]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
67b915a5 | 19 | #include "config.h" |
777872e5 | 20 | #ifndef _WIN32 |
a98d49b1 | 21 | #include <sys/types.h> |
d5a8f07c FB |
22 | #include <sys/mman.h> |
23 | #endif | |
54936004 | 24 | |
055403b2 | 25 | #include "qemu-common.h" |
6180a181 | 26 | #include "cpu.h" |
b67d9a52 | 27 | #include "tcg.h" |
b3c7724c | 28 | #include "hw/hw.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
4485bd26 | 31 | #endif |
cc9e98cb | 32 | #include "hw/qdev.h" |
1de7afc9 | 33 | #include "qemu/osdep.h" |
9c17d615 | 34 | #include "sysemu/kvm.h" |
2ff3de68 | 35 | #include "sysemu/sysemu.h" |
0d09e41a | 36 | #include "hw/xen/xen.h" |
1de7afc9 PB |
37 | #include "qemu/timer.h" |
38 | #include "qemu/config-file.h" | |
75a34036 | 39 | #include "qemu/error-report.h" |
022c62cb | 40 | #include "exec/memory.h" |
9c17d615 | 41 | #include "sysemu/dma.h" |
022c62cb | 42 | #include "exec/address-spaces.h" |
53a5960a PB |
43 | #if defined(CONFIG_USER_ONLY) |
44 | #include <qemu.h> | |
432d268c | 45 | #else /* !CONFIG_USER_ONLY */ |
9c17d615 | 46 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 47 | #include "trace.h" |
53a5960a | 48 | #endif |
0d6d3c87 | 49 | #include "exec/cpu-all.h" |
0dc3f44a | 50 | #include "qemu/rcu_queue.h" |
4840f10e | 51 | #include "qemu/main-loop.h" |
5b6dd868 | 52 | #include "translate-all.h" |
0cac1b66 | 53 | |
022c62cb | 54 | #include "exec/memory-internal.h" |
220c3ebd | 55 | #include "exec/ram_addr.h" |
67d95c15 | 56 | |
b35ba30f MT |
57 | #include "qemu/range.h" |
58 | ||
db7b5426 | 59 | //#define DEBUG_SUBPAGE |
1196be37 | 60 | |
e2eef170 | 61 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
62 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
63 | * are protected by the ramlist lock. | |
64 | */ | |
0d53d9fe | 65 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
66 | |
67 | static MemoryRegion *system_memory; | |
309cb471 | 68 | static MemoryRegion *system_io; |
62152b8a | 69 | |
f6790af6 AK |
70 | AddressSpace address_space_io; |
71 | AddressSpace address_space_memory; | |
2673a5da | 72 | |
0844e007 | 73 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 74 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 75 | |
7bd4f430 PB |
76 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
77 | #define RAM_PREALLOC (1 << 0) | |
78 | ||
dbcb8981 PB |
79 | /* RAM is mmap-ed with MAP_SHARED */ |
80 | #define RAM_SHARED (1 << 1) | |
81 | ||
62be4e3a MT |
82 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
83 | * This used_length size can change across reboots. | |
84 | */ | |
85 | #define RAM_RESIZEABLE (1 << 2) | |
86 | ||
8561c924 MT |
87 | /* An extra page is mapped on top of this RAM. |
88 | */ | |
89 | #define RAM_EXTRA (1 << 3) | |
e2eef170 | 90 | #endif |
9fa3e853 | 91 | |
bdc44640 | 92 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
93 | /* current CPU in the current thread. It is only valid inside |
94 | cpu_exec() */ | |
f240eb6f | 95 | __thread CPUState *current_cpu; |
2e70f6ef | 96 | /* 0 = Do not count executed instructions. |
bf20dc07 | 97 | 1 = Precise instruction counting. |
2e70f6ef | 98 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 99 | int use_icount; |
6a00d601 | 100 | |
e2eef170 | 101 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 102 | |
1db8abb1 PB |
103 | typedef struct PhysPageEntry PhysPageEntry; |
104 | ||
105 | struct PhysPageEntry { | |
9736e55b | 106 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 107 | uint32_t skip : 6; |
9736e55b | 108 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 109 | uint32_t ptr : 26; |
1db8abb1 PB |
110 | }; |
111 | ||
8b795765 MT |
112 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
113 | ||
03f49957 | 114 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 115 | #define ADDR_SPACE_BITS 64 |
03f49957 | 116 | |
026736ce | 117 | #define P_L2_BITS 9 |
03f49957 PB |
118 | #define P_L2_SIZE (1 << P_L2_BITS) |
119 | ||
120 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
121 | ||
122 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 123 | |
53cb28cb | 124 | typedef struct PhysPageMap { |
79e2b9ae PB |
125 | struct rcu_head rcu; |
126 | ||
53cb28cb MA |
127 | unsigned sections_nb; |
128 | unsigned sections_nb_alloc; | |
129 | unsigned nodes_nb; | |
130 | unsigned nodes_nb_alloc; | |
131 | Node *nodes; | |
132 | MemoryRegionSection *sections; | |
133 | } PhysPageMap; | |
134 | ||
1db8abb1 | 135 | struct AddressSpaceDispatch { |
79e2b9ae PB |
136 | struct rcu_head rcu; |
137 | ||
1db8abb1 PB |
138 | /* This is a multi-level map on the physical address space. |
139 | * The bottom level has pointers to MemoryRegionSections. | |
140 | */ | |
141 | PhysPageEntry phys_map; | |
53cb28cb | 142 | PhysPageMap map; |
acc9d80b | 143 | AddressSpace *as; |
1db8abb1 PB |
144 | }; |
145 | ||
90260c6c JK |
146 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
147 | typedef struct subpage_t { | |
148 | MemoryRegion iomem; | |
acc9d80b | 149 | AddressSpace *as; |
90260c6c JK |
150 | hwaddr base; |
151 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
152 | } subpage_t; | |
153 | ||
b41aac4f LPF |
154 | #define PHYS_SECTION_UNASSIGNED 0 |
155 | #define PHYS_SECTION_NOTDIRTY 1 | |
156 | #define PHYS_SECTION_ROM 2 | |
157 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 158 | |
e2eef170 | 159 | static void io_mem_init(void); |
62152b8a | 160 | static void memory_map_init(void); |
09daed84 | 161 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 162 | |
1ec9b909 | 163 | static MemoryRegion io_mem_watch; |
32857f4d PM |
164 | |
165 | /** | |
166 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
167 | * @cpu: the CPU whose AddressSpace this is | |
168 | * @as: the AddressSpace itself | |
169 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
170 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
171 | */ | |
172 | struct CPUAddressSpace { | |
173 | CPUState *cpu; | |
174 | AddressSpace *as; | |
175 | struct AddressSpaceDispatch *memory_dispatch; | |
176 | MemoryListener tcg_as_listener; | |
177 | }; | |
178 | ||
6658ffb8 | 179 | #endif |
fd6ce8f6 | 180 | |
6d9a1304 | 181 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 182 | |
53cb28cb | 183 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 184 | { |
53cb28cb MA |
185 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
186 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
187 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
188 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
d6f2ea22 | 189 | } |
f7bf5461 AK |
190 | } |
191 | ||
db94604b | 192 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
193 | { |
194 | unsigned i; | |
8b795765 | 195 | uint32_t ret; |
db94604b PB |
196 | PhysPageEntry e; |
197 | PhysPageEntry *p; | |
f7bf5461 | 198 | |
53cb28cb | 199 | ret = map->nodes_nb++; |
db94604b | 200 | p = map->nodes[ret]; |
f7bf5461 | 201 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 202 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
203 | |
204 | e.skip = leaf ? 0 : 1; | |
205 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 206 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 207 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 208 | } |
f7bf5461 | 209 | return ret; |
d6f2ea22 AK |
210 | } |
211 | ||
53cb28cb MA |
212 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
213 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 214 | int level) |
f7bf5461 AK |
215 | { |
216 | PhysPageEntry *p; | |
03f49957 | 217 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 218 | |
9736e55b | 219 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 220 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 221 | } |
db94604b | 222 | p = map->nodes[lp->ptr]; |
03f49957 | 223 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 224 | |
03f49957 | 225 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 226 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 227 | lp->skip = 0; |
c19e8800 | 228 | lp->ptr = leaf; |
07f07b31 AK |
229 | *index += step; |
230 | *nb -= step; | |
2999097b | 231 | } else { |
53cb28cb | 232 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
233 | } |
234 | ++lp; | |
f7bf5461 AK |
235 | } |
236 | } | |
237 | ||
ac1970fb | 238 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 239 | hwaddr index, hwaddr nb, |
2999097b | 240 | uint16_t leaf) |
f7bf5461 | 241 | { |
2999097b | 242 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 243 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 244 | |
53cb28cb | 245 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
246 | } |
247 | ||
b35ba30f MT |
248 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
249 | * and update our entry so we can skip it and go directly to the destination. | |
250 | */ | |
251 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
252 | { | |
253 | unsigned valid_ptr = P_L2_SIZE; | |
254 | int valid = 0; | |
255 | PhysPageEntry *p; | |
256 | int i; | |
257 | ||
258 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
259 | return; | |
260 | } | |
261 | ||
262 | p = nodes[lp->ptr]; | |
263 | for (i = 0; i < P_L2_SIZE; i++) { | |
264 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
265 | continue; | |
266 | } | |
267 | ||
268 | valid_ptr = i; | |
269 | valid++; | |
270 | if (p[i].skip) { | |
271 | phys_page_compact(&p[i], nodes, compacted); | |
272 | } | |
273 | } | |
274 | ||
275 | /* We can only compress if there's only one child. */ | |
276 | if (valid != 1) { | |
277 | return; | |
278 | } | |
279 | ||
280 | assert(valid_ptr < P_L2_SIZE); | |
281 | ||
282 | /* Don't compress if it won't fit in the # of bits we have. */ | |
283 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
284 | return; | |
285 | } | |
286 | ||
287 | lp->ptr = p[valid_ptr].ptr; | |
288 | if (!p[valid_ptr].skip) { | |
289 | /* If our only child is a leaf, make this a leaf. */ | |
290 | /* By design, we should have made this node a leaf to begin with so we | |
291 | * should never reach here. | |
292 | * But since it's so simple to handle this, let's do it just in case we | |
293 | * change this rule. | |
294 | */ | |
295 | lp->skip = 0; | |
296 | } else { | |
297 | lp->skip += p[valid_ptr].skip; | |
298 | } | |
299 | } | |
300 | ||
301 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
302 | { | |
303 | DECLARE_BITMAP(compacted, nodes_nb); | |
304 | ||
305 | if (d->phys_map.skip) { | |
53cb28cb | 306 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); |
b35ba30f MT |
307 | } |
308 | } | |
309 | ||
97115a8d | 310 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 311 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 312 | { |
31ab2b4a | 313 | PhysPageEntry *p; |
97115a8d | 314 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 315 | int i; |
f1f6e3b8 | 316 | |
9736e55b | 317 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 318 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 319 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 320 | } |
9affd6fc | 321 | p = nodes[lp.ptr]; |
03f49957 | 322 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 323 | } |
b35ba30f MT |
324 | |
325 | if (sections[lp.ptr].size.hi || | |
326 | range_covers_byte(sections[lp.ptr].offset_within_address_space, | |
327 | sections[lp.ptr].size.lo, addr)) { | |
328 | return §ions[lp.ptr]; | |
329 | } else { | |
330 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
331 | } | |
f3705d53 AK |
332 | } |
333 | ||
e5548617 BS |
334 | bool memory_region_is_unassigned(MemoryRegion *mr) |
335 | { | |
2a8e7499 | 336 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 337 | && mr != &io_mem_watch; |
fd6ce8f6 | 338 | } |
149f54b5 | 339 | |
79e2b9ae | 340 | /* Called from RCU critical section */ |
c7086b4a | 341 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
342 | hwaddr addr, |
343 | bool resolve_subpage) | |
9f029603 | 344 | { |
90260c6c JK |
345 | MemoryRegionSection *section; |
346 | subpage_t *subpage; | |
347 | ||
53cb28cb | 348 | section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections); |
90260c6c JK |
349 | if (resolve_subpage && section->mr->subpage) { |
350 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 351 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c JK |
352 | } |
353 | return section; | |
9f029603 JK |
354 | } |
355 | ||
79e2b9ae | 356 | /* Called from RCU critical section */ |
90260c6c | 357 | static MemoryRegionSection * |
c7086b4a | 358 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 359 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
360 | { |
361 | MemoryRegionSection *section; | |
965eb2fc | 362 | MemoryRegion *mr; |
a87f3954 | 363 | Int128 diff; |
149f54b5 | 364 | |
c7086b4a | 365 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
366 | /* Compute offset within MemoryRegionSection */ |
367 | addr -= section->offset_within_address_space; | |
368 | ||
369 | /* Compute offset within MemoryRegion */ | |
370 | *xlat = addr + section->offset_within_region; | |
371 | ||
965eb2fc | 372 | mr = section->mr; |
b242e0e0 PB |
373 | |
374 | /* MMIO registers can be expected to perform full-width accesses based only | |
375 | * on their address, without considering adjacent registers that could | |
376 | * decode to completely different MemoryRegions. When such registers | |
377 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
378 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
379 | * here. | |
380 | * | |
381 | * If the length is small (as is the case for address_space_ldl/stl), | |
382 | * everything works fine. If the incoming length is large, however, | |
383 | * the caller really has to do the clamping through memory_access_size. | |
384 | */ | |
965eb2fc | 385 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 386 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
387 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
388 | } | |
149f54b5 PB |
389 | return section; |
390 | } | |
90260c6c | 391 | |
a87f3954 PB |
392 | static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) |
393 | { | |
394 | if (memory_region_is_ram(mr)) { | |
395 | return !(is_write && mr->readonly); | |
396 | } | |
397 | if (memory_region_is_romd(mr)) { | |
398 | return !is_write; | |
399 | } | |
400 | ||
401 | return false; | |
402 | } | |
403 | ||
41063e1e | 404 | /* Called from RCU critical section */ |
5c8a00ce PB |
405 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
406 | hwaddr *xlat, hwaddr *plen, | |
407 | bool is_write) | |
90260c6c | 408 | { |
30951157 AK |
409 | IOMMUTLBEntry iotlb; |
410 | MemoryRegionSection *section; | |
411 | MemoryRegion *mr; | |
30951157 AK |
412 | |
413 | for (;;) { | |
79e2b9ae PB |
414 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
415 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
416 | mr = section->mr; |
417 | ||
418 | if (!mr->iommu_ops) { | |
419 | break; | |
420 | } | |
421 | ||
8d7b8cb9 | 422 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
423 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
424 | | (addr & iotlb.addr_mask)); | |
23820dbf | 425 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
426 | if (!(iotlb.perm & (1 << is_write))) { |
427 | mr = &io_mem_unassigned; | |
428 | break; | |
429 | } | |
430 | ||
431 | as = iotlb.target_as; | |
432 | } | |
433 | ||
fe680d0d | 434 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 435 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 436 | *plen = MIN(page, *plen); |
a87f3954 PB |
437 | } |
438 | ||
30951157 AK |
439 | *xlat = addr; |
440 | return mr; | |
90260c6c JK |
441 | } |
442 | ||
79e2b9ae | 443 | /* Called from RCU critical section */ |
90260c6c | 444 | MemoryRegionSection * |
9d82b5a7 PB |
445 | address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr, |
446 | hwaddr *xlat, hwaddr *plen) | |
90260c6c | 447 | { |
30951157 | 448 | MemoryRegionSection *section; |
32857f4d | 449 | section = address_space_translate_internal(cpu->cpu_ases[0].memory_dispatch, |
9d82b5a7 | 450 | addr, xlat, plen, false); |
30951157 AK |
451 | |
452 | assert(!section->mr->iommu_ops); | |
453 | return section; | |
90260c6c | 454 | } |
5b6dd868 | 455 | #endif |
fd6ce8f6 | 456 | |
b170fce3 | 457 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
458 | |
459 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 460 | { |
259186a7 | 461 | CPUState *cpu = opaque; |
a513fe19 | 462 | |
5b6dd868 BS |
463 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
464 | version_id is increased. */ | |
259186a7 | 465 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 466 | tlb_flush(cpu, 1); |
5b6dd868 BS |
467 | |
468 | return 0; | |
a513fe19 | 469 | } |
7501267e | 470 | |
6c3bff0e PD |
471 | static int cpu_common_pre_load(void *opaque) |
472 | { | |
473 | CPUState *cpu = opaque; | |
474 | ||
adee6424 | 475 | cpu->exception_index = -1; |
6c3bff0e PD |
476 | |
477 | return 0; | |
478 | } | |
479 | ||
480 | static bool cpu_common_exception_index_needed(void *opaque) | |
481 | { | |
482 | CPUState *cpu = opaque; | |
483 | ||
adee6424 | 484 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
485 | } |
486 | ||
487 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
488 | .name = "cpu_common/exception_index", | |
489 | .version_id = 1, | |
490 | .minimum_version_id = 1, | |
5cd8cada | 491 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
492 | .fields = (VMStateField[]) { |
493 | VMSTATE_INT32(exception_index, CPUState), | |
494 | VMSTATE_END_OF_LIST() | |
495 | } | |
496 | }; | |
497 | ||
bac05aa9 AS |
498 | static bool cpu_common_crash_occurred_needed(void *opaque) |
499 | { | |
500 | CPUState *cpu = opaque; | |
501 | ||
502 | return cpu->crash_occurred; | |
503 | } | |
504 | ||
505 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
506 | .name = "cpu_common/crash_occurred", | |
507 | .version_id = 1, | |
508 | .minimum_version_id = 1, | |
509 | .needed = cpu_common_crash_occurred_needed, | |
510 | .fields = (VMStateField[]) { | |
511 | VMSTATE_BOOL(crash_occurred, CPUState), | |
512 | VMSTATE_END_OF_LIST() | |
513 | } | |
514 | }; | |
515 | ||
1a1562f5 | 516 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
517 | .name = "cpu_common", |
518 | .version_id = 1, | |
519 | .minimum_version_id = 1, | |
6c3bff0e | 520 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 521 | .post_load = cpu_common_post_load, |
35d08458 | 522 | .fields = (VMStateField[]) { |
259186a7 AF |
523 | VMSTATE_UINT32(halted, CPUState), |
524 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 525 | VMSTATE_END_OF_LIST() |
6c3bff0e | 526 | }, |
5cd8cada JQ |
527 | .subsections = (const VMStateDescription*[]) { |
528 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 529 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 530 | NULL |
5b6dd868 BS |
531 | } |
532 | }; | |
1a1562f5 | 533 | |
5b6dd868 | 534 | #endif |
ea041c0e | 535 | |
38d8f5c8 | 536 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 537 | { |
bdc44640 | 538 | CPUState *cpu; |
ea041c0e | 539 | |
bdc44640 | 540 | CPU_FOREACH(cpu) { |
55e5c285 | 541 | if (cpu->cpu_index == index) { |
bdc44640 | 542 | return cpu; |
55e5c285 | 543 | } |
ea041c0e | 544 | } |
5b6dd868 | 545 | |
bdc44640 | 546 | return NULL; |
ea041c0e FB |
547 | } |
548 | ||
09daed84 EI |
549 | #if !defined(CONFIG_USER_ONLY) |
550 | void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as) | |
551 | { | |
552 | /* We only support one address space per cpu at the moment. */ | |
553 | assert(cpu->as == as); | |
554 | ||
32857f4d PM |
555 | if (cpu->cpu_ases) { |
556 | /* We've already registered the listener for our only AS */ | |
557 | return; | |
09daed84 | 558 | } |
32857f4d PM |
559 | |
560 | cpu->cpu_ases = g_new0(CPUAddressSpace, 1); | |
561 | cpu->cpu_ases[0].cpu = cpu; | |
562 | cpu->cpu_ases[0].as = as; | |
563 | cpu->cpu_ases[0].tcg_as_listener.commit = tcg_commit; | |
564 | memory_listener_register(&cpu->cpu_ases[0].tcg_as_listener, as); | |
09daed84 EI |
565 | } |
566 | #endif | |
567 | ||
b7bca733 BR |
568 | #ifndef CONFIG_USER_ONLY |
569 | static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS); | |
570 | ||
571 | static int cpu_get_free_index(Error **errp) | |
572 | { | |
573 | int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS); | |
574 | ||
575 | if (cpu >= MAX_CPUMASK_BITS) { | |
576 | error_setg(errp, "Trying to use more CPUs than max of %d", | |
577 | MAX_CPUMASK_BITS); | |
578 | return -1; | |
579 | } | |
580 | ||
581 | bitmap_set(cpu_index_map, cpu, 1); | |
582 | return cpu; | |
583 | } | |
584 | ||
585 | void cpu_exec_exit(CPUState *cpu) | |
586 | { | |
587 | if (cpu->cpu_index == -1) { | |
588 | /* cpu_index was never allocated by this @cpu or was already freed. */ | |
589 | return; | |
590 | } | |
591 | ||
592 | bitmap_clear(cpu_index_map, cpu->cpu_index, 1); | |
593 | cpu->cpu_index = -1; | |
594 | } | |
595 | #else | |
596 | ||
597 | static int cpu_get_free_index(Error **errp) | |
598 | { | |
599 | CPUState *some_cpu; | |
600 | int cpu_index = 0; | |
601 | ||
602 | CPU_FOREACH(some_cpu) { | |
603 | cpu_index++; | |
604 | } | |
605 | return cpu_index; | |
606 | } | |
607 | ||
608 | void cpu_exec_exit(CPUState *cpu) | |
609 | { | |
610 | } | |
611 | #endif | |
612 | ||
4bad9e39 | 613 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 614 | { |
b170fce3 | 615 | CPUClass *cc = CPU_GET_CLASS(cpu); |
5b6dd868 | 616 | int cpu_index; |
b7bca733 | 617 | Error *local_err = NULL; |
5b6dd868 | 618 | |
291135b5 EH |
619 | #ifndef CONFIG_USER_ONLY |
620 | cpu->as = &address_space_memory; | |
621 | cpu->thread_id = qemu_get_thread_id(); | |
291135b5 EH |
622 | #endif |
623 | ||
5b6dd868 BS |
624 | #if defined(CONFIG_USER_ONLY) |
625 | cpu_list_lock(); | |
626 | #endif | |
b7bca733 BR |
627 | cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err); |
628 | if (local_err) { | |
629 | error_propagate(errp, local_err); | |
630 | #if defined(CONFIG_USER_ONLY) | |
631 | cpu_list_unlock(); | |
632 | #endif | |
633 | return; | |
5b6dd868 | 634 | } |
bdc44640 | 635 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); |
5b6dd868 BS |
636 | #if defined(CONFIG_USER_ONLY) |
637 | cpu_list_unlock(); | |
638 | #endif | |
e0d47944 AF |
639 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
640 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
641 | } | |
5b6dd868 | 642 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
5b6dd868 | 643 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, |
4bad9e39 | 644 | cpu_save, cpu_load, cpu->env_ptr); |
b170fce3 | 645 | assert(cc->vmsd == NULL); |
e0d47944 | 646 | assert(qdev_get_vmsd(DEVICE(cpu)) == NULL); |
5b6dd868 | 647 | #endif |
b170fce3 AF |
648 | if (cc->vmsd != NULL) { |
649 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
650 | } | |
ea041c0e FB |
651 | } |
652 | ||
94df27fd | 653 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 654 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
655 | { |
656 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
657 | } | |
658 | #else | |
00b941e5 | 659 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 660 | { |
e8262a1b MF |
661 | hwaddr phys = cpu_get_phys_page_debug(cpu, pc); |
662 | if (phys != -1) { | |
09daed84 | 663 | tb_invalidate_phys_addr(cpu->as, |
29d8ec7b | 664 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 665 | } |
1e7855a5 | 666 | } |
c27004ec | 667 | #endif |
d720b93d | 668 | |
c527ee8f | 669 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 670 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
671 | |
672 | { | |
673 | } | |
674 | ||
3ee887e8 PM |
675 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
676 | int flags) | |
677 | { | |
678 | return -ENOSYS; | |
679 | } | |
680 | ||
681 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
682 | { | |
683 | } | |
684 | ||
75a34036 | 685 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
686 | int flags, CPUWatchpoint **watchpoint) |
687 | { | |
688 | return -ENOSYS; | |
689 | } | |
690 | #else | |
6658ffb8 | 691 | /* Add a watchpoint. */ |
75a34036 | 692 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 693 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 694 | { |
c0ce998e | 695 | CPUWatchpoint *wp; |
6658ffb8 | 696 | |
05068c0d | 697 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 698 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
699 | error_report("tried to set invalid watchpoint at %" |
700 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
701 | return -EINVAL; |
702 | } | |
7267c094 | 703 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
704 | |
705 | wp->vaddr = addr; | |
05068c0d | 706 | wp->len = len; |
a1d1bb31 AL |
707 | wp->flags = flags; |
708 | ||
2dc9f411 | 709 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
710 | if (flags & BP_GDB) { |
711 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
712 | } else { | |
713 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
714 | } | |
6658ffb8 | 715 | |
31b030d4 | 716 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
717 | |
718 | if (watchpoint) | |
719 | *watchpoint = wp; | |
720 | return 0; | |
6658ffb8 PB |
721 | } |
722 | ||
a1d1bb31 | 723 | /* Remove a specific watchpoint. */ |
75a34036 | 724 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 725 | int flags) |
6658ffb8 | 726 | { |
a1d1bb31 | 727 | CPUWatchpoint *wp; |
6658ffb8 | 728 | |
ff4700b0 | 729 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 730 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 731 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 732 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
733 | return 0; |
734 | } | |
735 | } | |
a1d1bb31 | 736 | return -ENOENT; |
6658ffb8 PB |
737 | } |
738 | ||
a1d1bb31 | 739 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 740 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 741 | { |
ff4700b0 | 742 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 743 | |
31b030d4 | 744 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 745 | |
7267c094 | 746 | g_free(watchpoint); |
a1d1bb31 AL |
747 | } |
748 | ||
749 | /* Remove all matching watchpoints. */ | |
75a34036 | 750 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 751 | { |
c0ce998e | 752 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 753 | |
ff4700b0 | 754 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
755 | if (wp->flags & mask) { |
756 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
757 | } | |
c0ce998e | 758 | } |
7d03f82f | 759 | } |
05068c0d PM |
760 | |
761 | /* Return true if this watchpoint address matches the specified | |
762 | * access (ie the address range covered by the watchpoint overlaps | |
763 | * partially or completely with the address range covered by the | |
764 | * access). | |
765 | */ | |
766 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
767 | vaddr addr, | |
768 | vaddr len) | |
769 | { | |
770 | /* We know the lengths are non-zero, but a little caution is | |
771 | * required to avoid errors in the case where the range ends | |
772 | * exactly at the top of the address space and so addr + len | |
773 | * wraps round to zero. | |
774 | */ | |
775 | vaddr wpend = wp->vaddr + wp->len - 1; | |
776 | vaddr addrend = addr + len - 1; | |
777 | ||
778 | return !(addr > wpend || wp->vaddr > addrend); | |
779 | } | |
780 | ||
c527ee8f | 781 | #endif |
7d03f82f | 782 | |
a1d1bb31 | 783 | /* Add a breakpoint. */ |
b3310ab3 | 784 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 785 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 786 | { |
c0ce998e | 787 | CPUBreakpoint *bp; |
3b46e624 | 788 | |
7267c094 | 789 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 790 | |
a1d1bb31 AL |
791 | bp->pc = pc; |
792 | bp->flags = flags; | |
793 | ||
2dc9f411 | 794 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 795 | if (flags & BP_GDB) { |
f0c3c505 | 796 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 797 | } else { |
f0c3c505 | 798 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 799 | } |
3b46e624 | 800 | |
f0c3c505 | 801 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 802 | |
00b941e5 | 803 | if (breakpoint) { |
a1d1bb31 | 804 | *breakpoint = bp; |
00b941e5 | 805 | } |
4c3a88a2 | 806 | return 0; |
4c3a88a2 FB |
807 | } |
808 | ||
a1d1bb31 | 809 | /* Remove a specific breakpoint. */ |
b3310ab3 | 810 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 811 | { |
a1d1bb31 AL |
812 | CPUBreakpoint *bp; |
813 | ||
f0c3c505 | 814 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 815 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 816 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
817 | return 0; |
818 | } | |
7d03f82f | 819 | } |
a1d1bb31 | 820 | return -ENOENT; |
7d03f82f EI |
821 | } |
822 | ||
a1d1bb31 | 823 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 824 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 825 | { |
f0c3c505 AF |
826 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
827 | ||
828 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 829 | |
7267c094 | 830 | g_free(breakpoint); |
a1d1bb31 AL |
831 | } |
832 | ||
833 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 834 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 835 | { |
c0ce998e | 836 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 837 | |
f0c3c505 | 838 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
839 | if (bp->flags & mask) { |
840 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
841 | } | |
c0ce998e | 842 | } |
4c3a88a2 FB |
843 | } |
844 | ||
c33a346e FB |
845 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
846 | CPU loop after each instruction */ | |
3825b28f | 847 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 848 | { |
ed2803da AF |
849 | if (cpu->singlestep_enabled != enabled) { |
850 | cpu->singlestep_enabled = enabled; | |
851 | if (kvm_enabled()) { | |
38e478ec | 852 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 853 | } else { |
ccbb4d44 | 854 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 855 | /* XXX: only flush what is necessary */ |
bbd77c18 | 856 | tb_flush(cpu); |
e22a25c9 | 857 | } |
c33a346e | 858 | } |
c33a346e FB |
859 | } |
860 | ||
a47dddd7 | 861 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
862 | { |
863 | va_list ap; | |
493ae1f0 | 864 | va_list ap2; |
7501267e FB |
865 | |
866 | va_start(ap, fmt); | |
493ae1f0 | 867 | va_copy(ap2, ap); |
7501267e FB |
868 | fprintf(stderr, "qemu: fatal: "); |
869 | vfprintf(stderr, fmt, ap); | |
870 | fprintf(stderr, "\n"); | |
878096ee | 871 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
93fcfe39 AL |
872 | if (qemu_log_enabled()) { |
873 | qemu_log("qemu: fatal: "); | |
874 | qemu_log_vprintf(fmt, ap2); | |
875 | qemu_log("\n"); | |
a0762859 | 876 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 877 | qemu_log_flush(); |
93fcfe39 | 878 | qemu_log_close(); |
924edcae | 879 | } |
493ae1f0 | 880 | va_end(ap2); |
f9373291 | 881 | va_end(ap); |
fd052bf6 RV |
882 | #if defined(CONFIG_USER_ONLY) |
883 | { | |
884 | struct sigaction act; | |
885 | sigfillset(&act.sa_mask); | |
886 | act.sa_handler = SIG_DFL; | |
887 | sigaction(SIGABRT, &act, NULL); | |
888 | } | |
889 | #endif | |
7501267e FB |
890 | abort(); |
891 | } | |
892 | ||
0124311e | 893 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 894 | /* Called from RCU critical section */ |
041603fe PB |
895 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
896 | { | |
897 | RAMBlock *block; | |
898 | ||
43771539 | 899 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 900 | if (block && addr - block->offset < block->max_length) { |
041603fe PB |
901 | goto found; |
902 | } | |
0dc3f44a | 903 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 904 | if (addr - block->offset < block->max_length) { |
041603fe PB |
905 | goto found; |
906 | } | |
907 | } | |
908 | ||
909 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
910 | abort(); | |
911 | ||
912 | found: | |
43771539 PB |
913 | /* It is safe to write mru_block outside the iothread lock. This |
914 | * is what happens: | |
915 | * | |
916 | * mru_block = xxx | |
917 | * rcu_read_unlock() | |
918 | * xxx removed from list | |
919 | * rcu_read_lock() | |
920 | * read mru_block | |
921 | * mru_block = NULL; | |
922 | * call_rcu(reclaim_ramblock, xxx); | |
923 | * rcu_read_unlock() | |
924 | * | |
925 | * atomic_rcu_set is not needed here. The block was already published | |
926 | * when it was placed into the list. Here we're just making an extra | |
927 | * copy of the pointer. | |
928 | */ | |
041603fe PB |
929 | ram_list.mru_block = block; |
930 | return block; | |
931 | } | |
932 | ||
a2f4d5be | 933 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 934 | { |
9a13565d | 935 | CPUState *cpu; |
041603fe | 936 | ram_addr_t start1; |
a2f4d5be JQ |
937 | RAMBlock *block; |
938 | ram_addr_t end; | |
939 | ||
940 | end = TARGET_PAGE_ALIGN(start + length); | |
941 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 942 | |
0dc3f44a | 943 | rcu_read_lock(); |
041603fe PB |
944 | block = qemu_get_ram_block(start); |
945 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 946 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
947 | CPU_FOREACH(cpu) { |
948 | tlb_reset_dirty(cpu, start1, length); | |
949 | } | |
0dc3f44a | 950 | rcu_read_unlock(); |
d24981d3 JQ |
951 | } |
952 | ||
5579c7f3 | 953 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
954 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
955 | ram_addr_t length, | |
956 | unsigned client) | |
1ccde1cb | 957 | { |
03eebc9e SH |
958 | unsigned long end, page; |
959 | bool dirty; | |
960 | ||
961 | if (length == 0) { | |
962 | return false; | |
963 | } | |
f23db169 | 964 | |
03eebc9e SH |
965 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
966 | page = start >> TARGET_PAGE_BITS; | |
967 | dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client], | |
968 | page, end - page); | |
969 | ||
970 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 971 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 972 | } |
03eebc9e SH |
973 | |
974 | return dirty; | |
1ccde1cb FB |
975 | } |
976 | ||
79e2b9ae | 977 | /* Called from RCU critical section */ |
bb0e627a | 978 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
979 | MemoryRegionSection *section, |
980 | target_ulong vaddr, | |
981 | hwaddr paddr, hwaddr xlat, | |
982 | int prot, | |
983 | target_ulong *address) | |
e5548617 | 984 | { |
a8170e5e | 985 | hwaddr iotlb; |
e5548617 BS |
986 | CPUWatchpoint *wp; |
987 | ||
cc5bea60 | 988 | if (memory_region_is_ram(section->mr)) { |
e5548617 BS |
989 | /* Normal RAM. */ |
990 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
149f54b5 | 991 | + xlat; |
e5548617 | 992 | if (!section->readonly) { |
b41aac4f | 993 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 994 | } else { |
b41aac4f | 995 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
996 | } |
997 | } else { | |
0b8e2c10 PM |
998 | AddressSpaceDispatch *d; |
999 | ||
1000 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1001 | iotlb = section - d->map.sections; | |
149f54b5 | 1002 | iotlb += xlat; |
e5548617 BS |
1003 | } |
1004 | ||
1005 | /* Make accesses to pages with watchpoints go via the | |
1006 | watchpoint trap routines. */ | |
ff4700b0 | 1007 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1008 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1009 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1010 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1011 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1012 | *address |= TLB_MMIO; |
1013 | break; | |
1014 | } | |
1015 | } | |
1016 | } | |
1017 | ||
1018 | return iotlb; | |
1019 | } | |
9fa3e853 FB |
1020 | #endif /* defined(CONFIG_USER_ONLY) */ |
1021 | ||
e2eef170 | 1022 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1023 | |
c227f099 | 1024 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1025 | uint16_t section); |
acc9d80b | 1026 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1027 | |
a2b257d6 IM |
1028 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1029 | qemu_anon_ram_alloc; | |
91138037 MA |
1030 | |
1031 | /* | |
1032 | * Set a custom physical guest memory alloator. | |
1033 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1034 | * get rid of it eventually. | |
1035 | */ | |
a2b257d6 | 1036 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1037 | { |
1038 | phys_mem_alloc = alloc; | |
1039 | } | |
1040 | ||
53cb28cb MA |
1041 | static uint16_t phys_section_add(PhysPageMap *map, |
1042 | MemoryRegionSection *section) | |
5312bd8b | 1043 | { |
68f3f65b PB |
1044 | /* The physical section number is ORed with a page-aligned |
1045 | * pointer to produce the iotlb entries. Thus it should | |
1046 | * never overflow into the page-aligned value. | |
1047 | */ | |
53cb28cb | 1048 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1049 | |
53cb28cb MA |
1050 | if (map->sections_nb == map->sections_nb_alloc) { |
1051 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1052 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1053 | map->sections_nb_alloc); | |
5312bd8b | 1054 | } |
53cb28cb | 1055 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1056 | memory_region_ref(section->mr); |
53cb28cb | 1057 | return map->sections_nb++; |
5312bd8b AK |
1058 | } |
1059 | ||
058bc4b5 PB |
1060 | static void phys_section_destroy(MemoryRegion *mr) |
1061 | { | |
dfde4e6e PB |
1062 | memory_region_unref(mr); |
1063 | ||
058bc4b5 PB |
1064 | if (mr->subpage) { |
1065 | subpage_t *subpage = container_of(mr, subpage_t, iomem); | |
b4fefef9 | 1066 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1067 | g_free(subpage); |
1068 | } | |
1069 | } | |
1070 | ||
6092666e | 1071 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1072 | { |
9affd6fc PB |
1073 | while (map->sections_nb > 0) { |
1074 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1075 | phys_section_destroy(section->mr); |
1076 | } | |
9affd6fc PB |
1077 | g_free(map->sections); |
1078 | g_free(map->nodes); | |
5312bd8b AK |
1079 | } |
1080 | ||
ac1970fb | 1081 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1082 | { |
1083 | subpage_t *subpage; | |
a8170e5e | 1084 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1085 | & TARGET_PAGE_MASK; |
97115a8d | 1086 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1087 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1088 | MemoryRegionSection subsection = { |
1089 | .offset_within_address_space = base, | |
052e87b0 | 1090 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1091 | }; |
a8170e5e | 1092 | hwaddr start, end; |
0f0cb164 | 1093 | |
f3705d53 | 1094 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1095 | |
f3705d53 | 1096 | if (!(existing->mr->subpage)) { |
acc9d80b | 1097 | subpage = subpage_init(d->as, base); |
3be91e86 | 1098 | subsection.address_space = d->as; |
0f0cb164 | 1099 | subsection.mr = &subpage->iomem; |
ac1970fb | 1100 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1101 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1102 | } else { |
f3705d53 | 1103 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1104 | } |
1105 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1106 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1107 | subpage_register(subpage, start, end, |
1108 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1109 | } |
1110 | ||
1111 | ||
052e87b0 PB |
1112 | static void register_multipage(AddressSpaceDispatch *d, |
1113 | MemoryRegionSection *section) | |
33417e70 | 1114 | { |
a8170e5e | 1115 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1116 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1117 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1118 | TARGET_PAGE_BITS)); | |
dd81124b | 1119 | |
733d5ef5 PB |
1120 | assert(num_pages); |
1121 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1122 | } |
1123 | ||
ac1970fb | 1124 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1125 | { |
89ae337a | 1126 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1127 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1128 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1129 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1130 | |
733d5ef5 PB |
1131 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1132 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1133 | - now.offset_within_address_space; | |
1134 | ||
052e87b0 | 1135 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1136 | register_subpage(d, &now); |
733d5ef5 | 1137 | } else { |
052e87b0 | 1138 | now.size = int128_zero(); |
733d5ef5 | 1139 | } |
052e87b0 PB |
1140 | while (int128_ne(remain.size, now.size)) { |
1141 | remain.size = int128_sub(remain.size, now.size); | |
1142 | remain.offset_within_address_space += int128_get64(now.size); | |
1143 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1144 | now = remain; |
052e87b0 | 1145 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1146 | register_subpage(d, &now); |
88266249 | 1147 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1148 | now.size = page_size; |
ac1970fb | 1149 | register_subpage(d, &now); |
69b67646 | 1150 | } else { |
052e87b0 | 1151 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1152 | register_multipage(d, &now); |
69b67646 | 1153 | } |
0f0cb164 AK |
1154 | } |
1155 | } | |
1156 | ||
62a2744c SY |
1157 | void qemu_flush_coalesced_mmio_buffer(void) |
1158 | { | |
1159 | if (kvm_enabled()) | |
1160 | kvm_flush_coalesced_mmio_buffer(); | |
1161 | } | |
1162 | ||
b2a8658e UD |
1163 | void qemu_mutex_lock_ramlist(void) |
1164 | { | |
1165 | qemu_mutex_lock(&ram_list.mutex); | |
1166 | } | |
1167 | ||
1168 | void qemu_mutex_unlock_ramlist(void) | |
1169 | { | |
1170 | qemu_mutex_unlock(&ram_list.mutex); | |
1171 | } | |
1172 | ||
e1e84ba0 | 1173 | #ifdef __linux__ |
c902760f MT |
1174 | |
1175 | #include <sys/vfs.h> | |
1176 | ||
1177 | #define HUGETLBFS_MAGIC 0x958458f6 | |
1178 | ||
fc7a5800 | 1179 | static long gethugepagesize(const char *path, Error **errp) |
c902760f MT |
1180 | { |
1181 | struct statfs fs; | |
1182 | int ret; | |
1183 | ||
1184 | do { | |
9742bf26 | 1185 | ret = statfs(path, &fs); |
c902760f MT |
1186 | } while (ret != 0 && errno == EINTR); |
1187 | ||
1188 | if (ret != 0) { | |
fc7a5800 HT |
1189 | error_setg_errno(errp, errno, "failed to get page size of file %s", |
1190 | path); | |
9742bf26 | 1191 | return 0; |
c902760f MT |
1192 | } |
1193 | ||
1194 | if (fs.f_type != HUGETLBFS_MAGIC) | |
9742bf26 | 1195 | fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); |
c902760f MT |
1196 | |
1197 | return fs.f_bsize; | |
1198 | } | |
1199 | ||
04b16653 AW |
1200 | static void *file_ram_alloc(RAMBlock *block, |
1201 | ram_addr_t memory, | |
7f56e740 PB |
1202 | const char *path, |
1203 | Error **errp) | |
c902760f MT |
1204 | { |
1205 | char *filename; | |
8ca761f6 PF |
1206 | char *sanitized_name; |
1207 | char *c; | |
8561c924 | 1208 | void *ptr; |
557529dd | 1209 | void *area = NULL; |
c902760f | 1210 | int fd; |
557529dd | 1211 | uint64_t hpagesize; |
8561c924 | 1212 | uint64_t total; |
fc7a5800 | 1213 | Error *local_err = NULL; |
8561c924 | 1214 | size_t offset; |
c902760f | 1215 | |
fc7a5800 HT |
1216 | hpagesize = gethugepagesize(path, &local_err); |
1217 | if (local_err) { | |
1218 | error_propagate(errp, local_err); | |
f9a49dfa | 1219 | goto error; |
c902760f | 1220 | } |
a2b257d6 | 1221 | block->mr->align = hpagesize; |
c902760f MT |
1222 | |
1223 | if (memory < hpagesize) { | |
557529dd HT |
1224 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
1225 | "or larger than huge page size 0x%" PRIx64, | |
1226 | memory, hpagesize); | |
1227 | goto error; | |
c902760f MT |
1228 | } |
1229 | ||
1230 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1231 | error_setg(errp, |
1232 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
f9a49dfa | 1233 | goto error; |
c902760f MT |
1234 | } |
1235 | ||
8ca761f6 | 1236 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ |
83234bf2 | 1237 | sanitized_name = g_strdup(memory_region_name(block->mr)); |
8ca761f6 PF |
1238 | for (c = sanitized_name; *c != '\0'; c++) { |
1239 | if (*c == '/') | |
1240 | *c = '_'; | |
1241 | } | |
1242 | ||
1243 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, | |
1244 | sanitized_name); | |
1245 | g_free(sanitized_name); | |
c902760f MT |
1246 | |
1247 | fd = mkstemp(filename); | |
1248 | if (fd < 0) { | |
7f56e740 PB |
1249 | error_setg_errno(errp, errno, |
1250 | "unable to create backing store for hugepages"); | |
e4ada482 | 1251 | g_free(filename); |
f9a49dfa | 1252 | goto error; |
c902760f MT |
1253 | } |
1254 | unlink(filename); | |
e4ada482 | 1255 | g_free(filename); |
c902760f | 1256 | |
9284f319 | 1257 | memory = ROUND_UP(memory, hpagesize); |
8561c924 | 1258 | total = memory + hpagesize; |
c902760f MT |
1259 | |
1260 | /* | |
1261 | * ftruncate is not supported by hugetlbfs in older | |
1262 | * hosts, so don't bother bailing out on errors. | |
1263 | * If anything goes wrong with it under other filesystems, | |
1264 | * mmap will fail. | |
1265 | */ | |
7f56e740 | 1266 | if (ftruncate(fd, memory)) { |
9742bf26 | 1267 | perror("ftruncate"); |
7f56e740 | 1268 | } |
c902760f | 1269 | |
8561c924 MT |
1270 | ptr = mmap(0, total, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, |
1271 | -1, 0); | |
1272 | if (ptr == MAP_FAILED) { | |
1273 | error_setg_errno(errp, errno, | |
1274 | "unable to allocate memory range for hugepages"); | |
1275 | close(fd); | |
1276 | goto error; | |
1277 | } | |
1278 | ||
1279 | offset = QEMU_ALIGN_UP((uintptr_t)ptr, hpagesize) - (uintptr_t)ptr; | |
1280 | ||
1281 | area = mmap(ptr + offset, memory, PROT_READ | PROT_WRITE, | |
1282 | (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE) | | |
1283 | MAP_FIXED, | |
dbcb8981 | 1284 | fd, 0); |
c902760f | 1285 | if (area == MAP_FAILED) { |
7f56e740 PB |
1286 | error_setg_errno(errp, errno, |
1287 | "unable to map backing store for hugepages"); | |
8561c924 | 1288 | munmap(ptr, total); |
9742bf26 | 1289 | close(fd); |
f9a49dfa | 1290 | goto error; |
c902760f | 1291 | } |
ef36fa14 | 1292 | |
8561c924 MT |
1293 | if (offset > 0) { |
1294 | munmap(ptr, offset); | |
1295 | } | |
1296 | ptr += offset; | |
1297 | total -= offset; | |
1298 | ||
1299 | if (total > memory + getpagesize()) { | |
1300 | munmap(ptr + memory + getpagesize(), | |
1301 | total - memory - getpagesize()); | |
1302 | } | |
1303 | ||
ef36fa14 | 1304 | if (mem_prealloc) { |
38183310 | 1305 | os_mem_prealloc(fd, area, memory); |
ef36fa14 MT |
1306 | } |
1307 | ||
04b16653 | 1308 | block->fd = fd; |
c902760f | 1309 | return area; |
f9a49dfa MT |
1310 | |
1311 | error: | |
1312 | if (mem_prealloc) { | |
81b07353 | 1313 | error_report("%s", error_get_pretty(*errp)); |
f9a49dfa MT |
1314 | exit(1); |
1315 | } | |
1316 | return NULL; | |
c902760f MT |
1317 | } |
1318 | #endif | |
1319 | ||
0dc3f44a | 1320 | /* Called with the ramlist lock held. */ |
d17b5288 | 1321 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1322 | { |
1323 | RAMBlock *block, *next_block; | |
3e837b2c | 1324 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1325 | |
49cd9ac6 SH |
1326 | assert(size != 0); /* it would hand out same offset multiple times */ |
1327 | ||
0dc3f44a | 1328 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1329 | return 0; |
0d53d9fe | 1330 | } |
04b16653 | 1331 | |
0dc3f44a | 1332 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1333 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1334 | |
62be4e3a | 1335 | end = block->offset + block->max_length; |
04b16653 | 1336 | |
0dc3f44a | 1337 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1338 | if (next_block->offset >= end) { |
1339 | next = MIN(next, next_block->offset); | |
1340 | } | |
1341 | } | |
1342 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1343 | offset = end; |
04b16653 AW |
1344 | mingap = next - end; |
1345 | } | |
1346 | } | |
3e837b2c AW |
1347 | |
1348 | if (offset == RAM_ADDR_MAX) { | |
1349 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1350 | (uint64_t)size); | |
1351 | abort(); | |
1352 | } | |
1353 | ||
04b16653 AW |
1354 | return offset; |
1355 | } | |
1356 | ||
652d7ec2 | 1357 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1358 | { |
1359 | RAMBlock *block; | |
1360 | ram_addr_t last = 0; | |
1361 | ||
0dc3f44a MD |
1362 | rcu_read_lock(); |
1363 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1364 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1365 | } |
0dc3f44a | 1366 | rcu_read_unlock(); |
d17b5288 AW |
1367 | return last; |
1368 | } | |
1369 | ||
ddb97f1d JB |
1370 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1371 | { | |
1372 | int ret; | |
ddb97f1d JB |
1373 | |
1374 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1375 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1376 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1377 | if (ret) { | |
1378 | perror("qemu_madvise"); | |
1379 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1380 | "but dump_guest_core=off specified\n"); | |
1381 | } | |
1382 | } | |
1383 | } | |
1384 | ||
0dc3f44a MD |
1385 | /* Called within an RCU critical section, or while the ramlist lock |
1386 | * is held. | |
1387 | */ | |
20cfe881 | 1388 | static RAMBlock *find_ram_block(ram_addr_t addr) |
84b89d78 | 1389 | { |
20cfe881 | 1390 | RAMBlock *block; |
84b89d78 | 1391 | |
0dc3f44a | 1392 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1393 | if (block->offset == addr) { |
20cfe881 | 1394 | return block; |
c5705a77 AK |
1395 | } |
1396 | } | |
20cfe881 HT |
1397 | |
1398 | return NULL; | |
1399 | } | |
1400 | ||
ae3a7047 | 1401 | /* Called with iothread lock held. */ |
20cfe881 HT |
1402 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) |
1403 | { | |
ae3a7047 | 1404 | RAMBlock *new_block, *block; |
20cfe881 | 1405 | |
0dc3f44a | 1406 | rcu_read_lock(); |
ae3a7047 | 1407 | new_block = find_ram_block(addr); |
c5705a77 AK |
1408 | assert(new_block); |
1409 | assert(!new_block->idstr[0]); | |
84b89d78 | 1410 | |
09e5ab63 AL |
1411 | if (dev) { |
1412 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1413 | if (id) { |
1414 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1415 | g_free(id); |
84b89d78 CM |
1416 | } |
1417 | } | |
1418 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1419 | ||
0dc3f44a | 1420 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1421 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { |
84b89d78 CM |
1422 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1423 | new_block->idstr); | |
1424 | abort(); | |
1425 | } | |
1426 | } | |
0dc3f44a | 1427 | rcu_read_unlock(); |
c5705a77 AK |
1428 | } |
1429 | ||
ae3a7047 | 1430 | /* Called with iothread lock held. */ |
20cfe881 HT |
1431 | void qemu_ram_unset_idstr(ram_addr_t addr) |
1432 | { | |
ae3a7047 | 1433 | RAMBlock *block; |
20cfe881 | 1434 | |
ae3a7047 MD |
1435 | /* FIXME: arch_init.c assumes that this is not called throughout |
1436 | * migration. Ignore the problem since hot-unplug during migration | |
1437 | * does not work anyway. | |
1438 | */ | |
1439 | ||
0dc3f44a | 1440 | rcu_read_lock(); |
ae3a7047 | 1441 | block = find_ram_block(addr); |
20cfe881 HT |
1442 | if (block) { |
1443 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1444 | } | |
0dc3f44a | 1445 | rcu_read_unlock(); |
20cfe881 HT |
1446 | } |
1447 | ||
8490fc78 LC |
1448 | static int memory_try_enable_merging(void *addr, size_t len) |
1449 | { | |
75cc7f01 | 1450 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1451 | /* disabled by the user */ |
1452 | return 0; | |
1453 | } | |
1454 | ||
1455 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1456 | } | |
1457 | ||
62be4e3a MT |
1458 | /* Only legal before guest might have detected the memory size: e.g. on |
1459 | * incoming migration, or right after reset. | |
1460 | * | |
1461 | * As memory core doesn't know how is memory accessed, it is up to | |
1462 | * resize callback to update device state and/or add assertions to detect | |
1463 | * misuse, if necessary. | |
1464 | */ | |
1465 | int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp) | |
1466 | { | |
1467 | RAMBlock *block = find_ram_block(base); | |
1468 | ||
1469 | assert(block); | |
1470 | ||
129ddaf3 MT |
1471 | newsize = TARGET_PAGE_ALIGN(newsize); |
1472 | ||
62be4e3a MT |
1473 | if (block->used_length == newsize) { |
1474 | return 0; | |
1475 | } | |
1476 | ||
1477 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1478 | error_setg_errno(errp, EINVAL, | |
1479 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1480 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1481 | newsize, block->used_length); | |
1482 | return -EINVAL; | |
1483 | } | |
1484 | ||
1485 | if (block->max_length < newsize) { | |
1486 | error_setg_errno(errp, EINVAL, | |
1487 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1488 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1489 | newsize, block->max_length); | |
1490 | return -EINVAL; | |
1491 | } | |
1492 | ||
1493 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1494 | block->used_length = newsize; | |
58d2707e PB |
1495 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1496 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1497 | memory_region_set_size(block->mr, newsize); |
1498 | if (block->resized) { | |
1499 | block->resized(block->idstr, newsize, block->host); | |
1500 | } | |
1501 | return 0; | |
1502 | } | |
1503 | ||
ef701d7b | 1504 | static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1505 | { |
e1c57ab8 | 1506 | RAMBlock *block; |
0d53d9fe | 1507 | RAMBlock *last_block = NULL; |
2152f5ca JQ |
1508 | ram_addr_t old_ram_size, new_ram_size; |
1509 | ||
1510 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1511 | |
b2a8658e | 1512 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1513 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1514 | |
1515 | if (!new_block->host) { | |
1516 | if (xen_enabled()) { | |
9b8424d5 MT |
1517 | xen_ram_alloc(new_block->offset, new_block->max_length, |
1518 | new_block->mr); | |
e1c57ab8 | 1519 | } else { |
9b8424d5 | 1520 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1521 | &new_block->mr->align); |
39228250 | 1522 | if (!new_block->host) { |
ef701d7b HT |
1523 | error_setg_errno(errp, errno, |
1524 | "cannot set up guest memory '%s'", | |
1525 | memory_region_name(new_block->mr)); | |
1526 | qemu_mutex_unlock_ramlist(); | |
1527 | return -1; | |
39228250 | 1528 | } |
9b8424d5 | 1529 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1530 | } |
c902760f | 1531 | } |
94a6b54f | 1532 | |
dd631697 LZ |
1533 | new_ram_size = MAX(old_ram_size, |
1534 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1535 | if (new_ram_size > old_ram_size) { | |
1536 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
1537 | } | |
0d53d9fe MD |
1538 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1539 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1540 | * tail, so save the last element in last_block. | |
1541 | */ | |
0dc3f44a | 1542 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1543 | last_block = block; |
9b8424d5 | 1544 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1545 | break; |
1546 | } | |
1547 | } | |
1548 | if (block) { | |
0dc3f44a | 1549 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1550 | } else if (last_block) { |
0dc3f44a | 1551 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1552 | } else { /* list is empty */ |
0dc3f44a | 1553 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1554 | } |
0d6d3c87 | 1555 | ram_list.mru_block = NULL; |
94a6b54f | 1556 | |
0dc3f44a MD |
1557 | /* Write list before version */ |
1558 | smp_wmb(); | |
f798b07f | 1559 | ram_list.version++; |
b2a8658e | 1560 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1561 | |
2152f5ca JQ |
1562 | new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; |
1563 | ||
1564 | if (new_ram_size > old_ram_size) { | |
1ab4c8ce | 1565 | int i; |
ae3a7047 MD |
1566 | |
1567 | /* ram_list.dirty_memory[] is protected by the iothread lock. */ | |
1ab4c8ce JQ |
1568 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { |
1569 | ram_list.dirty_memory[i] = | |
1570 | bitmap_zero_extend(ram_list.dirty_memory[i], | |
1571 | old_ram_size, new_ram_size); | |
1572 | } | |
2152f5ca | 1573 | } |
9b8424d5 | 1574 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1575 | new_block->used_length, |
1576 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1577 | |
a904c911 PB |
1578 | if (new_block->host) { |
1579 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1580 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
1581 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
1582 | if (kvm_enabled()) { | |
1583 | kvm_setup_guest_memory(new_block->host, new_block->max_length); | |
1584 | } | |
e1c57ab8 | 1585 | } |
6f0437e8 | 1586 | |
94a6b54f PB |
1587 | return new_block->offset; |
1588 | } | |
e9a1ab19 | 1589 | |
0b183fc8 | 1590 | #ifdef __linux__ |
e1c57ab8 | 1591 | ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
dbcb8981 | 1592 | bool share, const char *mem_path, |
7f56e740 | 1593 | Error **errp) |
e1c57ab8 PB |
1594 | { |
1595 | RAMBlock *new_block; | |
ef701d7b HT |
1596 | ram_addr_t addr; |
1597 | Error *local_err = NULL; | |
e1c57ab8 PB |
1598 | |
1599 | if (xen_enabled()) { | |
7f56e740 PB |
1600 | error_setg(errp, "-mem-path not supported with Xen"); |
1601 | return -1; | |
e1c57ab8 PB |
1602 | } |
1603 | ||
1604 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1605 | /* | |
1606 | * file_ram_alloc() needs to allocate just like | |
1607 | * phys_mem_alloc, but we haven't bothered to provide | |
1608 | * a hook there. | |
1609 | */ | |
7f56e740 PB |
1610 | error_setg(errp, |
1611 | "-mem-path not supported with this accelerator"); | |
1612 | return -1; | |
e1c57ab8 PB |
1613 | } |
1614 | ||
1615 | size = TARGET_PAGE_ALIGN(size); | |
1616 | new_block = g_malloc0(sizeof(*new_block)); | |
1617 | new_block->mr = mr; | |
9b8424d5 MT |
1618 | new_block->used_length = size; |
1619 | new_block->max_length = size; | |
dbcb8981 | 1620 | new_block->flags = share ? RAM_SHARED : 0; |
8561c924 | 1621 | new_block->flags |= RAM_EXTRA; |
7f56e740 PB |
1622 | new_block->host = file_ram_alloc(new_block, size, |
1623 | mem_path, errp); | |
1624 | if (!new_block->host) { | |
1625 | g_free(new_block); | |
1626 | return -1; | |
1627 | } | |
1628 | ||
ef701d7b HT |
1629 | addr = ram_block_add(new_block, &local_err); |
1630 | if (local_err) { | |
1631 | g_free(new_block); | |
1632 | error_propagate(errp, local_err); | |
1633 | return -1; | |
1634 | } | |
1635 | return addr; | |
e1c57ab8 | 1636 | } |
0b183fc8 | 1637 | #endif |
e1c57ab8 | 1638 | |
62be4e3a MT |
1639 | static |
1640 | ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, | |
1641 | void (*resized)(const char*, | |
1642 | uint64_t length, | |
1643 | void *host), | |
1644 | void *host, bool resizeable, | |
ef701d7b | 1645 | MemoryRegion *mr, Error **errp) |
e1c57ab8 PB |
1646 | { |
1647 | RAMBlock *new_block; | |
ef701d7b HT |
1648 | ram_addr_t addr; |
1649 | Error *local_err = NULL; | |
e1c57ab8 PB |
1650 | |
1651 | size = TARGET_PAGE_ALIGN(size); | |
62be4e3a | 1652 | max_size = TARGET_PAGE_ALIGN(max_size); |
e1c57ab8 PB |
1653 | new_block = g_malloc0(sizeof(*new_block)); |
1654 | new_block->mr = mr; | |
62be4e3a | 1655 | new_block->resized = resized; |
9b8424d5 MT |
1656 | new_block->used_length = size; |
1657 | new_block->max_length = max_size; | |
62be4e3a | 1658 | assert(max_size >= size); |
e1c57ab8 PB |
1659 | new_block->fd = -1; |
1660 | new_block->host = host; | |
1661 | if (host) { | |
7bd4f430 | 1662 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1663 | } |
62be4e3a MT |
1664 | if (resizeable) { |
1665 | new_block->flags |= RAM_RESIZEABLE; | |
1666 | } | |
ef701d7b HT |
1667 | addr = ram_block_add(new_block, &local_err); |
1668 | if (local_err) { | |
1669 | g_free(new_block); | |
1670 | error_propagate(errp, local_err); | |
1671 | return -1; | |
1672 | } | |
1673 | return addr; | |
e1c57ab8 PB |
1674 | } |
1675 | ||
62be4e3a MT |
1676 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
1677 | MemoryRegion *mr, Error **errp) | |
1678 | { | |
1679 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1680 | } | |
1681 | ||
ef701d7b | 1682 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1683 | { |
62be4e3a MT |
1684 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1685 | } | |
1686 | ||
1687 | ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, | |
1688 | void (*resized)(const char*, | |
1689 | uint64_t length, | |
1690 | void *host), | |
1691 | MemoryRegion *mr, Error **errp) | |
1692 | { | |
1693 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1694 | } |
1695 | ||
1f2e98b6 AW |
1696 | void qemu_ram_free_from_ptr(ram_addr_t addr) |
1697 | { | |
1698 | RAMBlock *block; | |
1699 | ||
b2a8658e | 1700 | qemu_mutex_lock_ramlist(); |
0dc3f44a | 1701 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
1f2e98b6 | 1702 | if (addr == block->offset) { |
0dc3f44a | 1703 | QLIST_REMOVE_RCU(block, next); |
0d6d3c87 | 1704 | ram_list.mru_block = NULL; |
0dc3f44a MD |
1705 | /* Write list before version */ |
1706 | smp_wmb(); | |
f798b07f | 1707 | ram_list.version++; |
43771539 | 1708 | g_free_rcu(block, rcu); |
b2a8658e | 1709 | break; |
1f2e98b6 AW |
1710 | } |
1711 | } | |
b2a8658e | 1712 | qemu_mutex_unlock_ramlist(); |
1f2e98b6 AW |
1713 | } |
1714 | ||
43771539 PB |
1715 | static void reclaim_ramblock(RAMBlock *block) |
1716 | { | |
1717 | if (block->flags & RAM_PREALLOC) { | |
1718 | ; | |
1719 | } else if (xen_enabled()) { | |
1720 | xen_invalidate_map_cache_entry(block->host); | |
1721 | #ifndef _WIN32 | |
1722 | } else if (block->fd >= 0) { | |
8561c924 MT |
1723 | if (block->flags & RAM_EXTRA) { |
1724 | munmap(block->host, block->max_length + getpagesize()); | |
1725 | } else { | |
1726 | munmap(block->host, block->max_length); | |
1727 | } | |
43771539 PB |
1728 | close(block->fd); |
1729 | #endif | |
1730 | } else { | |
1731 | qemu_anon_ram_free(block->host, block->max_length); | |
1732 | } | |
1733 | g_free(block); | |
1734 | } | |
1735 | ||
c227f099 | 1736 | void qemu_ram_free(ram_addr_t addr) |
e9a1ab19 | 1737 | { |
04b16653 AW |
1738 | RAMBlock *block; |
1739 | ||
b2a8658e | 1740 | qemu_mutex_lock_ramlist(); |
0dc3f44a | 1741 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
04b16653 | 1742 | if (addr == block->offset) { |
0dc3f44a | 1743 | QLIST_REMOVE_RCU(block, next); |
0d6d3c87 | 1744 | ram_list.mru_block = NULL; |
0dc3f44a MD |
1745 | /* Write list before version */ |
1746 | smp_wmb(); | |
f798b07f | 1747 | ram_list.version++; |
43771539 | 1748 | call_rcu(block, reclaim_ramblock, rcu); |
b2a8658e | 1749 | break; |
04b16653 AW |
1750 | } |
1751 | } | |
b2a8658e | 1752 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1753 | } |
1754 | ||
cd19cfa2 HY |
1755 | #ifndef _WIN32 |
1756 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1757 | { | |
1758 | RAMBlock *block; | |
1759 | ram_addr_t offset; | |
1760 | int flags; | |
1761 | void *area, *vaddr; | |
1762 | ||
0dc3f44a | 1763 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1764 | offset = addr - block->offset; |
9b8424d5 | 1765 | if (offset < block->max_length) { |
1240be24 | 1766 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1767 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1768 | ; |
dfeaf2ab MA |
1769 | } else if (xen_enabled()) { |
1770 | abort(); | |
cd19cfa2 HY |
1771 | } else { |
1772 | flags = MAP_FIXED; | |
3435f395 | 1773 | if (block->fd >= 0) { |
dbcb8981 PB |
1774 | flags |= (block->flags & RAM_SHARED ? |
1775 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1776 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1777 | flags, block->fd, offset); | |
cd19cfa2 | 1778 | } else { |
2eb9fbaa MA |
1779 | /* |
1780 | * Remap needs to match alloc. Accelerators that | |
1781 | * set phys_mem_alloc never remap. If they did, | |
1782 | * we'd need a remap hook here. | |
1783 | */ | |
1784 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1785 | ||
cd19cfa2 HY |
1786 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1787 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1788 | flags, -1, 0); | |
cd19cfa2 HY |
1789 | } |
1790 | if (area != vaddr) { | |
f15fbc4b AP |
1791 | fprintf(stderr, "Could not remap addr: " |
1792 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1793 | length, addr); |
1794 | exit(1); | |
1795 | } | |
8490fc78 | 1796 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1797 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1798 | } |
cd19cfa2 HY |
1799 | } |
1800 | } | |
1801 | } | |
1802 | #endif /* !_WIN32 */ | |
1803 | ||
a35ba7be PB |
1804 | int qemu_get_ram_fd(ram_addr_t addr) |
1805 | { | |
ae3a7047 MD |
1806 | RAMBlock *block; |
1807 | int fd; | |
a35ba7be | 1808 | |
0dc3f44a | 1809 | rcu_read_lock(); |
ae3a7047 MD |
1810 | block = qemu_get_ram_block(addr); |
1811 | fd = block->fd; | |
0dc3f44a | 1812 | rcu_read_unlock(); |
ae3a7047 | 1813 | return fd; |
a35ba7be PB |
1814 | } |
1815 | ||
3fd74b84 DM |
1816 | void *qemu_get_ram_block_host_ptr(ram_addr_t addr) |
1817 | { | |
ae3a7047 MD |
1818 | RAMBlock *block; |
1819 | void *ptr; | |
3fd74b84 | 1820 | |
0dc3f44a | 1821 | rcu_read_lock(); |
ae3a7047 MD |
1822 | block = qemu_get_ram_block(addr); |
1823 | ptr = ramblock_ptr(block, 0); | |
0dc3f44a | 1824 | rcu_read_unlock(); |
ae3a7047 | 1825 | return ptr; |
3fd74b84 DM |
1826 | } |
1827 | ||
1b5ec234 | 1828 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1829 | * This should not be used for general purpose DMA. Use address_space_map |
1830 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1831 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a MD |
1832 | * |
1833 | * By the time this function returns, the returned pointer is not protected | |
1834 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1835 | * does not hold the iothread lock, it must have other means of protecting the | |
1836 | * pointer, such as a reference to the region that includes the incoming | |
1837 | * ram_addr_t. | |
1b5ec234 PB |
1838 | */ |
1839 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
1840 | { | |
ae3a7047 MD |
1841 | RAMBlock *block; |
1842 | void *ptr; | |
1b5ec234 | 1843 | |
0dc3f44a | 1844 | rcu_read_lock(); |
ae3a7047 MD |
1845 | block = qemu_get_ram_block(addr); |
1846 | ||
1847 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1848 | /* We need to check if the requested address is in the RAM |
1849 | * because we don't want to map the entire memory in QEMU. | |
1850 | * In that case just map until the end of the page. | |
1851 | */ | |
1852 | if (block->offset == 0) { | |
ae3a7047 | 1853 | ptr = xen_map_cache(addr, 0, 0); |
0dc3f44a | 1854 | goto unlock; |
0d6d3c87 | 1855 | } |
ae3a7047 MD |
1856 | |
1857 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1858 | } |
ae3a7047 MD |
1859 | ptr = ramblock_ptr(block, addr - block->offset); |
1860 | ||
0dc3f44a MD |
1861 | unlock: |
1862 | rcu_read_unlock(); | |
ae3a7047 | 1863 | return ptr; |
dc828ca1 PB |
1864 | } |
1865 | ||
38bee5dc | 1866 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr |
ae3a7047 | 1867 | * but takes a size argument. |
0dc3f44a MD |
1868 | * |
1869 | * By the time this function returns, the returned pointer is not protected | |
1870 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1871 | * does not hold the iothread lock, it must have other means of protecting the | |
1872 | * pointer, such as a reference to the region that includes the incoming | |
1873 | * ram_addr_t. | |
ae3a7047 | 1874 | */ |
cb85f7ab | 1875 | static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size) |
38bee5dc | 1876 | { |
ae3a7047 | 1877 | void *ptr; |
8ab934f9 SS |
1878 | if (*size == 0) { |
1879 | return NULL; | |
1880 | } | |
868bb33f | 1881 | if (xen_enabled()) { |
e41d7c69 | 1882 | return xen_map_cache(addr, *size, 1); |
868bb33f | 1883 | } else { |
38bee5dc | 1884 | RAMBlock *block; |
0dc3f44a MD |
1885 | rcu_read_lock(); |
1886 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
9b8424d5 MT |
1887 | if (addr - block->offset < block->max_length) { |
1888 | if (addr - block->offset + *size > block->max_length) | |
1889 | *size = block->max_length - addr + block->offset; | |
ae3a7047 | 1890 | ptr = ramblock_ptr(block, addr - block->offset); |
0dc3f44a | 1891 | rcu_read_unlock(); |
ae3a7047 | 1892 | return ptr; |
38bee5dc SS |
1893 | } |
1894 | } | |
1895 | ||
1896 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1897 | abort(); | |
38bee5dc SS |
1898 | } |
1899 | } | |
1900 | ||
7443b437 | 1901 | /* Some of the softmmu routines need to translate from a host pointer |
ae3a7047 MD |
1902 | * (typically a TLB entry) back to a ram offset. |
1903 | * | |
1904 | * By the time this function returns, the returned pointer is not protected | |
1905 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1906 | * does not hold the iothread lock, it must have other means of protecting the | |
1907 | * pointer, such as a reference to the region that includes the incoming | |
1908 | * ram_addr_t. | |
1909 | */ | |
1b5ec234 | 1910 | MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) |
5579c7f3 | 1911 | { |
94a6b54f PB |
1912 | RAMBlock *block; |
1913 | uint8_t *host = ptr; | |
ae3a7047 | 1914 | MemoryRegion *mr; |
94a6b54f | 1915 | |
868bb33f | 1916 | if (xen_enabled()) { |
0dc3f44a | 1917 | rcu_read_lock(); |
e41d7c69 | 1918 | *ram_addr = xen_ram_addr_from_mapcache(ptr); |
ae3a7047 | 1919 | mr = qemu_get_ram_block(*ram_addr)->mr; |
0dc3f44a | 1920 | rcu_read_unlock(); |
ae3a7047 | 1921 | return mr; |
712c2b41 SS |
1922 | } |
1923 | ||
0dc3f44a MD |
1924 | rcu_read_lock(); |
1925 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1926 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1927 | goto found; |
1928 | } | |
1929 | ||
0dc3f44a | 1930 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1931 | /* This case append when the block is not mapped. */ |
1932 | if (block->host == NULL) { | |
1933 | continue; | |
1934 | } | |
9b8424d5 | 1935 | if (host - block->host < block->max_length) { |
23887b79 | 1936 | goto found; |
f471a17e | 1937 | } |
94a6b54f | 1938 | } |
432d268c | 1939 | |
0dc3f44a | 1940 | rcu_read_unlock(); |
1b5ec234 | 1941 | return NULL; |
23887b79 PB |
1942 | |
1943 | found: | |
1944 | *ram_addr = block->offset + (host - block->host); | |
ae3a7047 | 1945 | mr = block->mr; |
0dc3f44a | 1946 | rcu_read_unlock(); |
ae3a7047 | 1947 | return mr; |
e890261f | 1948 | } |
f471a17e | 1949 | |
a8170e5e | 1950 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 1951 | uint64_t val, unsigned size) |
9fa3e853 | 1952 | { |
52159192 | 1953 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 1954 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 1955 | } |
0e0df1e2 AK |
1956 | switch (size) { |
1957 | case 1: | |
1958 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
1959 | break; | |
1960 | case 2: | |
1961 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
1962 | break; | |
1963 | case 4: | |
1964 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
1965 | break; | |
1966 | default: | |
1967 | abort(); | |
3a7d929e | 1968 | } |
58d2707e PB |
1969 | /* Set both VGA and migration bits for simplicity and to remove |
1970 | * the notdirty callback faster. | |
1971 | */ | |
1972 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
1973 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
1974 | /* we remove the notdirty callback only if the code has been |
1975 | flushed */ | |
a2cd8c85 | 1976 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 1977 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 1978 | } |
9fa3e853 FB |
1979 | } |
1980 | ||
b018ddf6 PB |
1981 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
1982 | unsigned size, bool is_write) | |
1983 | { | |
1984 | return is_write; | |
1985 | } | |
1986 | ||
0e0df1e2 | 1987 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 1988 | .write = notdirty_mem_write, |
b018ddf6 | 1989 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 1990 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
1991 | }; |
1992 | ||
0f459d16 | 1993 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 1994 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 1995 | { |
93afeade AF |
1996 | CPUState *cpu = current_cpu; |
1997 | CPUArchState *env = cpu->env_ptr; | |
06d55cc1 | 1998 | target_ulong pc, cs_base; |
0f459d16 | 1999 | target_ulong vaddr; |
a1d1bb31 | 2000 | CPUWatchpoint *wp; |
06d55cc1 | 2001 | int cpu_flags; |
0f459d16 | 2002 | |
ff4700b0 | 2003 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2004 | /* We re-entered the check after replacing the TB. Now raise |
2005 | * the debug interrupt so that is will trigger after the | |
2006 | * current instruction. */ | |
93afeade | 2007 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2008 | return; |
2009 | } | |
93afeade | 2010 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2011 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2012 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2013 | && (wp->flags & flags)) { | |
08225676 PM |
2014 | if (flags == BP_MEM_READ) { |
2015 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2016 | } else { | |
2017 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2018 | } | |
2019 | wp->hitaddr = vaddr; | |
66b9b43c | 2020 | wp->hitattrs = attrs; |
ff4700b0 AF |
2021 | if (!cpu->watchpoint_hit) { |
2022 | cpu->watchpoint_hit = wp; | |
239c51a5 | 2023 | tb_check_watchpoint(cpu); |
6e140f28 | 2024 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2025 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2026 | cpu_loop_exit(cpu); |
6e140f28 AL |
2027 | } else { |
2028 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2029 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
0ea8cb88 | 2030 | cpu_resume_from_signal(cpu, NULL); |
6e140f28 | 2031 | } |
06d55cc1 | 2032 | } |
6e140f28 AL |
2033 | } else { |
2034 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2035 | } |
2036 | } | |
2037 | } | |
2038 | ||
6658ffb8 PB |
2039 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2040 | so these check for a hit then pass through to the normal out-of-line | |
2041 | phys routines. */ | |
66b9b43c PM |
2042 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2043 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2044 | { |
66b9b43c PM |
2045 | MemTxResult res; |
2046 | uint64_t data; | |
2047 | ||
2048 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2049 | switch (size) { |
66b9b43c PM |
2050 | case 1: |
2051 | data = address_space_ldub(&address_space_memory, addr, attrs, &res); | |
2052 | break; | |
2053 | case 2: | |
2054 | data = address_space_lduw(&address_space_memory, addr, attrs, &res); | |
2055 | break; | |
2056 | case 4: | |
2057 | data = address_space_ldl(&address_space_memory, addr, attrs, &res); | |
2058 | break; | |
1ec9b909 AK |
2059 | default: abort(); |
2060 | } | |
66b9b43c PM |
2061 | *pdata = data; |
2062 | return res; | |
6658ffb8 PB |
2063 | } |
2064 | ||
66b9b43c PM |
2065 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2066 | uint64_t val, unsigned size, | |
2067 | MemTxAttrs attrs) | |
6658ffb8 | 2068 | { |
66b9b43c PM |
2069 | MemTxResult res; |
2070 | ||
2071 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2072 | switch (size) { |
67364150 | 2073 | case 1: |
66b9b43c | 2074 | address_space_stb(&address_space_memory, addr, val, attrs, &res); |
67364150 MF |
2075 | break; |
2076 | case 2: | |
66b9b43c | 2077 | address_space_stw(&address_space_memory, addr, val, attrs, &res); |
67364150 MF |
2078 | break; |
2079 | case 4: | |
66b9b43c | 2080 | address_space_stl(&address_space_memory, addr, val, attrs, &res); |
67364150 | 2081 | break; |
1ec9b909 AK |
2082 | default: abort(); |
2083 | } | |
66b9b43c | 2084 | return res; |
6658ffb8 PB |
2085 | } |
2086 | ||
1ec9b909 | 2087 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2088 | .read_with_attrs = watch_mem_read, |
2089 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2090 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2091 | }; |
6658ffb8 | 2092 | |
f25a49e0 PM |
2093 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2094 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2095 | { |
acc9d80b | 2096 | subpage_t *subpage = opaque; |
ff6cff75 | 2097 | uint8_t buf[8]; |
5c9eb028 | 2098 | MemTxResult res; |
791af8c8 | 2099 | |
db7b5426 | 2100 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2101 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2102 | subpage, len, addr); |
db7b5426 | 2103 | #endif |
5c9eb028 PM |
2104 | res = address_space_read(subpage->as, addr + subpage->base, |
2105 | attrs, buf, len); | |
2106 | if (res) { | |
2107 | return res; | |
f25a49e0 | 2108 | } |
acc9d80b JK |
2109 | switch (len) { |
2110 | case 1: | |
f25a49e0 PM |
2111 | *data = ldub_p(buf); |
2112 | return MEMTX_OK; | |
acc9d80b | 2113 | case 2: |
f25a49e0 PM |
2114 | *data = lduw_p(buf); |
2115 | return MEMTX_OK; | |
acc9d80b | 2116 | case 4: |
f25a49e0 PM |
2117 | *data = ldl_p(buf); |
2118 | return MEMTX_OK; | |
ff6cff75 | 2119 | case 8: |
f25a49e0 PM |
2120 | *data = ldq_p(buf); |
2121 | return MEMTX_OK; | |
acc9d80b JK |
2122 | default: |
2123 | abort(); | |
2124 | } | |
db7b5426 BS |
2125 | } |
2126 | ||
f25a49e0 PM |
2127 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2128 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2129 | { |
acc9d80b | 2130 | subpage_t *subpage = opaque; |
ff6cff75 | 2131 | uint8_t buf[8]; |
acc9d80b | 2132 | |
db7b5426 | 2133 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2134 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2135 | " value %"PRIx64"\n", |
2136 | __func__, subpage, len, addr, value); | |
db7b5426 | 2137 | #endif |
acc9d80b JK |
2138 | switch (len) { |
2139 | case 1: | |
2140 | stb_p(buf, value); | |
2141 | break; | |
2142 | case 2: | |
2143 | stw_p(buf, value); | |
2144 | break; | |
2145 | case 4: | |
2146 | stl_p(buf, value); | |
2147 | break; | |
ff6cff75 PB |
2148 | case 8: |
2149 | stq_p(buf, value); | |
2150 | break; | |
acc9d80b JK |
2151 | default: |
2152 | abort(); | |
2153 | } | |
5c9eb028 PM |
2154 | return address_space_write(subpage->as, addr + subpage->base, |
2155 | attrs, buf, len); | |
db7b5426 BS |
2156 | } |
2157 | ||
c353e4cc | 2158 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2159 | unsigned len, bool is_write) |
c353e4cc | 2160 | { |
acc9d80b | 2161 | subpage_t *subpage = opaque; |
c353e4cc | 2162 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2163 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2164 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2165 | #endif |
2166 | ||
acc9d80b | 2167 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2168 | len, is_write); |
c353e4cc PB |
2169 | } |
2170 | ||
70c68e44 | 2171 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2172 | .read_with_attrs = subpage_read, |
2173 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2174 | .impl.min_access_size = 1, |
2175 | .impl.max_access_size = 8, | |
2176 | .valid.min_access_size = 1, | |
2177 | .valid.max_access_size = 8, | |
c353e4cc | 2178 | .valid.accepts = subpage_accepts, |
70c68e44 | 2179 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2180 | }; |
2181 | ||
c227f099 | 2182 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2183 | uint16_t section) |
db7b5426 BS |
2184 | { |
2185 | int idx, eidx; | |
2186 | ||
2187 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2188 | return -1; | |
2189 | idx = SUBPAGE_IDX(start); | |
2190 | eidx = SUBPAGE_IDX(end); | |
2191 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2192 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2193 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2194 | #endif |
db7b5426 | 2195 | for (; idx <= eidx; idx++) { |
5312bd8b | 2196 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2197 | } |
2198 | ||
2199 | return 0; | |
2200 | } | |
2201 | ||
acc9d80b | 2202 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2203 | { |
c227f099 | 2204 | subpage_t *mmio; |
db7b5426 | 2205 | |
7267c094 | 2206 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2207 | |
acc9d80b | 2208 | mmio->as = as; |
1eec614b | 2209 | mmio->base = base; |
2c9b15ca | 2210 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2211 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2212 | mmio->iomem.subpage = true; |
db7b5426 | 2213 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2214 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2215 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2216 | #endif |
b41aac4f | 2217 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2218 | |
2219 | return mmio; | |
2220 | } | |
2221 | ||
a656e22f PC |
2222 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2223 | MemoryRegion *mr) | |
5312bd8b | 2224 | { |
a656e22f | 2225 | assert(as); |
5312bd8b | 2226 | MemoryRegionSection section = { |
a656e22f | 2227 | .address_space = as, |
5312bd8b AK |
2228 | .mr = mr, |
2229 | .offset_within_address_space = 0, | |
2230 | .offset_within_region = 0, | |
052e87b0 | 2231 | .size = int128_2_64(), |
5312bd8b AK |
2232 | }; |
2233 | ||
53cb28cb | 2234 | return phys_section_add(map, §ion); |
5312bd8b AK |
2235 | } |
2236 | ||
9d82b5a7 | 2237 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index) |
aa102231 | 2238 | { |
32857f4d PM |
2239 | CPUAddressSpace *cpuas = &cpu->cpu_ases[0]; |
2240 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); | |
79e2b9ae | 2241 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2242 | |
2243 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2244 | } |
2245 | ||
e9179ce1 AK |
2246 | static void io_mem_init(void) |
2247 | { | |
1f6245e5 | 2248 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2249 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2250 | NULL, UINT64_MAX); |
2c9b15ca | 2251 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2252 | NULL, UINT64_MAX); |
2c9b15ca | 2253 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2254 | NULL, UINT64_MAX); |
e9179ce1 AK |
2255 | } |
2256 | ||
ac1970fb | 2257 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2258 | { |
2259 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2260 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2261 | uint16_t n; | |
2262 | ||
a656e22f | 2263 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2264 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2265 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2266 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2267 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2268 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2269 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2270 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2271 | |
9736e55b | 2272 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2273 | d->as = as; |
2274 | as->next_dispatch = d; | |
2275 | } | |
2276 | ||
79e2b9ae PB |
2277 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2278 | { | |
2279 | phys_sections_free(&d->map); | |
2280 | g_free(d); | |
2281 | } | |
2282 | ||
00752703 | 2283 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2284 | { |
89ae337a | 2285 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2286 | AddressSpaceDispatch *cur = as->dispatch; |
2287 | AddressSpaceDispatch *next = as->next_dispatch; | |
2288 | ||
53cb28cb | 2289 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2290 | |
79e2b9ae | 2291 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2292 | if (cur) { |
79e2b9ae | 2293 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2294 | } |
9affd6fc PB |
2295 | } |
2296 | ||
1d71148e | 2297 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2298 | { |
32857f4d PM |
2299 | CPUAddressSpace *cpuas; |
2300 | AddressSpaceDispatch *d; | |
117712c3 AK |
2301 | |
2302 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2303 | reset the modified entries */ | |
32857f4d PM |
2304 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2305 | cpu_reloading_memory_map(); | |
2306 | /* The CPU and TLB are protected by the iothread lock. | |
2307 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2308 | * may have split the RCU critical section. | |
2309 | */ | |
2310 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2311 | cpuas->memory_dispatch = d; | |
2312 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2313 | } |
2314 | ||
ac1970fb AK |
2315 | void address_space_init_dispatch(AddressSpace *as) |
2316 | { | |
00752703 | 2317 | as->dispatch = NULL; |
89ae337a | 2318 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2319 | .begin = mem_begin, |
00752703 | 2320 | .commit = mem_commit, |
ac1970fb AK |
2321 | .region_add = mem_add, |
2322 | .region_nop = mem_add, | |
2323 | .priority = 0, | |
2324 | }; | |
89ae337a | 2325 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2326 | } |
2327 | ||
6e48e8f9 PB |
2328 | void address_space_unregister(AddressSpace *as) |
2329 | { | |
2330 | memory_listener_unregister(&as->dispatch_listener); | |
2331 | } | |
2332 | ||
83f3c251 AK |
2333 | void address_space_destroy_dispatch(AddressSpace *as) |
2334 | { | |
2335 | AddressSpaceDispatch *d = as->dispatch; | |
2336 | ||
79e2b9ae PB |
2337 | atomic_rcu_set(&as->dispatch, NULL); |
2338 | if (d) { | |
2339 | call_rcu(d, address_space_dispatch_free, rcu); | |
2340 | } | |
83f3c251 AK |
2341 | } |
2342 | ||
62152b8a AK |
2343 | static void memory_map_init(void) |
2344 | { | |
7267c094 | 2345 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2346 | |
57271d63 | 2347 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2348 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2349 | |
7267c094 | 2350 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2351 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2352 | 65536); | |
7dca8043 | 2353 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2354 | } |
2355 | ||
2356 | MemoryRegion *get_system_memory(void) | |
2357 | { | |
2358 | return system_memory; | |
2359 | } | |
2360 | ||
309cb471 AK |
2361 | MemoryRegion *get_system_io(void) |
2362 | { | |
2363 | return system_io; | |
2364 | } | |
2365 | ||
e2eef170 PB |
2366 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2367 | ||
13eb76e0 FB |
2368 | /* physical memory access (slow version, mainly for debug) */ |
2369 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2370 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2371 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2372 | { |
2373 | int l, flags; | |
2374 | target_ulong page; | |
53a5960a | 2375 | void * p; |
13eb76e0 FB |
2376 | |
2377 | while (len > 0) { | |
2378 | page = addr & TARGET_PAGE_MASK; | |
2379 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2380 | if (l > len) | |
2381 | l = len; | |
2382 | flags = page_get_flags(page); | |
2383 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2384 | return -1; |
13eb76e0 FB |
2385 | if (is_write) { |
2386 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2387 | return -1; |
579a97f7 | 2388 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2389 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2390 | return -1; |
72fb7daa AJ |
2391 | memcpy(p, buf, l); |
2392 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2393 | } else { |
2394 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2395 | return -1; |
579a97f7 | 2396 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2397 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2398 | return -1; |
72fb7daa | 2399 | memcpy(buf, p, l); |
5b257578 | 2400 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2401 | } |
2402 | len -= l; | |
2403 | buf += l; | |
2404 | addr += l; | |
2405 | } | |
a68fe89c | 2406 | return 0; |
13eb76e0 | 2407 | } |
8df1cd07 | 2408 | |
13eb76e0 | 2409 | #else |
51d7a9eb | 2410 | |
845b6214 | 2411 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2412 | hwaddr length) |
51d7a9eb | 2413 | { |
e87f7778 PB |
2414 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
2415 | /* No early return if dirty_log_mask is or becomes 0, because | |
2416 | * cpu_physical_memory_set_dirty_range will still call | |
2417 | * xen_modified_memory. | |
2418 | */ | |
2419 | if (dirty_log_mask) { | |
2420 | dirty_log_mask = | |
2421 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2422 | } | |
2423 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2424 | tb_invalidate_phys_range(addr, addr + length); | |
2425 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2426 | } |
e87f7778 | 2427 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2428 | } |
2429 | ||
23326164 | 2430 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2431 | { |
e1622f4b | 2432 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2433 | |
2434 | /* Regions are assumed to support 1-4 byte accesses unless | |
2435 | otherwise specified. */ | |
23326164 RH |
2436 | if (access_size_max == 0) { |
2437 | access_size_max = 4; | |
2438 | } | |
2439 | ||
2440 | /* Bound the maximum access by the alignment of the address. */ | |
2441 | if (!mr->ops->impl.unaligned) { | |
2442 | unsigned align_size_max = addr & -addr; | |
2443 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2444 | access_size_max = align_size_max; | |
2445 | } | |
82f2563f | 2446 | } |
23326164 RH |
2447 | |
2448 | /* Don't attempt accesses larger than the maximum. */ | |
2449 | if (l > access_size_max) { | |
2450 | l = access_size_max; | |
82f2563f | 2451 | } |
6554f5c0 | 2452 | l = pow2floor(l); |
23326164 RH |
2453 | |
2454 | return l; | |
82f2563f PB |
2455 | } |
2456 | ||
4840f10e | 2457 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2458 | { |
4840f10e JK |
2459 | bool unlocked = !qemu_mutex_iothread_locked(); |
2460 | bool release_lock = false; | |
2461 | ||
2462 | if (unlocked && mr->global_locking) { | |
2463 | qemu_mutex_lock_iothread(); | |
2464 | unlocked = false; | |
2465 | release_lock = true; | |
2466 | } | |
125b3806 | 2467 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2468 | if (unlocked) { |
2469 | qemu_mutex_lock_iothread(); | |
2470 | } | |
125b3806 | 2471 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2472 | if (unlocked) { |
2473 | qemu_mutex_unlock_iothread(); | |
2474 | } | |
125b3806 | 2475 | } |
4840f10e JK |
2476 | |
2477 | return release_lock; | |
125b3806 PB |
2478 | } |
2479 | ||
5c9eb028 PM |
2480 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2481 | uint8_t *buf, int len, bool is_write) | |
13eb76e0 | 2482 | { |
149f54b5 | 2483 | hwaddr l; |
13eb76e0 | 2484 | uint8_t *ptr; |
791af8c8 | 2485 | uint64_t val; |
149f54b5 | 2486 | hwaddr addr1; |
5c8a00ce | 2487 | MemoryRegion *mr; |
3b643495 | 2488 | MemTxResult result = MEMTX_OK; |
4840f10e | 2489 | bool release_lock = false; |
3b46e624 | 2490 | |
41063e1e | 2491 | rcu_read_lock(); |
13eb76e0 | 2492 | while (len > 0) { |
149f54b5 | 2493 | l = len; |
5c8a00ce | 2494 | mr = address_space_translate(as, addr, &addr1, &l, is_write); |
3b46e624 | 2495 | |
13eb76e0 | 2496 | if (is_write) { |
5c8a00ce | 2497 | if (!memory_access_is_direct(mr, is_write)) { |
4840f10e | 2498 | release_lock |= prepare_mmio_access(mr); |
5c8a00ce | 2499 | l = memory_access_size(mr, l, addr1); |
4917cf44 | 2500 | /* XXX: could force current_cpu to NULL to avoid |
6a00d601 | 2501 | potential bugs */ |
23326164 RH |
2502 | switch (l) { |
2503 | case 8: | |
2504 | /* 64 bit write access */ | |
2505 | val = ldq_p(buf); | |
3b643495 PM |
2506 | result |= memory_region_dispatch_write(mr, addr1, val, 8, |
2507 | attrs); | |
23326164 RH |
2508 | break; |
2509 | case 4: | |
1c213d19 | 2510 | /* 32 bit write access */ |
c27004ec | 2511 | val = ldl_p(buf); |
3b643495 PM |
2512 | result |= memory_region_dispatch_write(mr, addr1, val, 4, |
2513 | attrs); | |
23326164 RH |
2514 | break; |
2515 | case 2: | |
1c213d19 | 2516 | /* 16 bit write access */ |
c27004ec | 2517 | val = lduw_p(buf); |
3b643495 PM |
2518 | result |= memory_region_dispatch_write(mr, addr1, val, 2, |
2519 | attrs); | |
23326164 RH |
2520 | break; |
2521 | case 1: | |
1c213d19 | 2522 | /* 8 bit write access */ |
c27004ec | 2523 | val = ldub_p(buf); |
3b643495 PM |
2524 | result |= memory_region_dispatch_write(mr, addr1, val, 1, |
2525 | attrs); | |
23326164 RH |
2526 | break; |
2527 | default: | |
2528 | abort(); | |
13eb76e0 | 2529 | } |
2bbfa05d | 2530 | } else { |
5c8a00ce | 2531 | addr1 += memory_region_get_ram_addr(mr); |
13eb76e0 | 2532 | /* RAM case */ |
5579c7f3 | 2533 | ptr = qemu_get_ram_ptr(addr1); |
13eb76e0 | 2534 | memcpy(ptr, buf, l); |
845b6214 | 2535 | invalidate_and_set_dirty(mr, addr1, l); |
13eb76e0 FB |
2536 | } |
2537 | } else { | |
5c8a00ce | 2538 | if (!memory_access_is_direct(mr, is_write)) { |
13eb76e0 | 2539 | /* I/O case */ |
4840f10e | 2540 | release_lock |= prepare_mmio_access(mr); |
5c8a00ce | 2541 | l = memory_access_size(mr, l, addr1); |
23326164 RH |
2542 | switch (l) { |
2543 | case 8: | |
2544 | /* 64 bit read access */ | |
3b643495 PM |
2545 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, |
2546 | attrs); | |
23326164 RH |
2547 | stq_p(buf, val); |
2548 | break; | |
2549 | case 4: | |
13eb76e0 | 2550 | /* 32 bit read access */ |
3b643495 PM |
2551 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, |
2552 | attrs); | |
c27004ec | 2553 | stl_p(buf, val); |
23326164 RH |
2554 | break; |
2555 | case 2: | |
13eb76e0 | 2556 | /* 16 bit read access */ |
3b643495 PM |
2557 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, |
2558 | attrs); | |
c27004ec | 2559 | stw_p(buf, val); |
23326164 RH |
2560 | break; |
2561 | case 1: | |
1c213d19 | 2562 | /* 8 bit read access */ |
3b643495 PM |
2563 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, |
2564 | attrs); | |
c27004ec | 2565 | stb_p(buf, val); |
23326164 RH |
2566 | break; |
2567 | default: | |
2568 | abort(); | |
13eb76e0 FB |
2569 | } |
2570 | } else { | |
2571 | /* RAM case */ | |
5c8a00ce | 2572 | ptr = qemu_get_ram_ptr(mr->ram_addr + addr1); |
f3705d53 | 2573 | memcpy(buf, ptr, l); |
13eb76e0 FB |
2574 | } |
2575 | } | |
4840f10e JK |
2576 | |
2577 | if (release_lock) { | |
2578 | qemu_mutex_unlock_iothread(); | |
2579 | release_lock = false; | |
2580 | } | |
2581 | ||
13eb76e0 FB |
2582 | len -= l; |
2583 | buf += l; | |
2584 | addr += l; | |
2585 | } | |
41063e1e | 2586 | rcu_read_unlock(); |
fd8aaa76 | 2587 | |
3b643495 | 2588 | return result; |
13eb76e0 | 2589 | } |
8df1cd07 | 2590 | |
5c9eb028 PM |
2591 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2592 | const uint8_t *buf, int len) | |
ac1970fb | 2593 | { |
5c9eb028 | 2594 | return address_space_rw(as, addr, attrs, (uint8_t *)buf, len, true); |
ac1970fb AK |
2595 | } |
2596 | ||
5c9eb028 PM |
2597 | MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2598 | uint8_t *buf, int len) | |
ac1970fb | 2599 | { |
5c9eb028 | 2600 | return address_space_rw(as, addr, attrs, buf, len, false); |
ac1970fb AK |
2601 | } |
2602 | ||
2603 | ||
a8170e5e | 2604 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2605 | int len, int is_write) |
2606 | { | |
5c9eb028 PM |
2607 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2608 | buf, len, is_write); | |
ac1970fb AK |
2609 | } |
2610 | ||
582b55a9 AG |
2611 | enum write_rom_type { |
2612 | WRITE_DATA, | |
2613 | FLUSH_CACHE, | |
2614 | }; | |
2615 | ||
2a221651 | 2616 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2617 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2618 | { |
149f54b5 | 2619 | hwaddr l; |
d0ecd2aa | 2620 | uint8_t *ptr; |
149f54b5 | 2621 | hwaddr addr1; |
5c8a00ce | 2622 | MemoryRegion *mr; |
3b46e624 | 2623 | |
41063e1e | 2624 | rcu_read_lock(); |
d0ecd2aa | 2625 | while (len > 0) { |
149f54b5 | 2626 | l = len; |
2a221651 | 2627 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2628 | |
5c8a00ce PB |
2629 | if (!(memory_region_is_ram(mr) || |
2630 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2631 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2632 | } else { |
5c8a00ce | 2633 | addr1 += memory_region_get_ram_addr(mr); |
d0ecd2aa | 2634 | /* ROM/RAM case */ |
5579c7f3 | 2635 | ptr = qemu_get_ram_ptr(addr1); |
582b55a9 AG |
2636 | switch (type) { |
2637 | case WRITE_DATA: | |
2638 | memcpy(ptr, buf, l); | |
845b6214 | 2639 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2640 | break; |
2641 | case FLUSH_CACHE: | |
2642 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2643 | break; | |
2644 | } | |
d0ecd2aa FB |
2645 | } |
2646 | len -= l; | |
2647 | buf += l; | |
2648 | addr += l; | |
2649 | } | |
41063e1e | 2650 | rcu_read_unlock(); |
d0ecd2aa FB |
2651 | } |
2652 | ||
582b55a9 | 2653 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2654 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2655 | const uint8_t *buf, int len) |
2656 | { | |
2a221651 | 2657 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2658 | } |
2659 | ||
2660 | void cpu_flush_icache_range(hwaddr start, int len) | |
2661 | { | |
2662 | /* | |
2663 | * This function should do the same thing as an icache flush that was | |
2664 | * triggered from within the guest. For TCG we are always cache coherent, | |
2665 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2666 | * the host's instruction cache at least. | |
2667 | */ | |
2668 | if (tcg_enabled()) { | |
2669 | return; | |
2670 | } | |
2671 | ||
2a221651 EI |
2672 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2673 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2674 | } |
2675 | ||
6d16c2f8 | 2676 | typedef struct { |
d3e71559 | 2677 | MemoryRegion *mr; |
6d16c2f8 | 2678 | void *buffer; |
a8170e5e AK |
2679 | hwaddr addr; |
2680 | hwaddr len; | |
c2cba0ff | 2681 | bool in_use; |
6d16c2f8 AL |
2682 | } BounceBuffer; |
2683 | ||
2684 | static BounceBuffer bounce; | |
2685 | ||
ba223c29 | 2686 | typedef struct MapClient { |
e95205e1 | 2687 | QEMUBH *bh; |
72cf2d4f | 2688 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2689 | } MapClient; |
2690 | ||
38e047b5 | 2691 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2692 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2693 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2694 | |
e95205e1 FZ |
2695 | static void cpu_unregister_map_client_do(MapClient *client) |
2696 | { | |
2697 | QLIST_REMOVE(client, link); | |
2698 | g_free(client); | |
2699 | } | |
2700 | ||
33b6c2ed FZ |
2701 | static void cpu_notify_map_clients_locked(void) |
2702 | { | |
2703 | MapClient *client; | |
2704 | ||
2705 | while (!QLIST_EMPTY(&map_client_list)) { | |
2706 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2707 | qemu_bh_schedule(client->bh); |
2708 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2709 | } |
2710 | } | |
2711 | ||
e95205e1 | 2712 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2713 | { |
7267c094 | 2714 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2715 | |
38e047b5 | 2716 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2717 | client->bh = bh; |
72cf2d4f | 2718 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2719 | if (!atomic_read(&bounce.in_use)) { |
2720 | cpu_notify_map_clients_locked(); | |
2721 | } | |
38e047b5 | 2722 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2723 | } |
2724 | ||
38e047b5 | 2725 | void cpu_exec_init_all(void) |
ba223c29 | 2726 | { |
38e047b5 FZ |
2727 | qemu_mutex_init(&ram_list.mutex); |
2728 | memory_map_init(); | |
2729 | io_mem_init(); | |
2730 | qemu_mutex_init(&map_client_list_lock); | |
ba223c29 AL |
2731 | } |
2732 | ||
e95205e1 | 2733 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2734 | { |
2735 | MapClient *client; | |
2736 | ||
e95205e1 FZ |
2737 | qemu_mutex_lock(&map_client_list_lock); |
2738 | QLIST_FOREACH(client, &map_client_list, link) { | |
2739 | if (client->bh == bh) { | |
2740 | cpu_unregister_map_client_do(client); | |
2741 | break; | |
2742 | } | |
ba223c29 | 2743 | } |
e95205e1 | 2744 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2745 | } |
2746 | ||
2747 | static void cpu_notify_map_clients(void) | |
2748 | { | |
38e047b5 | 2749 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2750 | cpu_notify_map_clients_locked(); |
38e047b5 | 2751 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2752 | } |
2753 | ||
51644ab7 PB |
2754 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2755 | { | |
5c8a00ce | 2756 | MemoryRegion *mr; |
51644ab7 PB |
2757 | hwaddr l, xlat; |
2758 | ||
41063e1e | 2759 | rcu_read_lock(); |
51644ab7 PB |
2760 | while (len > 0) { |
2761 | l = len; | |
5c8a00ce PB |
2762 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2763 | if (!memory_access_is_direct(mr, is_write)) { | |
2764 | l = memory_access_size(mr, l, addr); | |
2765 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2766 | return false; |
2767 | } | |
2768 | } | |
2769 | ||
2770 | len -= l; | |
2771 | addr += l; | |
2772 | } | |
41063e1e | 2773 | rcu_read_unlock(); |
51644ab7 PB |
2774 | return true; |
2775 | } | |
2776 | ||
6d16c2f8 AL |
2777 | /* Map a physical memory region into a host virtual address. |
2778 | * May map a subset of the requested range, given by and returned in *plen. | |
2779 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2780 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2781 | * Use cpu_register_map_client() to know when retrying the map operation is |
2782 | * likely to succeed. | |
6d16c2f8 | 2783 | */ |
ac1970fb | 2784 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2785 | hwaddr addr, |
2786 | hwaddr *plen, | |
ac1970fb | 2787 | bool is_write) |
6d16c2f8 | 2788 | { |
a8170e5e | 2789 | hwaddr len = *plen; |
e3127ae0 PB |
2790 | hwaddr done = 0; |
2791 | hwaddr l, xlat, base; | |
2792 | MemoryRegion *mr, *this_mr; | |
2793 | ram_addr_t raddr; | |
6d16c2f8 | 2794 | |
e3127ae0 PB |
2795 | if (len == 0) { |
2796 | return NULL; | |
2797 | } | |
38bee5dc | 2798 | |
e3127ae0 | 2799 | l = len; |
41063e1e | 2800 | rcu_read_lock(); |
e3127ae0 | 2801 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2802 | |
e3127ae0 | 2803 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2804 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2805 | rcu_read_unlock(); |
e3127ae0 | 2806 | return NULL; |
6d16c2f8 | 2807 | } |
e85d9db5 KW |
2808 | /* Avoid unbounded allocations */ |
2809 | l = MIN(l, TARGET_PAGE_SIZE); | |
2810 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2811 | bounce.addr = addr; |
2812 | bounce.len = l; | |
d3e71559 PB |
2813 | |
2814 | memory_region_ref(mr); | |
2815 | bounce.mr = mr; | |
e3127ae0 | 2816 | if (!is_write) { |
5c9eb028 PM |
2817 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2818 | bounce.buffer, l); | |
8ab934f9 | 2819 | } |
6d16c2f8 | 2820 | |
41063e1e | 2821 | rcu_read_unlock(); |
e3127ae0 PB |
2822 | *plen = l; |
2823 | return bounce.buffer; | |
2824 | } | |
2825 | ||
2826 | base = xlat; | |
2827 | raddr = memory_region_get_ram_addr(mr); | |
2828 | ||
2829 | for (;;) { | |
6d16c2f8 AL |
2830 | len -= l; |
2831 | addr += l; | |
e3127ae0 PB |
2832 | done += l; |
2833 | if (len == 0) { | |
2834 | break; | |
2835 | } | |
2836 | ||
2837 | l = len; | |
2838 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2839 | if (this_mr != mr || xlat != base + done) { | |
2840 | break; | |
2841 | } | |
6d16c2f8 | 2842 | } |
e3127ae0 | 2843 | |
d3e71559 | 2844 | memory_region_ref(mr); |
41063e1e | 2845 | rcu_read_unlock(); |
e3127ae0 PB |
2846 | *plen = done; |
2847 | return qemu_ram_ptr_length(raddr + base, plen); | |
6d16c2f8 AL |
2848 | } |
2849 | ||
ac1970fb | 2850 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
2851 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
2852 | * the amount of memory that was actually read or written by the caller. | |
2853 | */ | |
a8170e5e AK |
2854 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
2855 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
2856 | { |
2857 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
2858 | MemoryRegion *mr; |
2859 | ram_addr_t addr1; | |
2860 | ||
2861 | mr = qemu_ram_addr_from_host(buffer, &addr1); | |
2862 | assert(mr != NULL); | |
6d16c2f8 | 2863 | if (is_write) { |
845b6214 | 2864 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 2865 | } |
868bb33f | 2866 | if (xen_enabled()) { |
e41d7c69 | 2867 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 2868 | } |
d3e71559 | 2869 | memory_region_unref(mr); |
6d16c2f8 AL |
2870 | return; |
2871 | } | |
2872 | if (is_write) { | |
5c9eb028 PM |
2873 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
2874 | bounce.buffer, access_len); | |
6d16c2f8 | 2875 | } |
f8a83245 | 2876 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 2877 | bounce.buffer = NULL; |
d3e71559 | 2878 | memory_region_unref(bounce.mr); |
c2cba0ff | 2879 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 2880 | cpu_notify_map_clients(); |
6d16c2f8 | 2881 | } |
d0ecd2aa | 2882 | |
a8170e5e AK |
2883 | void *cpu_physical_memory_map(hwaddr addr, |
2884 | hwaddr *plen, | |
ac1970fb AK |
2885 | int is_write) |
2886 | { | |
2887 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2888 | } | |
2889 | ||
a8170e5e AK |
2890 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
2891 | int is_write, hwaddr access_len) | |
ac1970fb AK |
2892 | { |
2893 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
2894 | } | |
2895 | ||
8df1cd07 | 2896 | /* warning: addr must be aligned */ |
50013115 PM |
2897 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
2898 | MemTxAttrs attrs, | |
2899 | MemTxResult *result, | |
2900 | enum device_endian endian) | |
8df1cd07 | 2901 | { |
8df1cd07 | 2902 | uint8_t *ptr; |
791af8c8 | 2903 | uint64_t val; |
5c8a00ce | 2904 | MemoryRegion *mr; |
149f54b5 PB |
2905 | hwaddr l = 4; |
2906 | hwaddr addr1; | |
50013115 | 2907 | MemTxResult r; |
4840f10e | 2908 | bool release_lock = false; |
8df1cd07 | 2909 | |
41063e1e | 2910 | rcu_read_lock(); |
fdfba1a2 | 2911 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 2912 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 2913 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 2914 | |
8df1cd07 | 2915 | /* I/O case */ |
50013115 | 2916 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
2917 | #if defined(TARGET_WORDS_BIGENDIAN) |
2918 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2919 | val = bswap32(val); | |
2920 | } | |
2921 | #else | |
2922 | if (endian == DEVICE_BIG_ENDIAN) { | |
2923 | val = bswap32(val); | |
2924 | } | |
2925 | #endif | |
8df1cd07 FB |
2926 | } else { |
2927 | /* RAM case */ | |
5c8a00ce | 2928 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 2929 | & TARGET_PAGE_MASK) |
149f54b5 | 2930 | + addr1); |
1e78bcc1 AG |
2931 | switch (endian) { |
2932 | case DEVICE_LITTLE_ENDIAN: | |
2933 | val = ldl_le_p(ptr); | |
2934 | break; | |
2935 | case DEVICE_BIG_ENDIAN: | |
2936 | val = ldl_be_p(ptr); | |
2937 | break; | |
2938 | default: | |
2939 | val = ldl_p(ptr); | |
2940 | break; | |
2941 | } | |
50013115 PM |
2942 | r = MEMTX_OK; |
2943 | } | |
2944 | if (result) { | |
2945 | *result = r; | |
8df1cd07 | 2946 | } |
4840f10e JK |
2947 | if (release_lock) { |
2948 | qemu_mutex_unlock_iothread(); | |
2949 | } | |
41063e1e | 2950 | rcu_read_unlock(); |
8df1cd07 FB |
2951 | return val; |
2952 | } | |
2953 | ||
50013115 PM |
2954 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
2955 | MemTxAttrs attrs, MemTxResult *result) | |
2956 | { | |
2957 | return address_space_ldl_internal(as, addr, attrs, result, | |
2958 | DEVICE_NATIVE_ENDIAN); | |
2959 | } | |
2960 | ||
2961 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
2962 | MemTxAttrs attrs, MemTxResult *result) | |
2963 | { | |
2964 | return address_space_ldl_internal(as, addr, attrs, result, | |
2965 | DEVICE_LITTLE_ENDIAN); | |
2966 | } | |
2967 | ||
2968 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
2969 | MemTxAttrs attrs, MemTxResult *result) | |
2970 | { | |
2971 | return address_space_ldl_internal(as, addr, attrs, result, | |
2972 | DEVICE_BIG_ENDIAN); | |
2973 | } | |
2974 | ||
fdfba1a2 | 2975 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 2976 | { |
50013115 | 2977 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
2978 | } |
2979 | ||
fdfba1a2 | 2980 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 2981 | { |
50013115 | 2982 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
2983 | } |
2984 | ||
fdfba1a2 | 2985 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 2986 | { |
50013115 | 2987 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
2988 | } |
2989 | ||
84b7b8e7 | 2990 | /* warning: addr must be aligned */ |
50013115 PM |
2991 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
2992 | MemTxAttrs attrs, | |
2993 | MemTxResult *result, | |
2994 | enum device_endian endian) | |
84b7b8e7 | 2995 | { |
84b7b8e7 FB |
2996 | uint8_t *ptr; |
2997 | uint64_t val; | |
5c8a00ce | 2998 | MemoryRegion *mr; |
149f54b5 PB |
2999 | hwaddr l = 8; |
3000 | hwaddr addr1; | |
50013115 | 3001 | MemTxResult r; |
4840f10e | 3002 | bool release_lock = false; |
84b7b8e7 | 3003 | |
41063e1e | 3004 | rcu_read_lock(); |
2c17449b | 3005 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3006 | false); |
3007 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3008 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3009 | |
84b7b8e7 | 3010 | /* I/O case */ |
50013115 | 3011 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3012 | #if defined(TARGET_WORDS_BIGENDIAN) |
3013 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3014 | val = bswap64(val); | |
3015 | } | |
3016 | #else | |
3017 | if (endian == DEVICE_BIG_ENDIAN) { | |
3018 | val = bswap64(val); | |
3019 | } | |
84b7b8e7 FB |
3020 | #endif |
3021 | } else { | |
3022 | /* RAM case */ | |
5c8a00ce | 3023 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3024 | & TARGET_PAGE_MASK) |
149f54b5 | 3025 | + addr1); |
1e78bcc1 AG |
3026 | switch (endian) { |
3027 | case DEVICE_LITTLE_ENDIAN: | |
3028 | val = ldq_le_p(ptr); | |
3029 | break; | |
3030 | case DEVICE_BIG_ENDIAN: | |
3031 | val = ldq_be_p(ptr); | |
3032 | break; | |
3033 | default: | |
3034 | val = ldq_p(ptr); | |
3035 | break; | |
3036 | } | |
50013115 PM |
3037 | r = MEMTX_OK; |
3038 | } | |
3039 | if (result) { | |
3040 | *result = r; | |
84b7b8e7 | 3041 | } |
4840f10e JK |
3042 | if (release_lock) { |
3043 | qemu_mutex_unlock_iothread(); | |
3044 | } | |
41063e1e | 3045 | rcu_read_unlock(); |
84b7b8e7 FB |
3046 | return val; |
3047 | } | |
3048 | ||
50013115 PM |
3049 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3050 | MemTxAttrs attrs, MemTxResult *result) | |
3051 | { | |
3052 | return address_space_ldq_internal(as, addr, attrs, result, | |
3053 | DEVICE_NATIVE_ENDIAN); | |
3054 | } | |
3055 | ||
3056 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3057 | MemTxAttrs attrs, MemTxResult *result) | |
3058 | { | |
3059 | return address_space_ldq_internal(as, addr, attrs, result, | |
3060 | DEVICE_LITTLE_ENDIAN); | |
3061 | } | |
3062 | ||
3063 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3064 | MemTxAttrs attrs, MemTxResult *result) | |
3065 | { | |
3066 | return address_space_ldq_internal(as, addr, attrs, result, | |
3067 | DEVICE_BIG_ENDIAN); | |
3068 | } | |
3069 | ||
2c17449b | 3070 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3071 | { |
50013115 | 3072 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3073 | } |
3074 | ||
2c17449b | 3075 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3076 | { |
50013115 | 3077 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3078 | } |
3079 | ||
2c17449b | 3080 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3081 | { |
50013115 | 3082 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3083 | } |
3084 | ||
aab33094 | 3085 | /* XXX: optimize */ |
50013115 PM |
3086 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3087 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3088 | { |
3089 | uint8_t val; | |
50013115 PM |
3090 | MemTxResult r; |
3091 | ||
3092 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3093 | if (result) { | |
3094 | *result = r; | |
3095 | } | |
aab33094 FB |
3096 | return val; |
3097 | } | |
3098 | ||
50013115 PM |
3099 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3100 | { | |
3101 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3102 | } | |
3103 | ||
733f0b02 | 3104 | /* warning: addr must be aligned */ |
50013115 PM |
3105 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3106 | hwaddr addr, | |
3107 | MemTxAttrs attrs, | |
3108 | MemTxResult *result, | |
3109 | enum device_endian endian) | |
aab33094 | 3110 | { |
733f0b02 MT |
3111 | uint8_t *ptr; |
3112 | uint64_t val; | |
5c8a00ce | 3113 | MemoryRegion *mr; |
149f54b5 PB |
3114 | hwaddr l = 2; |
3115 | hwaddr addr1; | |
50013115 | 3116 | MemTxResult r; |
4840f10e | 3117 | bool release_lock = false; |
733f0b02 | 3118 | |
41063e1e | 3119 | rcu_read_lock(); |
41701aa4 | 3120 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3121 | false); |
3122 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3123 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3124 | |
733f0b02 | 3125 | /* I/O case */ |
50013115 | 3126 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3127 | #if defined(TARGET_WORDS_BIGENDIAN) |
3128 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3129 | val = bswap16(val); | |
3130 | } | |
3131 | #else | |
3132 | if (endian == DEVICE_BIG_ENDIAN) { | |
3133 | val = bswap16(val); | |
3134 | } | |
3135 | #endif | |
733f0b02 MT |
3136 | } else { |
3137 | /* RAM case */ | |
5c8a00ce | 3138 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3139 | & TARGET_PAGE_MASK) |
149f54b5 | 3140 | + addr1); |
1e78bcc1 AG |
3141 | switch (endian) { |
3142 | case DEVICE_LITTLE_ENDIAN: | |
3143 | val = lduw_le_p(ptr); | |
3144 | break; | |
3145 | case DEVICE_BIG_ENDIAN: | |
3146 | val = lduw_be_p(ptr); | |
3147 | break; | |
3148 | default: | |
3149 | val = lduw_p(ptr); | |
3150 | break; | |
3151 | } | |
50013115 PM |
3152 | r = MEMTX_OK; |
3153 | } | |
3154 | if (result) { | |
3155 | *result = r; | |
733f0b02 | 3156 | } |
4840f10e JK |
3157 | if (release_lock) { |
3158 | qemu_mutex_unlock_iothread(); | |
3159 | } | |
41063e1e | 3160 | rcu_read_unlock(); |
733f0b02 | 3161 | return val; |
aab33094 FB |
3162 | } |
3163 | ||
50013115 PM |
3164 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3165 | MemTxAttrs attrs, MemTxResult *result) | |
3166 | { | |
3167 | return address_space_lduw_internal(as, addr, attrs, result, | |
3168 | DEVICE_NATIVE_ENDIAN); | |
3169 | } | |
3170 | ||
3171 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3172 | MemTxAttrs attrs, MemTxResult *result) | |
3173 | { | |
3174 | return address_space_lduw_internal(as, addr, attrs, result, | |
3175 | DEVICE_LITTLE_ENDIAN); | |
3176 | } | |
3177 | ||
3178 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3179 | MemTxAttrs attrs, MemTxResult *result) | |
3180 | { | |
3181 | return address_space_lduw_internal(as, addr, attrs, result, | |
3182 | DEVICE_BIG_ENDIAN); | |
3183 | } | |
3184 | ||
41701aa4 | 3185 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3186 | { |
50013115 | 3187 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3188 | } |
3189 | ||
41701aa4 | 3190 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3191 | { |
50013115 | 3192 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3193 | } |
3194 | ||
41701aa4 | 3195 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3196 | { |
50013115 | 3197 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3198 | } |
3199 | ||
8df1cd07 FB |
3200 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3201 | and the code inside is not invalidated. It is useful if the dirty | |
3202 | bits are used to track modified PTEs */ | |
50013115 PM |
3203 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3204 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3205 | { |
8df1cd07 | 3206 | uint8_t *ptr; |
5c8a00ce | 3207 | MemoryRegion *mr; |
149f54b5 PB |
3208 | hwaddr l = 4; |
3209 | hwaddr addr1; | |
50013115 | 3210 | MemTxResult r; |
845b6214 | 3211 | uint8_t dirty_log_mask; |
4840f10e | 3212 | bool release_lock = false; |
8df1cd07 | 3213 | |
41063e1e | 3214 | rcu_read_lock(); |
2198a121 | 3215 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3216 | true); |
3217 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3218 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3219 | |
50013115 | 3220 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3221 | } else { |
5c8a00ce | 3222 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
5579c7f3 | 3223 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 3224 | stl_p(ptr, val); |
74576198 | 3225 | |
845b6214 PB |
3226 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3227 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
58d2707e | 3228 | cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask); |
50013115 PM |
3229 | r = MEMTX_OK; |
3230 | } | |
3231 | if (result) { | |
3232 | *result = r; | |
8df1cd07 | 3233 | } |
4840f10e JK |
3234 | if (release_lock) { |
3235 | qemu_mutex_unlock_iothread(); | |
3236 | } | |
41063e1e | 3237 | rcu_read_unlock(); |
8df1cd07 FB |
3238 | } |
3239 | ||
50013115 PM |
3240 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3241 | { | |
3242 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3243 | } | |
3244 | ||
8df1cd07 | 3245 | /* warning: addr must be aligned */ |
50013115 PM |
3246 | static inline void address_space_stl_internal(AddressSpace *as, |
3247 | hwaddr addr, uint32_t val, | |
3248 | MemTxAttrs attrs, | |
3249 | MemTxResult *result, | |
3250 | enum device_endian endian) | |
8df1cd07 | 3251 | { |
8df1cd07 | 3252 | uint8_t *ptr; |
5c8a00ce | 3253 | MemoryRegion *mr; |
149f54b5 PB |
3254 | hwaddr l = 4; |
3255 | hwaddr addr1; | |
50013115 | 3256 | MemTxResult r; |
4840f10e | 3257 | bool release_lock = false; |
8df1cd07 | 3258 | |
41063e1e | 3259 | rcu_read_lock(); |
ab1da857 | 3260 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3261 | true); |
3262 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3263 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3264 | |
1e78bcc1 AG |
3265 | #if defined(TARGET_WORDS_BIGENDIAN) |
3266 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3267 | val = bswap32(val); | |
3268 | } | |
3269 | #else | |
3270 | if (endian == DEVICE_BIG_ENDIAN) { | |
3271 | val = bswap32(val); | |
3272 | } | |
3273 | #endif | |
50013115 | 3274 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3275 | } else { |
8df1cd07 | 3276 | /* RAM case */ |
5c8a00ce | 3277 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
5579c7f3 | 3278 | ptr = qemu_get_ram_ptr(addr1); |
1e78bcc1 AG |
3279 | switch (endian) { |
3280 | case DEVICE_LITTLE_ENDIAN: | |
3281 | stl_le_p(ptr, val); | |
3282 | break; | |
3283 | case DEVICE_BIG_ENDIAN: | |
3284 | stl_be_p(ptr, val); | |
3285 | break; | |
3286 | default: | |
3287 | stl_p(ptr, val); | |
3288 | break; | |
3289 | } | |
845b6214 | 3290 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3291 | r = MEMTX_OK; |
3292 | } | |
3293 | if (result) { | |
3294 | *result = r; | |
8df1cd07 | 3295 | } |
4840f10e JK |
3296 | if (release_lock) { |
3297 | qemu_mutex_unlock_iothread(); | |
3298 | } | |
41063e1e | 3299 | rcu_read_unlock(); |
8df1cd07 FB |
3300 | } |
3301 | ||
50013115 PM |
3302 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3303 | MemTxAttrs attrs, MemTxResult *result) | |
3304 | { | |
3305 | address_space_stl_internal(as, addr, val, attrs, result, | |
3306 | DEVICE_NATIVE_ENDIAN); | |
3307 | } | |
3308 | ||
3309 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3310 | MemTxAttrs attrs, MemTxResult *result) | |
3311 | { | |
3312 | address_space_stl_internal(as, addr, val, attrs, result, | |
3313 | DEVICE_LITTLE_ENDIAN); | |
3314 | } | |
3315 | ||
3316 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3317 | MemTxAttrs attrs, MemTxResult *result) | |
3318 | { | |
3319 | address_space_stl_internal(as, addr, val, attrs, result, | |
3320 | DEVICE_BIG_ENDIAN); | |
3321 | } | |
3322 | ||
ab1da857 | 3323 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3324 | { |
50013115 | 3325 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3326 | } |
3327 | ||
ab1da857 | 3328 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3329 | { |
50013115 | 3330 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3331 | } |
3332 | ||
ab1da857 | 3333 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3334 | { |
50013115 | 3335 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3336 | } |
3337 | ||
aab33094 | 3338 | /* XXX: optimize */ |
50013115 PM |
3339 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3340 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3341 | { |
3342 | uint8_t v = val; | |
50013115 PM |
3343 | MemTxResult r; |
3344 | ||
3345 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3346 | if (result) { | |
3347 | *result = r; | |
3348 | } | |
3349 | } | |
3350 | ||
3351 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3352 | { | |
3353 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3354 | } |
3355 | ||
733f0b02 | 3356 | /* warning: addr must be aligned */ |
50013115 PM |
3357 | static inline void address_space_stw_internal(AddressSpace *as, |
3358 | hwaddr addr, uint32_t val, | |
3359 | MemTxAttrs attrs, | |
3360 | MemTxResult *result, | |
3361 | enum device_endian endian) | |
aab33094 | 3362 | { |
733f0b02 | 3363 | uint8_t *ptr; |
5c8a00ce | 3364 | MemoryRegion *mr; |
149f54b5 PB |
3365 | hwaddr l = 2; |
3366 | hwaddr addr1; | |
50013115 | 3367 | MemTxResult r; |
4840f10e | 3368 | bool release_lock = false; |
733f0b02 | 3369 | |
41063e1e | 3370 | rcu_read_lock(); |
5ce5944d | 3371 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3372 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3373 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3374 | |
1e78bcc1 AG |
3375 | #if defined(TARGET_WORDS_BIGENDIAN) |
3376 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3377 | val = bswap16(val); | |
3378 | } | |
3379 | #else | |
3380 | if (endian == DEVICE_BIG_ENDIAN) { | |
3381 | val = bswap16(val); | |
3382 | } | |
3383 | #endif | |
50013115 | 3384 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3385 | } else { |
733f0b02 | 3386 | /* RAM case */ |
5c8a00ce | 3387 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
733f0b02 | 3388 | ptr = qemu_get_ram_ptr(addr1); |
1e78bcc1 AG |
3389 | switch (endian) { |
3390 | case DEVICE_LITTLE_ENDIAN: | |
3391 | stw_le_p(ptr, val); | |
3392 | break; | |
3393 | case DEVICE_BIG_ENDIAN: | |
3394 | stw_be_p(ptr, val); | |
3395 | break; | |
3396 | default: | |
3397 | stw_p(ptr, val); | |
3398 | break; | |
3399 | } | |
845b6214 | 3400 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3401 | r = MEMTX_OK; |
3402 | } | |
3403 | if (result) { | |
3404 | *result = r; | |
733f0b02 | 3405 | } |
4840f10e JK |
3406 | if (release_lock) { |
3407 | qemu_mutex_unlock_iothread(); | |
3408 | } | |
41063e1e | 3409 | rcu_read_unlock(); |
aab33094 FB |
3410 | } |
3411 | ||
50013115 PM |
3412 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3413 | MemTxAttrs attrs, MemTxResult *result) | |
3414 | { | |
3415 | address_space_stw_internal(as, addr, val, attrs, result, | |
3416 | DEVICE_NATIVE_ENDIAN); | |
3417 | } | |
3418 | ||
3419 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3420 | MemTxAttrs attrs, MemTxResult *result) | |
3421 | { | |
3422 | address_space_stw_internal(as, addr, val, attrs, result, | |
3423 | DEVICE_LITTLE_ENDIAN); | |
3424 | } | |
3425 | ||
3426 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3427 | MemTxAttrs attrs, MemTxResult *result) | |
3428 | { | |
3429 | address_space_stw_internal(as, addr, val, attrs, result, | |
3430 | DEVICE_BIG_ENDIAN); | |
3431 | } | |
3432 | ||
5ce5944d | 3433 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3434 | { |
50013115 | 3435 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3436 | } |
3437 | ||
5ce5944d | 3438 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3439 | { |
50013115 | 3440 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3441 | } |
3442 | ||
5ce5944d | 3443 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3444 | { |
50013115 | 3445 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3446 | } |
3447 | ||
aab33094 | 3448 | /* XXX: optimize */ |
50013115 PM |
3449 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3450 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3451 | { |
50013115 | 3452 | MemTxResult r; |
aab33094 | 3453 | val = tswap64(val); |
50013115 PM |
3454 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3455 | if (result) { | |
3456 | *result = r; | |
3457 | } | |
aab33094 FB |
3458 | } |
3459 | ||
50013115 PM |
3460 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3461 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3462 | { |
50013115 | 3463 | MemTxResult r; |
1e78bcc1 | 3464 | val = cpu_to_le64(val); |
50013115 PM |
3465 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3466 | if (result) { | |
3467 | *result = r; | |
3468 | } | |
3469 | } | |
3470 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3471 | MemTxAttrs attrs, MemTxResult *result) | |
3472 | { | |
3473 | MemTxResult r; | |
3474 | val = cpu_to_be64(val); | |
3475 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3476 | if (result) { | |
3477 | *result = r; | |
3478 | } | |
3479 | } | |
3480 | ||
3481 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3482 | { | |
3483 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3484 | } | |
3485 | ||
3486 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3487 | { | |
3488 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3489 | } |
3490 | ||
f606604f | 3491 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3492 | { |
50013115 | 3493 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3494 | } |
3495 | ||
5e2972fd | 3496 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3497 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3498 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3499 | { |
3500 | int l; | |
a8170e5e | 3501 | hwaddr phys_addr; |
9b3c35e0 | 3502 | target_ulong page; |
13eb76e0 FB |
3503 | |
3504 | while (len > 0) { | |
3505 | page = addr & TARGET_PAGE_MASK; | |
f17ec444 | 3506 | phys_addr = cpu_get_phys_page_debug(cpu, page); |
13eb76e0 FB |
3507 | /* if no physical page mapped, return an error */ |
3508 | if (phys_addr == -1) | |
3509 | return -1; | |
3510 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3511 | if (l > len) | |
3512 | l = len; | |
5e2972fd | 3513 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b EI |
3514 | if (is_write) { |
3515 | cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l); | |
3516 | } else { | |
5c9eb028 PM |
3517 | address_space_rw(cpu->as, phys_addr, MEMTXATTRS_UNSPECIFIED, |
3518 | buf, l, 0); | |
2e38847b | 3519 | } |
13eb76e0 FB |
3520 | len -= l; |
3521 | buf += l; | |
3522 | addr += l; | |
3523 | } | |
3524 | return 0; | |
3525 | } | |
a68fe89c | 3526 | #endif |
13eb76e0 | 3527 | |
8e4a424b BS |
3528 | /* |
3529 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3530 | * it's running on a big endian machine. Don't do this at home kids! | |
3531 | */ | |
98ed8ecf GK |
3532 | bool target_words_bigendian(void); |
3533 | bool target_words_bigendian(void) | |
8e4a424b BS |
3534 | { |
3535 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3536 | return true; | |
3537 | #else | |
3538 | return false; | |
3539 | #endif | |
3540 | } | |
3541 | ||
76f35538 | 3542 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3543 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3544 | { |
5c8a00ce | 3545 | MemoryRegion*mr; |
149f54b5 | 3546 | hwaddr l = 1; |
41063e1e | 3547 | bool res; |
76f35538 | 3548 | |
41063e1e | 3549 | rcu_read_lock(); |
5c8a00ce PB |
3550 | mr = address_space_translate(&address_space_memory, |
3551 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3552 | |
41063e1e PB |
3553 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3554 | rcu_read_unlock(); | |
3555 | return res; | |
76f35538 | 3556 | } |
bd2fa51f | 3557 | |
e3807054 | 3558 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3559 | { |
3560 | RAMBlock *block; | |
e3807054 | 3561 | int ret = 0; |
bd2fa51f | 3562 | |
0dc3f44a MD |
3563 | rcu_read_lock(); |
3564 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3565 | ret = func(block->idstr, block->host, block->offset, |
3566 | block->used_length, opaque); | |
3567 | if (ret) { | |
3568 | break; | |
3569 | } | |
bd2fa51f | 3570 | } |
0dc3f44a | 3571 | rcu_read_unlock(); |
e3807054 | 3572 | return ret; |
bd2fa51f | 3573 | } |
ec3f8c99 | 3574 | #endif |