tc_ptr < v) {
1532 m_max = m - 1;
1533 } else {
1534 m_min = m + 1;
1535 }
1536 }
5e5f07e0 1537 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1538}
1539
ec53b45b 1540#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1541void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1542{
1543 ram_addr_t ram_addr;
5c8a00ce 1544 MemoryRegion *mr;
149f54b5 1545 hwaddr l = 1;
5b6dd868 1546
41063e1e 1547 rcu_read_lock();
29d8ec7b 1548 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1549 if (!(memory_region_is_ram(mr)
1550 || memory_region_is_romd(mr))) {
41063e1e 1551 rcu_read_unlock();
5b6dd868
BS
1552 return;
1553 }
5c8a00ce 1554 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1555 + addr;
5b6dd868 1556 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1557 rcu_read_unlock();
5b6dd868 1558}
ec53b45b 1559#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1560
239c51a5 1561void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1562{
1563 TranslationBlock *tb;
1564
93afeade 1565 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1566 if (tb) {
1567 /* We can use retranslation to find the PC. */
1568 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1569 tb_phys_invalidate(tb, -1);
1570 } else {
1571 /* The exception probably happened in a helper. The CPU state should
1572 have been saved before calling it. Fetch the PC from there. */
1573 CPUArchState *env = cpu->env_ptr;
1574 target_ulong pc, cs_base;
1575 tb_page_addr_t addr;
1576 int flags;
1577
1578 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1579 addr = get_page_addr_code(env, pc);
1580 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1581 }
5b6dd868
BS
1582}
1583
1584#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1585/* in deterministic execution mode, instructions doing device I/Os
1586 must be at the end of the TB */
90b40a69 1587void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1588{
a47dddd7 1589#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1590 CPUArchState *env = cpu->env_ptr;
a47dddd7 1591#endif
5b6dd868
BS
1592 TranslationBlock *tb;
1593 uint32_t n, cflags;
1594 target_ulong pc, cs_base;
1595 uint64_t flags;
1596
1597 tb = tb_find_pc(retaddr);
1598 if (!tb) {
a47dddd7 1599 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1600 (void *)retaddr);
1601 }
28ecfd7a 1602 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1603 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1604 /* Calculate how many instructions had been executed before the fault
1605 occurred. */
28ecfd7a 1606 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1607 /* Generate a new TB ending on the I/O insn. */
1608 n++;
1609 /* On MIPS and SH, delay slot instructions can only be restarted if
1610 they were already the first instruction in the TB. If this is not
1611 the first instruction in a TB then re-execute the preceding
1612 branch. */
1613#if defined(TARGET_MIPS)
1614 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1615 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1616 cpu->icount_decr.u16.low++;
5b6dd868
BS
1617 env->hflags &= ~MIPS_HFLAG_BMASK;
1618 }
1619#elif defined(TARGET_SH4)
1620 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1621 && n > 1) {
1622 env->pc -= 2;
28ecfd7a 1623 cpu->icount_decr.u16.low++;
5b6dd868
BS
1624 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1625 }
1626#endif
1627 /* This should never happen. */
1628 if (n > CF_COUNT_MASK) {
a47dddd7 1629 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1630 }
1631
1632 cflags = n | CF_LAST_IO;
1633 pc = tb->pc;
1634 cs_base = tb->cs_base;
1635 flags = tb->flags;
1636 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1637 if (tb->cflags & CF_NOCACHE) {
1638 if (tb->orig_tb) {
1639 /* Invalidate original TB if this TB was generated in
1640 * cpu_exec_nocache() */
1641 tb_phys_invalidate(tb->orig_tb, -1);
1642 }
1643 tb_free(tb);
1644 }
5b6dd868
BS
1645 /* FIXME: In theory this could raise an exception. In practice
1646 we have already translated the block once so it's probably ok. */
648f034c 1647 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1648 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1649 the first in the TB) then we end up generating a whole new TB and
1650 repeating the fault, which is horribly inefficient.
1651 Better would be to execute just this insn uncached, or generate a
1652 second new TB. */
0ea8cb88 1653 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1654}
1655
611d4f99 1656void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1657{
1658 unsigned int i;
1659
1660 /* Discard jump cache entries for any tb which might potentially
1661 overlap the flushed page. */
1662 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1663 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1664 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1665
1666 i = tb_jmp_cache_hash_page(addr);
8cd70437 1667 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1668 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1669}
1670
1671void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1672{
1673 int i, target_code_size, max_target_code_size;
1674 int direct_jmp_count, direct_jmp2_count, cross_page;
1675 TranslationBlock *tb;
1676
1677 target_code_size = 0;
1678 max_target_code_size = 0;
1679 cross_page = 0;
1680 direct_jmp_count = 0;
1681 direct_jmp2_count = 0;
5e5f07e0
EV
1682 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1683 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1684 target_code_size += tb->size;
1685 if (tb->size > max_target_code_size) {
1686 max_target_code_size = tb->size;
1687 }
1688 if (tb->page_addr[1] != -1) {
1689 cross_page++;
1690 }
1691 if (tb->tb_next_offset[0] != 0xffff) {
1692 direct_jmp_count++;
1693 if (tb->tb_next_offset[1] != 0xffff) {
1694 direct_jmp2_count++;
1695 }
1696 }
1697 }
1698 /* XXX: avoid using doubles ? */
1699 cpu_fprintf(f, "Translation buffer state:\n");
1700 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1701 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1702 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1703 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1704 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1705 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1706 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1707 tcg_ctx.tb_ctx.nb_tbs : 0,
1708 max_target_code_size);
5b6dd868 1709 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1710 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1711 tcg_ctx.code_gen_buffer) /
1712 tcg_ctx.tb_ctx.nb_tbs : 0,
1713 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1714 tcg_ctx.code_gen_buffer) /
1715 target_code_size : 0);
1716 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1717 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1718 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1719 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1720 direct_jmp_count,
5e5f07e0
EV
1721 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1722 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1723 direct_jmp2_count,
5e5f07e0
EV
1724 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1725 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1726 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1727 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1728 cpu_fprintf(f, "TB invalidate count %d\n",
1729 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1730 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1731 tcg_dump_info(f, cpu_fprintf);
1732}
1733
246ae24d
MF
1734void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1735{
1736 tcg_dump_op_count(f, cpu_fprintf);
1737}
1738
5b6dd868
BS
1739#else /* CONFIG_USER_ONLY */
1740
c3affe56 1741void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1742{
259186a7 1743 cpu->interrupt_request |= mask;
378df4b2 1744 cpu->tcg_exit_req = 1;
5b6dd868
BS
1745}
1746
1747/*
1748 * Walks guest process memory "regions" one by one
1749 * and calls callback function 'fn' for each region.
1750 */
1751struct walk_memory_regions_data {
1752 walk_memory_regions_fn fn;
1753 void *priv;
1a1c4db9 1754 target_ulong start;
5b6dd868
BS
1755 int prot;
1756};
1757
1758static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1759 target_ulong end, int new_prot)
5b6dd868 1760{
1a1c4db9 1761 if (data->start != -1u) {
5b6dd868
BS
1762 int rc = data->fn(data->priv, data->start, end, data->prot);
1763 if (rc != 0) {
1764 return rc;
1765 }
1766 }
1767
1a1c4db9 1768 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1769 data->prot = new_prot;
1770
1771 return 0;
1772}
1773
1774static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1775 target_ulong base, int level, void **lp)
5b6dd868 1776{
1a1c4db9 1777 target_ulong pa;
5b6dd868
BS
1778 int i, rc;
1779
1780 if (*lp == NULL) {
1781 return walk_memory_regions_end(data, base, 0);
1782 }
1783
1784 if (level == 0) {
1785 PageDesc *pd = *lp;
1786
03f49957 1787 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1788 int prot = pd[i].flags;
1789
1790 pa = base | (i << TARGET_PAGE_BITS);
1791 if (prot != data->prot) {
1792 rc = walk_memory_regions_end(data, pa, prot);
1793 if (rc != 0) {
1794 return rc;
1795 }
1796 }
1797 }
1798 } else {
1799 void **pp = *lp;
1800
03f49957 1801 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1802 pa = base | ((target_ulong)i <<
03f49957 1803 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1804 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1805 if (rc != 0) {
1806 return rc;
1807 }
1808 }
1809 }
1810
1811 return 0;
1812}
1813
1814int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1815{
1816 struct walk_memory_regions_data data;
1817 uintptr_t i;
1818
1819 data.fn = fn;
1820 data.priv = priv;
1a1c4db9 1821 data.start = -1u;
5b6dd868
BS
1822 data.prot = 0;
1823
1824 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1825 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1826 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1827 if (rc != 0) {
1828 return rc;
1829 }
1830 }
1831
1832 return walk_memory_regions_end(&data, 0, 0);
1833}
1834
1a1c4db9
MI
1835static int dump_region(void *priv, target_ulong start,
1836 target_ulong end, unsigned long prot)
5b6dd868
BS
1837{
1838 FILE *f = (FILE *)priv;
1839
1a1c4db9
MI
1840 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1841 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1842 start, end, end - start,
1843 ((prot & PAGE_READ) ? 'r' : '-'),
1844 ((prot & PAGE_WRITE) ? 'w' : '-'),
1845 ((prot & PAGE_EXEC) ? 'x' : '-'));
1846
1847 return 0;
1848}
1849
1850/* dump memory mappings */
1851void page_dump(FILE *f)
1852{
1a1c4db9 1853 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1854 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1855 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1856 walk_memory_regions(f, dump_region);
1857}
1858
1859int page_get_flags(target_ulong address)
1860{
1861 PageDesc *p;
1862
1863 p = page_find(address >> TARGET_PAGE_BITS);
1864 if (!p) {
1865 return 0;
1866 }
1867 return p->flags;
1868}
1869
1870/* Modify the flags of a page and invalidate the code if necessary.
1871 The flag PAGE_WRITE_ORG is positioned automatically depending
1872 on PAGE_WRITE. The mmap_lock should already be held. */
1873void page_set_flags(target_ulong start, target_ulong end, int flags)
1874{
1875 target_ulong addr, len;
1876
1877 /* This function should never be called with addresses outside the
1878 guest address space. If this assert fires, it probably indicates
1879 a missing call to h2g_valid. */
1880#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1881 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1882#endif
1883 assert(start < end);
1884
1885 start = start & TARGET_PAGE_MASK;
1886 end = TARGET_PAGE_ALIGN(end);
1887
1888 if (flags & PAGE_WRITE) {
1889 flags |= PAGE_WRITE_ORG;
1890 }
1891
1892 for (addr = start, len = end - start;
1893 len != 0;
1894 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1895 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1896
1897 /* If the write protection bit is set, then we invalidate
1898 the code inside. */
1899 if (!(p->flags & PAGE_WRITE) &&
1900 (flags & PAGE_WRITE) &&
1901 p->first_tb) {
d02532f0 1902 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1903 }
1904 p->flags = flags;
1905 }
1906}
1907
1908int page_check_range(target_ulong start, target_ulong len, int flags)
1909{
1910 PageDesc *p;
1911 target_ulong end;
1912 target_ulong addr;
1913
1914 /* This function should never be called with addresses outside the
1915 guest address space. If this assert fires, it probably indicates
1916 a missing call to h2g_valid. */
1917#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1918 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1919#endif
1920
1921 if (len == 0) {
1922 return 0;
1923 }
1924 if (start + len - 1 < start) {
1925 /* We've wrapped around. */
1926 return -1;
1927 }
1928
1929 /* must do before we loose bits in the next step */
1930 end = TARGET_PAGE_ALIGN(start + len);
1931 start = start & TARGET_PAGE_MASK;
1932
1933 for (addr = start, len = end - start;
1934 len != 0;
1935 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1936 p = page_find(addr >> TARGET_PAGE_BITS);
1937 if (!p) {
1938 return -1;
1939 }
1940 if (!(p->flags & PAGE_VALID)) {
1941 return -1;
1942 }
1943
1944 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1945 return -1;
1946 }
1947 if (flags & PAGE_WRITE) {
1948 if (!(p->flags & PAGE_WRITE_ORG)) {
1949 return -1;
1950 }
1951 /* unprotect the page if it was put read-only because it
1952 contains translated code */
1953 if (!(p->flags & PAGE_WRITE)) {
1954 if (!page_unprotect(addr, 0, NULL)) {
1955 return -1;
1956 }
1957 }
5b6dd868
BS
1958 }
1959 }
1960 return 0;
1961}
1962
1963/* called from signal handler: invalidate the code and unprotect the
1964 page. Return TRUE if the fault was successfully handled. */
1965int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1966{
1967 unsigned int prot;
1968 PageDesc *p;
1969 target_ulong host_start, host_end, addr;
1970
1971 /* Technically this isn't safe inside a signal handler. However we
1972 know this only ever happens in a synchronous SEGV handler, so in
1973 practice it seems to be ok. */
1974 mmap_lock();
1975
1976 p = page_find(address >> TARGET_PAGE_BITS);
1977 if (!p) {
1978 mmap_unlock();
1979 return 0;
1980 }
1981
1982 /* if the page was really writable, then we change its
1983 protection back to writable */
1984 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1985 host_start = address & qemu_host_page_mask;
1986 host_end = host_start + qemu_host_page_size;
1987
1988 prot = 0;
1989 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1990 p = page_find(addr >> TARGET_PAGE_BITS);
1991 p->flags |= PAGE_WRITE;
1992 prot |= p->flags;
1993
1994 /* and since the content will be modified, we must invalidate
1995 the corresponding translated code. */
d02532f0 1996 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1997#ifdef DEBUG_TB_CHECK
1998 tb_invalidate_check(addr);
1999#endif
2000 }
2001 mprotect((void *)g2h(host_start), qemu_host_page_size,
2002 prot & PAGE_BITS);
2003
2004 mmap_unlock();
2005 return 1;
2006 }
2007 mmap_unlock();
2008 return 0;
2009}
2010#endif /* CONFIG_USER_ONLY */
This page took 1.150823 seconds and 4 git commands to generate.