]>
Commit | Line | Data |
---|---|---|
8d725fac AF |
1 | /* |
2 | * QEMU float support | |
3 | * | |
16017c48 PM |
4 | * The code in this source file is derived from release 2a of the SoftFloat |
5 | * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and | |
6 | * some later contributions) are provided under that license, as detailed below. | |
7 | * It has subsequently been modified by contributors to the QEMU Project, | |
8 | * so some portions are provided under: | |
9 | * the SoftFloat-2a license | |
10 | * the BSD license | |
11 | * GPL-v2-or-later | |
12 | * | |
13 | * Any future contributions to this file after December 1st 2014 will be | |
14 | * taken to be licensed under the Softfloat-2a license unless specifically | |
15 | * indicated otherwise. | |
8d725fac | 16 | */ |
158142c2 | 17 | |
a7d1ac78 PM |
18 | /* |
19 | =============================================================================== | |
20 | This C source file is part of the SoftFloat IEC/IEEE Floating-point | |
21 | Arithmetic Package, Release 2a. | |
158142c2 FB |
22 | |
23 | Written by John R. Hauser. This work was made possible in part by the | |
24 | International Computer Science Institute, located at Suite 600, 1947 Center | |
25 | Street, Berkeley, California 94704. Funding was partially provided by the | |
26 | National Science Foundation under grant MIP-9311980. The original version | |
27 | of this code was written as part of a project to build a fixed-point vector | |
28 | processor in collaboration with the University of California at Berkeley, | |
29 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
a7d1ac78 | 30 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
158142c2 FB |
31 | arithmetic/SoftFloat.html'. |
32 | ||
a7d1ac78 PM |
33 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
34 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
35 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
36 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
37 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
158142c2 FB |
38 | |
39 | Derivative works are acceptable, even for commercial purposes, so long as | |
a7d1ac78 PM |
40 | (1) they include prominent notice that the work is derivative, and (2) they |
41 | include prominent notice akin to these four paragraphs for those parts of | |
42 | this code that are retained. | |
158142c2 | 43 | |
a7d1ac78 PM |
44 | =============================================================================== |
45 | */ | |
158142c2 | 46 | |
16017c48 PM |
47 | /* BSD licensing: |
48 | * Copyright (c) 2006, Fabrice Bellard | |
49 | * All rights reserved. | |
50 | * | |
51 | * Redistribution and use in source and binary forms, with or without | |
52 | * modification, are permitted provided that the following conditions are met: | |
53 | * | |
54 | * 1. Redistributions of source code must retain the above copyright notice, | |
55 | * this list of conditions and the following disclaimer. | |
56 | * | |
57 | * 2. Redistributions in binary form must reproduce the above copyright notice, | |
58 | * this list of conditions and the following disclaimer in the documentation | |
59 | * and/or other materials provided with the distribution. | |
60 | * | |
61 | * 3. Neither the name of the copyright holder nor the names of its contributors | |
62 | * may be used to endorse or promote products derived from this software without | |
63 | * specific prior written permission. | |
64 | * | |
65 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
66 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
67 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
68 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | |
69 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
70 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
71 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
72 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
73 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
74 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF | |
75 | * THE POSSIBILITY OF SUCH DAMAGE. | |
76 | */ | |
77 | ||
78 | /* Portions of this work are licensed under the terms of the GNU GPL, | |
79 | * version 2 or later. See the COPYING file in the top-level directory. | |
80 | */ | |
81 | ||
2ac8bd03 PM |
82 | /* softfloat (and in particular the code in softfloat-specialize.h) is |
83 | * target-dependent and needs the TARGET_* macros. | |
84 | */ | |
85 | #include "config.h" | |
86 | ||
6b4c305c | 87 | #include "fpu/softfloat.h" |
158142c2 | 88 | |
dc355b76 PM |
89 | /* We only need stdlib for abort() */ |
90 | #include <stdlib.h> | |
91 | ||
158142c2 FB |
92 | /*---------------------------------------------------------------------------- |
93 | | Primitive arithmetic functions, including multi-word arithmetic, and | |
94 | | division and square root approximations. (Can be specialized to target if | |
95 | | desired.) | |
96 | *----------------------------------------------------------------------------*/ | |
97 | #include "softfloat-macros.h" | |
98 | ||
99 | /*---------------------------------------------------------------------------- | |
100 | | Functions and definitions to determine: (1) whether tininess for underflow | |
101 | | is detected before or after rounding by default, (2) what (if anything) | |
102 | | happens when exceptions are raised, (3) how signaling NaNs are distinguished | |
103 | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | |
104 | | are propagated from function inputs to output. These details are target- | |
105 | | specific. | |
106 | *----------------------------------------------------------------------------*/ | |
107 | #include "softfloat-specialize.h" | |
108 | ||
bb4d4bb3 PM |
109 | /*---------------------------------------------------------------------------- |
110 | | Returns the fraction bits of the half-precision floating-point value `a'. | |
111 | *----------------------------------------------------------------------------*/ | |
112 | ||
a49db98d | 113 | static inline uint32_t extractFloat16Frac(float16 a) |
bb4d4bb3 PM |
114 | { |
115 | return float16_val(a) & 0x3ff; | |
116 | } | |
117 | ||
118 | /*---------------------------------------------------------------------------- | |
119 | | Returns the exponent bits of the half-precision floating-point value `a'. | |
120 | *----------------------------------------------------------------------------*/ | |
121 | ||
a49db98d | 122 | static inline int_fast16_t extractFloat16Exp(float16 a) |
bb4d4bb3 PM |
123 | { |
124 | return (float16_val(a) >> 10) & 0x1f; | |
125 | } | |
126 | ||
127 | /*---------------------------------------------------------------------------- | |
128 | | Returns the sign bit of the single-precision floating-point value `a'. | |
129 | *----------------------------------------------------------------------------*/ | |
130 | ||
a49db98d | 131 | static inline flag extractFloat16Sign(float16 a) |
bb4d4bb3 PM |
132 | { |
133 | return float16_val(a)>>15; | |
134 | } | |
135 | ||
158142c2 FB |
136 | /*---------------------------------------------------------------------------- |
137 | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | |
138 | | and 7, and returns the properly rounded 32-bit integer corresponding to the | |
139 | | input. If `zSign' is 1, the input is negated before being converted to an | |
140 | | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input | |
141 | | is simply rounded to an integer, with the inexact exception raised if the | |
142 | | input cannot be represented exactly as an integer. However, if the fixed- | |
143 | | point input is too large, the invalid exception is raised and the largest | |
144 | | positive or negative integer is returned. | |
145 | *----------------------------------------------------------------------------*/ | |
146 | ||
e5a41ffa | 147 | static int32 roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status) |
158142c2 FB |
148 | { |
149 | int8 roundingMode; | |
150 | flag roundNearestEven; | |
151 | int8 roundIncrement, roundBits; | |
760e1416 | 152 | int32_t z; |
158142c2 | 153 | |
a2f2d288 | 154 | roundingMode = status->float_rounding_mode; |
158142c2 | 155 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
156 | switch (roundingMode) { |
157 | case float_round_nearest_even: | |
f9288a76 | 158 | case float_round_ties_away: |
dc355b76 PM |
159 | roundIncrement = 0x40; |
160 | break; | |
161 | case float_round_to_zero: | |
162 | roundIncrement = 0; | |
163 | break; | |
164 | case float_round_up: | |
165 | roundIncrement = zSign ? 0 : 0x7f; | |
166 | break; | |
167 | case float_round_down: | |
168 | roundIncrement = zSign ? 0x7f : 0; | |
169 | break; | |
170 | default: | |
171 | abort(); | |
158142c2 FB |
172 | } |
173 | roundBits = absZ & 0x7F; | |
174 | absZ = ( absZ + roundIncrement )>>7; | |
175 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
176 | z = absZ; | |
177 | if ( zSign ) z = - z; | |
178 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | |
ff32e16e | 179 | float_raise(float_flag_invalid, status); |
bb98fe42 | 180 | return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 | 181 | } |
a2f2d288 PM |
182 | if (roundBits) { |
183 | status->float_exception_flags |= float_flag_inexact; | |
184 | } | |
158142c2 FB |
185 | return z; |
186 | ||
187 | } | |
188 | ||
189 | /*---------------------------------------------------------------------------- | |
190 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
191 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
192 | | and returns the properly rounded 64-bit integer corresponding to the input. | |
193 | | If `zSign' is 1, the input is negated before being converted to an integer. | |
194 | | Ordinarily, the fixed-point input is simply rounded to an integer, with | |
195 | | the inexact exception raised if the input cannot be represented exactly as | |
196 | | an integer. However, if the fixed-point input is too large, the invalid | |
197 | | exception is raised and the largest positive or negative integer is | |
198 | | returned. | |
199 | *----------------------------------------------------------------------------*/ | |
200 | ||
e5a41ffa PM |
201 | static int64 roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1, |
202 | float_status *status) | |
158142c2 FB |
203 | { |
204 | int8 roundingMode; | |
205 | flag roundNearestEven, increment; | |
760e1416 | 206 | int64_t z; |
158142c2 | 207 | |
a2f2d288 | 208 | roundingMode = status->float_rounding_mode; |
158142c2 | 209 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
210 | switch (roundingMode) { |
211 | case float_round_nearest_even: | |
f9288a76 | 212 | case float_round_ties_away: |
dc355b76 PM |
213 | increment = ((int64_t) absZ1 < 0); |
214 | break; | |
215 | case float_round_to_zero: | |
216 | increment = 0; | |
217 | break; | |
218 | case float_round_up: | |
219 | increment = !zSign && absZ1; | |
220 | break; | |
221 | case float_round_down: | |
222 | increment = zSign && absZ1; | |
223 | break; | |
224 | default: | |
225 | abort(); | |
158142c2 FB |
226 | } |
227 | if ( increment ) { | |
228 | ++absZ0; | |
229 | if ( absZ0 == 0 ) goto overflow; | |
bb98fe42 | 230 | absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
231 | } |
232 | z = absZ0; | |
233 | if ( zSign ) z = - z; | |
234 | if ( z && ( ( z < 0 ) ^ zSign ) ) { | |
235 | overflow: | |
ff32e16e | 236 | float_raise(float_flag_invalid, status); |
158142c2 | 237 | return |
bb98fe42 | 238 | zSign ? (int64_t) LIT64( 0x8000000000000000 ) |
158142c2 FB |
239 | : LIT64( 0x7FFFFFFFFFFFFFFF ); |
240 | } | |
a2f2d288 PM |
241 | if (absZ1) { |
242 | status->float_exception_flags |= float_flag_inexact; | |
243 | } | |
158142c2 FB |
244 | return z; |
245 | ||
246 | } | |
247 | ||
fb3ea83a TM |
248 | /*---------------------------------------------------------------------------- |
249 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
250 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
251 | | and returns the properly rounded 64-bit unsigned integer corresponding to the | |
252 | | input. Ordinarily, the fixed-point input is simply rounded to an integer, | |
253 | | with the inexact exception raised if the input cannot be represented exactly | |
254 | | as an integer. However, if the fixed-point input is too large, the invalid | |
255 | | exception is raised and the largest unsigned integer is returned. | |
256 | *----------------------------------------------------------------------------*/ | |
257 | ||
258 | static int64 roundAndPackUint64(flag zSign, uint64_t absZ0, | |
e5a41ffa | 259 | uint64_t absZ1, float_status *status) |
fb3ea83a TM |
260 | { |
261 | int8 roundingMode; | |
262 | flag roundNearestEven, increment; | |
263 | ||
a2f2d288 | 264 | roundingMode = status->float_rounding_mode; |
fb3ea83a | 265 | roundNearestEven = (roundingMode == float_round_nearest_even); |
dc355b76 PM |
266 | switch (roundingMode) { |
267 | case float_round_nearest_even: | |
f9288a76 | 268 | case float_round_ties_away: |
dc355b76 PM |
269 | increment = ((int64_t)absZ1 < 0); |
270 | break; | |
271 | case float_round_to_zero: | |
272 | increment = 0; | |
273 | break; | |
274 | case float_round_up: | |
275 | increment = !zSign && absZ1; | |
276 | break; | |
277 | case float_round_down: | |
278 | increment = zSign && absZ1; | |
279 | break; | |
280 | default: | |
281 | abort(); | |
fb3ea83a TM |
282 | } |
283 | if (increment) { | |
284 | ++absZ0; | |
285 | if (absZ0 == 0) { | |
ff32e16e | 286 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
287 | return LIT64(0xFFFFFFFFFFFFFFFF); |
288 | } | |
289 | absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven); | |
290 | } | |
291 | ||
292 | if (zSign && absZ0) { | |
ff32e16e | 293 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
294 | return 0; |
295 | } | |
296 | ||
297 | if (absZ1) { | |
a2f2d288 | 298 | status->float_exception_flags |= float_flag_inexact; |
fb3ea83a TM |
299 | } |
300 | return absZ0; | |
301 | } | |
302 | ||
158142c2 FB |
303 | /*---------------------------------------------------------------------------- |
304 | | Returns the fraction bits of the single-precision floating-point value `a'. | |
305 | *----------------------------------------------------------------------------*/ | |
306 | ||
a49db98d | 307 | static inline uint32_t extractFloat32Frac( float32 a ) |
158142c2 FB |
308 | { |
309 | ||
f090c9d4 | 310 | return float32_val(a) & 0x007FFFFF; |
158142c2 FB |
311 | |
312 | } | |
313 | ||
314 | /*---------------------------------------------------------------------------- | |
315 | | Returns the exponent bits of the single-precision floating-point value `a'. | |
316 | *----------------------------------------------------------------------------*/ | |
317 | ||
a49db98d | 318 | static inline int_fast16_t extractFloat32Exp(float32 a) |
158142c2 FB |
319 | { |
320 | ||
f090c9d4 | 321 | return ( float32_val(a)>>23 ) & 0xFF; |
158142c2 FB |
322 | |
323 | } | |
324 | ||
325 | /*---------------------------------------------------------------------------- | |
326 | | Returns the sign bit of the single-precision floating-point value `a'. | |
327 | *----------------------------------------------------------------------------*/ | |
328 | ||
a49db98d | 329 | static inline flag extractFloat32Sign( float32 a ) |
158142c2 FB |
330 | { |
331 | ||
f090c9d4 | 332 | return float32_val(a)>>31; |
158142c2 FB |
333 | |
334 | } | |
335 | ||
37d18660 PM |
336 | /*---------------------------------------------------------------------------- |
337 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
338 | | input-denormal exception and return zero. Otherwise just return the value. | |
339 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 340 | float32 float32_squash_input_denormal(float32 a, float_status *status) |
37d18660 | 341 | { |
a2f2d288 | 342 | if (status->flush_inputs_to_zero) { |
37d18660 | 343 | if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { |
ff32e16e | 344 | float_raise(float_flag_input_denormal, status); |
37d18660 PM |
345 | return make_float32(float32_val(a) & 0x80000000); |
346 | } | |
347 | } | |
348 | return a; | |
349 | } | |
350 | ||
158142c2 FB |
351 | /*---------------------------------------------------------------------------- |
352 | | Normalizes the subnormal single-precision floating-point value represented | |
353 | | by the denormalized significand `aSig'. The normalized exponent and | |
354 | | significand are stored at the locations pointed to by `zExpPtr' and | |
355 | | `zSigPtr', respectively. | |
356 | *----------------------------------------------------------------------------*/ | |
357 | ||
358 | static void | |
94a49d86 | 359 | normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr) |
158142c2 FB |
360 | { |
361 | int8 shiftCount; | |
362 | ||
363 | shiftCount = countLeadingZeros32( aSig ) - 8; | |
364 | *zSigPtr = aSig<<shiftCount; | |
365 | *zExpPtr = 1 - shiftCount; | |
366 | ||
367 | } | |
368 | ||
369 | /*---------------------------------------------------------------------------- | |
370 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
371 | | single-precision floating-point value, returning the result. After being | |
372 | | shifted into the proper positions, the three fields are simply added | |
373 | | together to form the result. This means that any integer portion of `zSig' | |
374 | | will be added into the exponent. Since a properly normalized significand | |
375 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
376 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
377 | | significand. | |
378 | *----------------------------------------------------------------------------*/ | |
379 | ||
a49db98d | 380 | static inline float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig) |
158142c2 FB |
381 | { |
382 | ||
f090c9d4 | 383 | return make_float32( |
bb98fe42 | 384 | ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig); |
158142c2 FB |
385 | |
386 | } | |
387 | ||
388 | /*---------------------------------------------------------------------------- | |
389 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
390 | | and significand `zSig', and returns the proper single-precision floating- | |
391 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
392 | | value is simply rounded and packed into the single-precision format, with | |
393 | | the inexact exception raised if the abstract input cannot be represented | |
394 | | exactly. However, if the abstract value is too large, the overflow and | |
395 | | inexact exceptions are raised and an infinity or maximal finite value is | |
396 | | returned. If the abstract value is too small, the input value is rounded to | |
397 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
398 | | the abstract input cannot be represented exactly as a subnormal single- | |
399 | | precision floating-point number. | |
400 | | The input significand `zSig' has its binary point between bits 30 | |
401 | | and 29, which is 7 bits to the left of the usual location. This shifted | |
402 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
403 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
404 | | and it must not require rounding. In the usual case that `zSig' is | |
405 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
406 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
407 | | Binary Floating-Point Arithmetic. | |
408 | *----------------------------------------------------------------------------*/ | |
409 | ||
e5a41ffa PM |
410 | static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig, |
411 | float_status *status) | |
158142c2 FB |
412 | { |
413 | int8 roundingMode; | |
414 | flag roundNearestEven; | |
415 | int8 roundIncrement, roundBits; | |
416 | flag isTiny; | |
417 | ||
a2f2d288 | 418 | roundingMode = status->float_rounding_mode; |
158142c2 | 419 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
420 | switch (roundingMode) { |
421 | case float_round_nearest_even: | |
f9288a76 | 422 | case float_round_ties_away: |
dc355b76 PM |
423 | roundIncrement = 0x40; |
424 | break; | |
425 | case float_round_to_zero: | |
426 | roundIncrement = 0; | |
427 | break; | |
428 | case float_round_up: | |
429 | roundIncrement = zSign ? 0 : 0x7f; | |
430 | break; | |
431 | case float_round_down: | |
432 | roundIncrement = zSign ? 0x7f : 0; | |
433 | break; | |
434 | default: | |
435 | abort(); | |
436 | break; | |
158142c2 FB |
437 | } |
438 | roundBits = zSig & 0x7F; | |
bb98fe42 | 439 | if ( 0xFD <= (uint16_t) zExp ) { |
158142c2 FB |
440 | if ( ( 0xFD < zExp ) |
441 | || ( ( zExp == 0xFD ) | |
bb98fe42 | 442 | && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 | 443 | ) { |
ff32e16e | 444 | float_raise(float_flag_overflow | float_flag_inexact, status); |
f090c9d4 | 445 | return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); |
158142c2 FB |
446 | } |
447 | if ( zExp < 0 ) { | |
a2f2d288 | 448 | if (status->flush_to_zero) { |
ff32e16e | 449 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
450 | return packFloat32(zSign, 0, 0); |
451 | } | |
158142c2 | 452 | isTiny = |
a2f2d288 PM |
453 | (status->float_detect_tininess |
454 | == float_tininess_before_rounding) | |
158142c2 FB |
455 | || ( zExp < -1 ) |
456 | || ( zSig + roundIncrement < 0x80000000 ); | |
457 | shift32RightJamming( zSig, - zExp, &zSig ); | |
458 | zExp = 0; | |
459 | roundBits = zSig & 0x7F; | |
ff32e16e PM |
460 | if (isTiny && roundBits) { |
461 | float_raise(float_flag_underflow, status); | |
462 | } | |
158142c2 FB |
463 | } |
464 | } | |
a2f2d288 PM |
465 | if (roundBits) { |
466 | status->float_exception_flags |= float_flag_inexact; | |
467 | } | |
158142c2 FB |
468 | zSig = ( zSig + roundIncrement )>>7; |
469 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
470 | if ( zSig == 0 ) zExp = 0; | |
471 | return packFloat32( zSign, zExp, zSig ); | |
472 | ||
473 | } | |
474 | ||
475 | /*---------------------------------------------------------------------------- | |
476 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
477 | | and significand `zSig', and returns the proper single-precision floating- | |
478 | | point value corresponding to the abstract input. This routine is just like | |
479 | | `roundAndPackFloat32' except that `zSig' does not have to be normalized. | |
480 | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
481 | | floating-point exponent. | |
482 | *----------------------------------------------------------------------------*/ | |
483 | ||
484 | static float32 | |
e5a41ffa PM |
485 | normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig, |
486 | float_status *status) | |
158142c2 FB |
487 | { |
488 | int8 shiftCount; | |
489 | ||
490 | shiftCount = countLeadingZeros32( zSig ) - 1; | |
ff32e16e PM |
491 | return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount, |
492 | status); | |
158142c2 FB |
493 | |
494 | } | |
495 | ||
496 | /*---------------------------------------------------------------------------- | |
497 | | Returns the fraction bits of the double-precision floating-point value `a'. | |
498 | *----------------------------------------------------------------------------*/ | |
499 | ||
a49db98d | 500 | static inline uint64_t extractFloat64Frac( float64 a ) |
158142c2 FB |
501 | { |
502 | ||
f090c9d4 | 503 | return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF ); |
158142c2 FB |
504 | |
505 | } | |
506 | ||
507 | /*---------------------------------------------------------------------------- | |
508 | | Returns the exponent bits of the double-precision floating-point value `a'. | |
509 | *----------------------------------------------------------------------------*/ | |
510 | ||
a49db98d | 511 | static inline int_fast16_t extractFloat64Exp(float64 a) |
158142c2 FB |
512 | { |
513 | ||
f090c9d4 | 514 | return ( float64_val(a)>>52 ) & 0x7FF; |
158142c2 FB |
515 | |
516 | } | |
517 | ||
518 | /*---------------------------------------------------------------------------- | |
519 | | Returns the sign bit of the double-precision floating-point value `a'. | |
520 | *----------------------------------------------------------------------------*/ | |
521 | ||
a49db98d | 522 | static inline flag extractFloat64Sign( float64 a ) |
158142c2 FB |
523 | { |
524 | ||
f090c9d4 | 525 | return float64_val(a)>>63; |
158142c2 FB |
526 | |
527 | } | |
528 | ||
37d18660 PM |
529 | /*---------------------------------------------------------------------------- |
530 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
531 | | input-denormal exception and return zero. Otherwise just return the value. | |
532 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 533 | float64 float64_squash_input_denormal(float64 a, float_status *status) |
37d18660 | 534 | { |
a2f2d288 | 535 | if (status->flush_inputs_to_zero) { |
37d18660 | 536 | if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { |
ff32e16e | 537 | float_raise(float_flag_input_denormal, status); |
37d18660 PM |
538 | return make_float64(float64_val(a) & (1ULL << 63)); |
539 | } | |
540 | } | |
541 | return a; | |
542 | } | |
543 | ||
158142c2 FB |
544 | /*---------------------------------------------------------------------------- |
545 | | Normalizes the subnormal double-precision floating-point value represented | |
546 | | by the denormalized significand `aSig'. The normalized exponent and | |
547 | | significand are stored at the locations pointed to by `zExpPtr' and | |
548 | | `zSigPtr', respectively. | |
549 | *----------------------------------------------------------------------------*/ | |
550 | ||
551 | static void | |
94a49d86 | 552 | normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr) |
158142c2 FB |
553 | { |
554 | int8 shiftCount; | |
555 | ||
556 | shiftCount = countLeadingZeros64( aSig ) - 11; | |
557 | *zSigPtr = aSig<<shiftCount; | |
558 | *zExpPtr = 1 - shiftCount; | |
559 | ||
560 | } | |
561 | ||
562 | /*---------------------------------------------------------------------------- | |
563 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
564 | | double-precision floating-point value, returning the result. After being | |
565 | | shifted into the proper positions, the three fields are simply added | |
566 | | together to form the result. This means that any integer portion of `zSig' | |
567 | | will be added into the exponent. Since a properly normalized significand | |
568 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
569 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
570 | | significand. | |
571 | *----------------------------------------------------------------------------*/ | |
572 | ||
a49db98d | 573 | static inline float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig) |
158142c2 FB |
574 | { |
575 | ||
f090c9d4 | 576 | return make_float64( |
bb98fe42 | 577 | ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); |
158142c2 FB |
578 | |
579 | } | |
580 | ||
581 | /*---------------------------------------------------------------------------- | |
582 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
583 | | and significand `zSig', and returns the proper double-precision floating- | |
584 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
585 | | value is simply rounded and packed into the double-precision format, with | |
586 | | the inexact exception raised if the abstract input cannot be represented | |
587 | | exactly. However, if the abstract value is too large, the overflow and | |
588 | | inexact exceptions are raised and an infinity or maximal finite value is | |
a7d1ac78 PM |
589 | | returned. If the abstract value is too small, the input value is rounded to |
590 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
591 | | the abstract input cannot be represented exactly as a subnormal double- | |
158142c2 FB |
592 | | precision floating-point number. |
593 | | The input significand `zSig' has its binary point between bits 62 | |
594 | | and 61, which is 10 bits to the left of the usual location. This shifted | |
595 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
596 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
597 | | and it must not require rounding. In the usual case that `zSig' is | |
598 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
599 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
600 | | Binary Floating-Point Arithmetic. | |
601 | *----------------------------------------------------------------------------*/ | |
602 | ||
e5a41ffa PM |
603 | static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig, |
604 | float_status *status) | |
158142c2 FB |
605 | { |
606 | int8 roundingMode; | |
607 | flag roundNearestEven; | |
94a49d86 | 608 | int_fast16_t roundIncrement, roundBits; |
158142c2 FB |
609 | flag isTiny; |
610 | ||
a2f2d288 | 611 | roundingMode = status->float_rounding_mode; |
158142c2 | 612 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
613 | switch (roundingMode) { |
614 | case float_round_nearest_even: | |
f9288a76 | 615 | case float_round_ties_away: |
dc355b76 PM |
616 | roundIncrement = 0x200; |
617 | break; | |
618 | case float_round_to_zero: | |
619 | roundIncrement = 0; | |
620 | break; | |
621 | case float_round_up: | |
622 | roundIncrement = zSign ? 0 : 0x3ff; | |
623 | break; | |
624 | case float_round_down: | |
625 | roundIncrement = zSign ? 0x3ff : 0; | |
626 | break; | |
627 | default: | |
628 | abort(); | |
158142c2 FB |
629 | } |
630 | roundBits = zSig & 0x3FF; | |
bb98fe42 | 631 | if ( 0x7FD <= (uint16_t) zExp ) { |
158142c2 FB |
632 | if ( ( 0x7FD < zExp ) |
633 | || ( ( zExp == 0x7FD ) | |
bb98fe42 | 634 | && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 | 635 | ) { |
ff32e16e | 636 | float_raise(float_flag_overflow | float_flag_inexact, status); |
f090c9d4 | 637 | return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 )); |
158142c2 FB |
638 | } |
639 | if ( zExp < 0 ) { | |
a2f2d288 | 640 | if (status->flush_to_zero) { |
ff32e16e | 641 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
642 | return packFloat64(zSign, 0, 0); |
643 | } | |
158142c2 | 644 | isTiny = |
a2f2d288 PM |
645 | (status->float_detect_tininess |
646 | == float_tininess_before_rounding) | |
158142c2 FB |
647 | || ( zExp < -1 ) |
648 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | |
649 | shift64RightJamming( zSig, - zExp, &zSig ); | |
650 | zExp = 0; | |
651 | roundBits = zSig & 0x3FF; | |
ff32e16e PM |
652 | if (isTiny && roundBits) { |
653 | float_raise(float_flag_underflow, status); | |
654 | } | |
158142c2 FB |
655 | } |
656 | } | |
a2f2d288 PM |
657 | if (roundBits) { |
658 | status->float_exception_flags |= float_flag_inexact; | |
659 | } | |
158142c2 FB |
660 | zSig = ( zSig + roundIncrement )>>10; |
661 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | |
662 | if ( zSig == 0 ) zExp = 0; | |
663 | return packFloat64( zSign, zExp, zSig ); | |
664 | ||
665 | } | |
666 | ||
667 | /*---------------------------------------------------------------------------- | |
668 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
669 | | and significand `zSig', and returns the proper double-precision floating- | |
670 | | point value corresponding to the abstract input. This routine is just like | |
671 | | `roundAndPackFloat64' except that `zSig' does not have to be normalized. | |
672 | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
673 | | floating-point exponent. | |
674 | *----------------------------------------------------------------------------*/ | |
675 | ||
676 | static float64 | |
e5a41ffa PM |
677 | normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig, |
678 | float_status *status) | |
158142c2 FB |
679 | { |
680 | int8 shiftCount; | |
681 | ||
682 | shiftCount = countLeadingZeros64( zSig ) - 1; | |
ff32e16e PM |
683 | return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount, |
684 | status); | |
158142c2 FB |
685 | |
686 | } | |
687 | ||
158142c2 FB |
688 | /*---------------------------------------------------------------------------- |
689 | | Returns the fraction bits of the extended double-precision floating-point | |
690 | | value `a'. | |
691 | *----------------------------------------------------------------------------*/ | |
692 | ||
a49db98d | 693 | static inline uint64_t extractFloatx80Frac( floatx80 a ) |
158142c2 FB |
694 | { |
695 | ||
696 | return a.low; | |
697 | ||
698 | } | |
699 | ||
700 | /*---------------------------------------------------------------------------- | |
701 | | Returns the exponent bits of the extended double-precision floating-point | |
702 | | value `a'. | |
703 | *----------------------------------------------------------------------------*/ | |
704 | ||
a49db98d | 705 | static inline int32 extractFloatx80Exp( floatx80 a ) |
158142c2 FB |
706 | { |
707 | ||
708 | return a.high & 0x7FFF; | |
709 | ||
710 | } | |
711 | ||
712 | /*---------------------------------------------------------------------------- | |
713 | | Returns the sign bit of the extended double-precision floating-point value | |
714 | | `a'. | |
715 | *----------------------------------------------------------------------------*/ | |
716 | ||
a49db98d | 717 | static inline flag extractFloatx80Sign( floatx80 a ) |
158142c2 FB |
718 | { |
719 | ||
720 | return a.high>>15; | |
721 | ||
722 | } | |
723 | ||
724 | /*---------------------------------------------------------------------------- | |
725 | | Normalizes the subnormal extended double-precision floating-point value | |
726 | | represented by the denormalized significand `aSig'. The normalized exponent | |
727 | | and significand are stored at the locations pointed to by `zExpPtr' and | |
728 | | `zSigPtr', respectively. | |
729 | *----------------------------------------------------------------------------*/ | |
730 | ||
731 | static void | |
bb98fe42 | 732 | normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr ) |
158142c2 FB |
733 | { |
734 | int8 shiftCount; | |
735 | ||
736 | shiftCount = countLeadingZeros64( aSig ); | |
737 | *zSigPtr = aSig<<shiftCount; | |
738 | *zExpPtr = 1 - shiftCount; | |
739 | ||
740 | } | |
741 | ||
742 | /*---------------------------------------------------------------------------- | |
743 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | |
744 | | extended double-precision floating-point value, returning the result. | |
745 | *----------------------------------------------------------------------------*/ | |
746 | ||
a49db98d | 747 | static inline floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig ) |
158142c2 FB |
748 | { |
749 | floatx80 z; | |
750 | ||
751 | z.low = zSig; | |
bb98fe42 | 752 | z.high = ( ( (uint16_t) zSign )<<15 ) + zExp; |
158142c2 FB |
753 | return z; |
754 | ||
755 | } | |
756 | ||
757 | /*---------------------------------------------------------------------------- | |
758 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
759 | | and extended significand formed by the concatenation of `zSig0' and `zSig1', | |
760 | | and returns the proper extended double-precision floating-point value | |
761 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
762 | | rounded and packed into the extended double-precision format, with the | |
763 | | inexact exception raised if the abstract input cannot be represented | |
764 | | exactly. However, if the abstract value is too large, the overflow and | |
765 | | inexact exceptions are raised and an infinity or maximal finite value is | |
766 | | returned. If the abstract value is too small, the input value is rounded to | |
767 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
768 | | the abstract input cannot be represented exactly as a subnormal extended | |
769 | | double-precision floating-point number. | |
770 | | If `roundingPrecision' is 32 or 64, the result is rounded to the same | |
771 | | number of bits as single or double precision, respectively. Otherwise, the | |
772 | | result is rounded to the full precision of the extended double-precision | |
773 | | format. | |
774 | | The input significand must be normalized or smaller. If the input | |
775 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
776 | | returned is a subnormal number, and it must not require rounding. The | |
777 | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | |
778 | | Floating-Point Arithmetic. | |
779 | *----------------------------------------------------------------------------*/ | |
780 | ||
e5a41ffa PM |
781 | static floatx80 roundAndPackFloatx80(int8 roundingPrecision, flag zSign, |
782 | int32 zExp, uint64_t zSig0, uint64_t zSig1, | |
783 | float_status *status) | |
158142c2 FB |
784 | { |
785 | int8 roundingMode; | |
786 | flag roundNearestEven, increment, isTiny; | |
787 | int64 roundIncrement, roundMask, roundBits; | |
788 | ||
a2f2d288 | 789 | roundingMode = status->float_rounding_mode; |
158142c2 FB |
790 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
791 | if ( roundingPrecision == 80 ) goto precision80; | |
792 | if ( roundingPrecision == 64 ) { | |
793 | roundIncrement = LIT64( 0x0000000000000400 ); | |
794 | roundMask = LIT64( 0x00000000000007FF ); | |
795 | } | |
796 | else if ( roundingPrecision == 32 ) { | |
797 | roundIncrement = LIT64( 0x0000008000000000 ); | |
798 | roundMask = LIT64( 0x000000FFFFFFFFFF ); | |
799 | } | |
800 | else { | |
801 | goto precision80; | |
802 | } | |
803 | zSig0 |= ( zSig1 != 0 ); | |
dc355b76 PM |
804 | switch (roundingMode) { |
805 | case float_round_nearest_even: | |
f9288a76 | 806 | case float_round_ties_away: |
dc355b76 PM |
807 | break; |
808 | case float_round_to_zero: | |
809 | roundIncrement = 0; | |
810 | break; | |
811 | case float_round_up: | |
812 | roundIncrement = zSign ? 0 : roundMask; | |
813 | break; | |
814 | case float_round_down: | |
815 | roundIncrement = zSign ? roundMask : 0; | |
816 | break; | |
817 | default: | |
818 | abort(); | |
158142c2 FB |
819 | } |
820 | roundBits = zSig0 & roundMask; | |
bb98fe42 | 821 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
822 | if ( ( 0x7FFE < zExp ) |
823 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | |
824 | ) { | |
825 | goto overflow; | |
826 | } | |
827 | if ( zExp <= 0 ) { | |
a2f2d288 | 828 | if (status->flush_to_zero) { |
ff32e16e | 829 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
830 | return packFloatx80(zSign, 0, 0); |
831 | } | |
158142c2 | 832 | isTiny = |
a2f2d288 PM |
833 | (status->float_detect_tininess |
834 | == float_tininess_before_rounding) | |
158142c2 FB |
835 | || ( zExp < 0 ) |
836 | || ( zSig0 <= zSig0 + roundIncrement ); | |
837 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | |
838 | zExp = 0; | |
839 | roundBits = zSig0 & roundMask; | |
ff32e16e PM |
840 | if (isTiny && roundBits) { |
841 | float_raise(float_flag_underflow, status); | |
842 | } | |
a2f2d288 PM |
843 | if (roundBits) { |
844 | status->float_exception_flags |= float_flag_inexact; | |
845 | } | |
158142c2 | 846 | zSig0 += roundIncrement; |
bb98fe42 | 847 | if ( (int64_t) zSig0 < 0 ) zExp = 1; |
158142c2 FB |
848 | roundIncrement = roundMask + 1; |
849 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
850 | roundMask |= roundIncrement; | |
851 | } | |
852 | zSig0 &= ~ roundMask; | |
853 | return packFloatx80( zSign, zExp, zSig0 ); | |
854 | } | |
855 | } | |
a2f2d288 PM |
856 | if (roundBits) { |
857 | status->float_exception_flags |= float_flag_inexact; | |
858 | } | |
158142c2 FB |
859 | zSig0 += roundIncrement; |
860 | if ( zSig0 < roundIncrement ) { | |
861 | ++zExp; | |
862 | zSig0 = LIT64( 0x8000000000000000 ); | |
863 | } | |
864 | roundIncrement = roundMask + 1; | |
865 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
866 | roundMask |= roundIncrement; | |
867 | } | |
868 | zSig0 &= ~ roundMask; | |
869 | if ( zSig0 == 0 ) zExp = 0; | |
870 | return packFloatx80( zSign, zExp, zSig0 ); | |
871 | precision80: | |
dc355b76 PM |
872 | switch (roundingMode) { |
873 | case float_round_nearest_even: | |
f9288a76 | 874 | case float_round_ties_away: |
dc355b76 PM |
875 | increment = ((int64_t)zSig1 < 0); |
876 | break; | |
877 | case float_round_to_zero: | |
878 | increment = 0; | |
879 | break; | |
880 | case float_round_up: | |
881 | increment = !zSign && zSig1; | |
882 | break; | |
883 | case float_round_down: | |
884 | increment = zSign && zSig1; | |
885 | break; | |
886 | default: | |
887 | abort(); | |
158142c2 | 888 | } |
bb98fe42 | 889 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
890 | if ( ( 0x7FFE < zExp ) |
891 | || ( ( zExp == 0x7FFE ) | |
892 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | |
893 | && increment | |
894 | ) | |
895 | ) { | |
896 | roundMask = 0; | |
897 | overflow: | |
ff32e16e | 898 | float_raise(float_flag_overflow | float_flag_inexact, status); |
158142c2 FB |
899 | if ( ( roundingMode == float_round_to_zero ) |
900 | || ( zSign && ( roundingMode == float_round_up ) ) | |
901 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
902 | ) { | |
903 | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | |
904 | } | |
905 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
906 | } | |
907 | if ( zExp <= 0 ) { | |
908 | isTiny = | |
a2f2d288 PM |
909 | (status->float_detect_tininess |
910 | == float_tininess_before_rounding) | |
158142c2 FB |
911 | || ( zExp < 0 ) |
912 | || ! increment | |
913 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | |
914 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | |
915 | zExp = 0; | |
ff32e16e PM |
916 | if (isTiny && zSig1) { |
917 | float_raise(float_flag_underflow, status); | |
918 | } | |
a2f2d288 PM |
919 | if (zSig1) { |
920 | status->float_exception_flags |= float_flag_inexact; | |
921 | } | |
dc355b76 PM |
922 | switch (roundingMode) { |
923 | case float_round_nearest_even: | |
f9288a76 | 924 | case float_round_ties_away: |
dc355b76 PM |
925 | increment = ((int64_t)zSig1 < 0); |
926 | break; | |
927 | case float_round_to_zero: | |
928 | increment = 0; | |
929 | break; | |
930 | case float_round_up: | |
931 | increment = !zSign && zSig1; | |
932 | break; | |
933 | case float_round_down: | |
934 | increment = zSign && zSig1; | |
935 | break; | |
936 | default: | |
937 | abort(); | |
158142c2 FB |
938 | } |
939 | if ( increment ) { | |
940 | ++zSig0; | |
941 | zSig0 &= | |
bb98fe42 AF |
942 | ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
943 | if ( (int64_t) zSig0 < 0 ) zExp = 1; | |
158142c2 FB |
944 | } |
945 | return packFloatx80( zSign, zExp, zSig0 ); | |
946 | } | |
947 | } | |
a2f2d288 PM |
948 | if (zSig1) { |
949 | status->float_exception_flags |= float_flag_inexact; | |
950 | } | |
158142c2 FB |
951 | if ( increment ) { |
952 | ++zSig0; | |
953 | if ( zSig0 == 0 ) { | |
954 | ++zExp; | |
955 | zSig0 = LIT64( 0x8000000000000000 ); | |
956 | } | |
957 | else { | |
bb98fe42 | 958 | zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
959 | } |
960 | } | |
961 | else { | |
962 | if ( zSig0 == 0 ) zExp = 0; | |
963 | } | |
964 | return packFloatx80( zSign, zExp, zSig0 ); | |
965 | ||
966 | } | |
967 | ||
968 | /*---------------------------------------------------------------------------- | |
969 | | Takes an abstract floating-point value having sign `zSign', exponent | |
970 | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | |
971 | | and returns the proper extended double-precision floating-point value | |
972 | | corresponding to the abstract input. This routine is just like | |
973 | | `roundAndPackFloatx80' except that the input significand does not have to be | |
974 | | normalized. | |
975 | *----------------------------------------------------------------------------*/ | |
976 | ||
e5a41ffa PM |
977 | static floatx80 normalizeRoundAndPackFloatx80(int8 roundingPrecision, |
978 | flag zSign, int32 zExp, | |
979 | uint64_t zSig0, uint64_t zSig1, | |
980 | float_status *status) | |
158142c2 FB |
981 | { |
982 | int8 shiftCount; | |
983 | ||
984 | if ( zSig0 == 0 ) { | |
985 | zSig0 = zSig1; | |
986 | zSig1 = 0; | |
987 | zExp -= 64; | |
988 | } | |
989 | shiftCount = countLeadingZeros64( zSig0 ); | |
990 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
991 | zExp -= shiftCount; | |
ff32e16e PM |
992 | return roundAndPackFloatx80(roundingPrecision, zSign, zExp, |
993 | zSig0, zSig1, status); | |
158142c2 FB |
994 | |
995 | } | |
996 | ||
158142c2 FB |
997 | /*---------------------------------------------------------------------------- |
998 | | Returns the least-significant 64 fraction bits of the quadruple-precision | |
999 | | floating-point value `a'. | |
1000 | *----------------------------------------------------------------------------*/ | |
1001 | ||
a49db98d | 1002 | static inline uint64_t extractFloat128Frac1( float128 a ) |
158142c2 FB |
1003 | { |
1004 | ||
1005 | return a.low; | |
1006 | ||
1007 | } | |
1008 | ||
1009 | /*---------------------------------------------------------------------------- | |
1010 | | Returns the most-significant 48 fraction bits of the quadruple-precision | |
1011 | | floating-point value `a'. | |
1012 | *----------------------------------------------------------------------------*/ | |
1013 | ||
a49db98d | 1014 | static inline uint64_t extractFloat128Frac0( float128 a ) |
158142c2 FB |
1015 | { |
1016 | ||
1017 | return a.high & LIT64( 0x0000FFFFFFFFFFFF ); | |
1018 | ||
1019 | } | |
1020 | ||
1021 | /*---------------------------------------------------------------------------- | |
1022 | | Returns the exponent bits of the quadruple-precision floating-point value | |
1023 | | `a'. | |
1024 | *----------------------------------------------------------------------------*/ | |
1025 | ||
a49db98d | 1026 | static inline int32 extractFloat128Exp( float128 a ) |
158142c2 FB |
1027 | { |
1028 | ||
1029 | return ( a.high>>48 ) & 0x7FFF; | |
1030 | ||
1031 | } | |
1032 | ||
1033 | /*---------------------------------------------------------------------------- | |
1034 | | Returns the sign bit of the quadruple-precision floating-point value `a'. | |
1035 | *----------------------------------------------------------------------------*/ | |
1036 | ||
a49db98d | 1037 | static inline flag extractFloat128Sign( float128 a ) |
158142c2 FB |
1038 | { |
1039 | ||
1040 | return a.high>>63; | |
1041 | ||
1042 | } | |
1043 | ||
1044 | /*---------------------------------------------------------------------------- | |
1045 | | Normalizes the subnormal quadruple-precision floating-point value | |
1046 | | represented by the denormalized significand formed by the concatenation of | |
1047 | | `aSig0' and `aSig1'. The normalized exponent is stored at the location | |
1048 | | pointed to by `zExpPtr'. The most significant 49 bits of the normalized | |
1049 | | significand are stored at the location pointed to by `zSig0Ptr', and the | |
1050 | | least significant 64 bits of the normalized significand are stored at the | |
1051 | | location pointed to by `zSig1Ptr'. | |
1052 | *----------------------------------------------------------------------------*/ | |
1053 | ||
1054 | static void | |
1055 | normalizeFloat128Subnormal( | |
bb98fe42 AF |
1056 | uint64_t aSig0, |
1057 | uint64_t aSig1, | |
158142c2 | 1058 | int32 *zExpPtr, |
bb98fe42 AF |
1059 | uint64_t *zSig0Ptr, |
1060 | uint64_t *zSig1Ptr | |
158142c2 FB |
1061 | ) |
1062 | { | |
1063 | int8 shiftCount; | |
1064 | ||
1065 | if ( aSig0 == 0 ) { | |
1066 | shiftCount = countLeadingZeros64( aSig1 ) - 15; | |
1067 | if ( shiftCount < 0 ) { | |
1068 | *zSig0Ptr = aSig1>>( - shiftCount ); | |
1069 | *zSig1Ptr = aSig1<<( shiftCount & 63 ); | |
1070 | } | |
1071 | else { | |
1072 | *zSig0Ptr = aSig1<<shiftCount; | |
1073 | *zSig1Ptr = 0; | |
1074 | } | |
1075 | *zExpPtr = - shiftCount - 63; | |
1076 | } | |
1077 | else { | |
1078 | shiftCount = countLeadingZeros64( aSig0 ) - 15; | |
1079 | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); | |
1080 | *zExpPtr = 1 - shiftCount; | |
1081 | } | |
1082 | ||
1083 | } | |
1084 | ||
1085 | /*---------------------------------------------------------------------------- | |
1086 | | Packs the sign `zSign', the exponent `zExp', and the significand formed | |
1087 | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision | |
1088 | | floating-point value, returning the result. After being shifted into the | |
1089 | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply | |
1090 | | added together to form the most significant 32 bits of the result. This | |
1091 | | means that any integer portion of `zSig0' will be added into the exponent. | |
1092 | | Since a properly normalized significand will have an integer portion equal | |
1093 | | to 1, the `zExp' input should be 1 less than the desired result exponent | |
1094 | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized | |
1095 | | significand. | |
1096 | *----------------------------------------------------------------------------*/ | |
1097 | ||
a49db98d | 1098 | static inline float128 |
bb98fe42 | 1099 | packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 ) |
158142c2 FB |
1100 | { |
1101 | float128 z; | |
1102 | ||
1103 | z.low = zSig1; | |
bb98fe42 | 1104 | z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; |
158142c2 FB |
1105 | return z; |
1106 | ||
1107 | } | |
1108 | ||
1109 | /*---------------------------------------------------------------------------- | |
1110 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1111 | | and extended significand formed by the concatenation of `zSig0', `zSig1', | |
1112 | | and `zSig2', and returns the proper quadruple-precision floating-point value | |
1113 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
1114 | | simply rounded and packed into the quadruple-precision format, with the | |
1115 | | inexact exception raised if the abstract input cannot be represented | |
1116 | | exactly. However, if the abstract value is too large, the overflow and | |
1117 | | inexact exceptions are raised and an infinity or maximal finite value is | |
1118 | | returned. If the abstract value is too small, the input value is rounded to | |
1119 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
1120 | | the abstract input cannot be represented exactly as a subnormal quadruple- | |
1121 | | precision floating-point number. | |
1122 | | The input significand must be normalized or smaller. If the input | |
1123 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
1124 | | returned is a subnormal number, and it must not require rounding. In the | |
1125 | | usual case that the input significand is normalized, `zExp' must be 1 less | |
1126 | | than the ``true'' floating-point exponent. The handling of underflow and | |
1127 | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1128 | *----------------------------------------------------------------------------*/ | |
1129 | ||
e5a41ffa PM |
1130 | static float128 roundAndPackFloat128(flag zSign, int32 zExp, |
1131 | uint64_t zSig0, uint64_t zSig1, | |
1132 | uint64_t zSig2, float_status *status) | |
158142c2 FB |
1133 | { |
1134 | int8 roundingMode; | |
1135 | flag roundNearestEven, increment, isTiny; | |
1136 | ||
a2f2d288 | 1137 | roundingMode = status->float_rounding_mode; |
158142c2 | 1138 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
1139 | switch (roundingMode) { |
1140 | case float_round_nearest_even: | |
f9288a76 | 1141 | case float_round_ties_away: |
dc355b76 PM |
1142 | increment = ((int64_t)zSig2 < 0); |
1143 | break; | |
1144 | case float_round_to_zero: | |
1145 | increment = 0; | |
1146 | break; | |
1147 | case float_round_up: | |
1148 | increment = !zSign && zSig2; | |
1149 | break; | |
1150 | case float_round_down: | |
1151 | increment = zSign && zSig2; | |
1152 | break; | |
1153 | default: | |
1154 | abort(); | |
158142c2 | 1155 | } |
bb98fe42 | 1156 | if ( 0x7FFD <= (uint32_t) zExp ) { |
158142c2 FB |
1157 | if ( ( 0x7FFD < zExp ) |
1158 | || ( ( zExp == 0x7FFD ) | |
1159 | && eq128( | |
1160 | LIT64( 0x0001FFFFFFFFFFFF ), | |
1161 | LIT64( 0xFFFFFFFFFFFFFFFF ), | |
1162 | zSig0, | |
1163 | zSig1 | |
1164 | ) | |
1165 | && increment | |
1166 | ) | |
1167 | ) { | |
ff32e16e | 1168 | float_raise(float_flag_overflow | float_flag_inexact, status); |
158142c2 FB |
1169 | if ( ( roundingMode == float_round_to_zero ) |
1170 | || ( zSign && ( roundingMode == float_round_up ) ) | |
1171 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
1172 | ) { | |
1173 | return | |
1174 | packFloat128( | |
1175 | zSign, | |
1176 | 0x7FFE, | |
1177 | LIT64( 0x0000FFFFFFFFFFFF ), | |
1178 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
1179 | ); | |
1180 | } | |
1181 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
1182 | } | |
1183 | if ( zExp < 0 ) { | |
a2f2d288 | 1184 | if (status->flush_to_zero) { |
ff32e16e | 1185 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
1186 | return packFloat128(zSign, 0, 0, 0); |
1187 | } | |
158142c2 | 1188 | isTiny = |
a2f2d288 PM |
1189 | (status->float_detect_tininess |
1190 | == float_tininess_before_rounding) | |
158142c2 FB |
1191 | || ( zExp < -1 ) |
1192 | || ! increment | |
1193 | || lt128( | |
1194 | zSig0, | |
1195 | zSig1, | |
1196 | LIT64( 0x0001FFFFFFFFFFFF ), | |
1197 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
1198 | ); | |
1199 | shift128ExtraRightJamming( | |
1200 | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); | |
1201 | zExp = 0; | |
ff32e16e PM |
1202 | if (isTiny && zSig2) { |
1203 | float_raise(float_flag_underflow, status); | |
1204 | } | |
dc355b76 PM |
1205 | switch (roundingMode) { |
1206 | case float_round_nearest_even: | |
f9288a76 | 1207 | case float_round_ties_away: |
dc355b76 PM |
1208 | increment = ((int64_t)zSig2 < 0); |
1209 | break; | |
1210 | case float_round_to_zero: | |
1211 | increment = 0; | |
1212 | break; | |
1213 | case float_round_up: | |
1214 | increment = !zSign && zSig2; | |
1215 | break; | |
1216 | case float_round_down: | |
1217 | increment = zSign && zSig2; | |
1218 | break; | |
1219 | default: | |
1220 | abort(); | |
158142c2 FB |
1221 | } |
1222 | } | |
1223 | } | |
a2f2d288 PM |
1224 | if (zSig2) { |
1225 | status->float_exception_flags |= float_flag_inexact; | |
1226 | } | |
158142c2 FB |
1227 | if ( increment ) { |
1228 | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); | |
1229 | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); | |
1230 | } | |
1231 | else { | |
1232 | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; | |
1233 | } | |
1234 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1235 | ||
1236 | } | |
1237 | ||
1238 | /*---------------------------------------------------------------------------- | |
1239 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1240 | | and significand formed by the concatenation of `zSig0' and `zSig1', and | |
1241 | | returns the proper quadruple-precision floating-point value corresponding | |
1242 | | to the abstract input. This routine is just like `roundAndPackFloat128' | |
1243 | | except that the input significand has fewer bits and does not have to be | |
1244 | | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
1245 | | point exponent. | |
1246 | *----------------------------------------------------------------------------*/ | |
1247 | ||
e5a41ffa PM |
1248 | static float128 normalizeRoundAndPackFloat128(flag zSign, int32 zExp, |
1249 | uint64_t zSig0, uint64_t zSig1, | |
1250 | float_status *status) | |
158142c2 FB |
1251 | { |
1252 | int8 shiftCount; | |
bb98fe42 | 1253 | uint64_t zSig2; |
158142c2 FB |
1254 | |
1255 | if ( zSig0 == 0 ) { | |
1256 | zSig0 = zSig1; | |
1257 | zSig1 = 0; | |
1258 | zExp -= 64; | |
1259 | } | |
1260 | shiftCount = countLeadingZeros64( zSig0 ) - 15; | |
1261 | if ( 0 <= shiftCount ) { | |
1262 | zSig2 = 0; | |
1263 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1264 | } | |
1265 | else { | |
1266 | shift128ExtraRightJamming( | |
1267 | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); | |
1268 | } | |
1269 | zExp -= shiftCount; | |
ff32e16e | 1270 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
1271 | |
1272 | } | |
1273 | ||
158142c2 FB |
1274 | /*---------------------------------------------------------------------------- |
1275 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1276 | | to the single-precision floating-point format. The conversion is performed | |
1277 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1278 | *----------------------------------------------------------------------------*/ | |
1279 | ||
e5a41ffa | 1280 | float32 int32_to_float32(int32_t a, float_status *status) |
158142c2 FB |
1281 | { |
1282 | flag zSign; | |
1283 | ||
f090c9d4 | 1284 | if ( a == 0 ) return float32_zero; |
bb98fe42 | 1285 | if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); |
158142c2 | 1286 | zSign = ( a < 0 ); |
ff32e16e | 1287 | return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status); |
158142c2 FB |
1288 | } |
1289 | ||
1290 | /*---------------------------------------------------------------------------- | |
1291 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1292 | | to the double-precision floating-point format. The conversion is performed | |
1293 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1294 | *----------------------------------------------------------------------------*/ | |
1295 | ||
e5a41ffa | 1296 | float64 int32_to_float64(int32_t a, float_status *status) |
158142c2 FB |
1297 | { |
1298 | flag zSign; | |
1299 | uint32 absA; | |
1300 | int8 shiftCount; | |
bb98fe42 | 1301 | uint64_t zSig; |
158142c2 | 1302 | |
f090c9d4 | 1303 | if ( a == 0 ) return float64_zero; |
158142c2 FB |
1304 | zSign = ( a < 0 ); |
1305 | absA = zSign ? - a : a; | |
1306 | shiftCount = countLeadingZeros32( absA ) + 21; | |
1307 | zSig = absA; | |
1308 | return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); | |
1309 | ||
1310 | } | |
1311 | ||
158142c2 FB |
1312 | /*---------------------------------------------------------------------------- |
1313 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1314 | | to the extended double-precision floating-point format. The conversion | |
1315 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1316 | | Arithmetic. | |
1317 | *----------------------------------------------------------------------------*/ | |
1318 | ||
e5a41ffa | 1319 | floatx80 int32_to_floatx80(int32_t a, float_status *status) |
158142c2 FB |
1320 | { |
1321 | flag zSign; | |
1322 | uint32 absA; | |
1323 | int8 shiftCount; | |
bb98fe42 | 1324 | uint64_t zSig; |
158142c2 FB |
1325 | |
1326 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
1327 | zSign = ( a < 0 ); | |
1328 | absA = zSign ? - a : a; | |
1329 | shiftCount = countLeadingZeros32( absA ) + 32; | |
1330 | zSig = absA; | |
1331 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | |
1332 | ||
1333 | } | |
1334 | ||
158142c2 FB |
1335 | /*---------------------------------------------------------------------------- |
1336 | | Returns the result of converting the 32-bit two's complement integer `a' to | |
1337 | | the quadruple-precision floating-point format. The conversion is performed | |
1338 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1339 | *----------------------------------------------------------------------------*/ | |
1340 | ||
e5a41ffa | 1341 | float128 int32_to_float128(int32_t a, float_status *status) |
158142c2 FB |
1342 | { |
1343 | flag zSign; | |
1344 | uint32 absA; | |
1345 | int8 shiftCount; | |
bb98fe42 | 1346 | uint64_t zSig0; |
158142c2 FB |
1347 | |
1348 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
1349 | zSign = ( a < 0 ); | |
1350 | absA = zSign ? - a : a; | |
1351 | shiftCount = countLeadingZeros32( absA ) + 17; | |
1352 | zSig0 = absA; | |
1353 | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); | |
1354 | ||
1355 | } | |
1356 | ||
158142c2 FB |
1357 | /*---------------------------------------------------------------------------- |
1358 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1359 | | to the single-precision floating-point format. The conversion is performed | |
1360 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1361 | *----------------------------------------------------------------------------*/ | |
1362 | ||
e5a41ffa | 1363 | float32 int64_to_float32(int64_t a, float_status *status) |
158142c2 FB |
1364 | { |
1365 | flag zSign; | |
1366 | uint64 absA; | |
1367 | int8 shiftCount; | |
1368 | ||
f090c9d4 | 1369 | if ( a == 0 ) return float32_zero; |
158142c2 FB |
1370 | zSign = ( a < 0 ); |
1371 | absA = zSign ? - a : a; | |
1372 | shiftCount = countLeadingZeros64( absA ) - 40; | |
1373 | if ( 0 <= shiftCount ) { | |
1374 | return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); | |
1375 | } | |
1376 | else { | |
1377 | shiftCount += 7; | |
1378 | if ( shiftCount < 0 ) { | |
1379 | shift64RightJamming( absA, - shiftCount, &absA ); | |
1380 | } | |
1381 | else { | |
1382 | absA <<= shiftCount; | |
1383 | } | |
ff32e16e | 1384 | return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status); |
158142c2 FB |
1385 | } |
1386 | ||
1387 | } | |
1388 | ||
1389 | /*---------------------------------------------------------------------------- | |
1390 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1391 | | to the double-precision floating-point format. The conversion is performed | |
1392 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1393 | *----------------------------------------------------------------------------*/ | |
1394 | ||
e5a41ffa | 1395 | float64 int64_to_float64(int64_t a, float_status *status) |
158142c2 FB |
1396 | { |
1397 | flag zSign; | |
1398 | ||
f090c9d4 | 1399 | if ( a == 0 ) return float64_zero; |
bb98fe42 | 1400 | if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) { |
158142c2 FB |
1401 | return packFloat64( 1, 0x43E, 0 ); |
1402 | } | |
1403 | zSign = ( a < 0 ); | |
ff32e16e | 1404 | return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status); |
158142c2 FB |
1405 | } |
1406 | ||
158142c2 FB |
1407 | /*---------------------------------------------------------------------------- |
1408 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1409 | | to the extended double-precision floating-point format. The conversion | |
1410 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1411 | | Arithmetic. | |
1412 | *----------------------------------------------------------------------------*/ | |
1413 | ||
e5a41ffa | 1414 | floatx80 int64_to_floatx80(int64_t a, float_status *status) |
158142c2 FB |
1415 | { |
1416 | flag zSign; | |
1417 | uint64 absA; | |
1418 | int8 shiftCount; | |
1419 | ||
1420 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
1421 | zSign = ( a < 0 ); | |
1422 | absA = zSign ? - a : a; | |
1423 | shiftCount = countLeadingZeros64( absA ); | |
1424 | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); | |
1425 | ||
1426 | } | |
1427 | ||
158142c2 FB |
1428 | /*---------------------------------------------------------------------------- |
1429 | | Returns the result of converting the 64-bit two's complement integer `a' to | |
1430 | | the quadruple-precision floating-point format. The conversion is performed | |
1431 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1432 | *----------------------------------------------------------------------------*/ | |
1433 | ||
e5a41ffa | 1434 | float128 int64_to_float128(int64_t a, float_status *status) |
158142c2 FB |
1435 | { |
1436 | flag zSign; | |
1437 | uint64 absA; | |
1438 | int8 shiftCount; | |
1439 | int32 zExp; | |
bb98fe42 | 1440 | uint64_t zSig0, zSig1; |
158142c2 FB |
1441 | |
1442 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
1443 | zSign = ( a < 0 ); | |
1444 | absA = zSign ? - a : a; | |
1445 | shiftCount = countLeadingZeros64( absA ) + 49; | |
1446 | zExp = 0x406E - shiftCount; | |
1447 | if ( 64 <= shiftCount ) { | |
1448 | zSig1 = 0; | |
1449 | zSig0 = absA; | |
1450 | shiftCount -= 64; | |
1451 | } | |
1452 | else { | |
1453 | zSig1 = absA; | |
1454 | zSig0 = 0; | |
1455 | } | |
1456 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1457 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1458 | ||
1459 | } | |
1460 | ||
6bb8e0f1 PM |
1461 | /*---------------------------------------------------------------------------- |
1462 | | Returns the result of converting the 64-bit unsigned integer `a' | |
1463 | | to the single-precision floating-point format. The conversion is performed | |
1464 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1465 | *----------------------------------------------------------------------------*/ | |
1466 | ||
e5a41ffa | 1467 | float32 uint64_to_float32(uint64_t a, float_status *status) |
6bb8e0f1 PM |
1468 | { |
1469 | int shiftcount; | |
1470 | ||
1471 | if (a == 0) { | |
1472 | return float32_zero; | |
1473 | } | |
1474 | ||
1475 | /* Determine (left) shift needed to put first set bit into bit posn 23 | |
1476 | * (since packFloat32() expects the binary point between bits 23 and 22); | |
1477 | * this is the fast case for smallish numbers. | |
1478 | */ | |
1479 | shiftcount = countLeadingZeros64(a) - 40; | |
1480 | if (shiftcount >= 0) { | |
1481 | return packFloat32(0, 0x95 - shiftcount, a << shiftcount); | |
1482 | } | |
1483 | /* Otherwise we need to do a round-and-pack. roundAndPackFloat32() | |
1484 | * expects the binary point between bits 30 and 29, hence the + 7. | |
1485 | */ | |
1486 | shiftcount += 7; | |
1487 | if (shiftcount < 0) { | |
1488 | shift64RightJamming(a, -shiftcount, &a); | |
1489 | } else { | |
1490 | a <<= shiftcount; | |
1491 | } | |
1492 | ||
ff32e16e | 1493 | return roundAndPackFloat32(0, 0x9c - shiftcount, a, status); |
6bb8e0f1 PM |
1494 | } |
1495 | ||
1496 | /*---------------------------------------------------------------------------- | |
1497 | | Returns the result of converting the 64-bit unsigned integer `a' | |
1498 | | to the double-precision floating-point format. The conversion is performed | |
1499 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1500 | *----------------------------------------------------------------------------*/ | |
1501 | ||
e5a41ffa | 1502 | float64 uint64_to_float64(uint64_t a, float_status *status) |
6bb8e0f1 PM |
1503 | { |
1504 | int exp = 0x43C; | |
1505 | int shiftcount; | |
1506 | ||
1507 | if (a == 0) { | |
1508 | return float64_zero; | |
1509 | } | |
1510 | ||
1511 | shiftcount = countLeadingZeros64(a) - 1; | |
1512 | if (shiftcount < 0) { | |
1513 | shift64RightJamming(a, -shiftcount, &a); | |
1514 | } else { | |
1515 | a <<= shiftcount; | |
1516 | } | |
ff32e16e | 1517 | return roundAndPackFloat64(0, exp - shiftcount, a, status); |
6bb8e0f1 PM |
1518 | } |
1519 | ||
1520 | /*---------------------------------------------------------------------------- | |
1521 | | Returns the result of converting the 64-bit unsigned integer `a' | |
1522 | | to the quadruple-precision floating-point format. The conversion is performed | |
1523 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1524 | *----------------------------------------------------------------------------*/ | |
1525 | ||
e5a41ffa | 1526 | float128 uint64_to_float128(uint64_t a, float_status *status) |
1e397ead RH |
1527 | { |
1528 | if (a == 0) { | |
1529 | return float128_zero; | |
1530 | } | |
ff32e16e | 1531 | return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status); |
1e397ead RH |
1532 | } |
1533 | ||
158142c2 FB |
1534 | /*---------------------------------------------------------------------------- |
1535 | | Returns the result of converting the single-precision floating-point value | |
1536 | | `a' to the 32-bit two's complement integer format. The conversion is | |
1537 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1538 | | Arithmetic---which means in particular that the conversion is rounded | |
1539 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1540 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
1541 | | largest integer with the same sign as `a' is returned. | |
1542 | *----------------------------------------------------------------------------*/ | |
1543 | ||
e5a41ffa | 1544 | int32 float32_to_int32(float32 a, float_status *status) |
158142c2 FB |
1545 | { |
1546 | flag aSign; | |
94a49d86 | 1547 | int_fast16_t aExp, shiftCount; |
bb98fe42 AF |
1548 | uint32_t aSig; |
1549 | uint64_t aSig64; | |
158142c2 | 1550 | |
ff32e16e | 1551 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1552 | aSig = extractFloat32Frac( a ); |
1553 | aExp = extractFloat32Exp( a ); | |
1554 | aSign = extractFloat32Sign( a ); | |
1555 | if ( ( aExp == 0xFF ) && aSig ) aSign = 0; | |
1556 | if ( aExp ) aSig |= 0x00800000; | |
1557 | shiftCount = 0xAF - aExp; | |
1558 | aSig64 = aSig; | |
1559 | aSig64 <<= 32; | |
1560 | if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); | |
ff32e16e | 1561 | return roundAndPackInt32(aSign, aSig64, status); |
158142c2 FB |
1562 | |
1563 | } | |
1564 | ||
1565 | /*---------------------------------------------------------------------------- | |
1566 | | Returns the result of converting the single-precision floating-point value | |
1567 | | `a' to the 32-bit two's complement integer format. The conversion is | |
1568 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1569 | | Arithmetic, except that the conversion is always rounded toward zero. | |
1570 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
1571 | | the conversion overflows, the largest integer with the same sign as `a' is | |
1572 | | returned. | |
1573 | *----------------------------------------------------------------------------*/ | |
1574 | ||
e5a41ffa | 1575 | int32 float32_to_int32_round_to_zero(float32 a, float_status *status) |
158142c2 FB |
1576 | { |
1577 | flag aSign; | |
94a49d86 | 1578 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 1579 | uint32_t aSig; |
b3a6a2e0 | 1580 | int32_t z; |
ff32e16e | 1581 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1582 | |
1583 | aSig = extractFloat32Frac( a ); | |
1584 | aExp = extractFloat32Exp( a ); | |
1585 | aSign = extractFloat32Sign( a ); | |
1586 | shiftCount = aExp - 0x9E; | |
1587 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 1588 | if ( float32_val(a) != 0xCF000000 ) { |
ff32e16e | 1589 | float_raise(float_flag_invalid, status); |
158142c2 FB |
1590 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; |
1591 | } | |
bb98fe42 | 1592 | return (int32_t) 0x80000000; |
158142c2 FB |
1593 | } |
1594 | else if ( aExp <= 0x7E ) { | |
a2f2d288 PM |
1595 | if (aExp | aSig) { |
1596 | status->float_exception_flags |= float_flag_inexact; | |
1597 | } | |
158142c2 FB |
1598 | return 0; |
1599 | } | |
1600 | aSig = ( aSig | 0x00800000 )<<8; | |
1601 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 1602 | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { |
a2f2d288 | 1603 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
1604 | } |
1605 | if ( aSign ) z = - z; | |
1606 | return z; | |
1607 | ||
1608 | } | |
1609 | ||
cbcef455 PM |
1610 | /*---------------------------------------------------------------------------- |
1611 | | Returns the result of converting the single-precision floating-point value | |
1612 | | `a' to the 16-bit two's complement integer format. The conversion is | |
1613 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1614 | | Arithmetic, except that the conversion is always rounded toward zero. | |
1615 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
1616 | | the conversion overflows, the largest integer with the same sign as `a' is | |
1617 | | returned. | |
1618 | *----------------------------------------------------------------------------*/ | |
1619 | ||
e5a41ffa | 1620 | int_fast16_t float32_to_int16_round_to_zero(float32 a, float_status *status) |
cbcef455 PM |
1621 | { |
1622 | flag aSign; | |
94a49d86 | 1623 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 1624 | uint32_t aSig; |
cbcef455 PM |
1625 | int32 z; |
1626 | ||
1627 | aSig = extractFloat32Frac( a ); | |
1628 | aExp = extractFloat32Exp( a ); | |
1629 | aSign = extractFloat32Sign( a ); | |
1630 | shiftCount = aExp - 0x8E; | |
1631 | if ( 0 <= shiftCount ) { | |
1632 | if ( float32_val(a) != 0xC7000000 ) { | |
ff32e16e | 1633 | float_raise(float_flag_invalid, status); |
cbcef455 PM |
1634 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { |
1635 | return 0x7FFF; | |
1636 | } | |
1637 | } | |
bb98fe42 | 1638 | return (int32_t) 0xffff8000; |
cbcef455 PM |
1639 | } |
1640 | else if ( aExp <= 0x7E ) { | |
1641 | if ( aExp | aSig ) { | |
a2f2d288 | 1642 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
1643 | } |
1644 | return 0; | |
1645 | } | |
1646 | shiftCount -= 0x10; | |
1647 | aSig = ( aSig | 0x00800000 )<<8; | |
1648 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 1649 | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { |
a2f2d288 | 1650 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
1651 | } |
1652 | if ( aSign ) { | |
1653 | z = - z; | |
1654 | } | |
1655 | return z; | |
1656 | ||
1657 | } | |
1658 | ||
158142c2 FB |
1659 | /*---------------------------------------------------------------------------- |
1660 | | Returns the result of converting the single-precision floating-point value | |
1661 | | `a' to the 64-bit two's complement integer format. The conversion is | |
1662 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1663 | | Arithmetic---which means in particular that the conversion is rounded | |
1664 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1665 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
1666 | | largest integer with the same sign as `a' is returned. | |
1667 | *----------------------------------------------------------------------------*/ | |
1668 | ||
e5a41ffa | 1669 | int64 float32_to_int64(float32 a, float_status *status) |
158142c2 FB |
1670 | { |
1671 | flag aSign; | |
94a49d86 | 1672 | int_fast16_t aExp, shiftCount; |
bb98fe42 AF |
1673 | uint32_t aSig; |
1674 | uint64_t aSig64, aSigExtra; | |
ff32e16e | 1675 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1676 | |
1677 | aSig = extractFloat32Frac( a ); | |
1678 | aExp = extractFloat32Exp( a ); | |
1679 | aSign = extractFloat32Sign( a ); | |
1680 | shiftCount = 0xBE - aExp; | |
1681 | if ( shiftCount < 0 ) { | |
ff32e16e | 1682 | float_raise(float_flag_invalid, status); |
158142c2 FB |
1683 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { |
1684 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
1685 | } | |
bb98fe42 | 1686 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
1687 | } |
1688 | if ( aExp ) aSig |= 0x00800000; | |
1689 | aSig64 = aSig; | |
1690 | aSig64 <<= 40; | |
1691 | shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); | |
ff32e16e | 1692 | return roundAndPackInt64(aSign, aSig64, aSigExtra, status); |
158142c2 FB |
1693 | |
1694 | } | |
1695 | ||
2f18bbf9 TM |
1696 | /*---------------------------------------------------------------------------- |
1697 | | Returns the result of converting the single-precision floating-point value | |
1698 | | `a' to the 64-bit unsigned integer format. The conversion is | |
1699 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1700 | | Arithmetic---which means in particular that the conversion is rounded | |
1701 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1702 | | unsigned integer is returned. Otherwise, if the conversion overflows, the | |
1703 | | largest unsigned integer is returned. If the 'a' is negative, the result | |
1704 | | is rounded and zero is returned; values that do not round to zero will | |
1705 | | raise the inexact exception flag. | |
1706 | *----------------------------------------------------------------------------*/ | |
1707 | ||
e5a41ffa | 1708 | uint64 float32_to_uint64(float32 a, float_status *status) |
2f18bbf9 TM |
1709 | { |
1710 | flag aSign; | |
1711 | int_fast16_t aExp, shiftCount; | |
1712 | uint32_t aSig; | |
1713 | uint64_t aSig64, aSigExtra; | |
ff32e16e | 1714 | a = float32_squash_input_denormal(a, status); |
2f18bbf9 TM |
1715 | |
1716 | aSig = extractFloat32Frac(a); | |
1717 | aExp = extractFloat32Exp(a); | |
1718 | aSign = extractFloat32Sign(a); | |
1719 | if ((aSign) && (aExp > 126)) { | |
ff32e16e | 1720 | float_raise(float_flag_invalid, status); |
2f18bbf9 TM |
1721 | if (float32_is_any_nan(a)) { |
1722 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
1723 | } else { | |
1724 | return 0; | |
1725 | } | |
1726 | } | |
1727 | shiftCount = 0xBE - aExp; | |
1728 | if (aExp) { | |
1729 | aSig |= 0x00800000; | |
1730 | } | |
1731 | if (shiftCount < 0) { | |
ff32e16e | 1732 | float_raise(float_flag_invalid, status); |
2f18bbf9 TM |
1733 | return LIT64(0xFFFFFFFFFFFFFFFF); |
1734 | } | |
1735 | ||
1736 | aSig64 = aSig; | |
1737 | aSig64 <<= 40; | |
1738 | shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra); | |
ff32e16e | 1739 | return roundAndPackUint64(aSign, aSig64, aSigExtra, status); |
2f18bbf9 TM |
1740 | } |
1741 | ||
a13d4489 TM |
1742 | /*---------------------------------------------------------------------------- |
1743 | | Returns the result of converting the single-precision floating-point value | |
1744 | | `a' to the 64-bit unsigned integer format. The conversion is | |
1745 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1746 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
1747 | | `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the | |
1748 | | conversion overflows, the largest unsigned integer is returned. If the | |
1749 | | 'a' is negative, the result is rounded and zero is returned; values that do | |
1750 | | not round to zero will raise the inexact flag. | |
1751 | *----------------------------------------------------------------------------*/ | |
1752 | ||
e5a41ffa | 1753 | uint64 float32_to_uint64_round_to_zero(float32 a, float_status *status) |
a13d4489 | 1754 | { |
a2f2d288 | 1755 | signed char current_rounding_mode = status->float_rounding_mode; |
ff32e16e PM |
1756 | set_float_rounding_mode(float_round_to_zero, status); |
1757 | int64_t v = float32_to_uint64(a, status); | |
1758 | set_float_rounding_mode(current_rounding_mode, status); | |
a13d4489 TM |
1759 | return v; |
1760 | } | |
1761 | ||
158142c2 FB |
1762 | /*---------------------------------------------------------------------------- |
1763 | | Returns the result of converting the single-precision floating-point value | |
1764 | | `a' to the 64-bit two's complement integer format. The conversion is | |
1765 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1766 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
1767 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
1768 | | conversion overflows, the largest integer with the same sign as `a' is | |
1769 | | returned. | |
1770 | *----------------------------------------------------------------------------*/ | |
1771 | ||
e5a41ffa | 1772 | int64 float32_to_int64_round_to_zero(float32 a, float_status *status) |
158142c2 FB |
1773 | { |
1774 | flag aSign; | |
94a49d86 | 1775 | int_fast16_t aExp, shiftCount; |
bb98fe42 AF |
1776 | uint32_t aSig; |
1777 | uint64_t aSig64; | |
158142c2 | 1778 | int64 z; |
ff32e16e | 1779 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1780 | |
1781 | aSig = extractFloat32Frac( a ); | |
1782 | aExp = extractFloat32Exp( a ); | |
1783 | aSign = extractFloat32Sign( a ); | |
1784 | shiftCount = aExp - 0xBE; | |
1785 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 1786 | if ( float32_val(a) != 0xDF000000 ) { |
ff32e16e | 1787 | float_raise(float_flag_invalid, status); |
158142c2 FB |
1788 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { |
1789 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
1790 | } | |
1791 | } | |
bb98fe42 | 1792 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
1793 | } |
1794 | else if ( aExp <= 0x7E ) { | |
a2f2d288 PM |
1795 | if (aExp | aSig) { |
1796 | status->float_exception_flags |= float_flag_inexact; | |
1797 | } | |
158142c2 FB |
1798 | return 0; |
1799 | } | |
1800 | aSig64 = aSig | 0x00800000; | |
1801 | aSig64 <<= 40; | |
1802 | z = aSig64>>( - shiftCount ); | |
bb98fe42 | 1803 | if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 1804 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
1805 | } |
1806 | if ( aSign ) z = - z; | |
1807 | return z; | |
1808 | ||
1809 | } | |
1810 | ||
1811 | /*---------------------------------------------------------------------------- | |
1812 | | Returns the result of converting the single-precision floating-point value | |
1813 | | `a' to the double-precision floating-point format. The conversion is | |
1814 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1815 | | Arithmetic. | |
1816 | *----------------------------------------------------------------------------*/ | |
1817 | ||
e5a41ffa | 1818 | float64 float32_to_float64(float32 a, float_status *status) |
158142c2 FB |
1819 | { |
1820 | flag aSign; | |
94a49d86 | 1821 | int_fast16_t aExp; |
bb98fe42 | 1822 | uint32_t aSig; |
ff32e16e | 1823 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1824 | |
1825 | aSig = extractFloat32Frac( a ); | |
1826 | aExp = extractFloat32Exp( a ); | |
1827 | aSign = extractFloat32Sign( a ); | |
1828 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
1829 | if (aSig) { |
1830 | return commonNaNToFloat64(float32ToCommonNaN(a, status), status); | |
1831 | } | |
158142c2 FB |
1832 | return packFloat64( aSign, 0x7FF, 0 ); |
1833 | } | |
1834 | if ( aExp == 0 ) { | |
1835 | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | |
1836 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1837 | --aExp; | |
1838 | } | |
bb98fe42 | 1839 | return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 ); |
158142c2 FB |
1840 | |
1841 | } | |
1842 | ||
158142c2 FB |
1843 | /*---------------------------------------------------------------------------- |
1844 | | Returns the result of converting the single-precision floating-point value | |
1845 | | `a' to the extended double-precision floating-point format. The conversion | |
1846 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1847 | | Arithmetic. | |
1848 | *----------------------------------------------------------------------------*/ | |
1849 | ||
e5a41ffa | 1850 | floatx80 float32_to_floatx80(float32 a, float_status *status) |
158142c2 FB |
1851 | { |
1852 | flag aSign; | |
94a49d86 | 1853 | int_fast16_t aExp; |
bb98fe42 | 1854 | uint32_t aSig; |
158142c2 | 1855 | |
ff32e16e | 1856 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1857 | aSig = extractFloat32Frac( a ); |
1858 | aExp = extractFloat32Exp( a ); | |
1859 | aSign = extractFloat32Sign( a ); | |
1860 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
1861 | if (aSig) { |
1862 | return commonNaNToFloatx80(float32ToCommonNaN(a, status), status); | |
1863 | } | |
158142c2 FB |
1864 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
1865 | } | |
1866 | if ( aExp == 0 ) { | |
1867 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
1868 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1869 | } | |
1870 | aSig |= 0x00800000; | |
bb98fe42 | 1871 | return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); |
158142c2 FB |
1872 | |
1873 | } | |
1874 | ||
158142c2 FB |
1875 | /*---------------------------------------------------------------------------- |
1876 | | Returns the result of converting the single-precision floating-point value | |
1877 | | `a' to the double-precision floating-point format. The conversion is | |
1878 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1879 | | Arithmetic. | |
1880 | *----------------------------------------------------------------------------*/ | |
1881 | ||
e5a41ffa | 1882 | float128 float32_to_float128(float32 a, float_status *status) |
158142c2 FB |
1883 | { |
1884 | flag aSign; | |
94a49d86 | 1885 | int_fast16_t aExp; |
bb98fe42 | 1886 | uint32_t aSig; |
158142c2 | 1887 | |
ff32e16e | 1888 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1889 | aSig = extractFloat32Frac( a ); |
1890 | aExp = extractFloat32Exp( a ); | |
1891 | aSign = extractFloat32Sign( a ); | |
1892 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
1893 | if (aSig) { |
1894 | return commonNaNToFloat128(float32ToCommonNaN(a, status), status); | |
1895 | } | |
158142c2 FB |
1896 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
1897 | } | |
1898 | if ( aExp == 0 ) { | |
1899 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
1900 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1901 | --aExp; | |
1902 | } | |
bb98fe42 | 1903 | return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); |
158142c2 FB |
1904 | |
1905 | } | |
1906 | ||
158142c2 FB |
1907 | /*---------------------------------------------------------------------------- |
1908 | | Rounds the single-precision floating-point value `a' to an integer, and | |
1909 | | returns the result as a single-precision floating-point value. The | |
1910 | | operation is performed according to the IEC/IEEE Standard for Binary | |
1911 | | Floating-Point Arithmetic. | |
1912 | *----------------------------------------------------------------------------*/ | |
1913 | ||
e5a41ffa | 1914 | float32 float32_round_to_int(float32 a, float_status *status) |
158142c2 FB |
1915 | { |
1916 | flag aSign; | |
94a49d86 | 1917 | int_fast16_t aExp; |
bb98fe42 | 1918 | uint32_t lastBitMask, roundBitsMask; |
bb98fe42 | 1919 | uint32_t z; |
ff32e16e | 1920 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
1921 | |
1922 | aExp = extractFloat32Exp( a ); | |
1923 | if ( 0x96 <= aExp ) { | |
1924 | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | |
ff32e16e | 1925 | return propagateFloat32NaN(a, a, status); |
158142c2 FB |
1926 | } |
1927 | return a; | |
1928 | } | |
1929 | if ( aExp <= 0x7E ) { | |
bb98fe42 | 1930 | if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a; |
a2f2d288 | 1931 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 1932 | aSign = extractFloat32Sign( a ); |
a2f2d288 | 1933 | switch (status->float_rounding_mode) { |
158142c2 FB |
1934 | case float_round_nearest_even: |
1935 | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | |
1936 | return packFloat32( aSign, 0x7F, 0 ); | |
1937 | } | |
1938 | break; | |
f9288a76 PM |
1939 | case float_round_ties_away: |
1940 | if (aExp == 0x7E) { | |
1941 | return packFloat32(aSign, 0x7F, 0); | |
1942 | } | |
1943 | break; | |
158142c2 | 1944 | case float_round_down: |
f090c9d4 | 1945 | return make_float32(aSign ? 0xBF800000 : 0); |
158142c2 | 1946 | case float_round_up: |
f090c9d4 | 1947 | return make_float32(aSign ? 0x80000000 : 0x3F800000); |
158142c2 FB |
1948 | } |
1949 | return packFloat32( aSign, 0, 0 ); | |
1950 | } | |
1951 | lastBitMask = 1; | |
1952 | lastBitMask <<= 0x96 - aExp; | |
1953 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 1954 | z = float32_val(a); |
a2f2d288 | 1955 | switch (status->float_rounding_mode) { |
dc355b76 | 1956 | case float_round_nearest_even: |
158142c2 | 1957 | z += lastBitMask>>1; |
dc355b76 PM |
1958 | if ((z & roundBitsMask) == 0) { |
1959 | z &= ~lastBitMask; | |
1960 | } | |
1961 | break; | |
f9288a76 PM |
1962 | case float_round_ties_away: |
1963 | z += lastBitMask >> 1; | |
1964 | break; | |
dc355b76 PM |
1965 | case float_round_to_zero: |
1966 | break; | |
1967 | case float_round_up: | |
1968 | if (!extractFloat32Sign(make_float32(z))) { | |
1969 | z += roundBitsMask; | |
1970 | } | |
1971 | break; | |
1972 | case float_round_down: | |
1973 | if (extractFloat32Sign(make_float32(z))) { | |
158142c2 FB |
1974 | z += roundBitsMask; |
1975 | } | |
dc355b76 PM |
1976 | break; |
1977 | default: | |
1978 | abort(); | |
158142c2 FB |
1979 | } |
1980 | z &= ~ roundBitsMask; | |
a2f2d288 PM |
1981 | if (z != float32_val(a)) { |
1982 | status->float_exception_flags |= float_flag_inexact; | |
1983 | } | |
f090c9d4 | 1984 | return make_float32(z); |
158142c2 FB |
1985 | |
1986 | } | |
1987 | ||
1988 | /*---------------------------------------------------------------------------- | |
1989 | | Returns the result of adding the absolute values of the single-precision | |
1990 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
1991 | | before being returned. `zSign' is ignored if the result is a NaN. | |
1992 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
1993 | | Floating-Point Arithmetic. | |
1994 | *----------------------------------------------------------------------------*/ | |
1995 | ||
e5a41ffa PM |
1996 | static float32 addFloat32Sigs(float32 a, float32 b, flag zSign, |
1997 | float_status *status) | |
158142c2 | 1998 | { |
94a49d86 | 1999 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 2000 | uint32_t aSig, bSig, zSig; |
94a49d86 | 2001 | int_fast16_t expDiff; |
158142c2 FB |
2002 | |
2003 | aSig = extractFloat32Frac( a ); | |
2004 | aExp = extractFloat32Exp( a ); | |
2005 | bSig = extractFloat32Frac( b ); | |
2006 | bExp = extractFloat32Exp( b ); | |
2007 | expDiff = aExp - bExp; | |
2008 | aSig <<= 6; | |
2009 | bSig <<= 6; | |
2010 | if ( 0 < expDiff ) { | |
2011 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2012 | if (aSig) { |
2013 | return propagateFloat32NaN(a, b, status); | |
2014 | } | |
158142c2 FB |
2015 | return a; |
2016 | } | |
2017 | if ( bExp == 0 ) { | |
2018 | --expDiff; | |
2019 | } | |
2020 | else { | |
2021 | bSig |= 0x20000000; | |
2022 | } | |
2023 | shift32RightJamming( bSig, expDiff, &bSig ); | |
2024 | zExp = aExp; | |
2025 | } | |
2026 | else if ( expDiff < 0 ) { | |
2027 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2028 | if (bSig) { |
2029 | return propagateFloat32NaN(a, b, status); | |
2030 | } | |
158142c2 FB |
2031 | return packFloat32( zSign, 0xFF, 0 ); |
2032 | } | |
2033 | if ( aExp == 0 ) { | |
2034 | ++expDiff; | |
2035 | } | |
2036 | else { | |
2037 | aSig |= 0x20000000; | |
2038 | } | |
2039 | shift32RightJamming( aSig, - expDiff, &aSig ); | |
2040 | zExp = bExp; | |
2041 | } | |
2042 | else { | |
2043 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2044 | if (aSig | bSig) { |
2045 | return propagateFloat32NaN(a, b, status); | |
2046 | } | |
158142c2 FB |
2047 | return a; |
2048 | } | |
fe76d976 | 2049 | if ( aExp == 0 ) { |
a2f2d288 | 2050 | if (status->flush_to_zero) { |
e6afc87f | 2051 | if (aSig | bSig) { |
ff32e16e | 2052 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
2053 | } |
2054 | return packFloat32(zSign, 0, 0); | |
2055 | } | |
fe76d976 PB |
2056 | return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); |
2057 | } | |
158142c2 FB |
2058 | zSig = 0x40000000 + aSig + bSig; |
2059 | zExp = aExp; | |
2060 | goto roundAndPack; | |
2061 | } | |
2062 | aSig |= 0x20000000; | |
2063 | zSig = ( aSig + bSig )<<1; | |
2064 | --zExp; | |
bb98fe42 | 2065 | if ( (int32_t) zSig < 0 ) { |
158142c2 FB |
2066 | zSig = aSig + bSig; |
2067 | ++zExp; | |
2068 | } | |
2069 | roundAndPack: | |
ff32e16e | 2070 | return roundAndPackFloat32(zSign, zExp, zSig, status); |
158142c2 FB |
2071 | |
2072 | } | |
2073 | ||
2074 | /*---------------------------------------------------------------------------- | |
2075 | | Returns the result of subtracting the absolute values of the single- | |
2076 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
2077 | | difference is negated before being returned. `zSign' is ignored if the | |
2078 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
2079 | | Standard for Binary Floating-Point Arithmetic. | |
2080 | *----------------------------------------------------------------------------*/ | |
2081 | ||
e5a41ffa PM |
2082 | static float32 subFloat32Sigs(float32 a, float32 b, flag zSign, |
2083 | float_status *status) | |
158142c2 | 2084 | { |
94a49d86 | 2085 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 2086 | uint32_t aSig, bSig, zSig; |
94a49d86 | 2087 | int_fast16_t expDiff; |
158142c2 FB |
2088 | |
2089 | aSig = extractFloat32Frac( a ); | |
2090 | aExp = extractFloat32Exp( a ); | |
2091 | bSig = extractFloat32Frac( b ); | |
2092 | bExp = extractFloat32Exp( b ); | |
2093 | expDiff = aExp - bExp; | |
2094 | aSig <<= 7; | |
2095 | bSig <<= 7; | |
2096 | if ( 0 < expDiff ) goto aExpBigger; | |
2097 | if ( expDiff < 0 ) goto bExpBigger; | |
2098 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2099 | if (aSig | bSig) { |
2100 | return propagateFloat32NaN(a, b, status); | |
2101 | } | |
2102 | float_raise(float_flag_invalid, status); | |
158142c2 FB |
2103 | return float32_default_nan; |
2104 | } | |
2105 | if ( aExp == 0 ) { | |
2106 | aExp = 1; | |
2107 | bExp = 1; | |
2108 | } | |
2109 | if ( bSig < aSig ) goto aBigger; | |
2110 | if ( aSig < bSig ) goto bBigger; | |
a2f2d288 | 2111 | return packFloat32(status->float_rounding_mode == float_round_down, 0, 0); |
158142c2 FB |
2112 | bExpBigger: |
2113 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2114 | if (bSig) { |
2115 | return propagateFloat32NaN(a, b, status); | |
2116 | } | |
158142c2 FB |
2117 | return packFloat32( zSign ^ 1, 0xFF, 0 ); |
2118 | } | |
2119 | if ( aExp == 0 ) { | |
2120 | ++expDiff; | |
2121 | } | |
2122 | else { | |
2123 | aSig |= 0x40000000; | |
2124 | } | |
2125 | shift32RightJamming( aSig, - expDiff, &aSig ); | |
2126 | bSig |= 0x40000000; | |
2127 | bBigger: | |
2128 | zSig = bSig - aSig; | |
2129 | zExp = bExp; | |
2130 | zSign ^= 1; | |
2131 | goto normalizeRoundAndPack; | |
2132 | aExpBigger: | |
2133 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2134 | if (aSig) { |
2135 | return propagateFloat32NaN(a, b, status); | |
2136 | } | |
158142c2 FB |
2137 | return a; |
2138 | } | |
2139 | if ( bExp == 0 ) { | |
2140 | --expDiff; | |
2141 | } | |
2142 | else { | |
2143 | bSig |= 0x40000000; | |
2144 | } | |
2145 | shift32RightJamming( bSig, expDiff, &bSig ); | |
2146 | aSig |= 0x40000000; | |
2147 | aBigger: | |
2148 | zSig = aSig - bSig; | |
2149 | zExp = aExp; | |
2150 | normalizeRoundAndPack: | |
2151 | --zExp; | |
ff32e16e | 2152 | return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status); |
158142c2 FB |
2153 | |
2154 | } | |
2155 | ||
2156 | /*---------------------------------------------------------------------------- | |
2157 | | Returns the result of adding the single-precision floating-point values `a' | |
2158 | | and `b'. The operation is performed according to the IEC/IEEE Standard for | |
2159 | | Binary Floating-Point Arithmetic. | |
2160 | *----------------------------------------------------------------------------*/ | |
2161 | ||
e5a41ffa | 2162 | float32 float32_add(float32 a, float32 b, float_status *status) |
158142c2 FB |
2163 | { |
2164 | flag aSign, bSign; | |
ff32e16e PM |
2165 | a = float32_squash_input_denormal(a, status); |
2166 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2167 | |
2168 | aSign = extractFloat32Sign( a ); | |
2169 | bSign = extractFloat32Sign( b ); | |
2170 | if ( aSign == bSign ) { | |
ff32e16e | 2171 | return addFloat32Sigs(a, b, aSign, status); |
158142c2 FB |
2172 | } |
2173 | else { | |
ff32e16e | 2174 | return subFloat32Sigs(a, b, aSign, status); |
158142c2 FB |
2175 | } |
2176 | ||
2177 | } | |
2178 | ||
2179 | /*---------------------------------------------------------------------------- | |
2180 | | Returns the result of subtracting the single-precision floating-point values | |
2181 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
2182 | | for Binary Floating-Point Arithmetic. | |
2183 | *----------------------------------------------------------------------------*/ | |
2184 | ||
e5a41ffa | 2185 | float32 float32_sub(float32 a, float32 b, float_status *status) |
158142c2 FB |
2186 | { |
2187 | flag aSign, bSign; | |
ff32e16e PM |
2188 | a = float32_squash_input_denormal(a, status); |
2189 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2190 | |
2191 | aSign = extractFloat32Sign( a ); | |
2192 | bSign = extractFloat32Sign( b ); | |
2193 | if ( aSign == bSign ) { | |
ff32e16e | 2194 | return subFloat32Sigs(a, b, aSign, status); |
158142c2 FB |
2195 | } |
2196 | else { | |
ff32e16e | 2197 | return addFloat32Sigs(a, b, aSign, status); |
158142c2 FB |
2198 | } |
2199 | ||
2200 | } | |
2201 | ||
2202 | /*---------------------------------------------------------------------------- | |
2203 | | Returns the result of multiplying the single-precision floating-point values | |
2204 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
2205 | | for Binary Floating-Point Arithmetic. | |
2206 | *----------------------------------------------------------------------------*/ | |
2207 | ||
e5a41ffa | 2208 | float32 float32_mul(float32 a, float32 b, float_status *status) |
158142c2 FB |
2209 | { |
2210 | flag aSign, bSign, zSign; | |
94a49d86 | 2211 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 AF |
2212 | uint32_t aSig, bSig; |
2213 | uint64_t zSig64; | |
2214 | uint32_t zSig; | |
158142c2 | 2215 | |
ff32e16e PM |
2216 | a = float32_squash_input_denormal(a, status); |
2217 | b = float32_squash_input_denormal(b, status); | |
37d18660 | 2218 | |
158142c2 FB |
2219 | aSig = extractFloat32Frac( a ); |
2220 | aExp = extractFloat32Exp( a ); | |
2221 | aSign = extractFloat32Sign( a ); | |
2222 | bSig = extractFloat32Frac( b ); | |
2223 | bExp = extractFloat32Exp( b ); | |
2224 | bSign = extractFloat32Sign( b ); | |
2225 | zSign = aSign ^ bSign; | |
2226 | if ( aExp == 0xFF ) { | |
2227 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
ff32e16e | 2228 | return propagateFloat32NaN(a, b, status); |
158142c2 FB |
2229 | } |
2230 | if ( ( bExp | bSig ) == 0 ) { | |
ff32e16e | 2231 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2232 | return float32_default_nan; |
2233 | } | |
2234 | return packFloat32( zSign, 0xFF, 0 ); | |
2235 | } | |
2236 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2237 | if (bSig) { |
2238 | return propagateFloat32NaN(a, b, status); | |
2239 | } | |
158142c2 | 2240 | if ( ( aExp | aSig ) == 0 ) { |
ff32e16e | 2241 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2242 | return float32_default_nan; |
2243 | } | |
2244 | return packFloat32( zSign, 0xFF, 0 ); | |
2245 | } | |
2246 | if ( aExp == 0 ) { | |
2247 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
2248 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2249 | } | |
2250 | if ( bExp == 0 ) { | |
2251 | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
2252 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2253 | } | |
2254 | zExp = aExp + bExp - 0x7F; | |
2255 | aSig = ( aSig | 0x00800000 )<<7; | |
2256 | bSig = ( bSig | 0x00800000 )<<8; | |
bb98fe42 | 2257 | shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 ); |
158142c2 | 2258 | zSig = zSig64; |
bb98fe42 | 2259 | if ( 0 <= (int32_t) ( zSig<<1 ) ) { |
158142c2 FB |
2260 | zSig <<= 1; |
2261 | --zExp; | |
2262 | } | |
ff32e16e | 2263 | return roundAndPackFloat32(zSign, zExp, zSig, status); |
158142c2 FB |
2264 | |
2265 | } | |
2266 | ||
2267 | /*---------------------------------------------------------------------------- | |
2268 | | Returns the result of dividing the single-precision floating-point value `a' | |
2269 | | by the corresponding value `b'. The operation is performed according to the | |
2270 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2271 | *----------------------------------------------------------------------------*/ | |
2272 | ||
e5a41ffa | 2273 | float32 float32_div(float32 a, float32 b, float_status *status) |
158142c2 FB |
2274 | { |
2275 | flag aSign, bSign, zSign; | |
94a49d86 | 2276 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 2277 | uint32_t aSig, bSig, zSig; |
ff32e16e PM |
2278 | a = float32_squash_input_denormal(a, status); |
2279 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2280 | |
2281 | aSig = extractFloat32Frac( a ); | |
2282 | aExp = extractFloat32Exp( a ); | |
2283 | aSign = extractFloat32Sign( a ); | |
2284 | bSig = extractFloat32Frac( b ); | |
2285 | bExp = extractFloat32Exp( b ); | |
2286 | bSign = extractFloat32Sign( b ); | |
2287 | zSign = aSign ^ bSign; | |
2288 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2289 | if (aSig) { |
2290 | return propagateFloat32NaN(a, b, status); | |
2291 | } | |
158142c2 | 2292 | if ( bExp == 0xFF ) { |
ff32e16e PM |
2293 | if (bSig) { |
2294 | return propagateFloat32NaN(a, b, status); | |
2295 | } | |
2296 | float_raise(float_flag_invalid, status); | |
158142c2 FB |
2297 | return float32_default_nan; |
2298 | } | |
2299 | return packFloat32( zSign, 0xFF, 0 ); | |
2300 | } | |
2301 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2302 | if (bSig) { |
2303 | return propagateFloat32NaN(a, b, status); | |
2304 | } | |
158142c2 FB |
2305 | return packFloat32( zSign, 0, 0 ); |
2306 | } | |
2307 | if ( bExp == 0 ) { | |
2308 | if ( bSig == 0 ) { | |
2309 | if ( ( aExp | aSig ) == 0 ) { | |
ff32e16e | 2310 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2311 | return float32_default_nan; |
2312 | } | |
ff32e16e | 2313 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
2314 | return packFloat32( zSign, 0xFF, 0 ); |
2315 | } | |
2316 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2317 | } | |
2318 | if ( aExp == 0 ) { | |
2319 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
2320 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2321 | } | |
2322 | zExp = aExp - bExp + 0x7D; | |
2323 | aSig = ( aSig | 0x00800000 )<<7; | |
2324 | bSig = ( bSig | 0x00800000 )<<8; | |
2325 | if ( bSig <= ( aSig + aSig ) ) { | |
2326 | aSig >>= 1; | |
2327 | ++zExp; | |
2328 | } | |
bb98fe42 | 2329 | zSig = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 | 2330 | if ( ( zSig & 0x3F ) == 0 ) { |
bb98fe42 | 2331 | zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 ); |
158142c2 | 2332 | } |
ff32e16e | 2333 | return roundAndPackFloat32(zSign, zExp, zSig, status); |
158142c2 FB |
2334 | |
2335 | } | |
2336 | ||
2337 | /*---------------------------------------------------------------------------- | |
2338 | | Returns the remainder of the single-precision floating-point value `a' | |
2339 | | with respect to the corresponding value `b'. The operation is performed | |
2340 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2341 | *----------------------------------------------------------------------------*/ | |
2342 | ||
e5a41ffa | 2343 | float32 float32_rem(float32 a, float32 b, float_status *status) |
158142c2 | 2344 | { |
ed086f3d | 2345 | flag aSign, zSign; |
94a49d86 | 2346 | int_fast16_t aExp, bExp, expDiff; |
bb98fe42 AF |
2347 | uint32_t aSig, bSig; |
2348 | uint32_t q; | |
2349 | uint64_t aSig64, bSig64, q64; | |
2350 | uint32_t alternateASig; | |
2351 | int32_t sigMean; | |
ff32e16e PM |
2352 | a = float32_squash_input_denormal(a, status); |
2353 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2354 | |
2355 | aSig = extractFloat32Frac( a ); | |
2356 | aExp = extractFloat32Exp( a ); | |
2357 | aSign = extractFloat32Sign( a ); | |
2358 | bSig = extractFloat32Frac( b ); | |
2359 | bExp = extractFloat32Exp( b ); | |
158142c2 FB |
2360 | if ( aExp == 0xFF ) { |
2361 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
ff32e16e | 2362 | return propagateFloat32NaN(a, b, status); |
158142c2 | 2363 | } |
ff32e16e | 2364 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2365 | return float32_default_nan; |
2366 | } | |
2367 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2368 | if (bSig) { |
2369 | return propagateFloat32NaN(a, b, status); | |
2370 | } | |
158142c2 FB |
2371 | return a; |
2372 | } | |
2373 | if ( bExp == 0 ) { | |
2374 | if ( bSig == 0 ) { | |
ff32e16e | 2375 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2376 | return float32_default_nan; |
2377 | } | |
2378 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2379 | } | |
2380 | if ( aExp == 0 ) { | |
2381 | if ( aSig == 0 ) return a; | |
2382 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2383 | } | |
2384 | expDiff = aExp - bExp; | |
2385 | aSig |= 0x00800000; | |
2386 | bSig |= 0x00800000; | |
2387 | if ( expDiff < 32 ) { | |
2388 | aSig <<= 8; | |
2389 | bSig <<= 8; | |
2390 | if ( expDiff < 0 ) { | |
2391 | if ( expDiff < -1 ) return a; | |
2392 | aSig >>= 1; | |
2393 | } | |
2394 | q = ( bSig <= aSig ); | |
2395 | if ( q ) aSig -= bSig; | |
2396 | if ( 0 < expDiff ) { | |
bb98fe42 | 2397 | q = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 FB |
2398 | q >>= 32 - expDiff; |
2399 | bSig >>= 2; | |
2400 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
2401 | } | |
2402 | else { | |
2403 | aSig >>= 2; | |
2404 | bSig >>= 2; | |
2405 | } | |
2406 | } | |
2407 | else { | |
2408 | if ( bSig <= aSig ) aSig -= bSig; | |
bb98fe42 AF |
2409 | aSig64 = ( (uint64_t) aSig )<<40; |
2410 | bSig64 = ( (uint64_t) bSig )<<40; | |
158142c2 FB |
2411 | expDiff -= 64; |
2412 | while ( 0 < expDiff ) { | |
2413 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
2414 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
2415 | aSig64 = - ( ( bSig * q64 )<<38 ); | |
2416 | expDiff -= 62; | |
2417 | } | |
2418 | expDiff += 64; | |
2419 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
2420 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
2421 | q = q64>>( 64 - expDiff ); | |
2422 | bSig <<= 6; | |
2423 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | |
2424 | } | |
2425 | do { | |
2426 | alternateASig = aSig; | |
2427 | ++q; | |
2428 | aSig -= bSig; | |
bb98fe42 | 2429 | } while ( 0 <= (int32_t) aSig ); |
158142c2 FB |
2430 | sigMean = aSig + alternateASig; |
2431 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
2432 | aSig = alternateASig; | |
2433 | } | |
bb98fe42 | 2434 | zSign = ( (int32_t) aSig < 0 ); |
158142c2 | 2435 | if ( zSign ) aSig = - aSig; |
ff32e16e | 2436 | return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); |
158142c2 FB |
2437 | } |
2438 | ||
369be8f6 PM |
2439 | /*---------------------------------------------------------------------------- |
2440 | | Returns the result of multiplying the single-precision floating-point values | |
2441 | | `a' and `b' then adding 'c', with no intermediate rounding step after the | |
2442 | | multiplication. The operation is performed according to the IEC/IEEE | |
2443 | | Standard for Binary Floating-Point Arithmetic 754-2008. | |
2444 | | The flags argument allows the caller to select negation of the | |
2445 | | addend, the intermediate product, or the final result. (The difference | |
2446 | | between this and having the caller do a separate negation is that negating | |
2447 | | externally will flip the sign bit on NaNs.) | |
2448 | *----------------------------------------------------------------------------*/ | |
2449 | ||
e5a41ffa PM |
2450 | float32 float32_muladd(float32 a, float32 b, float32 c, int flags, |
2451 | float_status *status) | |
369be8f6 PM |
2452 | { |
2453 | flag aSign, bSign, cSign, zSign; | |
94a49d86 | 2454 | int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff; |
369be8f6 PM |
2455 | uint32_t aSig, bSig, cSig; |
2456 | flag pInf, pZero, pSign; | |
2457 | uint64_t pSig64, cSig64, zSig64; | |
2458 | uint32_t pSig; | |
2459 | int shiftcount; | |
2460 | flag signflip, infzero; | |
2461 | ||
ff32e16e PM |
2462 | a = float32_squash_input_denormal(a, status); |
2463 | b = float32_squash_input_denormal(b, status); | |
2464 | c = float32_squash_input_denormal(c, status); | |
369be8f6 PM |
2465 | aSig = extractFloat32Frac(a); |
2466 | aExp = extractFloat32Exp(a); | |
2467 | aSign = extractFloat32Sign(a); | |
2468 | bSig = extractFloat32Frac(b); | |
2469 | bExp = extractFloat32Exp(b); | |
2470 | bSign = extractFloat32Sign(b); | |
2471 | cSig = extractFloat32Frac(c); | |
2472 | cExp = extractFloat32Exp(c); | |
2473 | cSign = extractFloat32Sign(c); | |
2474 | ||
2475 | infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) || | |
2476 | (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0)); | |
2477 | ||
2478 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
2479 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
2480 | * they return if they do), so we have to hand this information | |
2481 | * off to the target-specific pick-a-NaN routine. | |
2482 | */ | |
2483 | if (((aExp == 0xff) && aSig) || | |
2484 | ((bExp == 0xff) && bSig) || | |
2485 | ((cExp == 0xff) && cSig)) { | |
ff32e16e | 2486 | return propagateFloat32MulAddNaN(a, b, c, infzero, status); |
369be8f6 PM |
2487 | } |
2488 | ||
2489 | if (infzero) { | |
ff32e16e | 2490 | float_raise(float_flag_invalid, status); |
369be8f6 PM |
2491 | return float32_default_nan; |
2492 | } | |
2493 | ||
2494 | if (flags & float_muladd_negate_c) { | |
2495 | cSign ^= 1; | |
2496 | } | |
2497 | ||
2498 | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | |
2499 | ||
2500 | /* Work out the sign and type of the product */ | |
2501 | pSign = aSign ^ bSign; | |
2502 | if (flags & float_muladd_negate_product) { | |
2503 | pSign ^= 1; | |
2504 | } | |
2505 | pInf = (aExp == 0xff) || (bExp == 0xff); | |
2506 | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | |
2507 | ||
2508 | if (cExp == 0xff) { | |
2509 | if (pInf && (pSign ^ cSign)) { | |
2510 | /* addition of opposite-signed infinities => InvalidOperation */ | |
ff32e16e | 2511 | float_raise(float_flag_invalid, status); |
369be8f6 PM |
2512 | return float32_default_nan; |
2513 | } | |
2514 | /* Otherwise generate an infinity of the same sign */ | |
2515 | return packFloat32(cSign ^ signflip, 0xff, 0); | |
2516 | } | |
2517 | ||
2518 | if (pInf) { | |
2519 | return packFloat32(pSign ^ signflip, 0xff, 0); | |
2520 | } | |
2521 | ||
2522 | if (pZero) { | |
2523 | if (cExp == 0) { | |
2524 | if (cSig == 0) { | |
2525 | /* Adding two exact zeroes */ | |
2526 | if (pSign == cSign) { | |
2527 | zSign = pSign; | |
a2f2d288 | 2528 | } else if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
2529 | zSign = 1; |
2530 | } else { | |
2531 | zSign = 0; | |
2532 | } | |
2533 | return packFloat32(zSign ^ signflip, 0, 0); | |
2534 | } | |
2535 | /* Exact zero plus a denorm */ | |
a2f2d288 | 2536 | if (status->flush_to_zero) { |
ff32e16e | 2537 | float_raise(float_flag_output_denormal, status); |
369be8f6 PM |
2538 | return packFloat32(cSign ^ signflip, 0, 0); |
2539 | } | |
2540 | } | |
2541 | /* Zero plus something non-zero : just return the something */ | |
67d43538 PM |
2542 | if (flags & float_muladd_halve_result) { |
2543 | if (cExp == 0) { | |
2544 | normalizeFloat32Subnormal(cSig, &cExp, &cSig); | |
2545 | } | |
2546 | /* Subtract one to halve, and one again because roundAndPackFloat32 | |
2547 | * wants one less than the true exponent. | |
2548 | */ | |
2549 | cExp -= 2; | |
2550 | cSig = (cSig | 0x00800000) << 7; | |
ff32e16e | 2551 | return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status); |
67d43538 | 2552 | } |
a6e7c184 | 2553 | return packFloat32(cSign ^ signflip, cExp, cSig); |
369be8f6 PM |
2554 | } |
2555 | ||
2556 | if (aExp == 0) { | |
2557 | normalizeFloat32Subnormal(aSig, &aExp, &aSig); | |
2558 | } | |
2559 | if (bExp == 0) { | |
2560 | normalizeFloat32Subnormal(bSig, &bExp, &bSig); | |
2561 | } | |
2562 | ||
2563 | /* Calculate the actual result a * b + c */ | |
2564 | ||
2565 | /* Multiply first; this is easy. */ | |
2566 | /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f | |
2567 | * because we want the true exponent, not the "one-less-than" | |
2568 | * flavour that roundAndPackFloat32() takes. | |
2569 | */ | |
2570 | pExp = aExp + bExp - 0x7e; | |
2571 | aSig = (aSig | 0x00800000) << 7; | |
2572 | bSig = (bSig | 0x00800000) << 8; | |
2573 | pSig64 = (uint64_t)aSig * bSig; | |
2574 | if ((int64_t)(pSig64 << 1) >= 0) { | |
2575 | pSig64 <<= 1; | |
2576 | pExp--; | |
2577 | } | |
2578 | ||
2579 | zSign = pSign ^ signflip; | |
2580 | ||
2581 | /* Now pSig64 is the significand of the multiply, with the explicit bit in | |
2582 | * position 62. | |
2583 | */ | |
2584 | if (cExp == 0) { | |
2585 | if (!cSig) { | |
2586 | /* Throw out the special case of c being an exact zero now */ | |
2587 | shift64RightJamming(pSig64, 32, &pSig64); | |
2588 | pSig = pSig64; | |
67d43538 PM |
2589 | if (flags & float_muladd_halve_result) { |
2590 | pExp--; | |
2591 | } | |
369be8f6 | 2592 | return roundAndPackFloat32(zSign, pExp - 1, |
ff32e16e | 2593 | pSig, status); |
369be8f6 PM |
2594 | } |
2595 | normalizeFloat32Subnormal(cSig, &cExp, &cSig); | |
2596 | } | |
2597 | ||
2598 | cSig64 = (uint64_t)cSig << (62 - 23); | |
2599 | cSig64 |= LIT64(0x4000000000000000); | |
2600 | expDiff = pExp - cExp; | |
2601 | ||
2602 | if (pSign == cSign) { | |
2603 | /* Addition */ | |
2604 | if (expDiff > 0) { | |
2605 | /* scale c to match p */ | |
2606 | shift64RightJamming(cSig64, expDiff, &cSig64); | |
2607 | zExp = pExp; | |
2608 | } else if (expDiff < 0) { | |
2609 | /* scale p to match c */ | |
2610 | shift64RightJamming(pSig64, -expDiff, &pSig64); | |
2611 | zExp = cExp; | |
2612 | } else { | |
2613 | /* no scaling needed */ | |
2614 | zExp = cExp; | |
2615 | } | |
2616 | /* Add significands and make sure explicit bit ends up in posn 62 */ | |
2617 | zSig64 = pSig64 + cSig64; | |
2618 | if ((int64_t)zSig64 < 0) { | |
2619 | shift64RightJamming(zSig64, 1, &zSig64); | |
2620 | } else { | |
2621 | zExp--; | |
2622 | } | |
2623 | } else { | |
2624 | /* Subtraction */ | |
2625 | if (expDiff > 0) { | |
2626 | shift64RightJamming(cSig64, expDiff, &cSig64); | |
2627 | zSig64 = pSig64 - cSig64; | |
2628 | zExp = pExp; | |
2629 | } else if (expDiff < 0) { | |
2630 | shift64RightJamming(pSig64, -expDiff, &pSig64); | |
2631 | zSig64 = cSig64 - pSig64; | |
2632 | zExp = cExp; | |
2633 | zSign ^= 1; | |
2634 | } else { | |
2635 | zExp = pExp; | |
2636 | if (cSig64 < pSig64) { | |
2637 | zSig64 = pSig64 - cSig64; | |
2638 | } else if (pSig64 < cSig64) { | |
2639 | zSig64 = cSig64 - pSig64; | |
2640 | zSign ^= 1; | |
2641 | } else { | |
2642 | /* Exact zero */ | |
2643 | zSign = signflip; | |
a2f2d288 | 2644 | if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
2645 | zSign ^= 1; |
2646 | } | |
2647 | return packFloat32(zSign, 0, 0); | |
2648 | } | |
2649 | } | |
2650 | --zExp; | |
2651 | /* Normalize to put the explicit bit back into bit 62. */ | |
2652 | shiftcount = countLeadingZeros64(zSig64) - 1; | |
2653 | zSig64 <<= shiftcount; | |
2654 | zExp -= shiftcount; | |
2655 | } | |
67d43538 PM |
2656 | if (flags & float_muladd_halve_result) { |
2657 | zExp--; | |
2658 | } | |
2659 | ||
369be8f6 | 2660 | shift64RightJamming(zSig64, 32, &zSig64); |
ff32e16e | 2661 | return roundAndPackFloat32(zSign, zExp, zSig64, status); |
369be8f6 PM |
2662 | } |
2663 | ||
2664 | ||
158142c2 FB |
2665 | /*---------------------------------------------------------------------------- |
2666 | | Returns the square root of the single-precision floating-point value `a'. | |
2667 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
2668 | | Floating-Point Arithmetic. | |
2669 | *----------------------------------------------------------------------------*/ | |
2670 | ||
e5a41ffa | 2671 | float32 float32_sqrt(float32 a, float_status *status) |
158142c2 FB |
2672 | { |
2673 | flag aSign; | |
94a49d86 | 2674 | int_fast16_t aExp, zExp; |
bb98fe42 AF |
2675 | uint32_t aSig, zSig; |
2676 | uint64_t rem, term; | |
ff32e16e | 2677 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
2678 | |
2679 | aSig = extractFloat32Frac( a ); | |
2680 | aExp = extractFloat32Exp( a ); | |
2681 | aSign = extractFloat32Sign( a ); | |
2682 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2683 | if (aSig) { |
2684 | return propagateFloat32NaN(a, float32_zero, status); | |
2685 | } | |
158142c2 | 2686 | if ( ! aSign ) return a; |
ff32e16e | 2687 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2688 | return float32_default_nan; |
2689 | } | |
2690 | if ( aSign ) { | |
2691 | if ( ( aExp | aSig ) == 0 ) return a; | |
ff32e16e | 2692 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2693 | return float32_default_nan; |
2694 | } | |
2695 | if ( aExp == 0 ) { | |
f090c9d4 | 2696 | if ( aSig == 0 ) return float32_zero; |
158142c2 FB |
2697 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
2698 | } | |
2699 | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | |
2700 | aSig = ( aSig | 0x00800000 )<<8; | |
2701 | zSig = estimateSqrt32( aExp, aSig ) + 2; | |
2702 | if ( ( zSig & 0x7F ) <= 5 ) { | |
2703 | if ( zSig < 2 ) { | |
2704 | zSig = 0x7FFFFFFF; | |
2705 | goto roundAndPack; | |
2706 | } | |
2707 | aSig >>= aExp & 1; | |
bb98fe42 AF |
2708 | term = ( (uint64_t) zSig ) * zSig; |
2709 | rem = ( ( (uint64_t) aSig )<<32 ) - term; | |
2710 | while ( (int64_t) rem < 0 ) { | |
158142c2 | 2711 | --zSig; |
bb98fe42 | 2712 | rem += ( ( (uint64_t) zSig )<<1 ) | 1; |
158142c2 FB |
2713 | } |
2714 | zSig |= ( rem != 0 ); | |
2715 | } | |
2716 | shift32RightJamming( zSig, 1, &zSig ); | |
2717 | roundAndPack: | |
ff32e16e | 2718 | return roundAndPackFloat32(0, zExp, zSig, status); |
158142c2 FB |
2719 | |
2720 | } | |
2721 | ||
8229c991 AJ |
2722 | /*---------------------------------------------------------------------------- |
2723 | | Returns the binary exponential of the single-precision floating-point value | |
2724 | | `a'. The operation is performed according to the IEC/IEEE Standard for | |
2725 | | Binary Floating-Point Arithmetic. | |
2726 | | | |
2727 | | Uses the following identities: | |
2728 | | | |
2729 | | 1. ------------------------------------------------------------------------- | |
2730 | | x x*ln(2) | |
2731 | | 2 = e | |
2732 | | | |
2733 | | 2. ------------------------------------------------------------------------- | |
2734 | | 2 3 4 5 n | |
2735 | | x x x x x x x | |
2736 | | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... | |
2737 | | 1! 2! 3! 4! 5! n! | |
2738 | *----------------------------------------------------------------------------*/ | |
2739 | ||
2740 | static const float64 float32_exp2_coefficients[15] = | |
2741 | { | |
d5138cf4 PM |
2742 | const_float64( 0x3ff0000000000000ll ), /* 1 */ |
2743 | const_float64( 0x3fe0000000000000ll ), /* 2 */ | |
2744 | const_float64( 0x3fc5555555555555ll ), /* 3 */ | |
2745 | const_float64( 0x3fa5555555555555ll ), /* 4 */ | |
2746 | const_float64( 0x3f81111111111111ll ), /* 5 */ | |
2747 | const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ | |
2748 | const_float64( 0x3f2a01a01a01a01all ), /* 7 */ | |
2749 | const_float64( 0x3efa01a01a01a01all ), /* 8 */ | |
2750 | const_float64( 0x3ec71de3a556c734ll ), /* 9 */ | |
2751 | const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ | |
2752 | const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ | |
2753 | const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ | |
2754 | const_float64( 0x3de6124613a86d09ll ), /* 13 */ | |
2755 | const_float64( 0x3da93974a8c07c9dll ), /* 14 */ | |
2756 | const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ | |
8229c991 AJ |
2757 | }; |
2758 | ||
e5a41ffa | 2759 | float32 float32_exp2(float32 a, float_status *status) |
8229c991 AJ |
2760 | { |
2761 | flag aSign; | |
94a49d86 | 2762 | int_fast16_t aExp; |
bb98fe42 | 2763 | uint32_t aSig; |
8229c991 AJ |
2764 | float64 r, x, xn; |
2765 | int i; | |
ff32e16e | 2766 | a = float32_squash_input_denormal(a, status); |
8229c991 AJ |
2767 | |
2768 | aSig = extractFloat32Frac( a ); | |
2769 | aExp = extractFloat32Exp( a ); | |
2770 | aSign = extractFloat32Sign( a ); | |
2771 | ||
2772 | if ( aExp == 0xFF) { | |
ff32e16e PM |
2773 | if (aSig) { |
2774 | return propagateFloat32NaN(a, float32_zero, status); | |
2775 | } | |
8229c991 AJ |
2776 | return (aSign) ? float32_zero : a; |
2777 | } | |
2778 | if (aExp == 0) { | |
2779 | if (aSig == 0) return float32_one; | |
2780 | } | |
2781 | ||
ff32e16e | 2782 | float_raise(float_flag_inexact, status); |
8229c991 AJ |
2783 | |
2784 | /* ******************************* */ | |
2785 | /* using float64 for approximation */ | |
2786 | /* ******************************* */ | |
ff32e16e PM |
2787 | x = float32_to_float64(a, status); |
2788 | x = float64_mul(x, float64_ln2, status); | |
8229c991 AJ |
2789 | |
2790 | xn = x; | |
2791 | r = float64_one; | |
2792 | for (i = 0 ; i < 15 ; i++) { | |
2793 | float64 f; | |
2794 | ||
ff32e16e PM |
2795 | f = float64_mul(xn, float32_exp2_coefficients[i], status); |
2796 | r = float64_add(r, f, status); | |
8229c991 | 2797 | |
ff32e16e | 2798 | xn = float64_mul(xn, x, status); |
8229c991 AJ |
2799 | } |
2800 | ||
2801 | return float64_to_float32(r, status); | |
2802 | } | |
2803 | ||
374dfc33 AJ |
2804 | /*---------------------------------------------------------------------------- |
2805 | | Returns the binary log of the single-precision floating-point value `a'. | |
2806 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
2807 | | Floating-Point Arithmetic. | |
2808 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 2809 | float32 float32_log2(float32 a, float_status *status) |
374dfc33 AJ |
2810 | { |
2811 | flag aSign, zSign; | |
94a49d86 | 2812 | int_fast16_t aExp; |
bb98fe42 | 2813 | uint32_t aSig, zSig, i; |
374dfc33 | 2814 | |
ff32e16e | 2815 | a = float32_squash_input_denormal(a, status); |
374dfc33 AJ |
2816 | aSig = extractFloat32Frac( a ); |
2817 | aExp = extractFloat32Exp( a ); | |
2818 | aSign = extractFloat32Sign( a ); | |
2819 | ||
2820 | if ( aExp == 0 ) { | |
2821 | if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); | |
2822 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2823 | } | |
2824 | if ( aSign ) { | |
ff32e16e | 2825 | float_raise(float_flag_invalid, status); |
374dfc33 AJ |
2826 | return float32_default_nan; |
2827 | } | |
2828 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2829 | if (aSig) { |
2830 | return propagateFloat32NaN(a, float32_zero, status); | |
2831 | } | |
374dfc33 AJ |
2832 | return a; |
2833 | } | |
2834 | ||
2835 | aExp -= 0x7F; | |
2836 | aSig |= 0x00800000; | |
2837 | zSign = aExp < 0; | |
2838 | zSig = aExp << 23; | |
2839 | ||
2840 | for (i = 1 << 22; i > 0; i >>= 1) { | |
bb98fe42 | 2841 | aSig = ( (uint64_t)aSig * aSig ) >> 23; |
374dfc33 AJ |
2842 | if ( aSig & 0x01000000 ) { |
2843 | aSig >>= 1; | |
2844 | zSig |= i; | |
2845 | } | |
2846 | } | |
2847 | ||
2848 | if ( zSign ) | |
2849 | zSig = -zSig; | |
2850 | ||
ff32e16e | 2851 | return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status); |
374dfc33 AJ |
2852 | } |
2853 | ||
158142c2 FB |
2854 | /*---------------------------------------------------------------------------- |
2855 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
b689362d AJ |
2856 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
2857 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
2858 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
2859 | *----------------------------------------------------------------------------*/ | |
2860 | ||
e5a41ffa | 2861 | int float32_eq(float32 a, float32 b, float_status *status) |
158142c2 | 2862 | { |
b689362d | 2863 | uint32_t av, bv; |
ff32e16e PM |
2864 | a = float32_squash_input_denormal(a, status); |
2865 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2866 | |
2867 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2868 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2869 | ) { | |
ff32e16e | 2870 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2871 | return 0; |
2872 | } | |
b689362d AJ |
2873 | av = float32_val(a); |
2874 | bv = float32_val(b); | |
2875 | return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); | |
158142c2 FB |
2876 | } |
2877 | ||
2878 | /*---------------------------------------------------------------------------- | |
2879 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
2880 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
2881 | | exception is raised if either operand is a NaN. The comparison is performed | |
2882 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2883 | *----------------------------------------------------------------------------*/ |
2884 | ||
e5a41ffa | 2885 | int float32_le(float32 a, float32 b, float_status *status) |
158142c2 FB |
2886 | { |
2887 | flag aSign, bSign; | |
bb98fe42 | 2888 | uint32_t av, bv; |
ff32e16e PM |
2889 | a = float32_squash_input_denormal(a, status); |
2890 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2891 | |
2892 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2893 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2894 | ) { | |
ff32e16e | 2895 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2896 | return 0; |
2897 | } | |
2898 | aSign = extractFloat32Sign( a ); | |
2899 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2900 | av = float32_val(a); |
2901 | bv = float32_val(b); | |
bb98fe42 | 2902 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 2903 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2904 | |
2905 | } | |
2906 | ||
2907 | /*---------------------------------------------------------------------------- | |
2908 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
2909 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
2910 | | raised if either operand is a NaN. The comparison is performed according | |
2911 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2912 | *----------------------------------------------------------------------------*/ |
2913 | ||
e5a41ffa | 2914 | int float32_lt(float32 a, float32 b, float_status *status) |
158142c2 FB |
2915 | { |
2916 | flag aSign, bSign; | |
bb98fe42 | 2917 | uint32_t av, bv; |
ff32e16e PM |
2918 | a = float32_squash_input_denormal(a, status); |
2919 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2920 | |
2921 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2922 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2923 | ) { | |
ff32e16e | 2924 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2925 | return 0; |
2926 | } | |
2927 | aSign = extractFloat32Sign( a ); | |
2928 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2929 | av = float32_val(a); |
2930 | bv = float32_val(b); | |
bb98fe42 | 2931 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 2932 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2933 | |
2934 | } | |
2935 | ||
67b7861d AJ |
2936 | /*---------------------------------------------------------------------------- |
2937 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
2938 | | be compared, and 0 otherwise. The invalid exception is raised if either |
2939 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
2940 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
2941 | *----------------------------------------------------------------------------*/ |
2942 | ||
e5a41ffa | 2943 | int float32_unordered(float32 a, float32 b, float_status *status) |
67b7861d | 2944 | { |
ff32e16e PM |
2945 | a = float32_squash_input_denormal(a, status); |
2946 | b = float32_squash_input_denormal(b, status); | |
67b7861d AJ |
2947 | |
2948 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2949 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2950 | ) { | |
ff32e16e | 2951 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
2952 | return 1; |
2953 | } | |
2954 | return 0; | |
2955 | } | |
b689362d | 2956 | |
158142c2 FB |
2957 | /*---------------------------------------------------------------------------- |
2958 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
f5a64251 AJ |
2959 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
2960 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
2961 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2962 | *----------------------------------------------------------------------------*/ |
2963 | ||
e5a41ffa | 2964 | int float32_eq_quiet(float32 a, float32 b, float_status *status) |
158142c2 | 2965 | { |
ff32e16e PM |
2966 | a = float32_squash_input_denormal(a, status); |
2967 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2968 | |
2969 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2970 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2971 | ) { | |
b689362d | 2972 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { |
ff32e16e | 2973 | float_raise(float_flag_invalid, status); |
b689362d | 2974 | } |
158142c2 FB |
2975 | return 0; |
2976 | } | |
b689362d AJ |
2977 | return ( float32_val(a) == float32_val(b) ) || |
2978 | ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); | |
158142c2 FB |
2979 | } |
2980 | ||
2981 | /*---------------------------------------------------------------------------- | |
2982 | | Returns 1 if the single-precision floating-point value `a' is less than or | |
2983 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
2984 | | cause an exception. Otherwise, the comparison is performed according to the | |
2985 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2986 | *----------------------------------------------------------------------------*/ | |
2987 | ||
e5a41ffa | 2988 | int float32_le_quiet(float32 a, float32 b, float_status *status) |
158142c2 FB |
2989 | { |
2990 | flag aSign, bSign; | |
bb98fe42 | 2991 | uint32_t av, bv; |
ff32e16e PM |
2992 | a = float32_squash_input_denormal(a, status); |
2993 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2994 | |
2995 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2996 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2997 | ) { | |
2998 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
ff32e16e | 2999 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3000 | } |
3001 | return 0; | |
3002 | } | |
3003 | aSign = extractFloat32Sign( a ); | |
3004 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3005 | av = float32_val(a); |
3006 | bv = float32_val(b); | |
bb98fe42 | 3007 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 3008 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3009 | |
3010 | } | |
3011 | ||
3012 | /*---------------------------------------------------------------------------- | |
3013 | | Returns 1 if the single-precision floating-point value `a' is less than | |
3014 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
3015 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
3016 | | Standard for Binary Floating-Point Arithmetic. | |
3017 | *----------------------------------------------------------------------------*/ | |
3018 | ||
e5a41ffa | 3019 | int float32_lt_quiet(float32 a, float32 b, float_status *status) |
158142c2 FB |
3020 | { |
3021 | flag aSign, bSign; | |
bb98fe42 | 3022 | uint32_t av, bv; |
ff32e16e PM |
3023 | a = float32_squash_input_denormal(a, status); |
3024 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3025 | |
3026 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3027 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3028 | ) { | |
3029 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
ff32e16e | 3030 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3031 | } |
3032 | return 0; | |
3033 | } | |
3034 | aSign = extractFloat32Sign( a ); | |
3035 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3036 | av = float32_val(a); |
3037 | bv = float32_val(b); | |
bb98fe42 | 3038 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 3039 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3040 | |
3041 | } | |
3042 | ||
67b7861d AJ |
3043 | /*---------------------------------------------------------------------------- |
3044 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
3045 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
3046 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
3047 | | Floating-Point Arithmetic. | |
3048 | *----------------------------------------------------------------------------*/ | |
3049 | ||
e5a41ffa | 3050 | int float32_unordered_quiet(float32 a, float32 b, float_status *status) |
67b7861d | 3051 | { |
ff32e16e PM |
3052 | a = float32_squash_input_denormal(a, status); |
3053 | b = float32_squash_input_denormal(b, status); | |
67b7861d AJ |
3054 | |
3055 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3056 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3057 | ) { | |
3058 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
ff32e16e | 3059 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
3060 | } |
3061 | return 1; | |
3062 | } | |
3063 | return 0; | |
3064 | } | |
3065 | ||
158142c2 FB |
3066 | /*---------------------------------------------------------------------------- |
3067 | | Returns the result of converting the double-precision floating-point value | |
3068 | | `a' to the 32-bit two's complement integer format. The conversion is | |
3069 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3070 | | Arithmetic---which means in particular that the conversion is rounded | |
3071 | | according to the current rounding mode. If `a' is a NaN, the largest | |
3072 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
3073 | | largest integer with the same sign as `a' is returned. | |
3074 | *----------------------------------------------------------------------------*/ | |
3075 | ||
e5a41ffa | 3076 | int32 float64_to_int32(float64 a, float_status *status) |
158142c2 FB |
3077 | { |
3078 | flag aSign; | |
94a49d86 | 3079 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 3080 | uint64_t aSig; |
ff32e16e | 3081 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3082 | |
3083 | aSig = extractFloat64Frac( a ); | |
3084 | aExp = extractFloat64Exp( a ); | |
3085 | aSign = extractFloat64Sign( a ); | |
3086 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
3087 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3088 | shiftCount = 0x42C - aExp; | |
3089 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | |
ff32e16e | 3090 | return roundAndPackInt32(aSign, aSig, status); |
158142c2 FB |
3091 | |
3092 | } | |
3093 | ||
3094 | /*---------------------------------------------------------------------------- | |
3095 | | Returns the result of converting the double-precision floating-point value | |
3096 | | `a' to the 32-bit two's complement integer format. The conversion is | |
3097 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3098 | | Arithmetic, except that the conversion is always rounded toward zero. | |
3099 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
3100 | | the conversion overflows, the largest integer with the same sign as `a' is | |
3101 | | returned. | |
3102 | *----------------------------------------------------------------------------*/ | |
3103 | ||
e5a41ffa | 3104 | int32 float64_to_int32_round_to_zero(float64 a, float_status *status) |
158142c2 FB |
3105 | { |
3106 | flag aSign; | |
94a49d86 | 3107 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 3108 | uint64_t aSig, savedASig; |
b3a6a2e0 | 3109 | int32_t z; |
ff32e16e | 3110 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3111 | |
3112 | aSig = extractFloat64Frac( a ); | |
3113 | aExp = extractFloat64Exp( a ); | |
3114 | aSign = extractFloat64Sign( a ); | |
3115 | if ( 0x41E < aExp ) { | |
3116 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
3117 | goto invalid; | |
3118 | } | |
3119 | else if ( aExp < 0x3FF ) { | |
a2f2d288 PM |
3120 | if (aExp || aSig) { |
3121 | status->float_exception_flags |= float_flag_inexact; | |
3122 | } | |
158142c2 FB |
3123 | return 0; |
3124 | } | |
3125 | aSig |= LIT64( 0x0010000000000000 ); | |
3126 | shiftCount = 0x433 - aExp; | |
3127 | savedASig = aSig; | |
3128 | aSig >>= shiftCount; | |
3129 | z = aSig; | |
3130 | if ( aSign ) z = - z; | |
3131 | if ( ( z < 0 ) ^ aSign ) { | |
3132 | invalid: | |
ff32e16e | 3133 | float_raise(float_flag_invalid, status); |
bb98fe42 | 3134 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
3135 | } |
3136 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 3137 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
3138 | } |
3139 | return z; | |
3140 | ||
3141 | } | |
3142 | ||
cbcef455 PM |
3143 | /*---------------------------------------------------------------------------- |
3144 | | Returns the result of converting the double-precision floating-point value | |
3145 | | `a' to the 16-bit two's complement integer format. The conversion is | |
3146 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3147 | | Arithmetic, except that the conversion is always rounded toward zero. | |
3148 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
3149 | | the conversion overflows, the largest integer with the same sign as `a' is | |
3150 | | returned. | |
3151 | *----------------------------------------------------------------------------*/ | |
3152 | ||
e5a41ffa | 3153 | int_fast16_t float64_to_int16_round_to_zero(float64 a, float_status *status) |
cbcef455 PM |
3154 | { |
3155 | flag aSign; | |
94a49d86 | 3156 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 3157 | uint64_t aSig, savedASig; |
cbcef455 PM |
3158 | int32 z; |
3159 | ||
3160 | aSig = extractFloat64Frac( a ); | |
3161 | aExp = extractFloat64Exp( a ); | |
3162 | aSign = extractFloat64Sign( a ); | |
3163 | if ( 0x40E < aExp ) { | |
3164 | if ( ( aExp == 0x7FF ) && aSig ) { | |
3165 | aSign = 0; | |
3166 | } | |
3167 | goto invalid; | |
3168 | } | |
3169 | else if ( aExp < 0x3FF ) { | |
3170 | if ( aExp || aSig ) { | |
a2f2d288 | 3171 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
3172 | } |
3173 | return 0; | |
3174 | } | |
3175 | aSig |= LIT64( 0x0010000000000000 ); | |
3176 | shiftCount = 0x433 - aExp; | |
3177 | savedASig = aSig; | |
3178 | aSig >>= shiftCount; | |
3179 | z = aSig; | |
3180 | if ( aSign ) { | |
3181 | z = - z; | |
3182 | } | |
3183 | if ( ( (int16_t)z < 0 ) ^ aSign ) { | |
3184 | invalid: | |
ff32e16e | 3185 | float_raise(float_flag_invalid, status); |
bb98fe42 | 3186 | return aSign ? (int32_t) 0xffff8000 : 0x7FFF; |
cbcef455 PM |
3187 | } |
3188 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 3189 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
3190 | } |
3191 | return z; | |
3192 | } | |
3193 | ||
158142c2 FB |
3194 | /*---------------------------------------------------------------------------- |
3195 | | Returns the result of converting the double-precision floating-point value | |
3196 | | `a' to the 64-bit two's complement integer format. The conversion is | |
3197 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3198 | | Arithmetic---which means in particular that the conversion is rounded | |
3199 | | according to the current rounding mode. If `a' is a NaN, the largest | |
3200 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
3201 | | largest integer with the same sign as `a' is returned. | |
3202 | *----------------------------------------------------------------------------*/ | |
3203 | ||
e5a41ffa | 3204 | int64 float64_to_int64(float64 a, float_status *status) |
158142c2 FB |
3205 | { |
3206 | flag aSign; | |
94a49d86 | 3207 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 3208 | uint64_t aSig, aSigExtra; |
ff32e16e | 3209 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3210 | |
3211 | aSig = extractFloat64Frac( a ); | |
3212 | aExp = extractFloat64Exp( a ); | |
3213 | aSign = extractFloat64Sign( a ); | |
3214 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3215 | shiftCount = 0x433 - aExp; | |
3216 | if ( shiftCount <= 0 ) { | |
3217 | if ( 0x43E < aExp ) { | |
ff32e16e | 3218 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3219 | if ( ! aSign |
3220 | || ( ( aExp == 0x7FF ) | |
3221 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
3222 | ) { | |
3223 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3224 | } | |
bb98fe42 | 3225 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
3226 | } |
3227 | aSigExtra = 0; | |
3228 | aSig <<= - shiftCount; | |
3229 | } | |
3230 | else { | |
3231 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
3232 | } | |
ff32e16e | 3233 | return roundAndPackInt64(aSign, aSig, aSigExtra, status); |
158142c2 FB |
3234 | |
3235 | } | |
3236 | ||
3237 | /*---------------------------------------------------------------------------- | |
3238 | | Returns the result of converting the double-precision floating-point value | |
3239 | | `a' to the 64-bit two's complement integer format. The conversion is | |
3240 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3241 | | Arithmetic, except that the conversion is always rounded toward zero. | |
3242 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
3243 | | the conversion overflows, the largest integer with the same sign as `a' is | |
3244 | | returned. | |
3245 | *----------------------------------------------------------------------------*/ | |
3246 | ||
e5a41ffa | 3247 | int64 float64_to_int64_round_to_zero(float64 a, float_status *status) |
158142c2 FB |
3248 | { |
3249 | flag aSign; | |
94a49d86 | 3250 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 3251 | uint64_t aSig; |
158142c2 | 3252 | int64 z; |
ff32e16e | 3253 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3254 | |
3255 | aSig = extractFloat64Frac( a ); | |
3256 | aExp = extractFloat64Exp( a ); | |
3257 | aSign = extractFloat64Sign( a ); | |
3258 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3259 | shiftCount = aExp - 0x433; | |
3260 | if ( 0 <= shiftCount ) { | |
3261 | if ( 0x43E <= aExp ) { | |
f090c9d4 | 3262 | if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) { |
ff32e16e | 3263 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3264 | if ( ! aSign |
3265 | || ( ( aExp == 0x7FF ) | |
3266 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
3267 | ) { | |
3268 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3269 | } | |
3270 | } | |
bb98fe42 | 3271 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
3272 | } |
3273 | z = aSig<<shiftCount; | |
3274 | } | |
3275 | else { | |
3276 | if ( aExp < 0x3FE ) { | |
a2f2d288 PM |
3277 | if (aExp | aSig) { |
3278 | status->float_exception_flags |= float_flag_inexact; | |
3279 | } | |
158142c2 FB |
3280 | return 0; |
3281 | } | |
3282 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 3283 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 3284 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
3285 | } |
3286 | } | |
3287 | if ( aSign ) z = - z; | |
3288 | return z; | |
3289 | ||
3290 | } | |
3291 | ||
3292 | /*---------------------------------------------------------------------------- | |
3293 | | Returns the result of converting the double-precision floating-point value | |
3294 | | `a' to the single-precision floating-point format. The conversion is | |
3295 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3296 | | Arithmetic. | |
3297 | *----------------------------------------------------------------------------*/ | |
3298 | ||
e5a41ffa | 3299 | float32 float64_to_float32(float64 a, float_status *status) |
158142c2 FB |
3300 | { |
3301 | flag aSign; | |
94a49d86 | 3302 | int_fast16_t aExp; |
bb98fe42 AF |
3303 | uint64_t aSig; |
3304 | uint32_t zSig; | |
ff32e16e | 3305 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3306 | |
3307 | aSig = extractFloat64Frac( a ); | |
3308 | aExp = extractFloat64Exp( a ); | |
3309 | aSign = extractFloat64Sign( a ); | |
3310 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3311 | if (aSig) { |
3312 | return commonNaNToFloat32(float64ToCommonNaN(a, status), status); | |
3313 | } | |
158142c2 FB |
3314 | return packFloat32( aSign, 0xFF, 0 ); |
3315 | } | |
3316 | shift64RightJamming( aSig, 22, &aSig ); | |
3317 | zSig = aSig; | |
3318 | if ( aExp || zSig ) { | |
3319 | zSig |= 0x40000000; | |
3320 | aExp -= 0x381; | |
3321 | } | |
ff32e16e | 3322 | return roundAndPackFloat32(aSign, aExp, zSig, status); |
158142c2 FB |
3323 | |
3324 | } | |
3325 | ||
60011498 PB |
3326 | |
3327 | /*---------------------------------------------------------------------------- | |
3328 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
3329 | | half-precision floating-point value, returning the result. After being | |
3330 | | shifted into the proper positions, the three fields are simply added | |
3331 | | together to form the result. This means that any integer portion of `zSig' | |
3332 | | will be added into the exponent. Since a properly normalized significand | |
3333 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
3334 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
3335 | | significand. | |
3336 | *----------------------------------------------------------------------------*/ | |
94a49d86 | 3337 | static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig) |
60011498 | 3338 | { |
bb4d4bb3 | 3339 | return make_float16( |
bb98fe42 | 3340 | (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig); |
60011498 PB |
3341 | } |
3342 | ||
c4a1c5e7 PM |
3343 | /*---------------------------------------------------------------------------- |
3344 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3345 | | and significand `zSig', and returns the proper half-precision floating- | |
3346 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
3347 | | value is simply rounded and packed into the half-precision format, with | |
3348 | | the inexact exception raised if the abstract input cannot be represented | |
3349 | | exactly. However, if the abstract value is too large, the overflow and | |
3350 | | inexact exceptions are raised and an infinity or maximal finite value is | |
3351 | | returned. If the abstract value is too small, the input value is rounded to | |
3352 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
3353 | | the abstract input cannot be represented exactly as a subnormal half- | |
3354 | | precision floating-point number. | |
3355 | | The `ieee' flag indicates whether to use IEEE standard half precision, or | |
3356 | | ARM-style "alternative representation", which omits the NaN and Inf | |
3357 | | encodings in order to raise the maximum representable exponent by one. | |
3358 | | The input significand `zSig' has its binary point between bits 22 | |
3359 | | and 23, which is 13 bits to the left of the usual location. This shifted | |
3360 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
3361 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
3362 | | and it must not require rounding. In the usual case that `zSig' is | |
3363 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
3364 | | Note the slightly odd position of the binary point in zSig compared with the | |
3365 | | other roundAndPackFloat functions. This should probably be fixed if we | |
3366 | | need to implement more float16 routines than just conversion. | |
3367 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
3368 | | Binary Floating-Point Arithmetic. | |
3369 | *----------------------------------------------------------------------------*/ | |
3370 | ||
3371 | static float32 roundAndPackFloat16(flag zSign, int_fast16_t zExp, | |
e5a41ffa PM |
3372 | uint32_t zSig, flag ieee, |
3373 | float_status *status) | |
c4a1c5e7 PM |
3374 | { |
3375 | int maxexp = ieee ? 29 : 30; | |
3376 | uint32_t mask; | |
3377 | uint32_t increment; | |
c4a1c5e7 PM |
3378 | bool rounding_bumps_exp; |
3379 | bool is_tiny = false; | |
3380 | ||
3381 | /* Calculate the mask of bits of the mantissa which are not | |
3382 | * representable in half-precision and will be lost. | |
3383 | */ | |
3384 | if (zExp < 1) { | |
3385 | /* Will be denormal in halfprec */ | |
3386 | mask = 0x00ffffff; | |
3387 | if (zExp >= -11) { | |
3388 | mask >>= 11 + zExp; | |
3389 | } | |
3390 | } else { | |
3391 | /* Normal number in halfprec */ | |
3392 | mask = 0x00001fff; | |
3393 | } | |
3394 | ||
a2f2d288 | 3395 | switch (status->float_rounding_mode) { |
c4a1c5e7 PM |
3396 | case float_round_nearest_even: |
3397 | increment = (mask + 1) >> 1; | |
3398 | if ((zSig & mask) == increment) { | |
3399 | increment = zSig & (increment << 1); | |
3400 | } | |
3401 | break; | |
f9288a76 PM |
3402 | case float_round_ties_away: |
3403 | increment = (mask + 1) >> 1; | |
3404 | break; | |
c4a1c5e7 PM |
3405 | case float_round_up: |
3406 | increment = zSign ? 0 : mask; | |
3407 | break; | |
3408 | case float_round_down: | |
3409 | increment = zSign ? mask : 0; | |
3410 | break; | |
3411 | default: /* round_to_zero */ | |
3412 | increment = 0; | |
3413 | break; | |
3414 | } | |
3415 | ||
3416 | rounding_bumps_exp = (zSig + increment >= 0x01000000); | |
3417 | ||
3418 | if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) { | |
3419 | if (ieee) { | |
ff32e16e | 3420 | float_raise(float_flag_overflow | float_flag_inexact, status); |
c4a1c5e7 PM |
3421 | return packFloat16(zSign, 0x1f, 0); |
3422 | } else { | |
ff32e16e | 3423 | float_raise(float_flag_invalid, status); |
c4a1c5e7 PM |
3424 | return packFloat16(zSign, 0x1f, 0x3ff); |
3425 | } | |
3426 | } | |
3427 | ||
3428 | if (zExp < 0) { | |
3429 | /* Note that flush-to-zero does not affect half-precision results */ | |
3430 | is_tiny = | |
a2f2d288 | 3431 | (status->float_detect_tininess == float_tininess_before_rounding) |
c4a1c5e7 PM |
3432 | || (zExp < -1) |
3433 | || (!rounding_bumps_exp); | |
3434 | } | |
3435 | if (zSig & mask) { | |
ff32e16e | 3436 | float_raise(float_flag_inexact, status); |
c4a1c5e7 | 3437 | if (is_tiny) { |
ff32e16e | 3438 | float_raise(float_flag_underflow, status); |
c4a1c5e7 PM |
3439 | } |
3440 | } | |
3441 | ||
3442 | zSig += increment; | |
3443 | if (rounding_bumps_exp) { | |
3444 | zSig >>= 1; | |
3445 | zExp++; | |
3446 | } | |
3447 | ||
3448 | if (zExp < -10) { | |
3449 | return packFloat16(zSign, 0, 0); | |
3450 | } | |
3451 | if (zExp < 0) { | |
3452 | zSig >>= -zExp; | |
3453 | zExp = 0; | |
3454 | } | |
3455 | return packFloat16(zSign, zExp, zSig >> 13); | |
3456 | } | |
3457 | ||
3458 | static void normalizeFloat16Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, | |
3459 | uint32_t *zSigPtr) | |
3460 | { | |
3461 | int8_t shiftCount = countLeadingZeros32(aSig) - 21; | |
3462 | *zSigPtr = aSig << shiftCount; | |
3463 | *zExpPtr = 1 - shiftCount; | |
3464 | } | |
3465 | ||
60011498 PB |
3466 | /* Half precision floats come in two formats: standard IEEE and "ARM" format. |
3467 | The latter gains extra exponent range by omitting the NaN/Inf encodings. */ | |
bb4d4bb3 | 3468 | |
e5a41ffa | 3469 | float32 float16_to_float32(float16 a, flag ieee, float_status *status) |
60011498 PB |
3470 | { |
3471 | flag aSign; | |
94a49d86 | 3472 | int_fast16_t aExp; |
bb98fe42 | 3473 | uint32_t aSig; |
60011498 | 3474 | |
bb4d4bb3 PM |
3475 | aSign = extractFloat16Sign(a); |
3476 | aExp = extractFloat16Exp(a); | |
3477 | aSig = extractFloat16Frac(a); | |
60011498 PB |
3478 | |
3479 | if (aExp == 0x1f && ieee) { | |
3480 | if (aSig) { | |
ff32e16e | 3481 | return commonNaNToFloat32(float16ToCommonNaN(a, status), status); |
60011498 | 3482 | } |
4be8eeac | 3483 | return packFloat32(aSign, 0xff, 0); |
60011498 PB |
3484 | } |
3485 | if (aExp == 0) { | |
60011498 PB |
3486 | if (aSig == 0) { |
3487 | return packFloat32(aSign, 0, 0); | |
3488 | } | |
3489 | ||
c4a1c5e7 PM |
3490 | normalizeFloat16Subnormal(aSig, &aExp, &aSig); |
3491 | aExp--; | |
60011498 PB |
3492 | } |
3493 | return packFloat32( aSign, aExp + 0x70, aSig << 13); | |
3494 | } | |
3495 | ||
e5a41ffa | 3496 | float16 float32_to_float16(float32 a, flag ieee, float_status *status) |
60011498 PB |
3497 | { |
3498 | flag aSign; | |
94a49d86 | 3499 | int_fast16_t aExp; |
bb98fe42 | 3500 | uint32_t aSig; |
38970efa | 3501 | |
ff32e16e | 3502 | a = float32_squash_input_denormal(a, status); |
60011498 PB |
3503 | |
3504 | aSig = extractFloat32Frac( a ); | |
3505 | aExp = extractFloat32Exp( a ); | |
3506 | aSign = extractFloat32Sign( a ); | |
3507 | if ( aExp == 0xFF ) { | |
3508 | if (aSig) { | |
600e30d2 | 3509 | /* Input is a NaN */ |
600e30d2 | 3510 | if (!ieee) { |
ff32e16e | 3511 | float_raise(float_flag_invalid, status); |
600e30d2 PM |
3512 | return packFloat16(aSign, 0, 0); |
3513 | } | |
38970efa | 3514 | return commonNaNToFloat16( |
ff32e16e | 3515 | float32ToCommonNaN(a, status), status); |
60011498 | 3516 | } |
600e30d2 PM |
3517 | /* Infinity */ |
3518 | if (!ieee) { | |
ff32e16e | 3519 | float_raise(float_flag_invalid, status); |
600e30d2 PM |
3520 | return packFloat16(aSign, 0x1f, 0x3ff); |
3521 | } | |
3522 | return packFloat16(aSign, 0x1f, 0); | |
60011498 | 3523 | } |
600e30d2 | 3524 | if (aExp == 0 && aSig == 0) { |
60011498 PB |
3525 | return packFloat16(aSign, 0, 0); |
3526 | } | |
38970efa PM |
3527 | /* Decimal point between bits 22 and 23. Note that we add the 1 bit |
3528 | * even if the input is denormal; however this is harmless because | |
3529 | * the largest possible single-precision denormal is still smaller | |
3530 | * than the smallest representable half-precision denormal, and so we | |
3531 | * will end up ignoring aSig and returning via the "always return zero" | |
3532 | * codepath. | |
3533 | */ | |
60011498 | 3534 | aSig |= 0x00800000; |
c4a1c5e7 | 3535 | aExp -= 0x71; |
60011498 | 3536 | |
ff32e16e | 3537 | return roundAndPackFloat16(aSign, aExp, aSig, ieee, status); |
60011498 PB |
3538 | } |
3539 | ||
e5a41ffa | 3540 | float64 float16_to_float64(float16 a, flag ieee, float_status *status) |
14c9a07e PM |
3541 | { |
3542 | flag aSign; | |
3543 | int_fast16_t aExp; | |
3544 | uint32_t aSig; | |
3545 | ||
3546 | aSign = extractFloat16Sign(a); | |
3547 | aExp = extractFloat16Exp(a); | |
3548 | aSig = extractFloat16Frac(a); | |
3549 | ||
3550 | if (aExp == 0x1f && ieee) { | |
3551 | if (aSig) { | |
3552 | return commonNaNToFloat64( | |
ff32e16e | 3553 | float16ToCommonNaN(a, status), status); |
14c9a07e PM |
3554 | } |
3555 | return packFloat64(aSign, 0x7ff, 0); | |
3556 | } | |
3557 | if (aExp == 0) { | |
3558 | if (aSig == 0) { | |
3559 | return packFloat64(aSign, 0, 0); | |
3560 | } | |
3561 | ||
3562 | normalizeFloat16Subnormal(aSig, &aExp, &aSig); | |
3563 | aExp--; | |
3564 | } | |
3565 | return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42); | |
3566 | } | |
3567 | ||
e5a41ffa | 3568 | float16 float64_to_float16(float64 a, flag ieee, float_status *status) |
14c9a07e PM |
3569 | { |
3570 | flag aSign; | |
3571 | int_fast16_t aExp; | |
3572 | uint64_t aSig; | |
3573 | uint32_t zSig; | |
3574 | ||
ff32e16e | 3575 | a = float64_squash_input_denormal(a, status); |
14c9a07e PM |
3576 | |
3577 | aSig = extractFloat64Frac(a); | |
3578 | aExp = extractFloat64Exp(a); | |
3579 | aSign = extractFloat64Sign(a); | |
3580 | if (aExp == 0x7FF) { | |
3581 | if (aSig) { | |
3582 | /* Input is a NaN */ | |
3583 | if (!ieee) { | |
ff32e16e | 3584 | float_raise(float_flag_invalid, status); |
14c9a07e PM |
3585 | return packFloat16(aSign, 0, 0); |
3586 | } | |
3587 | return commonNaNToFloat16( | |
ff32e16e | 3588 | float64ToCommonNaN(a, status), status); |
14c9a07e PM |
3589 | } |
3590 | /* Infinity */ | |
3591 | if (!ieee) { | |
ff32e16e | 3592 | float_raise(float_flag_invalid, status); |
14c9a07e PM |
3593 | return packFloat16(aSign, 0x1f, 0x3ff); |
3594 | } | |
3595 | return packFloat16(aSign, 0x1f, 0); | |
3596 | } | |
3597 | shift64RightJamming(aSig, 29, &aSig); | |
3598 | zSig = aSig; | |
3599 | if (aExp == 0 && zSig == 0) { | |
3600 | return packFloat16(aSign, 0, 0); | |
3601 | } | |
3602 | /* Decimal point between bits 22 and 23. Note that we add the 1 bit | |
3603 | * even if the input is denormal; however this is harmless because | |
3604 | * the largest possible single-precision denormal is still smaller | |
3605 | * than the smallest representable half-precision denormal, and so we | |
3606 | * will end up ignoring aSig and returning via the "always return zero" | |
3607 | * codepath. | |
3608 | */ | |
3609 | zSig |= 0x00800000; | |
3610 | aExp -= 0x3F1; | |
3611 | ||
ff32e16e | 3612 | return roundAndPackFloat16(aSign, aExp, zSig, ieee, status); |
14c9a07e PM |
3613 | } |
3614 | ||
158142c2 FB |
3615 | /*---------------------------------------------------------------------------- |
3616 | | Returns the result of converting the double-precision floating-point value | |
3617 | | `a' to the extended double-precision floating-point format. The conversion | |
3618 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3619 | | Arithmetic. | |
3620 | *----------------------------------------------------------------------------*/ | |
3621 | ||
e5a41ffa | 3622 | floatx80 float64_to_floatx80(float64 a, float_status *status) |
158142c2 FB |
3623 | { |
3624 | flag aSign; | |
94a49d86 | 3625 | int_fast16_t aExp; |
bb98fe42 | 3626 | uint64_t aSig; |
158142c2 | 3627 | |
ff32e16e | 3628 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3629 | aSig = extractFloat64Frac( a ); |
3630 | aExp = extractFloat64Exp( a ); | |
3631 | aSign = extractFloat64Sign( a ); | |
3632 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3633 | if (aSig) { |
3634 | return commonNaNToFloatx80(float64ToCommonNaN(a, status), status); | |
3635 | } | |
158142c2 FB |
3636 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
3637 | } | |
3638 | if ( aExp == 0 ) { | |
3639 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
3640 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3641 | } | |
3642 | return | |
3643 | packFloatx80( | |
3644 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | |
3645 | ||
3646 | } | |
3647 | ||
158142c2 FB |
3648 | /*---------------------------------------------------------------------------- |
3649 | | Returns the result of converting the double-precision floating-point value | |
3650 | | `a' to the quadruple-precision floating-point format. The conversion is | |
3651 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3652 | | Arithmetic. | |
3653 | *----------------------------------------------------------------------------*/ | |
3654 | ||
e5a41ffa | 3655 | float128 float64_to_float128(float64 a, float_status *status) |
158142c2 FB |
3656 | { |
3657 | flag aSign; | |
94a49d86 | 3658 | int_fast16_t aExp; |
bb98fe42 | 3659 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 3660 | |
ff32e16e | 3661 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3662 | aSig = extractFloat64Frac( a ); |
3663 | aExp = extractFloat64Exp( a ); | |
3664 | aSign = extractFloat64Sign( a ); | |
3665 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3666 | if (aSig) { |
3667 | return commonNaNToFloat128(float64ToCommonNaN(a, status), status); | |
3668 | } | |
158142c2 FB |
3669 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
3670 | } | |
3671 | if ( aExp == 0 ) { | |
3672 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
3673 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3674 | --aExp; | |
3675 | } | |
3676 | shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); | |
3677 | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); | |
3678 | ||
3679 | } | |
3680 | ||
158142c2 FB |
3681 | /*---------------------------------------------------------------------------- |
3682 | | Rounds the double-precision floating-point value `a' to an integer, and | |
3683 | | returns the result as a double-precision floating-point value. The | |
3684 | | operation is performed according to the IEC/IEEE Standard for Binary | |
3685 | | Floating-Point Arithmetic. | |
3686 | *----------------------------------------------------------------------------*/ | |
3687 | ||
e5a41ffa | 3688 | float64 float64_round_to_int(float64 a, float_status *status) |
158142c2 FB |
3689 | { |
3690 | flag aSign; | |
94a49d86 | 3691 | int_fast16_t aExp; |
bb98fe42 | 3692 | uint64_t lastBitMask, roundBitsMask; |
bb98fe42 | 3693 | uint64_t z; |
ff32e16e | 3694 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3695 | |
3696 | aExp = extractFloat64Exp( a ); | |
3697 | if ( 0x433 <= aExp ) { | |
3698 | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | |
ff32e16e | 3699 | return propagateFloat64NaN(a, a, status); |
158142c2 FB |
3700 | } |
3701 | return a; | |
3702 | } | |
3703 | if ( aExp < 0x3FF ) { | |
bb98fe42 | 3704 | if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a; |
a2f2d288 | 3705 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 3706 | aSign = extractFloat64Sign( a ); |
a2f2d288 | 3707 | switch (status->float_rounding_mode) { |
158142c2 FB |
3708 | case float_round_nearest_even: |
3709 | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | |
3710 | return packFloat64( aSign, 0x3FF, 0 ); | |
3711 | } | |
3712 | break; | |
f9288a76 PM |
3713 | case float_round_ties_away: |
3714 | if (aExp == 0x3FE) { | |
3715 | return packFloat64(aSign, 0x3ff, 0); | |
3716 | } | |
3717 | break; | |
158142c2 | 3718 | case float_round_down: |
f090c9d4 | 3719 | return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0); |
158142c2 | 3720 | case float_round_up: |
f090c9d4 PB |
3721 | return make_float64( |
3722 | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 )); | |
158142c2 FB |
3723 | } |
3724 | return packFloat64( aSign, 0, 0 ); | |
3725 | } | |
3726 | lastBitMask = 1; | |
3727 | lastBitMask <<= 0x433 - aExp; | |
3728 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 3729 | z = float64_val(a); |
a2f2d288 | 3730 | switch (status->float_rounding_mode) { |
dc355b76 PM |
3731 | case float_round_nearest_even: |
3732 | z += lastBitMask >> 1; | |
3733 | if ((z & roundBitsMask) == 0) { | |
3734 | z &= ~lastBitMask; | |
3735 | } | |
3736 | break; | |
f9288a76 PM |
3737 | case float_round_ties_away: |
3738 | z += lastBitMask >> 1; | |
3739 | break; | |
dc355b76 PM |
3740 | case float_round_to_zero: |
3741 | break; | |
3742 | case float_round_up: | |
3743 | if (!extractFloat64Sign(make_float64(z))) { | |
3744 | z += roundBitsMask; | |
3745 | } | |
3746 | break; | |
3747 | case float_round_down: | |
3748 | if (extractFloat64Sign(make_float64(z))) { | |
158142c2 FB |
3749 | z += roundBitsMask; |
3750 | } | |
dc355b76 PM |
3751 | break; |
3752 | default: | |
3753 | abort(); | |
158142c2 FB |
3754 | } |
3755 | z &= ~ roundBitsMask; | |
a2f2d288 PM |
3756 | if (z != float64_val(a)) { |
3757 | status->float_exception_flags |= float_flag_inexact; | |
3758 | } | |
f090c9d4 | 3759 | return make_float64(z); |
158142c2 FB |
3760 | |
3761 | } | |
3762 | ||
e5a41ffa | 3763 | float64 float64_trunc_to_int(float64 a, float_status *status) |
e6e5906b PB |
3764 | { |
3765 | int oldmode; | |
3766 | float64 res; | |
a2f2d288 PM |
3767 | oldmode = status->float_rounding_mode; |
3768 | status->float_rounding_mode = float_round_to_zero; | |
ff32e16e | 3769 | res = float64_round_to_int(a, status); |
a2f2d288 | 3770 | status->float_rounding_mode = oldmode; |
e6e5906b PB |
3771 | return res; |
3772 | } | |
3773 | ||
158142c2 FB |
3774 | /*---------------------------------------------------------------------------- |
3775 | | Returns the result of adding the absolute values of the double-precision | |
3776 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
3777 | | before being returned. `zSign' is ignored if the result is a NaN. | |
3778 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
3779 | | Floating-Point Arithmetic. | |
3780 | *----------------------------------------------------------------------------*/ | |
3781 | ||
e5a41ffa PM |
3782 | static float64 addFloat64Sigs(float64 a, float64 b, flag zSign, |
3783 | float_status *status) | |
158142c2 | 3784 | { |
94a49d86 | 3785 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 3786 | uint64_t aSig, bSig, zSig; |
94a49d86 | 3787 | int_fast16_t expDiff; |
158142c2 FB |
3788 | |
3789 | aSig = extractFloat64Frac( a ); | |
3790 | aExp = extractFloat64Exp( a ); | |
3791 | bSig = extractFloat64Frac( b ); | |
3792 | bExp = extractFloat64Exp( b ); | |
3793 | expDiff = aExp - bExp; | |
3794 | aSig <<= 9; | |
3795 | bSig <<= 9; | |
3796 | if ( 0 < expDiff ) { | |
3797 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3798 | if (aSig) { |
3799 | return propagateFloat64NaN(a, b, status); | |
3800 | } | |
158142c2 FB |
3801 | return a; |
3802 | } | |
3803 | if ( bExp == 0 ) { | |
3804 | --expDiff; | |
3805 | } | |
3806 | else { | |
3807 | bSig |= LIT64( 0x2000000000000000 ); | |
3808 | } | |
3809 | shift64RightJamming( bSig, expDiff, &bSig ); | |
3810 | zExp = aExp; | |
3811 | } | |
3812 | else if ( expDiff < 0 ) { | |
3813 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
3814 | if (bSig) { |
3815 | return propagateFloat64NaN(a, b, status); | |
3816 | } | |
158142c2 FB |
3817 | return packFloat64( zSign, 0x7FF, 0 ); |
3818 | } | |
3819 | if ( aExp == 0 ) { | |
3820 | ++expDiff; | |
3821 | } | |
3822 | else { | |
3823 | aSig |= LIT64( 0x2000000000000000 ); | |
3824 | } | |
3825 | shift64RightJamming( aSig, - expDiff, &aSig ); | |
3826 | zExp = bExp; | |
3827 | } | |
3828 | else { | |
3829 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3830 | if (aSig | bSig) { |
3831 | return propagateFloat64NaN(a, b, status); | |
3832 | } | |
158142c2 FB |
3833 | return a; |
3834 | } | |
fe76d976 | 3835 | if ( aExp == 0 ) { |
a2f2d288 | 3836 | if (status->flush_to_zero) { |
e6afc87f | 3837 | if (aSig | bSig) { |
ff32e16e | 3838 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
3839 | } |
3840 | return packFloat64(zSign, 0, 0); | |
3841 | } | |
fe76d976 PB |
3842 | return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); |
3843 | } | |
158142c2 FB |
3844 | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; |
3845 | zExp = aExp; | |
3846 | goto roundAndPack; | |
3847 | } | |
3848 | aSig |= LIT64( 0x2000000000000000 ); | |
3849 | zSig = ( aSig + bSig )<<1; | |
3850 | --zExp; | |
bb98fe42 | 3851 | if ( (int64_t) zSig < 0 ) { |
158142c2 FB |
3852 | zSig = aSig + bSig; |
3853 | ++zExp; | |
3854 | } | |
3855 | roundAndPack: | |
ff32e16e | 3856 | return roundAndPackFloat64(zSign, zExp, zSig, status); |
158142c2 FB |
3857 | |
3858 | } | |
3859 | ||
3860 | /*---------------------------------------------------------------------------- | |
3861 | | Returns the result of subtracting the absolute values of the double- | |
3862 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
3863 | | difference is negated before being returned. `zSign' is ignored if the | |
3864 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
3865 | | Standard for Binary Floating-Point Arithmetic. | |
3866 | *----------------------------------------------------------------------------*/ | |
3867 | ||
e5a41ffa PM |
3868 | static float64 subFloat64Sigs(float64 a, float64 b, flag zSign, |
3869 | float_status *status) | |
158142c2 | 3870 | { |
94a49d86 | 3871 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 3872 | uint64_t aSig, bSig, zSig; |
94a49d86 | 3873 | int_fast16_t expDiff; |
158142c2 FB |
3874 | |
3875 | aSig = extractFloat64Frac( a ); | |
3876 | aExp = extractFloat64Exp( a ); | |
3877 | bSig = extractFloat64Frac( b ); | |
3878 | bExp = extractFloat64Exp( b ); | |
3879 | expDiff = aExp - bExp; | |
3880 | aSig <<= 10; | |
3881 | bSig <<= 10; | |
3882 | if ( 0 < expDiff ) goto aExpBigger; | |
3883 | if ( expDiff < 0 ) goto bExpBigger; | |
3884 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3885 | if (aSig | bSig) { |
3886 | return propagateFloat64NaN(a, b, status); | |
3887 | } | |
3888 | float_raise(float_flag_invalid, status); | |
158142c2 FB |
3889 | return float64_default_nan; |
3890 | } | |
3891 | if ( aExp == 0 ) { | |
3892 | aExp = 1; | |
3893 | bExp = 1; | |
3894 | } | |
3895 | if ( bSig < aSig ) goto aBigger; | |
3896 | if ( aSig < bSig ) goto bBigger; | |
a2f2d288 | 3897 | return packFloat64(status->float_rounding_mode == float_round_down, 0, 0); |
158142c2 FB |
3898 | bExpBigger: |
3899 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
3900 | if (bSig) { |
3901 | return propagateFloat64NaN(a, b, status); | |
3902 | } | |
158142c2 FB |
3903 | return packFloat64( zSign ^ 1, 0x7FF, 0 ); |
3904 | } | |
3905 | if ( aExp == 0 ) { | |
3906 | ++expDiff; | |
3907 | } | |
3908 | else { | |
3909 | aSig |= LIT64( 0x4000000000000000 ); | |
3910 | } | |
3911 | shift64RightJamming( aSig, - expDiff, &aSig ); | |
3912 | bSig |= LIT64( 0x4000000000000000 ); | |
3913 | bBigger: | |
3914 | zSig = bSig - aSig; | |
3915 | zExp = bExp; | |
3916 | zSign ^= 1; | |
3917 | goto normalizeRoundAndPack; | |
3918 | aExpBigger: | |
3919 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3920 | if (aSig) { |
3921 | return propagateFloat64NaN(a, b, status); | |
3922 | } | |
158142c2 FB |
3923 | return a; |
3924 | } | |
3925 | if ( bExp == 0 ) { | |
3926 | --expDiff; | |
3927 | } | |
3928 | else { | |
3929 | bSig |= LIT64( 0x4000000000000000 ); | |
3930 | } | |
3931 | shift64RightJamming( bSig, expDiff, &bSig ); | |
3932 | aSig |= LIT64( 0x4000000000000000 ); | |
3933 | aBigger: | |
3934 | zSig = aSig - bSig; | |
3935 | zExp = aExp; | |
3936 | normalizeRoundAndPack: | |
3937 | --zExp; | |
ff32e16e | 3938 | return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status); |
158142c2 FB |
3939 | |
3940 | } | |
3941 | ||
3942 | /*---------------------------------------------------------------------------- | |
3943 | | Returns the result of adding the double-precision floating-point values `a' | |
3944 | | and `b'. The operation is performed according to the IEC/IEEE Standard for | |
3945 | | Binary Floating-Point Arithmetic. | |
3946 | *----------------------------------------------------------------------------*/ | |
3947 | ||
e5a41ffa | 3948 | float64 float64_add(float64 a, float64 b, float_status *status) |
158142c2 FB |
3949 | { |
3950 | flag aSign, bSign; | |
ff32e16e PM |
3951 | a = float64_squash_input_denormal(a, status); |
3952 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
3953 | |
3954 | aSign = extractFloat64Sign( a ); | |
3955 | bSign = extractFloat64Sign( b ); | |
3956 | if ( aSign == bSign ) { | |
ff32e16e | 3957 | return addFloat64Sigs(a, b, aSign, status); |
158142c2 FB |
3958 | } |
3959 | else { | |
ff32e16e | 3960 | return subFloat64Sigs(a, b, aSign, status); |
158142c2 FB |
3961 | } |
3962 | ||
3963 | } | |
3964 | ||
3965 | /*---------------------------------------------------------------------------- | |
3966 | | Returns the result of subtracting the double-precision floating-point values | |
3967 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
3968 | | for Binary Floating-Point Arithmetic. | |
3969 | *----------------------------------------------------------------------------*/ | |
3970 | ||
e5a41ffa | 3971 | float64 float64_sub(float64 a, float64 b, float_status *status) |
158142c2 FB |
3972 | { |
3973 | flag aSign, bSign; | |
ff32e16e PM |
3974 | a = float64_squash_input_denormal(a, status); |
3975 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
3976 | |
3977 | aSign = extractFloat64Sign( a ); | |
3978 | bSign = extractFloat64Sign( b ); | |
3979 | if ( aSign == bSign ) { | |
ff32e16e | 3980 | return subFloat64Sigs(a, b, aSign, status); |
158142c2 FB |
3981 | } |
3982 | else { | |
ff32e16e | 3983 | return addFloat64Sigs(a, b, aSign, status); |
158142c2 FB |
3984 | } |
3985 | ||
3986 | } | |
3987 | ||
3988 | /*---------------------------------------------------------------------------- | |
3989 | | Returns the result of multiplying the double-precision floating-point values | |
3990 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
3991 | | for Binary Floating-Point Arithmetic. | |
3992 | *----------------------------------------------------------------------------*/ | |
3993 | ||
e5a41ffa | 3994 | float64 float64_mul(float64 a, float64 b, float_status *status) |
158142c2 FB |
3995 | { |
3996 | flag aSign, bSign, zSign; | |
94a49d86 | 3997 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 3998 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 | 3999 | |
ff32e16e PM |
4000 | a = float64_squash_input_denormal(a, status); |
4001 | b = float64_squash_input_denormal(b, status); | |
37d18660 | 4002 | |
158142c2 FB |
4003 | aSig = extractFloat64Frac( a ); |
4004 | aExp = extractFloat64Exp( a ); | |
4005 | aSign = extractFloat64Sign( a ); | |
4006 | bSig = extractFloat64Frac( b ); | |
4007 | bExp = extractFloat64Exp( b ); | |
4008 | bSign = extractFloat64Sign( b ); | |
4009 | zSign = aSign ^ bSign; | |
4010 | if ( aExp == 0x7FF ) { | |
4011 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
ff32e16e | 4012 | return propagateFloat64NaN(a, b, status); |
158142c2 FB |
4013 | } |
4014 | if ( ( bExp | bSig ) == 0 ) { | |
ff32e16e | 4015 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4016 | return float64_default_nan; |
4017 | } | |
4018 | return packFloat64( zSign, 0x7FF, 0 ); | |
4019 | } | |
4020 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
4021 | if (bSig) { |
4022 | return propagateFloat64NaN(a, b, status); | |
4023 | } | |
158142c2 | 4024 | if ( ( aExp | aSig ) == 0 ) { |
ff32e16e | 4025 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4026 | return float64_default_nan; |
4027 | } | |
4028 | return packFloat64( zSign, 0x7FF, 0 ); | |
4029 | } | |
4030 | if ( aExp == 0 ) { | |
4031 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
4032 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4033 | } | |
4034 | if ( bExp == 0 ) { | |
4035 | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
4036 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
4037 | } | |
4038 | zExp = aExp + bExp - 0x3FF; | |
4039 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
4040 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
4041 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
4042 | zSig0 |= ( zSig1 != 0 ); | |
bb98fe42 | 4043 | if ( 0 <= (int64_t) ( zSig0<<1 ) ) { |
158142c2 FB |
4044 | zSig0 <<= 1; |
4045 | --zExp; | |
4046 | } | |
ff32e16e | 4047 | return roundAndPackFloat64(zSign, zExp, zSig0, status); |
158142c2 FB |
4048 | |
4049 | } | |
4050 | ||
4051 | /*---------------------------------------------------------------------------- | |
4052 | | Returns the result of dividing the double-precision floating-point value `a' | |
4053 | | by the corresponding value `b'. The operation is performed according to | |
4054 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4055 | *----------------------------------------------------------------------------*/ | |
4056 | ||
e5a41ffa | 4057 | float64 float64_div(float64 a, float64 b, float_status *status) |
158142c2 FB |
4058 | { |
4059 | flag aSign, bSign, zSign; | |
94a49d86 | 4060 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 AF |
4061 | uint64_t aSig, bSig, zSig; |
4062 | uint64_t rem0, rem1; | |
4063 | uint64_t term0, term1; | |
ff32e16e PM |
4064 | a = float64_squash_input_denormal(a, status); |
4065 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4066 | |
4067 | aSig = extractFloat64Frac( a ); | |
4068 | aExp = extractFloat64Exp( a ); | |
4069 | aSign = extractFloat64Sign( a ); | |
4070 | bSig = extractFloat64Frac( b ); | |
4071 | bExp = extractFloat64Exp( b ); | |
4072 | bSign = extractFloat64Sign( b ); | |
4073 | zSign = aSign ^ bSign; | |
4074 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4075 | if (aSig) { |
4076 | return propagateFloat64NaN(a, b, status); | |
4077 | } | |
158142c2 | 4078 | if ( bExp == 0x7FF ) { |
ff32e16e PM |
4079 | if (bSig) { |
4080 | return propagateFloat64NaN(a, b, status); | |
4081 | } | |
4082 | float_raise(float_flag_invalid, status); | |
158142c2 FB |
4083 | return float64_default_nan; |
4084 | } | |
4085 | return packFloat64( zSign, 0x7FF, 0 ); | |
4086 | } | |
4087 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
4088 | if (bSig) { |
4089 | return propagateFloat64NaN(a, b, status); | |
4090 | } | |
158142c2 FB |
4091 | return packFloat64( zSign, 0, 0 ); |
4092 | } | |
4093 | if ( bExp == 0 ) { | |
4094 | if ( bSig == 0 ) { | |
4095 | if ( ( aExp | aSig ) == 0 ) { | |
ff32e16e | 4096 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4097 | return float64_default_nan; |
4098 | } | |
ff32e16e | 4099 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
4100 | return packFloat64( zSign, 0x7FF, 0 ); |
4101 | } | |
4102 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
4103 | } | |
4104 | if ( aExp == 0 ) { | |
4105 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
4106 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4107 | } | |
4108 | zExp = aExp - bExp + 0x3FD; | |
4109 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
4110 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
4111 | if ( bSig <= ( aSig + aSig ) ) { | |
4112 | aSig >>= 1; | |
4113 | ++zExp; | |
4114 | } | |
4115 | zSig = estimateDiv128To64( aSig, 0, bSig ); | |
4116 | if ( ( zSig & 0x1FF ) <= 2 ) { | |
4117 | mul64To128( bSig, zSig, &term0, &term1 ); | |
4118 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 4119 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
4120 | --zSig; |
4121 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
4122 | } | |
4123 | zSig |= ( rem1 != 0 ); | |
4124 | } | |
ff32e16e | 4125 | return roundAndPackFloat64(zSign, zExp, zSig, status); |
158142c2 FB |
4126 | |
4127 | } | |
4128 | ||
4129 | /*---------------------------------------------------------------------------- | |
4130 | | Returns the remainder of the double-precision floating-point value `a' | |
4131 | | with respect to the corresponding value `b'. The operation is performed | |
4132 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4133 | *----------------------------------------------------------------------------*/ | |
4134 | ||
e5a41ffa | 4135 | float64 float64_rem(float64 a, float64 b, float_status *status) |
158142c2 | 4136 | { |
ed086f3d | 4137 | flag aSign, zSign; |
94a49d86 | 4138 | int_fast16_t aExp, bExp, expDiff; |
bb98fe42 AF |
4139 | uint64_t aSig, bSig; |
4140 | uint64_t q, alternateASig; | |
4141 | int64_t sigMean; | |
158142c2 | 4142 | |
ff32e16e PM |
4143 | a = float64_squash_input_denormal(a, status); |
4144 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4145 | aSig = extractFloat64Frac( a ); |
4146 | aExp = extractFloat64Exp( a ); | |
4147 | aSign = extractFloat64Sign( a ); | |
4148 | bSig = extractFloat64Frac( b ); | |
4149 | bExp = extractFloat64Exp( b ); | |
158142c2 FB |
4150 | if ( aExp == 0x7FF ) { |
4151 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
ff32e16e | 4152 | return propagateFloat64NaN(a, b, status); |
158142c2 | 4153 | } |
ff32e16e | 4154 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4155 | return float64_default_nan; |
4156 | } | |
4157 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
4158 | if (bSig) { |
4159 | return propagateFloat64NaN(a, b, status); | |
4160 | } | |
158142c2 FB |
4161 | return a; |
4162 | } | |
4163 | if ( bExp == 0 ) { | |
4164 | if ( bSig == 0 ) { | |
ff32e16e | 4165 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4166 | return float64_default_nan; |
4167 | } | |
4168 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
4169 | } | |
4170 | if ( aExp == 0 ) { | |
4171 | if ( aSig == 0 ) return a; | |
4172 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4173 | } | |
4174 | expDiff = aExp - bExp; | |
4175 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | |
4176 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
4177 | if ( expDiff < 0 ) { | |
4178 | if ( expDiff < -1 ) return a; | |
4179 | aSig >>= 1; | |
4180 | } | |
4181 | q = ( bSig <= aSig ); | |
4182 | if ( q ) aSig -= bSig; | |
4183 | expDiff -= 64; | |
4184 | while ( 0 < expDiff ) { | |
4185 | q = estimateDiv128To64( aSig, 0, bSig ); | |
4186 | q = ( 2 < q ) ? q - 2 : 0; | |
4187 | aSig = - ( ( bSig>>2 ) * q ); | |
4188 | expDiff -= 62; | |
4189 | } | |
4190 | expDiff += 64; | |
4191 | if ( 0 < expDiff ) { | |
4192 | q = estimateDiv128To64( aSig, 0, bSig ); | |
4193 | q = ( 2 < q ) ? q - 2 : 0; | |
4194 | q >>= 64 - expDiff; | |
4195 | bSig >>= 2; | |
4196 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
4197 | } | |
4198 | else { | |
4199 | aSig >>= 2; | |
4200 | bSig >>= 2; | |
4201 | } | |
4202 | do { | |
4203 | alternateASig = aSig; | |
4204 | ++q; | |
4205 | aSig -= bSig; | |
bb98fe42 | 4206 | } while ( 0 <= (int64_t) aSig ); |
158142c2 FB |
4207 | sigMean = aSig + alternateASig; |
4208 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
4209 | aSig = alternateASig; | |
4210 | } | |
bb98fe42 | 4211 | zSign = ( (int64_t) aSig < 0 ); |
158142c2 | 4212 | if ( zSign ) aSig = - aSig; |
ff32e16e | 4213 | return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status); |
158142c2 FB |
4214 | |
4215 | } | |
4216 | ||
369be8f6 PM |
4217 | /*---------------------------------------------------------------------------- |
4218 | | Returns the result of multiplying the double-precision floating-point values | |
4219 | | `a' and `b' then adding 'c', with no intermediate rounding step after the | |
4220 | | multiplication. The operation is performed according to the IEC/IEEE | |
4221 | | Standard for Binary Floating-Point Arithmetic 754-2008. | |
4222 | | The flags argument allows the caller to select negation of the | |
4223 | | addend, the intermediate product, or the final result. (The difference | |
4224 | | between this and having the caller do a separate negation is that negating | |
4225 | | externally will flip the sign bit on NaNs.) | |
4226 | *----------------------------------------------------------------------------*/ | |
4227 | ||
e5a41ffa PM |
4228 | float64 float64_muladd(float64 a, float64 b, float64 c, int flags, |
4229 | float_status *status) | |
369be8f6 PM |
4230 | { |
4231 | flag aSign, bSign, cSign, zSign; | |
94a49d86 | 4232 | int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff; |
369be8f6 PM |
4233 | uint64_t aSig, bSig, cSig; |
4234 | flag pInf, pZero, pSign; | |
4235 | uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1; | |
4236 | int shiftcount; | |
4237 | flag signflip, infzero; | |
4238 | ||
ff32e16e PM |
4239 | a = float64_squash_input_denormal(a, status); |
4240 | b = float64_squash_input_denormal(b, status); | |
4241 | c = float64_squash_input_denormal(c, status); | |
369be8f6 PM |
4242 | aSig = extractFloat64Frac(a); |
4243 | aExp = extractFloat64Exp(a); | |
4244 | aSign = extractFloat64Sign(a); | |
4245 | bSig = extractFloat64Frac(b); | |
4246 | bExp = extractFloat64Exp(b); | |
4247 | bSign = extractFloat64Sign(b); | |
4248 | cSig = extractFloat64Frac(c); | |
4249 | cExp = extractFloat64Exp(c); | |
4250 | cSign = extractFloat64Sign(c); | |
4251 | ||
4252 | infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) || | |
4253 | (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0)); | |
4254 | ||
4255 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
4256 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
4257 | * they return if they do), so we have to hand this information | |
4258 | * off to the target-specific pick-a-NaN routine. | |
4259 | */ | |
4260 | if (((aExp == 0x7ff) && aSig) || | |
4261 | ((bExp == 0x7ff) && bSig) || | |
4262 | ((cExp == 0x7ff) && cSig)) { | |
ff32e16e | 4263 | return propagateFloat64MulAddNaN(a, b, c, infzero, status); |
369be8f6 PM |
4264 | } |
4265 | ||
4266 | if (infzero) { | |
ff32e16e | 4267 | float_raise(float_flag_invalid, status); |
369be8f6 PM |
4268 | return float64_default_nan; |
4269 | } | |
4270 | ||
4271 | if (flags & float_muladd_negate_c) { | |
4272 | cSign ^= 1; | |
4273 | } | |
4274 | ||
4275 | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | |
4276 | ||
4277 | /* Work out the sign and type of the product */ | |
4278 | pSign = aSign ^ bSign; | |
4279 | if (flags & float_muladd_negate_product) { | |
4280 | pSign ^= 1; | |
4281 | } | |
4282 | pInf = (aExp == 0x7ff) || (bExp == 0x7ff); | |
4283 | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | |
4284 | ||
4285 | if (cExp == 0x7ff) { | |
4286 | if (pInf && (pSign ^ cSign)) { | |
4287 | /* addition of opposite-signed infinities => InvalidOperation */ | |
ff32e16e | 4288 | float_raise(float_flag_invalid, status); |
369be8f6 PM |
4289 | return float64_default_nan; |
4290 | } | |
4291 | /* Otherwise generate an infinity of the same sign */ | |
4292 | return packFloat64(cSign ^ signflip, 0x7ff, 0); | |
4293 | } | |
4294 | ||
4295 | if (pInf) { | |
4296 | return packFloat64(pSign ^ signflip, 0x7ff, 0); | |
4297 | } | |
4298 | ||
4299 | if (pZero) { | |
4300 | if (cExp == 0) { | |
4301 | if (cSig == 0) { | |
4302 | /* Adding two exact zeroes */ | |
4303 | if (pSign == cSign) { | |
4304 | zSign = pSign; | |
a2f2d288 | 4305 | } else if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
4306 | zSign = 1; |
4307 | } else { | |
4308 | zSign = 0; | |
4309 | } | |
4310 | return packFloat64(zSign ^ signflip, 0, 0); | |
4311 | } | |
4312 | /* Exact zero plus a denorm */ | |
a2f2d288 | 4313 | if (status->flush_to_zero) { |
ff32e16e | 4314 | float_raise(float_flag_output_denormal, status); |
369be8f6 PM |
4315 | return packFloat64(cSign ^ signflip, 0, 0); |
4316 | } | |
4317 | } | |
4318 | /* Zero plus something non-zero : just return the something */ | |
67d43538 PM |
4319 | if (flags & float_muladd_halve_result) { |
4320 | if (cExp == 0) { | |
4321 | normalizeFloat64Subnormal(cSig, &cExp, &cSig); | |
4322 | } | |
4323 | /* Subtract one to halve, and one again because roundAndPackFloat64 | |
4324 | * wants one less than the true exponent. | |
4325 | */ | |
4326 | cExp -= 2; | |
4327 | cSig = (cSig | 0x0010000000000000ULL) << 10; | |
ff32e16e | 4328 | return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status); |
67d43538 | 4329 | } |
a6e7c184 | 4330 | return packFloat64(cSign ^ signflip, cExp, cSig); |
369be8f6 PM |
4331 | } |
4332 | ||
4333 | if (aExp == 0) { | |
4334 | normalizeFloat64Subnormal(aSig, &aExp, &aSig); | |
4335 | } | |
4336 | if (bExp == 0) { | |
4337 | normalizeFloat64Subnormal(bSig, &bExp, &bSig); | |
4338 | } | |
4339 | ||
4340 | /* Calculate the actual result a * b + c */ | |
4341 | ||
4342 | /* Multiply first; this is easy. */ | |
4343 | /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff | |
4344 | * because we want the true exponent, not the "one-less-than" | |
4345 | * flavour that roundAndPackFloat64() takes. | |
4346 | */ | |
4347 | pExp = aExp + bExp - 0x3fe; | |
4348 | aSig = (aSig | LIT64(0x0010000000000000))<<10; | |
4349 | bSig = (bSig | LIT64(0x0010000000000000))<<11; | |
4350 | mul64To128(aSig, bSig, &pSig0, &pSig1); | |
4351 | if ((int64_t)(pSig0 << 1) >= 0) { | |
4352 | shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1); | |
4353 | pExp--; | |
4354 | } | |
4355 | ||
4356 | zSign = pSign ^ signflip; | |
4357 | ||
4358 | /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit | |
4359 | * bit in position 126. | |
4360 | */ | |
4361 | if (cExp == 0) { | |
4362 | if (!cSig) { | |
4363 | /* Throw out the special case of c being an exact zero now */ | |
4364 | shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1); | |
67d43538 PM |
4365 | if (flags & float_muladd_halve_result) { |
4366 | pExp--; | |
4367 | } | |
369be8f6 | 4368 | return roundAndPackFloat64(zSign, pExp - 1, |
ff32e16e | 4369 | pSig1, status); |
369be8f6 PM |
4370 | } |
4371 | normalizeFloat64Subnormal(cSig, &cExp, &cSig); | |
4372 | } | |
4373 | ||
4374 | /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the | |
4375 | * significand of the addend, with the explicit bit in position 126. | |
4376 | */ | |
4377 | cSig0 = cSig << (126 - 64 - 52); | |
4378 | cSig1 = 0; | |
4379 | cSig0 |= LIT64(0x4000000000000000); | |
4380 | expDiff = pExp - cExp; | |
4381 | ||
4382 | if (pSign == cSign) { | |
4383 | /* Addition */ | |
4384 | if (expDiff > 0) { | |
4385 | /* scale c to match p */ | |
4386 | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | |
4387 | zExp = pExp; | |
4388 | } else if (expDiff < 0) { | |
4389 | /* scale p to match c */ | |
4390 | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | |
4391 | zExp = cExp; | |
4392 | } else { | |
4393 | /* no scaling needed */ | |
4394 | zExp = cExp; | |
4395 | } | |
4396 | /* Add significands and make sure explicit bit ends up in posn 126 */ | |
4397 | add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4398 | if ((int64_t)zSig0 < 0) { | |
4399 | shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1); | |
4400 | } else { | |
4401 | zExp--; | |
4402 | } | |
4403 | shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1); | |
67d43538 PM |
4404 | if (flags & float_muladd_halve_result) { |
4405 | zExp--; | |
4406 | } | |
ff32e16e | 4407 | return roundAndPackFloat64(zSign, zExp, zSig1, status); |
369be8f6 PM |
4408 | } else { |
4409 | /* Subtraction */ | |
4410 | if (expDiff > 0) { | |
4411 | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | |
4412 | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4413 | zExp = pExp; | |
4414 | } else if (expDiff < 0) { | |
4415 | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | |
4416 | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | |
4417 | zExp = cExp; | |
4418 | zSign ^= 1; | |
4419 | } else { | |
4420 | zExp = pExp; | |
4421 | if (lt128(cSig0, cSig1, pSig0, pSig1)) { | |
4422 | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4423 | } else if (lt128(pSig0, pSig1, cSig0, cSig1)) { | |
4424 | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | |
4425 | zSign ^= 1; | |
4426 | } else { | |
4427 | /* Exact zero */ | |
4428 | zSign = signflip; | |
a2f2d288 | 4429 | if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
4430 | zSign ^= 1; |
4431 | } | |
4432 | return packFloat64(zSign, 0, 0); | |
4433 | } | |
4434 | } | |
4435 | --zExp; | |
4436 | /* Do the equivalent of normalizeRoundAndPackFloat64() but | |
4437 | * starting with the significand in a pair of uint64_t. | |
4438 | */ | |
4439 | if (zSig0) { | |
4440 | shiftcount = countLeadingZeros64(zSig0) - 1; | |
4441 | shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1); | |
4442 | if (zSig1) { | |
4443 | zSig0 |= 1; | |
4444 | } | |
4445 | zExp -= shiftcount; | |
4446 | } else { | |
e3d142d0 PM |
4447 | shiftcount = countLeadingZeros64(zSig1); |
4448 | if (shiftcount == 0) { | |
4449 | zSig0 = (zSig1 >> 1) | (zSig1 & 1); | |
4450 | zExp -= 63; | |
4451 | } else { | |
4452 | shiftcount--; | |
4453 | zSig0 = zSig1 << shiftcount; | |
4454 | zExp -= (shiftcount + 64); | |
4455 | } | |
369be8f6 | 4456 | } |
67d43538 PM |
4457 | if (flags & float_muladd_halve_result) { |
4458 | zExp--; | |
4459 | } | |
ff32e16e | 4460 | return roundAndPackFloat64(zSign, zExp, zSig0, status); |
369be8f6 PM |
4461 | } |
4462 | } | |
4463 | ||
158142c2 FB |
4464 | /*---------------------------------------------------------------------------- |
4465 | | Returns the square root of the double-precision floating-point value `a'. | |
4466 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
4467 | | Floating-Point Arithmetic. | |
4468 | *----------------------------------------------------------------------------*/ | |
4469 | ||
e5a41ffa | 4470 | float64 float64_sqrt(float64 a, float_status *status) |
158142c2 FB |
4471 | { |
4472 | flag aSign; | |
94a49d86 | 4473 | int_fast16_t aExp, zExp; |
bb98fe42 AF |
4474 | uint64_t aSig, zSig, doubleZSig; |
4475 | uint64_t rem0, rem1, term0, term1; | |
ff32e16e | 4476 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
4477 | |
4478 | aSig = extractFloat64Frac( a ); | |
4479 | aExp = extractFloat64Exp( a ); | |
4480 | aSign = extractFloat64Sign( a ); | |
4481 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4482 | if (aSig) { |
4483 | return propagateFloat64NaN(a, a, status); | |
4484 | } | |
158142c2 | 4485 | if ( ! aSign ) return a; |
ff32e16e | 4486 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4487 | return float64_default_nan; |
4488 | } | |
4489 | if ( aSign ) { | |
4490 | if ( ( aExp | aSig ) == 0 ) return a; | |
ff32e16e | 4491 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4492 | return float64_default_nan; |
4493 | } | |
4494 | if ( aExp == 0 ) { | |
f090c9d4 | 4495 | if ( aSig == 0 ) return float64_zero; |
158142c2 FB |
4496 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
4497 | } | |
4498 | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | |
4499 | aSig |= LIT64( 0x0010000000000000 ); | |
4500 | zSig = estimateSqrt32( aExp, aSig>>21 ); | |
4501 | aSig <<= 9 - ( aExp & 1 ); | |
4502 | zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); | |
4503 | if ( ( zSig & 0x1FF ) <= 5 ) { | |
4504 | doubleZSig = zSig<<1; | |
4505 | mul64To128( zSig, zSig, &term0, &term1 ); | |
4506 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 4507 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
4508 | --zSig; |
4509 | doubleZSig -= 2; | |
4510 | add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); | |
4511 | } | |
4512 | zSig |= ( ( rem0 | rem1 ) != 0 ); | |
4513 | } | |
ff32e16e | 4514 | return roundAndPackFloat64(0, zExp, zSig, status); |
158142c2 FB |
4515 | |
4516 | } | |
4517 | ||
374dfc33 AJ |
4518 | /*---------------------------------------------------------------------------- |
4519 | | Returns the binary log of the double-precision floating-point value `a'. | |
4520 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
4521 | | Floating-Point Arithmetic. | |
4522 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 4523 | float64 float64_log2(float64 a, float_status *status) |
374dfc33 AJ |
4524 | { |
4525 | flag aSign, zSign; | |
94a49d86 | 4526 | int_fast16_t aExp; |
bb98fe42 | 4527 | uint64_t aSig, aSig0, aSig1, zSig, i; |
ff32e16e | 4528 | a = float64_squash_input_denormal(a, status); |
374dfc33 AJ |
4529 | |
4530 | aSig = extractFloat64Frac( a ); | |
4531 | aExp = extractFloat64Exp( a ); | |
4532 | aSign = extractFloat64Sign( a ); | |
4533 | ||
4534 | if ( aExp == 0 ) { | |
4535 | if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); | |
4536 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4537 | } | |
4538 | if ( aSign ) { | |
ff32e16e | 4539 | float_raise(float_flag_invalid, status); |
374dfc33 AJ |
4540 | return float64_default_nan; |
4541 | } | |
4542 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4543 | if (aSig) { |
4544 | return propagateFloat64NaN(a, float64_zero, status); | |
4545 | } | |
374dfc33 AJ |
4546 | return a; |
4547 | } | |
4548 | ||
4549 | aExp -= 0x3FF; | |
4550 | aSig |= LIT64( 0x0010000000000000 ); | |
4551 | zSign = aExp < 0; | |
bb98fe42 | 4552 | zSig = (uint64_t)aExp << 52; |
374dfc33 AJ |
4553 | for (i = 1LL << 51; i > 0; i >>= 1) { |
4554 | mul64To128( aSig, aSig, &aSig0, &aSig1 ); | |
4555 | aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); | |
4556 | if ( aSig & LIT64( 0x0020000000000000 ) ) { | |
4557 | aSig >>= 1; | |
4558 | zSig |= i; | |
4559 | } | |
4560 | } | |
4561 | ||
4562 | if ( zSign ) | |
4563 | zSig = -zSig; | |
ff32e16e | 4564 | return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status); |
374dfc33 AJ |
4565 | } |
4566 | ||
158142c2 FB |
4567 | /*---------------------------------------------------------------------------- |
4568 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
b689362d AJ |
4569 | | corresponding value `b', and 0 otherwise. The invalid exception is raised |
4570 | | if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
4571 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
4572 | *----------------------------------------------------------------------------*/ | |
4573 | ||
e5a41ffa | 4574 | int float64_eq(float64 a, float64 b, float_status *status) |
158142c2 | 4575 | { |
bb98fe42 | 4576 | uint64_t av, bv; |
ff32e16e PM |
4577 | a = float64_squash_input_denormal(a, status); |
4578 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4579 | |
4580 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4581 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4582 | ) { | |
ff32e16e | 4583 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4584 | return 0; |
4585 | } | |
f090c9d4 | 4586 | av = float64_val(a); |
a1b91bb4 | 4587 | bv = float64_val(b); |
bb98fe42 | 4588 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4589 | |
4590 | } | |
4591 | ||
4592 | /*---------------------------------------------------------------------------- | |
4593 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
f5a64251 AJ |
4594 | | equal to the corresponding value `b', and 0 otherwise. The invalid |
4595 | | exception is raised if either operand is a NaN. The comparison is performed | |
4596 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4597 | *----------------------------------------------------------------------------*/ |
4598 | ||
e5a41ffa | 4599 | int float64_le(float64 a, float64 b, float_status *status) |
158142c2 FB |
4600 | { |
4601 | flag aSign, bSign; | |
bb98fe42 | 4602 | uint64_t av, bv; |
ff32e16e PM |
4603 | a = float64_squash_input_denormal(a, status); |
4604 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4605 | |
4606 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4607 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4608 | ) { | |
ff32e16e | 4609 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4610 | return 0; |
4611 | } | |
4612 | aSign = extractFloat64Sign( a ); | |
4613 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4614 | av = float64_val(a); |
a1b91bb4 | 4615 | bv = float64_val(b); |
bb98fe42 | 4616 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4617 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4618 | |
4619 | } | |
4620 | ||
4621 | /*---------------------------------------------------------------------------- | |
4622 | | Returns 1 if the double-precision floating-point value `a' is less than | |
f5a64251 AJ |
4623 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
4624 | | raised if either operand is a NaN. The comparison is performed according | |
4625 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4626 | *----------------------------------------------------------------------------*/ |
4627 | ||
e5a41ffa | 4628 | int float64_lt(float64 a, float64 b, float_status *status) |
158142c2 FB |
4629 | { |
4630 | flag aSign, bSign; | |
bb98fe42 | 4631 | uint64_t av, bv; |
158142c2 | 4632 | |
ff32e16e PM |
4633 | a = float64_squash_input_denormal(a, status); |
4634 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4635 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
4636 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4637 | ) { | |
ff32e16e | 4638 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4639 | return 0; |
4640 | } | |
4641 | aSign = extractFloat64Sign( a ); | |
4642 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4643 | av = float64_val(a); |
a1b91bb4 | 4644 | bv = float64_val(b); |
bb98fe42 | 4645 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4646 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4647 | |
4648 | } | |
4649 | ||
67b7861d AJ |
4650 | /*---------------------------------------------------------------------------- |
4651 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
4652 | | be compared, and 0 otherwise. The invalid exception is raised if either |
4653 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
4654 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
4655 | *----------------------------------------------------------------------------*/ |
4656 | ||
e5a41ffa | 4657 | int float64_unordered(float64 a, float64 b, float_status *status) |
67b7861d | 4658 | { |
ff32e16e PM |
4659 | a = float64_squash_input_denormal(a, status); |
4660 | b = float64_squash_input_denormal(b, status); | |
67b7861d AJ |
4661 | |
4662 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4663 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4664 | ) { | |
ff32e16e | 4665 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
4666 | return 1; |
4667 | } | |
4668 | return 0; | |
4669 | } | |
4670 | ||
158142c2 FB |
4671 | /*---------------------------------------------------------------------------- |
4672 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
f5a64251 AJ |
4673 | | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
4674 | | exception.The comparison is performed according to the IEC/IEEE Standard | |
4675 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4676 | *----------------------------------------------------------------------------*/ |
4677 | ||
e5a41ffa | 4678 | int float64_eq_quiet(float64 a, float64 b, float_status *status) |
158142c2 | 4679 | { |
bb98fe42 | 4680 | uint64_t av, bv; |
ff32e16e PM |
4681 | a = float64_squash_input_denormal(a, status); |
4682 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4683 | |
4684 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4685 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4686 | ) { | |
b689362d | 4687 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { |
ff32e16e | 4688 | float_raise(float_flag_invalid, status); |
b689362d | 4689 | } |
158142c2 FB |
4690 | return 0; |
4691 | } | |
f090c9d4 | 4692 | av = float64_val(a); |
a1b91bb4 | 4693 | bv = float64_val(b); |
bb98fe42 | 4694 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4695 | |
4696 | } | |
4697 | ||
4698 | /*---------------------------------------------------------------------------- | |
4699 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
4700 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
4701 | | cause an exception. Otherwise, the comparison is performed according to the | |
4702 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4703 | *----------------------------------------------------------------------------*/ | |
4704 | ||
e5a41ffa | 4705 | int float64_le_quiet(float64 a, float64 b, float_status *status) |
158142c2 FB |
4706 | { |
4707 | flag aSign, bSign; | |
bb98fe42 | 4708 | uint64_t av, bv; |
ff32e16e PM |
4709 | a = float64_squash_input_denormal(a, status); |
4710 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4711 | |
4712 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4713 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4714 | ) { | |
4715 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
ff32e16e | 4716 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4717 | } |
4718 | return 0; | |
4719 | } | |
4720 | aSign = extractFloat64Sign( a ); | |
4721 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4722 | av = float64_val(a); |
a1b91bb4 | 4723 | bv = float64_val(b); |
bb98fe42 | 4724 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4725 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4726 | |
4727 | } | |
4728 | ||
4729 | /*---------------------------------------------------------------------------- | |
4730 | | Returns 1 if the double-precision floating-point value `a' is less than | |
4731 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
4732 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
4733 | | Standard for Binary Floating-Point Arithmetic. | |
4734 | *----------------------------------------------------------------------------*/ | |
4735 | ||
e5a41ffa | 4736 | int float64_lt_quiet(float64 a, float64 b, float_status *status) |
158142c2 FB |
4737 | { |
4738 | flag aSign, bSign; | |
bb98fe42 | 4739 | uint64_t av, bv; |
ff32e16e PM |
4740 | a = float64_squash_input_denormal(a, status); |
4741 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4742 | |
4743 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4744 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4745 | ) { | |
4746 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
ff32e16e | 4747 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4748 | } |
4749 | return 0; | |
4750 | } | |
4751 | aSign = extractFloat64Sign( a ); | |
4752 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4753 | av = float64_val(a); |
a1b91bb4 | 4754 | bv = float64_val(b); |
bb98fe42 | 4755 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4756 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4757 | |
4758 | } | |
4759 | ||
67b7861d AJ |
4760 | /*---------------------------------------------------------------------------- |
4761 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
4762 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
4763 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
4764 | | Floating-Point Arithmetic. | |
4765 | *----------------------------------------------------------------------------*/ | |
4766 | ||
e5a41ffa | 4767 | int float64_unordered_quiet(float64 a, float64 b, float_status *status) |
67b7861d | 4768 | { |
ff32e16e PM |
4769 | a = float64_squash_input_denormal(a, status); |
4770 | b = float64_squash_input_denormal(b, status); | |
67b7861d AJ |
4771 | |
4772 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4773 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4774 | ) { | |
4775 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
ff32e16e | 4776 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
4777 | } |
4778 | return 1; | |
4779 | } | |
4780 | return 0; | |
4781 | } | |
4782 | ||
158142c2 FB |
4783 | /*---------------------------------------------------------------------------- |
4784 | | Returns the result of converting the extended double-precision floating- | |
4785 | | point value `a' to the 32-bit two's complement integer format. The | |
4786 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4787 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4788 | | is rounded according to the current rounding mode. If `a' is a NaN, the | |
4789 | | largest positive integer is returned. Otherwise, if the conversion | |
4790 | | overflows, the largest integer with the same sign as `a' is returned. | |
4791 | *----------------------------------------------------------------------------*/ | |
4792 | ||
e5a41ffa | 4793 | int32 floatx80_to_int32(floatx80 a, float_status *status) |
158142c2 FB |
4794 | { |
4795 | flag aSign; | |
4796 | int32 aExp, shiftCount; | |
bb98fe42 | 4797 | uint64_t aSig; |
158142c2 FB |
4798 | |
4799 | aSig = extractFloatx80Frac( a ); | |
4800 | aExp = extractFloatx80Exp( a ); | |
4801 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 4802 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4803 | shiftCount = 0x4037 - aExp; |
4804 | if ( shiftCount <= 0 ) shiftCount = 1; | |
4805 | shift64RightJamming( aSig, shiftCount, &aSig ); | |
ff32e16e | 4806 | return roundAndPackInt32(aSign, aSig, status); |
158142c2 FB |
4807 | |
4808 | } | |
4809 | ||
4810 | /*---------------------------------------------------------------------------- | |
4811 | | Returns the result of converting the extended double-precision floating- | |
4812 | | point value `a' to the 32-bit two's complement integer format. The | |
4813 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4814 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4815 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4816 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4817 | | sign as `a' is returned. | |
4818 | *----------------------------------------------------------------------------*/ | |
4819 | ||
e5a41ffa | 4820 | int32 floatx80_to_int32_round_to_zero(floatx80 a, float_status *status) |
158142c2 FB |
4821 | { |
4822 | flag aSign; | |
4823 | int32 aExp, shiftCount; | |
bb98fe42 | 4824 | uint64_t aSig, savedASig; |
b3a6a2e0 | 4825 | int32_t z; |
158142c2 FB |
4826 | |
4827 | aSig = extractFloatx80Frac( a ); | |
4828 | aExp = extractFloatx80Exp( a ); | |
4829 | aSign = extractFloatx80Sign( a ); | |
4830 | if ( 0x401E < aExp ) { | |
bb98fe42 | 4831 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4832 | goto invalid; |
4833 | } | |
4834 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
4835 | if (aExp || aSig) { |
4836 | status->float_exception_flags |= float_flag_inexact; | |
4837 | } | |
158142c2 FB |
4838 | return 0; |
4839 | } | |
4840 | shiftCount = 0x403E - aExp; | |
4841 | savedASig = aSig; | |
4842 | aSig >>= shiftCount; | |
4843 | z = aSig; | |
4844 | if ( aSign ) z = - z; | |
4845 | if ( ( z < 0 ) ^ aSign ) { | |
4846 | invalid: | |
ff32e16e | 4847 | float_raise(float_flag_invalid, status); |
bb98fe42 | 4848 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
4849 | } |
4850 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 4851 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
4852 | } |
4853 | return z; | |
4854 | ||
4855 | } | |
4856 | ||
4857 | /*---------------------------------------------------------------------------- | |
4858 | | Returns the result of converting the extended double-precision floating- | |
4859 | | point value `a' to the 64-bit two's complement integer format. The | |
4860 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4861 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4862 | | is rounded according to the current rounding mode. If `a' is a NaN, | |
4863 | | the largest positive integer is returned. Otherwise, if the conversion | |
4864 | | overflows, the largest integer with the same sign as `a' is returned. | |
4865 | *----------------------------------------------------------------------------*/ | |
4866 | ||
e5a41ffa | 4867 | int64 floatx80_to_int64(floatx80 a, float_status *status) |
158142c2 FB |
4868 | { |
4869 | flag aSign; | |
4870 | int32 aExp, shiftCount; | |
bb98fe42 | 4871 | uint64_t aSig, aSigExtra; |
158142c2 FB |
4872 | |
4873 | aSig = extractFloatx80Frac( a ); | |
4874 | aExp = extractFloatx80Exp( a ); | |
4875 | aSign = extractFloatx80Sign( a ); | |
4876 | shiftCount = 0x403E - aExp; | |
4877 | if ( shiftCount <= 0 ) { | |
4878 | if ( shiftCount ) { | |
ff32e16e | 4879 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4880 | if ( ! aSign |
4881 | || ( ( aExp == 0x7FFF ) | |
4882 | && ( aSig != LIT64( 0x8000000000000000 ) ) ) | |
4883 | ) { | |
4884 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4885 | } | |
bb98fe42 | 4886 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4887 | } |
4888 | aSigExtra = 0; | |
4889 | } | |
4890 | else { | |
4891 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
4892 | } | |
ff32e16e | 4893 | return roundAndPackInt64(aSign, aSig, aSigExtra, status); |
158142c2 FB |
4894 | |
4895 | } | |
4896 | ||
4897 | /*---------------------------------------------------------------------------- | |
4898 | | Returns the result of converting the extended double-precision floating- | |
4899 | | point value `a' to the 64-bit two's complement integer format. The | |
4900 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4901 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4902 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4903 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4904 | | sign as `a' is returned. | |
4905 | *----------------------------------------------------------------------------*/ | |
4906 | ||
e5a41ffa | 4907 | int64 floatx80_to_int64_round_to_zero(floatx80 a, float_status *status) |
158142c2 FB |
4908 | { |
4909 | flag aSign; | |
4910 | int32 aExp, shiftCount; | |
bb98fe42 | 4911 | uint64_t aSig; |
158142c2 FB |
4912 | int64 z; |
4913 | ||
4914 | aSig = extractFloatx80Frac( a ); | |
4915 | aExp = extractFloatx80Exp( a ); | |
4916 | aSign = extractFloatx80Sign( a ); | |
4917 | shiftCount = aExp - 0x403E; | |
4918 | if ( 0 <= shiftCount ) { | |
4919 | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4920 | if ( ( a.high != 0xC03E ) || aSig ) { | |
ff32e16e | 4921 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4922 | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { |
4923 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4924 | } | |
4925 | } | |
bb98fe42 | 4926 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4927 | } |
4928 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
4929 | if (aExp | aSig) { |
4930 | status->float_exception_flags |= float_flag_inexact; | |
4931 | } | |
158142c2 FB |
4932 | return 0; |
4933 | } | |
4934 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 4935 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 4936 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
4937 | } |
4938 | if ( aSign ) z = - z; | |
4939 | return z; | |
4940 | ||
4941 | } | |
4942 | ||
4943 | /*---------------------------------------------------------------------------- | |
4944 | | Returns the result of converting the extended double-precision floating- | |
4945 | | point value `a' to the single-precision floating-point format. The | |
4946 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4947 | | Floating-Point Arithmetic. | |
4948 | *----------------------------------------------------------------------------*/ | |
4949 | ||
e5a41ffa | 4950 | float32 floatx80_to_float32(floatx80 a, float_status *status) |
158142c2 FB |
4951 | { |
4952 | flag aSign; | |
4953 | int32 aExp; | |
bb98fe42 | 4954 | uint64_t aSig; |
158142c2 FB |
4955 | |
4956 | aSig = extractFloatx80Frac( a ); | |
4957 | aExp = extractFloatx80Exp( a ); | |
4958 | aSign = extractFloatx80Sign( a ); | |
4959 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4960 | if ( (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 4961 | return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
4962 | } |
4963 | return packFloat32( aSign, 0xFF, 0 ); | |
4964 | } | |
4965 | shift64RightJamming( aSig, 33, &aSig ); | |
4966 | if ( aExp || aSig ) aExp -= 0x3F81; | |
ff32e16e | 4967 | return roundAndPackFloat32(aSign, aExp, aSig, status); |
158142c2 FB |
4968 | |
4969 | } | |
4970 | ||
4971 | /*---------------------------------------------------------------------------- | |
4972 | | Returns the result of converting the extended double-precision floating- | |
4973 | | point value `a' to the double-precision floating-point format. The | |
4974 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4975 | | Floating-Point Arithmetic. | |
4976 | *----------------------------------------------------------------------------*/ | |
4977 | ||
e5a41ffa | 4978 | float64 floatx80_to_float64(floatx80 a, float_status *status) |
158142c2 FB |
4979 | { |
4980 | flag aSign; | |
4981 | int32 aExp; | |
bb98fe42 | 4982 | uint64_t aSig, zSig; |
158142c2 FB |
4983 | |
4984 | aSig = extractFloatx80Frac( a ); | |
4985 | aExp = extractFloatx80Exp( a ); | |
4986 | aSign = extractFloatx80Sign( a ); | |
4987 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4988 | if ( (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 4989 | return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
4990 | } |
4991 | return packFloat64( aSign, 0x7FF, 0 ); | |
4992 | } | |
4993 | shift64RightJamming( aSig, 1, &zSig ); | |
4994 | if ( aExp || aSig ) aExp -= 0x3C01; | |
ff32e16e | 4995 | return roundAndPackFloat64(aSign, aExp, zSig, status); |
158142c2 FB |
4996 | |
4997 | } | |
4998 | ||
158142c2 FB |
4999 | /*---------------------------------------------------------------------------- |
5000 | | Returns the result of converting the extended double-precision floating- | |
5001 | | point value `a' to the quadruple-precision floating-point format. The | |
5002 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5003 | | Floating-Point Arithmetic. | |
5004 | *----------------------------------------------------------------------------*/ | |
5005 | ||
e5a41ffa | 5006 | float128 floatx80_to_float128(floatx80 a, float_status *status) |
158142c2 FB |
5007 | { |
5008 | flag aSign; | |
94a49d86 | 5009 | int_fast16_t aExp; |
bb98fe42 | 5010 | uint64_t aSig, zSig0, zSig1; |
158142c2 FB |
5011 | |
5012 | aSig = extractFloatx80Frac( a ); | |
5013 | aExp = extractFloatx80Exp( a ); | |
5014 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 5015 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 5016 | return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
5017 | } |
5018 | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); | |
5019 | return packFloat128( aSign, aExp, zSig0, zSig1 ); | |
5020 | ||
5021 | } | |
5022 | ||
158142c2 FB |
5023 | /*---------------------------------------------------------------------------- |
5024 | | Rounds the extended double-precision floating-point value `a' to an integer, | |
5025 | | and returns the result as an extended quadruple-precision floating-point | |
5026 | | value. The operation is performed according to the IEC/IEEE Standard for | |
5027 | | Binary Floating-Point Arithmetic. | |
5028 | *----------------------------------------------------------------------------*/ | |
5029 | ||
e5a41ffa | 5030 | floatx80 floatx80_round_to_int(floatx80 a, float_status *status) |
158142c2 FB |
5031 | { |
5032 | flag aSign; | |
5033 | int32 aExp; | |
bb98fe42 | 5034 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
5035 | floatx80 z; |
5036 | ||
5037 | aExp = extractFloatx80Exp( a ); | |
5038 | if ( 0x403E <= aExp ) { | |
bb98fe42 | 5039 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { |
ff32e16e | 5040 | return propagateFloatx80NaN(a, a, status); |
158142c2 FB |
5041 | } |
5042 | return a; | |
5043 | } | |
5044 | if ( aExp < 0x3FFF ) { | |
5045 | if ( ( aExp == 0 ) | |
bb98fe42 | 5046 | && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { |
158142c2 FB |
5047 | return a; |
5048 | } | |
a2f2d288 | 5049 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 5050 | aSign = extractFloatx80Sign( a ); |
a2f2d288 | 5051 | switch (status->float_rounding_mode) { |
158142c2 | 5052 | case float_round_nearest_even: |
bb98fe42 | 5053 | if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) |
158142c2 FB |
5054 | ) { |
5055 | return | |
5056 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
5057 | } | |
5058 | break; | |
f9288a76 PM |
5059 | case float_round_ties_away: |
5060 | if (aExp == 0x3FFE) { | |
5061 | return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000)); | |
5062 | } | |
5063 | break; | |
158142c2 FB |
5064 | case float_round_down: |
5065 | return | |
5066 | aSign ? | |
5067 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | |
5068 | : packFloatx80( 0, 0, 0 ); | |
5069 | case float_round_up: | |
5070 | return | |
5071 | aSign ? packFloatx80( 1, 0, 0 ) | |
5072 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
5073 | } | |
5074 | return packFloatx80( aSign, 0, 0 ); | |
5075 | } | |
5076 | lastBitMask = 1; | |
5077 | lastBitMask <<= 0x403E - aExp; | |
5078 | roundBitsMask = lastBitMask - 1; | |
5079 | z = a; | |
a2f2d288 | 5080 | switch (status->float_rounding_mode) { |
dc355b76 | 5081 | case float_round_nearest_even: |
158142c2 | 5082 | z.low += lastBitMask>>1; |
dc355b76 PM |
5083 | if ((z.low & roundBitsMask) == 0) { |
5084 | z.low &= ~lastBitMask; | |
5085 | } | |
5086 | break; | |
f9288a76 PM |
5087 | case float_round_ties_away: |
5088 | z.low += lastBitMask >> 1; | |
5089 | break; | |
dc355b76 PM |
5090 | case float_round_to_zero: |
5091 | break; | |
5092 | case float_round_up: | |
5093 | if (!extractFloatx80Sign(z)) { | |
5094 | z.low += roundBitsMask; | |
5095 | } | |
5096 | break; | |
5097 | case float_round_down: | |
5098 | if (extractFloatx80Sign(z)) { | |
158142c2 FB |
5099 | z.low += roundBitsMask; |
5100 | } | |
dc355b76 PM |
5101 | break; |
5102 | default: | |
5103 | abort(); | |
158142c2 FB |
5104 | } |
5105 | z.low &= ~ roundBitsMask; | |
5106 | if ( z.low == 0 ) { | |
5107 | ++z.high; | |
5108 | z.low = LIT64( 0x8000000000000000 ); | |
5109 | } | |
a2f2d288 PM |
5110 | if (z.low != a.low) { |
5111 | status->float_exception_flags |= float_flag_inexact; | |
5112 | } | |
158142c2 FB |
5113 | return z; |
5114 | ||
5115 | } | |
5116 | ||
5117 | /*---------------------------------------------------------------------------- | |
5118 | | Returns the result of adding the absolute values of the extended double- | |
5119 | | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is | |
5120 | | negated before being returned. `zSign' is ignored if the result is a NaN. | |
5121 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
5122 | | Floating-Point Arithmetic. | |
5123 | *----------------------------------------------------------------------------*/ | |
5124 | ||
e5a41ffa PM |
5125 | static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
5126 | float_status *status) | |
158142c2 FB |
5127 | { |
5128 | int32 aExp, bExp, zExp; | |
bb98fe42 | 5129 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 FB |
5130 | int32 expDiff; |
5131 | ||
5132 | aSig = extractFloatx80Frac( a ); | |
5133 | aExp = extractFloatx80Exp( a ); | |
5134 | bSig = extractFloatx80Frac( b ); | |
5135 | bExp = extractFloatx80Exp( b ); | |
5136 | expDiff = aExp - bExp; | |
5137 | if ( 0 < expDiff ) { | |
5138 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5139 | if ((uint64_t)(aSig << 1)) { |
5140 | return propagateFloatx80NaN(a, b, status); | |
5141 | } | |
158142c2 FB |
5142 | return a; |
5143 | } | |
5144 | if ( bExp == 0 ) --expDiff; | |
5145 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
5146 | zExp = aExp; | |
5147 | } | |
5148 | else if ( expDiff < 0 ) { | |
5149 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5150 | if ((uint64_t)(bSig << 1)) { |
5151 | return propagateFloatx80NaN(a, b, status); | |
5152 | } | |
158142c2 FB |
5153 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
5154 | } | |
5155 | if ( aExp == 0 ) ++expDiff; | |
5156 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
5157 | zExp = bExp; | |
5158 | } | |
5159 | else { | |
5160 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5161 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
ff32e16e | 5162 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5163 | } |
5164 | return a; | |
5165 | } | |
5166 | zSig1 = 0; | |
5167 | zSig0 = aSig + bSig; | |
5168 | if ( aExp == 0 ) { | |
5169 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | |
5170 | goto roundAndPack; | |
5171 | } | |
5172 | zExp = aExp; | |
5173 | goto shiftRight1; | |
5174 | } | |
5175 | zSig0 = aSig + bSig; | |
bb98fe42 | 5176 | if ( (int64_t) zSig0 < 0 ) goto roundAndPack; |
158142c2 FB |
5177 | shiftRight1: |
5178 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
5179 | zSig0 |= LIT64( 0x8000000000000000 ); | |
5180 | ++zExp; | |
5181 | roundAndPack: | |
a2f2d288 | 5182 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5183 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5184 | } |
5185 | ||
5186 | /*---------------------------------------------------------------------------- | |
5187 | | Returns the result of subtracting the absolute values of the extended | |
5188 | | double-precision floating-point values `a' and `b'. If `zSign' is 1, the | |
5189 | | difference is negated before being returned. `zSign' is ignored if the | |
5190 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
5191 | | Standard for Binary Floating-Point Arithmetic. | |
5192 | *----------------------------------------------------------------------------*/ | |
5193 | ||
e5a41ffa PM |
5194 | static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
5195 | float_status *status) | |
158142c2 FB |
5196 | { |
5197 | int32 aExp, bExp, zExp; | |
bb98fe42 | 5198 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 FB |
5199 | int32 expDiff; |
5200 | floatx80 z; | |
5201 | ||
5202 | aSig = extractFloatx80Frac( a ); | |
5203 | aExp = extractFloatx80Exp( a ); | |
5204 | bSig = extractFloatx80Frac( b ); | |
5205 | bExp = extractFloatx80Exp( b ); | |
5206 | expDiff = aExp - bExp; | |
5207 | if ( 0 < expDiff ) goto aExpBigger; | |
5208 | if ( expDiff < 0 ) goto bExpBigger; | |
5209 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5210 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
ff32e16e | 5211 | return propagateFloatx80NaN(a, b, status); |
158142c2 | 5212 | } |
ff32e16e | 5213 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5214 | z.low = floatx80_default_nan_low; |
5215 | z.high = floatx80_default_nan_high; | |
5216 | return z; | |
5217 | } | |
5218 | if ( aExp == 0 ) { | |
5219 | aExp = 1; | |
5220 | bExp = 1; | |
5221 | } | |
5222 | zSig1 = 0; | |
5223 | if ( bSig < aSig ) goto aBigger; | |
5224 | if ( aSig < bSig ) goto bBigger; | |
a2f2d288 | 5225 | return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0); |
158142c2 FB |
5226 | bExpBigger: |
5227 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5228 | if ((uint64_t)(bSig << 1)) { |
5229 | return propagateFloatx80NaN(a, b, status); | |
5230 | } | |
158142c2 FB |
5231 | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
5232 | } | |
5233 | if ( aExp == 0 ) ++expDiff; | |
5234 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
5235 | bBigger: | |
5236 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | |
5237 | zExp = bExp; | |
5238 | zSign ^= 1; | |
5239 | goto normalizeRoundAndPack; | |
5240 | aExpBigger: | |
5241 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5242 | if ((uint64_t)(aSig << 1)) { |
5243 | return propagateFloatx80NaN(a, b, status); | |
5244 | } | |
158142c2 FB |
5245 | return a; |
5246 | } | |
5247 | if ( bExp == 0 ) --expDiff; | |
5248 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
5249 | aBigger: | |
5250 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | |
5251 | zExp = aExp; | |
5252 | normalizeRoundAndPack: | |
a2f2d288 | 5253 | return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5254 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5255 | } |
5256 | ||
5257 | /*---------------------------------------------------------------------------- | |
5258 | | Returns the result of adding the extended double-precision floating-point | |
5259 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
5260 | | Standard for Binary Floating-Point Arithmetic. | |
5261 | *----------------------------------------------------------------------------*/ | |
5262 | ||
e5a41ffa | 5263 | floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5264 | { |
5265 | flag aSign, bSign; | |
5266 | ||
5267 | aSign = extractFloatx80Sign( a ); | |
5268 | bSign = extractFloatx80Sign( b ); | |
5269 | if ( aSign == bSign ) { | |
ff32e16e | 5270 | return addFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5271 | } |
5272 | else { | |
ff32e16e | 5273 | return subFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5274 | } |
5275 | ||
5276 | } | |
5277 | ||
5278 | /*---------------------------------------------------------------------------- | |
5279 | | Returns the result of subtracting the extended double-precision floating- | |
5280 | | point values `a' and `b'. The operation is performed according to the | |
5281 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5282 | *----------------------------------------------------------------------------*/ | |
5283 | ||
e5a41ffa | 5284 | floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5285 | { |
5286 | flag aSign, bSign; | |
5287 | ||
5288 | aSign = extractFloatx80Sign( a ); | |
5289 | bSign = extractFloatx80Sign( b ); | |
5290 | if ( aSign == bSign ) { | |
ff32e16e | 5291 | return subFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5292 | } |
5293 | else { | |
ff32e16e | 5294 | return addFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5295 | } |
5296 | ||
5297 | } | |
5298 | ||
5299 | /*---------------------------------------------------------------------------- | |
5300 | | Returns the result of multiplying the extended double-precision floating- | |
5301 | | point values `a' and `b'. The operation is performed according to the | |
5302 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5303 | *----------------------------------------------------------------------------*/ | |
5304 | ||
e5a41ffa | 5305 | floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5306 | { |
5307 | flag aSign, bSign, zSign; | |
5308 | int32 aExp, bExp, zExp; | |
bb98fe42 | 5309 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 FB |
5310 | floatx80 z; |
5311 | ||
5312 | aSig = extractFloatx80Frac( a ); | |
5313 | aExp = extractFloatx80Exp( a ); | |
5314 | aSign = extractFloatx80Sign( a ); | |
5315 | bSig = extractFloatx80Frac( b ); | |
5316 | bExp = extractFloatx80Exp( b ); | |
5317 | bSign = extractFloatx80Sign( b ); | |
5318 | zSign = aSign ^ bSign; | |
5319 | if ( aExp == 0x7FFF ) { | |
bb98fe42 AF |
5320 | if ( (uint64_t) ( aSig<<1 ) |
5321 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
ff32e16e | 5322 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5323 | } |
5324 | if ( ( bExp | bSig ) == 0 ) goto invalid; | |
5325 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5326 | } | |
5327 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5328 | if ((uint64_t)(bSig << 1)) { |
5329 | return propagateFloatx80NaN(a, b, status); | |
5330 | } | |
158142c2 FB |
5331 | if ( ( aExp | aSig ) == 0 ) { |
5332 | invalid: | |
ff32e16e | 5333 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5334 | z.low = floatx80_default_nan_low; |
5335 | z.high = floatx80_default_nan_high; | |
5336 | return z; | |
5337 | } | |
5338 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5339 | } | |
5340 | if ( aExp == 0 ) { | |
5341 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5342 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
5343 | } | |
5344 | if ( bExp == 0 ) { | |
5345 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5346 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5347 | } | |
5348 | zExp = aExp + bExp - 0x3FFE; | |
5349 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
bb98fe42 | 5350 | if ( 0 < (int64_t) zSig0 ) { |
158142c2 FB |
5351 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
5352 | --zExp; | |
5353 | } | |
a2f2d288 | 5354 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5355 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5356 | } |
5357 | ||
5358 | /*---------------------------------------------------------------------------- | |
5359 | | Returns the result of dividing the extended double-precision floating-point | |
5360 | | value `a' by the corresponding value `b'. The operation is performed | |
5361 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5362 | *----------------------------------------------------------------------------*/ | |
5363 | ||
e5a41ffa | 5364 | floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5365 | { |
5366 | flag aSign, bSign, zSign; | |
5367 | int32 aExp, bExp, zExp; | |
bb98fe42 AF |
5368 | uint64_t aSig, bSig, zSig0, zSig1; |
5369 | uint64_t rem0, rem1, rem2, term0, term1, term2; | |
158142c2 FB |
5370 | floatx80 z; |
5371 | ||
5372 | aSig = extractFloatx80Frac( a ); | |
5373 | aExp = extractFloatx80Exp( a ); | |
5374 | aSign = extractFloatx80Sign( a ); | |
5375 | bSig = extractFloatx80Frac( b ); | |
5376 | bExp = extractFloatx80Exp( b ); | |
5377 | bSign = extractFloatx80Sign( b ); | |
5378 | zSign = aSign ^ bSign; | |
5379 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5380 | if ((uint64_t)(aSig << 1)) { |
5381 | return propagateFloatx80NaN(a, b, status); | |
5382 | } | |
158142c2 | 5383 | if ( bExp == 0x7FFF ) { |
ff32e16e PM |
5384 | if ((uint64_t)(bSig << 1)) { |
5385 | return propagateFloatx80NaN(a, b, status); | |
5386 | } | |
158142c2 FB |
5387 | goto invalid; |
5388 | } | |
5389 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5390 | } | |
5391 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5392 | if ((uint64_t)(bSig << 1)) { |
5393 | return propagateFloatx80NaN(a, b, status); | |
5394 | } | |
158142c2 FB |
5395 | return packFloatx80( zSign, 0, 0 ); |
5396 | } | |
5397 | if ( bExp == 0 ) { | |
5398 | if ( bSig == 0 ) { | |
5399 | if ( ( aExp | aSig ) == 0 ) { | |
5400 | invalid: | |
ff32e16e | 5401 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5402 | z.low = floatx80_default_nan_low; |
5403 | z.high = floatx80_default_nan_high; | |
5404 | return z; | |
5405 | } | |
ff32e16e | 5406 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
5407 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
5408 | } | |
5409 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5410 | } | |
5411 | if ( aExp == 0 ) { | |
5412 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5413 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
5414 | } | |
5415 | zExp = aExp - bExp + 0x3FFE; | |
5416 | rem1 = 0; | |
5417 | if ( bSig <= aSig ) { | |
5418 | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | |
5419 | ++zExp; | |
5420 | } | |
5421 | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | |
5422 | mul64To128( bSig, zSig0, &term0, &term1 ); | |
5423 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 5424 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
5425 | --zSig0; |
5426 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
5427 | } | |
5428 | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | |
bb98fe42 | 5429 | if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { |
158142c2 FB |
5430 | mul64To128( bSig, zSig1, &term1, &term2 ); |
5431 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
bb98fe42 | 5432 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5433 | --zSig1; |
5434 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | |
5435 | } | |
5436 | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | |
5437 | } | |
a2f2d288 | 5438 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5439 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5440 | } |
5441 | ||
5442 | /*---------------------------------------------------------------------------- | |
5443 | | Returns the remainder of the extended double-precision floating-point value | |
5444 | | `a' with respect to the corresponding value `b'. The operation is performed | |
5445 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5446 | *----------------------------------------------------------------------------*/ | |
5447 | ||
e5a41ffa | 5448 | floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status) |
158142c2 | 5449 | { |
ed086f3d | 5450 | flag aSign, zSign; |
158142c2 | 5451 | int32 aExp, bExp, expDiff; |
bb98fe42 AF |
5452 | uint64_t aSig0, aSig1, bSig; |
5453 | uint64_t q, term0, term1, alternateASig0, alternateASig1; | |
158142c2 FB |
5454 | floatx80 z; |
5455 | ||
5456 | aSig0 = extractFloatx80Frac( a ); | |
5457 | aExp = extractFloatx80Exp( a ); | |
5458 | aSign = extractFloatx80Sign( a ); | |
5459 | bSig = extractFloatx80Frac( b ); | |
5460 | bExp = extractFloatx80Exp( b ); | |
158142c2 | 5461 | if ( aExp == 0x7FFF ) { |
bb98fe42 AF |
5462 | if ( (uint64_t) ( aSig0<<1 ) |
5463 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
ff32e16e | 5464 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5465 | } |
5466 | goto invalid; | |
5467 | } | |
5468 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5469 | if ((uint64_t)(bSig << 1)) { |
5470 | return propagateFloatx80NaN(a, b, status); | |
5471 | } | |
158142c2 FB |
5472 | return a; |
5473 | } | |
5474 | if ( bExp == 0 ) { | |
5475 | if ( bSig == 0 ) { | |
5476 | invalid: | |
ff32e16e | 5477 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5478 | z.low = floatx80_default_nan_low; |
5479 | z.high = floatx80_default_nan_high; | |
5480 | return z; | |
5481 | } | |
5482 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5483 | } | |
5484 | if ( aExp == 0 ) { | |
bb98fe42 | 5485 | if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; |
158142c2 FB |
5486 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
5487 | } | |
5488 | bSig |= LIT64( 0x8000000000000000 ); | |
5489 | zSign = aSign; | |
5490 | expDiff = aExp - bExp; | |
5491 | aSig1 = 0; | |
5492 | if ( expDiff < 0 ) { | |
5493 | if ( expDiff < -1 ) return a; | |
5494 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | |
5495 | expDiff = 0; | |
5496 | } | |
5497 | q = ( bSig <= aSig0 ); | |
5498 | if ( q ) aSig0 -= bSig; | |
5499 | expDiff -= 64; | |
5500 | while ( 0 < expDiff ) { | |
5501 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
5502 | q = ( 2 < q ) ? q - 2 : 0; | |
5503 | mul64To128( bSig, q, &term0, &term1 ); | |
5504 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5505 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | |
5506 | expDiff -= 62; | |
5507 | } | |
5508 | expDiff += 64; | |
5509 | if ( 0 < expDiff ) { | |
5510 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
5511 | q = ( 2 < q ) ? q - 2 : 0; | |
5512 | q >>= 64 - expDiff; | |
5513 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | |
5514 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5515 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | |
5516 | while ( le128( term0, term1, aSig0, aSig1 ) ) { | |
5517 | ++q; | |
5518 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5519 | } | |
5520 | } | |
5521 | else { | |
5522 | term1 = 0; | |
5523 | term0 = bSig; | |
5524 | } | |
5525 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | |
5526 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
5527 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
5528 | && ( q & 1 ) ) | |
5529 | ) { | |
5530 | aSig0 = alternateASig0; | |
5531 | aSig1 = alternateASig1; | |
5532 | zSign = ! zSign; | |
5533 | } | |
5534 | return | |
5535 | normalizeRoundAndPackFloatx80( | |
ff32e16e | 5536 | 80, zSign, bExp + expDiff, aSig0, aSig1, status); |
158142c2 FB |
5537 | |
5538 | } | |
5539 | ||
5540 | /*---------------------------------------------------------------------------- | |
5541 | | Returns the square root of the extended double-precision floating-point | |
5542 | | value `a'. The operation is performed according to the IEC/IEEE Standard | |
5543 | | for Binary Floating-Point Arithmetic. | |
5544 | *----------------------------------------------------------------------------*/ | |
5545 | ||
e5a41ffa | 5546 | floatx80 floatx80_sqrt(floatx80 a, float_status *status) |
158142c2 FB |
5547 | { |
5548 | flag aSign; | |
5549 | int32 aExp, zExp; | |
bb98fe42 AF |
5550 | uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; |
5551 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
5552 | floatx80 z; |
5553 | ||
5554 | aSig0 = extractFloatx80Frac( a ); | |
5555 | aExp = extractFloatx80Exp( a ); | |
5556 | aSign = extractFloatx80Sign( a ); | |
5557 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5558 | if ((uint64_t)(aSig0 << 1)) { |
5559 | return propagateFloatx80NaN(a, a, status); | |
5560 | } | |
158142c2 FB |
5561 | if ( ! aSign ) return a; |
5562 | goto invalid; | |
5563 | } | |
5564 | if ( aSign ) { | |
5565 | if ( ( aExp | aSig0 ) == 0 ) return a; | |
5566 | invalid: | |
ff32e16e | 5567 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5568 | z.low = floatx80_default_nan_low; |
5569 | z.high = floatx80_default_nan_high; | |
5570 | return z; | |
5571 | } | |
5572 | if ( aExp == 0 ) { | |
5573 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | |
5574 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
5575 | } | |
5576 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | |
5577 | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | |
5578 | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); | |
5579 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
5580 | doubleZSig0 = zSig0<<1; | |
5581 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
5582 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 5583 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
5584 | --zSig0; |
5585 | doubleZSig0 -= 2; | |
5586 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
5587 | } | |
5588 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
5589 | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { | |
5590 | if ( zSig1 == 0 ) zSig1 = 1; | |
5591 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
5592 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
5593 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
5594 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 5595 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5596 | --zSig1; |
5597 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
5598 | term3 |= 1; | |
5599 | term2 |= doubleZSig0; | |
5600 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
5601 | } | |
5602 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
5603 | } | |
5604 | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); | |
5605 | zSig0 |= doubleZSig0; | |
a2f2d288 PM |
5606 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
5607 | 0, zExp, zSig0, zSig1, status); | |
158142c2 FB |
5608 | } |
5609 | ||
5610 | /*---------------------------------------------------------------------------- | |
b689362d AJ |
5611 | | Returns 1 if the extended double-precision floating-point value `a' is equal |
5612 | | to the corresponding value `b', and 0 otherwise. The invalid exception is | |
5613 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
5614 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5615 | *----------------------------------------------------------------------------*/ |
5616 | ||
e5a41ffa | 5617 | int floatx80_eq(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5618 | { |
5619 | ||
5620 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5621 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5622 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5623 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5624 | ) { |
ff32e16e | 5625 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5626 | return 0; |
5627 | } | |
5628 | return | |
5629 | ( a.low == b.low ) | |
5630 | && ( ( a.high == b.high ) | |
5631 | || ( ( a.low == 0 ) | |
bb98fe42 | 5632 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5633 | ); |
5634 | ||
5635 | } | |
5636 | ||
5637 | /*---------------------------------------------------------------------------- | |
5638 | | Returns 1 if the extended double-precision floating-point value `a' is | |
5639 | | less than or equal to the corresponding value `b', and 0 otherwise. The | |
f5a64251 AJ |
5640 | | invalid exception is raised if either operand is a NaN. The comparison is |
5641 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5642 | | Arithmetic. | |
158142c2 FB |
5643 | *----------------------------------------------------------------------------*/ |
5644 | ||
e5a41ffa | 5645 | int floatx80_le(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5646 | { |
5647 | flag aSign, bSign; | |
5648 | ||
5649 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5650 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5651 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5652 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5653 | ) { |
ff32e16e | 5654 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5655 | return 0; |
5656 | } | |
5657 | aSign = extractFloatx80Sign( a ); | |
5658 | bSign = extractFloatx80Sign( b ); | |
5659 | if ( aSign != bSign ) { | |
5660 | return | |
5661 | aSign | |
bb98fe42 | 5662 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5663 | == 0 ); |
5664 | } | |
5665 | return | |
5666 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5667 | : le128( a.high, a.low, b.high, b.low ); | |
5668 | ||
5669 | } | |
5670 | ||
5671 | /*---------------------------------------------------------------------------- | |
5672 | | Returns 1 if the extended double-precision floating-point value `a' is | |
f5a64251 AJ |
5673 | | less than the corresponding value `b', and 0 otherwise. The invalid |
5674 | | exception is raised if either operand is a NaN. The comparison is performed | |
5675 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5676 | *----------------------------------------------------------------------------*/ |
5677 | ||
e5a41ffa | 5678 | int floatx80_lt(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5679 | { |
5680 | flag aSign, bSign; | |
5681 | ||
5682 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5683 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5684 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5685 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5686 | ) { |
ff32e16e | 5687 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5688 | return 0; |
5689 | } | |
5690 | aSign = extractFloatx80Sign( a ); | |
5691 | bSign = extractFloatx80Sign( b ); | |
5692 | if ( aSign != bSign ) { | |
5693 | return | |
5694 | aSign | |
bb98fe42 | 5695 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5696 | != 0 ); |
5697 | } | |
5698 | return | |
5699 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5700 | : lt128( a.high, a.low, b.high, b.low ); | |
5701 | ||
5702 | } | |
5703 | ||
67b7861d AJ |
5704 | /*---------------------------------------------------------------------------- |
5705 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
f5a64251 AJ |
5706 | | cannot be compared, and 0 otherwise. The invalid exception is raised if |
5707 | | either operand is a NaN. The comparison is performed according to the | |
5708 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
67b7861d | 5709 | *----------------------------------------------------------------------------*/ |
e5a41ffa | 5710 | int floatx80_unordered(floatx80 a, floatx80 b, float_status *status) |
67b7861d AJ |
5711 | { |
5712 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
5713 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | |
5714 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
5715 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | |
5716 | ) { | |
ff32e16e | 5717 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
5718 | return 1; |
5719 | } | |
5720 | return 0; | |
5721 | } | |
5722 | ||
158142c2 | 5723 | /*---------------------------------------------------------------------------- |
b689362d | 5724 | | Returns 1 if the extended double-precision floating-point value `a' is |
f5a64251 AJ |
5725 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
5726 | | cause an exception. The comparison is performed according to the IEC/IEEE | |
5727 | | Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5728 | *----------------------------------------------------------------------------*/ |
5729 | ||
e5a41ffa | 5730 | int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5731 | { |
5732 | ||
5733 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5734 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5735 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5736 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5737 | ) { |
b689362d AJ |
5738 | if ( floatx80_is_signaling_nan( a ) |
5739 | || floatx80_is_signaling_nan( b ) ) { | |
ff32e16e | 5740 | float_raise(float_flag_invalid, status); |
b689362d | 5741 | } |
158142c2 FB |
5742 | return 0; |
5743 | } | |
5744 | return | |
5745 | ( a.low == b.low ) | |
5746 | && ( ( a.high == b.high ) | |
5747 | || ( ( a.low == 0 ) | |
bb98fe42 | 5748 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5749 | ); |
5750 | ||
5751 | } | |
5752 | ||
5753 | /*---------------------------------------------------------------------------- | |
5754 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5755 | | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | |
5756 | | do not cause an exception. Otherwise, the comparison is performed according | |
5757 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5758 | *----------------------------------------------------------------------------*/ | |
5759 | ||
e5a41ffa | 5760 | int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5761 | { |
5762 | flag aSign, bSign; | |
5763 | ||
5764 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5765 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5766 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5767 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 FB |
5768 | ) { |
5769 | if ( floatx80_is_signaling_nan( a ) | |
5770 | || floatx80_is_signaling_nan( b ) ) { | |
ff32e16e | 5771 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5772 | } |
5773 | return 0; | |
5774 | } | |
5775 | aSign = extractFloatx80Sign( a ); | |
5776 | bSign = extractFloatx80Sign( b ); | |
5777 | if ( aSign != bSign ) { | |
5778 | return | |
5779 | aSign | |
bb98fe42 | 5780 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5781 | == 0 ); |
5782 | } | |
5783 | return | |
5784 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5785 | : le128( a.high, a.low, b.high, b.low ); | |
5786 | ||
5787 | } | |
5788 | ||
5789 | /*---------------------------------------------------------------------------- | |
5790 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5791 | | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | |
5792 | | an exception. Otherwise, the comparison is performed according to the | |
5793 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5794 | *----------------------------------------------------------------------------*/ | |
5795 | ||
e5a41ffa | 5796 | int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5797 | { |
5798 | flag aSign, bSign; | |
5799 | ||
5800 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5801 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5802 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5803 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 FB |
5804 | ) { |
5805 | if ( floatx80_is_signaling_nan( a ) | |
5806 | || floatx80_is_signaling_nan( b ) ) { | |
ff32e16e | 5807 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5808 | } |
5809 | return 0; | |
5810 | } | |
5811 | aSign = extractFloatx80Sign( a ); | |
5812 | bSign = extractFloatx80Sign( b ); | |
5813 | if ( aSign != bSign ) { | |
5814 | return | |
5815 | aSign | |
bb98fe42 | 5816 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5817 | != 0 ); |
5818 | } | |
5819 | return | |
5820 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5821 | : lt128( a.high, a.low, b.high, b.low ); | |
5822 | ||
5823 | } | |
5824 | ||
67b7861d AJ |
5825 | /*---------------------------------------------------------------------------- |
5826 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
5827 | | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. | |
5828 | | The comparison is performed according to the IEC/IEEE Standard for Binary | |
5829 | | Floating-Point Arithmetic. | |
5830 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 5831 | int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status) |
67b7861d AJ |
5832 | { |
5833 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
5834 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | |
5835 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
5836 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | |
5837 | ) { | |
5838 | if ( floatx80_is_signaling_nan( a ) | |
5839 | || floatx80_is_signaling_nan( b ) ) { | |
ff32e16e | 5840 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
5841 | } |
5842 | return 1; | |
5843 | } | |
5844 | return 0; | |
5845 | } | |
5846 | ||
158142c2 FB |
5847 | /*---------------------------------------------------------------------------- |
5848 | | Returns the result of converting the quadruple-precision floating-point | |
5849 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5850 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5851 | | Arithmetic---which means in particular that the conversion is rounded | |
5852 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5853 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
5854 | | largest integer with the same sign as `a' is returned. | |
5855 | *----------------------------------------------------------------------------*/ | |
5856 | ||
e5a41ffa | 5857 | int32 float128_to_int32(float128 a, float_status *status) |
158142c2 FB |
5858 | { |
5859 | flag aSign; | |
5860 | int32 aExp, shiftCount; | |
bb98fe42 | 5861 | uint64_t aSig0, aSig1; |
158142c2 FB |
5862 | |
5863 | aSig1 = extractFloat128Frac1( a ); | |
5864 | aSig0 = extractFloat128Frac0( a ); | |
5865 | aExp = extractFloat128Exp( a ); | |
5866 | aSign = extractFloat128Sign( a ); | |
5867 | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; | |
5868 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5869 | aSig0 |= ( aSig1 != 0 ); | |
5870 | shiftCount = 0x4028 - aExp; | |
5871 | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); | |
ff32e16e | 5872 | return roundAndPackInt32(aSign, aSig0, status); |
158142c2 FB |
5873 | |
5874 | } | |
5875 | ||
5876 | /*---------------------------------------------------------------------------- | |
5877 | | Returns the result of converting the quadruple-precision floating-point | |
5878 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5879 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5880 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
5881 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
5882 | | conversion overflows, the largest integer with the same sign as `a' is | |
5883 | | returned. | |
5884 | *----------------------------------------------------------------------------*/ | |
5885 | ||
e5a41ffa | 5886 | int32 float128_to_int32_round_to_zero(float128 a, float_status *status) |
158142c2 FB |
5887 | { |
5888 | flag aSign; | |
5889 | int32 aExp, shiftCount; | |
bb98fe42 | 5890 | uint64_t aSig0, aSig1, savedASig; |
b3a6a2e0 | 5891 | int32_t z; |
158142c2 FB |
5892 | |
5893 | aSig1 = extractFloat128Frac1( a ); | |
5894 | aSig0 = extractFloat128Frac0( a ); | |
5895 | aExp = extractFloat128Exp( a ); | |
5896 | aSign = extractFloat128Sign( a ); | |
5897 | aSig0 |= ( aSig1 != 0 ); | |
5898 | if ( 0x401E < aExp ) { | |
5899 | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; | |
5900 | goto invalid; | |
5901 | } | |
5902 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
5903 | if (aExp || aSig0) { |
5904 | status->float_exception_flags |= float_flag_inexact; | |
5905 | } | |
158142c2 FB |
5906 | return 0; |
5907 | } | |
5908 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5909 | shiftCount = 0x402F - aExp; | |
5910 | savedASig = aSig0; | |
5911 | aSig0 >>= shiftCount; | |
5912 | z = aSig0; | |
5913 | if ( aSign ) z = - z; | |
5914 | if ( ( z < 0 ) ^ aSign ) { | |
5915 | invalid: | |
ff32e16e | 5916 | float_raise(float_flag_invalid, status); |
bb98fe42 | 5917 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
5918 | } |
5919 | if ( ( aSig0<<shiftCount ) != savedASig ) { | |
a2f2d288 | 5920 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
5921 | } |
5922 | return z; | |
5923 | ||
5924 | } | |
5925 | ||
5926 | /*---------------------------------------------------------------------------- | |
5927 | | Returns the result of converting the quadruple-precision floating-point | |
5928 | | value `a' to the 64-bit two's complement integer format. The conversion | |
5929 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5930 | | Arithmetic---which means in particular that the conversion is rounded | |
5931 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5932 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
5933 | | largest integer with the same sign as `a' is returned. | |
5934 | *----------------------------------------------------------------------------*/ | |
5935 | ||
e5a41ffa | 5936 | int64 float128_to_int64(float128 a, float_status *status) |
158142c2 FB |
5937 | { |
5938 | flag aSign; | |
5939 | int32 aExp, shiftCount; | |
bb98fe42 | 5940 | uint64_t aSig0, aSig1; |
158142c2 FB |
5941 | |
5942 | aSig1 = extractFloat128Frac1( a ); | |
5943 | aSig0 = extractFloat128Frac0( a ); | |
5944 | aExp = extractFloat128Exp( a ); | |
5945 | aSign = extractFloat128Sign( a ); | |
5946 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5947 | shiftCount = 0x402F - aExp; | |
5948 | if ( shiftCount <= 0 ) { | |
5949 | if ( 0x403E < aExp ) { | |
ff32e16e | 5950 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5951 | if ( ! aSign |
5952 | || ( ( aExp == 0x7FFF ) | |
5953 | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) | |
5954 | ) | |
5955 | ) { | |
5956 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
5957 | } | |
bb98fe42 | 5958 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
5959 | } |
5960 | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); | |
5961 | } | |
5962 | else { | |
5963 | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); | |
5964 | } | |
ff32e16e | 5965 | return roundAndPackInt64(aSign, aSig0, aSig1, status); |
158142c2 FB |
5966 | |
5967 | } | |
5968 | ||
5969 | /*---------------------------------------------------------------------------- | |
5970 | | Returns the result of converting the quadruple-precision floating-point | |
5971 | | value `a' to the 64-bit two's complement integer format. The conversion | |
5972 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5973 | | Arithmetic, except that the conversion is always rounded toward zero. | |
5974 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
5975 | | the conversion overflows, the largest integer with the same sign as `a' is | |
5976 | | returned. | |
5977 | *----------------------------------------------------------------------------*/ | |
5978 | ||
e5a41ffa | 5979 | int64 float128_to_int64_round_to_zero(float128 a, float_status *status) |
158142c2 FB |
5980 | { |
5981 | flag aSign; | |
5982 | int32 aExp, shiftCount; | |
bb98fe42 | 5983 | uint64_t aSig0, aSig1; |
158142c2 FB |
5984 | int64 z; |
5985 | ||
5986 | aSig1 = extractFloat128Frac1( a ); | |
5987 | aSig0 = extractFloat128Frac0( a ); | |
5988 | aExp = extractFloat128Exp( a ); | |
5989 | aSign = extractFloat128Sign( a ); | |
5990 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5991 | shiftCount = aExp - 0x402F; | |
5992 | if ( 0 < shiftCount ) { | |
5993 | if ( 0x403E <= aExp ) { | |
5994 | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); | |
5995 | if ( ( a.high == LIT64( 0xC03E000000000000 ) ) | |
5996 | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { | |
a2f2d288 PM |
5997 | if (aSig1) { |
5998 | status->float_exception_flags |= float_flag_inexact; | |
5999 | } | |
158142c2 FB |
6000 | } |
6001 | else { | |
ff32e16e | 6002 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6003 | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { |
6004 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
6005 | } | |
6006 | } | |
bb98fe42 | 6007 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
6008 | } |
6009 | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); | |
bb98fe42 | 6010 | if ( (uint64_t) ( aSig1<<shiftCount ) ) { |
a2f2d288 | 6011 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6012 | } |
6013 | } | |
6014 | else { | |
6015 | if ( aExp < 0x3FFF ) { | |
6016 | if ( aExp | aSig0 | aSig1 ) { | |
a2f2d288 | 6017 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6018 | } |
6019 | return 0; | |
6020 | } | |
6021 | z = aSig0>>( - shiftCount ); | |
6022 | if ( aSig1 | |
bb98fe42 | 6023 | || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { |
a2f2d288 | 6024 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6025 | } |
6026 | } | |
6027 | if ( aSign ) z = - z; | |
6028 | return z; | |
6029 | ||
6030 | } | |
6031 | ||
6032 | /*---------------------------------------------------------------------------- | |
6033 | | Returns the result of converting the quadruple-precision floating-point | |
6034 | | value `a' to the single-precision floating-point format. The conversion | |
6035 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6036 | | Arithmetic. | |
6037 | *----------------------------------------------------------------------------*/ | |
6038 | ||
e5a41ffa | 6039 | float32 float128_to_float32(float128 a, float_status *status) |
158142c2 FB |
6040 | { |
6041 | flag aSign; | |
6042 | int32 aExp; | |
bb98fe42 AF |
6043 | uint64_t aSig0, aSig1; |
6044 | uint32_t zSig; | |
158142c2 FB |
6045 | |
6046 | aSig1 = extractFloat128Frac1( a ); | |
6047 | aSig0 = extractFloat128Frac0( a ); | |
6048 | aExp = extractFloat128Exp( a ); | |
6049 | aSign = extractFloat128Sign( a ); | |
6050 | if ( aExp == 0x7FFF ) { | |
6051 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6052 | return commonNaNToFloat32(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6053 | } |
6054 | return packFloat32( aSign, 0xFF, 0 ); | |
6055 | } | |
6056 | aSig0 |= ( aSig1 != 0 ); | |
6057 | shift64RightJamming( aSig0, 18, &aSig0 ); | |
6058 | zSig = aSig0; | |
6059 | if ( aExp || zSig ) { | |
6060 | zSig |= 0x40000000; | |
6061 | aExp -= 0x3F81; | |
6062 | } | |
ff32e16e | 6063 | return roundAndPackFloat32(aSign, aExp, zSig, status); |
158142c2 FB |
6064 | |
6065 | } | |
6066 | ||
6067 | /*---------------------------------------------------------------------------- | |
6068 | | Returns the result of converting the quadruple-precision floating-point | |
6069 | | value `a' to the double-precision floating-point format. The conversion | |
6070 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6071 | | Arithmetic. | |
6072 | *----------------------------------------------------------------------------*/ | |
6073 | ||
e5a41ffa | 6074 | float64 float128_to_float64(float128 a, float_status *status) |
158142c2 FB |
6075 | { |
6076 | flag aSign; | |
6077 | int32 aExp; | |
bb98fe42 | 6078 | uint64_t aSig0, aSig1; |
158142c2 FB |
6079 | |
6080 | aSig1 = extractFloat128Frac1( a ); | |
6081 | aSig0 = extractFloat128Frac0( a ); | |
6082 | aExp = extractFloat128Exp( a ); | |
6083 | aSign = extractFloat128Sign( a ); | |
6084 | if ( aExp == 0x7FFF ) { | |
6085 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6086 | return commonNaNToFloat64(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6087 | } |
6088 | return packFloat64( aSign, 0x7FF, 0 ); | |
6089 | } | |
6090 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
6091 | aSig0 |= ( aSig1 != 0 ); | |
6092 | if ( aExp || aSig0 ) { | |
6093 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6094 | aExp -= 0x3C01; | |
6095 | } | |
ff32e16e | 6096 | return roundAndPackFloat64(aSign, aExp, aSig0, status); |
158142c2 FB |
6097 | |
6098 | } | |
6099 | ||
158142c2 FB |
6100 | /*---------------------------------------------------------------------------- |
6101 | | Returns the result of converting the quadruple-precision floating-point | |
6102 | | value `a' to the extended double-precision floating-point format. The | |
6103 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
6104 | | Floating-Point Arithmetic. | |
6105 | *----------------------------------------------------------------------------*/ | |
6106 | ||
e5a41ffa | 6107 | floatx80 float128_to_floatx80(float128 a, float_status *status) |
158142c2 FB |
6108 | { |
6109 | flag aSign; | |
6110 | int32 aExp; | |
bb98fe42 | 6111 | uint64_t aSig0, aSig1; |
158142c2 FB |
6112 | |
6113 | aSig1 = extractFloat128Frac1( a ); | |
6114 | aSig0 = extractFloat128Frac0( a ); | |
6115 | aExp = extractFloat128Exp( a ); | |
6116 | aSign = extractFloat128Sign( a ); | |
6117 | if ( aExp == 0x7FFF ) { | |
6118 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6119 | return commonNaNToFloatx80(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6120 | } |
6121 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
6122 | } | |
6123 | if ( aExp == 0 ) { | |
6124 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); | |
6125 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6126 | } | |
6127 | else { | |
6128 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6129 | } | |
6130 | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); | |
ff32e16e | 6131 | return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status); |
158142c2 FB |
6132 | |
6133 | } | |
6134 | ||
158142c2 FB |
6135 | /*---------------------------------------------------------------------------- |
6136 | | Rounds the quadruple-precision floating-point value `a' to an integer, and | |
6137 | | returns the result as a quadruple-precision floating-point value. The | |
6138 | | operation is performed according to the IEC/IEEE Standard for Binary | |
6139 | | Floating-Point Arithmetic. | |
6140 | *----------------------------------------------------------------------------*/ | |
6141 | ||
e5a41ffa | 6142 | float128 float128_round_to_int(float128 a, float_status *status) |
158142c2 FB |
6143 | { |
6144 | flag aSign; | |
6145 | int32 aExp; | |
bb98fe42 | 6146 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
6147 | float128 z; |
6148 | ||
6149 | aExp = extractFloat128Exp( a ); | |
6150 | if ( 0x402F <= aExp ) { | |
6151 | if ( 0x406F <= aExp ) { | |
6152 | if ( ( aExp == 0x7FFF ) | |
6153 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) | |
6154 | ) { | |
ff32e16e | 6155 | return propagateFloat128NaN(a, a, status); |
158142c2 FB |
6156 | } |
6157 | return a; | |
6158 | } | |
6159 | lastBitMask = 1; | |
6160 | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; | |
6161 | roundBitsMask = lastBitMask - 1; | |
6162 | z = a; | |
a2f2d288 | 6163 | switch (status->float_rounding_mode) { |
dc355b76 | 6164 | case float_round_nearest_even: |
158142c2 FB |
6165 | if ( lastBitMask ) { |
6166 | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); | |
6167 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
6168 | } | |
6169 | else { | |
bb98fe42 | 6170 | if ( (int64_t) z.low < 0 ) { |
158142c2 | 6171 | ++z.high; |
bb98fe42 | 6172 | if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; |
158142c2 FB |
6173 | } |
6174 | } | |
dc355b76 | 6175 | break; |
f9288a76 PM |
6176 | case float_round_ties_away: |
6177 | if (lastBitMask) { | |
6178 | add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low); | |
6179 | } else { | |
6180 | if ((int64_t) z.low < 0) { | |
6181 | ++z.high; | |
6182 | } | |
6183 | } | |
6184 | break; | |
dc355b76 PM |
6185 | case float_round_to_zero: |
6186 | break; | |
6187 | case float_round_up: | |
6188 | if (!extractFloat128Sign(z)) { | |
6189 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
6190 | } | |
6191 | break; | |
6192 | case float_round_down: | |
6193 | if (extractFloat128Sign(z)) { | |
6194 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
158142c2 | 6195 | } |
dc355b76 PM |
6196 | break; |
6197 | default: | |
6198 | abort(); | |
158142c2 FB |
6199 | } |
6200 | z.low &= ~ roundBitsMask; | |
6201 | } | |
6202 | else { | |
6203 | if ( aExp < 0x3FFF ) { | |
bb98fe42 | 6204 | if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; |
a2f2d288 | 6205 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 6206 | aSign = extractFloat128Sign( a ); |
a2f2d288 | 6207 | switch (status->float_rounding_mode) { |
158142c2 FB |
6208 | case float_round_nearest_even: |
6209 | if ( ( aExp == 0x3FFE ) | |
6210 | && ( extractFloat128Frac0( a ) | |
6211 | | extractFloat128Frac1( a ) ) | |
6212 | ) { | |
6213 | return packFloat128( aSign, 0x3FFF, 0, 0 ); | |
6214 | } | |
6215 | break; | |
f9288a76 PM |
6216 | case float_round_ties_away: |
6217 | if (aExp == 0x3FFE) { | |
6218 | return packFloat128(aSign, 0x3FFF, 0, 0); | |
6219 | } | |
6220 | break; | |
158142c2 FB |
6221 | case float_round_down: |
6222 | return | |
6223 | aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) | |
6224 | : packFloat128( 0, 0, 0, 0 ); | |
6225 | case float_round_up: | |
6226 | return | |
6227 | aSign ? packFloat128( 1, 0, 0, 0 ) | |
6228 | : packFloat128( 0, 0x3FFF, 0, 0 ); | |
6229 | } | |
6230 | return packFloat128( aSign, 0, 0, 0 ); | |
6231 | } | |
6232 | lastBitMask = 1; | |
6233 | lastBitMask <<= 0x402F - aExp; | |
6234 | roundBitsMask = lastBitMask - 1; | |
6235 | z.low = 0; | |
6236 | z.high = a.high; | |
a2f2d288 | 6237 | switch (status->float_rounding_mode) { |
dc355b76 | 6238 | case float_round_nearest_even: |
158142c2 FB |
6239 | z.high += lastBitMask>>1; |
6240 | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { | |
6241 | z.high &= ~ lastBitMask; | |
6242 | } | |
dc355b76 | 6243 | break; |
f9288a76 PM |
6244 | case float_round_ties_away: |
6245 | z.high += lastBitMask>>1; | |
6246 | break; | |
dc355b76 PM |
6247 | case float_round_to_zero: |
6248 | break; | |
6249 | case float_round_up: | |
6250 | if (!extractFloat128Sign(z)) { | |
158142c2 FB |
6251 | z.high |= ( a.low != 0 ); |
6252 | z.high += roundBitsMask; | |
6253 | } | |
dc355b76 PM |
6254 | break; |
6255 | case float_round_down: | |
6256 | if (extractFloat128Sign(z)) { | |
6257 | z.high |= (a.low != 0); | |
6258 | z.high += roundBitsMask; | |
6259 | } | |
6260 | break; | |
6261 | default: | |
6262 | abort(); | |
158142c2 FB |
6263 | } |
6264 | z.high &= ~ roundBitsMask; | |
6265 | } | |
6266 | if ( ( z.low != a.low ) || ( z.high != a.high ) ) { | |
a2f2d288 | 6267 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6268 | } |
6269 | return z; | |
6270 | ||
6271 | } | |
6272 | ||
6273 | /*---------------------------------------------------------------------------- | |
6274 | | Returns the result of adding the absolute values of the quadruple-precision | |
6275 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
6276 | | before being returned. `zSign' is ignored if the result is a NaN. | |
6277 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
6278 | | Floating-Point Arithmetic. | |
6279 | *----------------------------------------------------------------------------*/ | |
6280 | ||
e5a41ffa PM |
6281 | static float128 addFloat128Sigs(float128 a, float128 b, flag zSign, |
6282 | float_status *status) | |
158142c2 FB |
6283 | { |
6284 | int32 aExp, bExp, zExp; | |
bb98fe42 | 6285 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
158142c2 FB |
6286 | int32 expDiff; |
6287 | ||
6288 | aSig1 = extractFloat128Frac1( a ); | |
6289 | aSig0 = extractFloat128Frac0( a ); | |
6290 | aExp = extractFloat128Exp( a ); | |
6291 | bSig1 = extractFloat128Frac1( b ); | |
6292 | bSig0 = extractFloat128Frac0( b ); | |
6293 | bExp = extractFloat128Exp( b ); | |
6294 | expDiff = aExp - bExp; | |
6295 | if ( 0 < expDiff ) { | |
6296 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6297 | if (aSig0 | aSig1) { |
6298 | return propagateFloat128NaN(a, b, status); | |
6299 | } | |
158142c2 FB |
6300 | return a; |
6301 | } | |
6302 | if ( bExp == 0 ) { | |
6303 | --expDiff; | |
6304 | } | |
6305 | else { | |
6306 | bSig0 |= LIT64( 0x0001000000000000 ); | |
6307 | } | |
6308 | shift128ExtraRightJamming( | |
6309 | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); | |
6310 | zExp = aExp; | |
6311 | } | |
6312 | else if ( expDiff < 0 ) { | |
6313 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6314 | if (bSig0 | bSig1) { |
6315 | return propagateFloat128NaN(a, b, status); | |
6316 | } | |
158142c2 FB |
6317 | return packFloat128( zSign, 0x7FFF, 0, 0 ); |
6318 | } | |
6319 | if ( aExp == 0 ) { | |
6320 | ++expDiff; | |
6321 | } | |
6322 | else { | |
6323 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6324 | } | |
6325 | shift128ExtraRightJamming( | |
6326 | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); | |
6327 | zExp = bExp; | |
6328 | } | |
6329 | else { | |
6330 | if ( aExp == 0x7FFF ) { | |
6331 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
ff32e16e | 6332 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6333 | } |
6334 | return a; | |
6335 | } | |
6336 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
fe76d976 | 6337 | if ( aExp == 0 ) { |
a2f2d288 | 6338 | if (status->flush_to_zero) { |
e6afc87f | 6339 | if (zSig0 | zSig1) { |
ff32e16e | 6340 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
6341 | } |
6342 | return packFloat128(zSign, 0, 0, 0); | |
6343 | } | |
fe76d976 PB |
6344 | return packFloat128( zSign, 0, zSig0, zSig1 ); |
6345 | } | |
158142c2 FB |
6346 | zSig2 = 0; |
6347 | zSig0 |= LIT64( 0x0002000000000000 ); | |
6348 | zExp = aExp; | |
6349 | goto shiftRight1; | |
6350 | } | |
6351 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6352 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
6353 | --zExp; | |
6354 | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; | |
6355 | ++zExp; | |
6356 | shiftRight1: | |
6357 | shift128ExtraRightJamming( | |
6358 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
6359 | roundAndPack: | |
ff32e16e | 6360 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6361 | |
6362 | } | |
6363 | ||
6364 | /*---------------------------------------------------------------------------- | |
6365 | | Returns the result of subtracting the absolute values of the quadruple- | |
6366 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
6367 | | difference is negated before being returned. `zSign' is ignored if the | |
6368 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
6369 | | Standard for Binary Floating-Point Arithmetic. | |
6370 | *----------------------------------------------------------------------------*/ | |
6371 | ||
e5a41ffa PM |
6372 | static float128 subFloat128Sigs(float128 a, float128 b, flag zSign, |
6373 | float_status *status) | |
158142c2 FB |
6374 | { |
6375 | int32 aExp, bExp, zExp; | |
bb98fe42 | 6376 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; |
158142c2 FB |
6377 | int32 expDiff; |
6378 | float128 z; | |
6379 | ||
6380 | aSig1 = extractFloat128Frac1( a ); | |
6381 | aSig0 = extractFloat128Frac0( a ); | |
6382 | aExp = extractFloat128Exp( a ); | |
6383 | bSig1 = extractFloat128Frac1( b ); | |
6384 | bSig0 = extractFloat128Frac0( b ); | |
6385 | bExp = extractFloat128Exp( b ); | |
6386 | expDiff = aExp - bExp; | |
6387 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
6388 | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); | |
6389 | if ( 0 < expDiff ) goto aExpBigger; | |
6390 | if ( expDiff < 0 ) goto bExpBigger; | |
6391 | if ( aExp == 0x7FFF ) { | |
6392 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
ff32e16e | 6393 | return propagateFloat128NaN(a, b, status); |
158142c2 | 6394 | } |
ff32e16e | 6395 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6396 | z.low = float128_default_nan_low; |
6397 | z.high = float128_default_nan_high; | |
6398 | return z; | |
6399 | } | |
6400 | if ( aExp == 0 ) { | |
6401 | aExp = 1; | |
6402 | bExp = 1; | |
6403 | } | |
6404 | if ( bSig0 < aSig0 ) goto aBigger; | |
6405 | if ( aSig0 < bSig0 ) goto bBigger; | |
6406 | if ( bSig1 < aSig1 ) goto aBigger; | |
6407 | if ( aSig1 < bSig1 ) goto bBigger; | |
a2f2d288 PM |
6408 | return packFloat128(status->float_rounding_mode == float_round_down, |
6409 | 0, 0, 0); | |
158142c2 FB |
6410 | bExpBigger: |
6411 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6412 | if (bSig0 | bSig1) { |
6413 | return propagateFloat128NaN(a, b, status); | |
6414 | } | |
158142c2 FB |
6415 | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); |
6416 | } | |
6417 | if ( aExp == 0 ) { | |
6418 | ++expDiff; | |
6419 | } | |
6420 | else { | |
6421 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6422 | } | |
6423 | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6424 | bSig0 |= LIT64( 0x4000000000000000 ); | |
6425 | bBigger: | |
6426 | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
6427 | zExp = bExp; | |
6428 | zSign ^= 1; | |
6429 | goto normalizeRoundAndPack; | |
6430 | aExpBigger: | |
6431 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6432 | if (aSig0 | aSig1) { |
6433 | return propagateFloat128NaN(a, b, status); | |
6434 | } | |
158142c2 FB |
6435 | return a; |
6436 | } | |
6437 | if ( bExp == 0 ) { | |
6438 | --expDiff; | |
6439 | } | |
6440 | else { | |
6441 | bSig0 |= LIT64( 0x4000000000000000 ); | |
6442 | } | |
6443 | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); | |
6444 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6445 | aBigger: | |
6446 | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
6447 | zExp = aExp; | |
6448 | normalizeRoundAndPack: | |
6449 | --zExp; | |
ff32e16e PM |
6450 | return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1, |
6451 | status); | |
158142c2 FB |
6452 | |
6453 | } | |
6454 | ||
6455 | /*---------------------------------------------------------------------------- | |
6456 | | Returns the result of adding the quadruple-precision floating-point values | |
6457 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
6458 | | for Binary Floating-Point Arithmetic. | |
6459 | *----------------------------------------------------------------------------*/ | |
6460 | ||
e5a41ffa | 6461 | float128 float128_add(float128 a, float128 b, float_status *status) |
158142c2 FB |
6462 | { |
6463 | flag aSign, bSign; | |
6464 | ||
6465 | aSign = extractFloat128Sign( a ); | |
6466 | bSign = extractFloat128Sign( b ); | |
6467 | if ( aSign == bSign ) { | |
ff32e16e | 6468 | return addFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6469 | } |
6470 | else { | |
ff32e16e | 6471 | return subFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6472 | } |
6473 | ||
6474 | } | |
6475 | ||
6476 | /*---------------------------------------------------------------------------- | |
6477 | | Returns the result of subtracting the quadruple-precision floating-point | |
6478 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
6479 | | Standard for Binary Floating-Point Arithmetic. | |
6480 | *----------------------------------------------------------------------------*/ | |
6481 | ||
e5a41ffa | 6482 | float128 float128_sub(float128 a, float128 b, float_status *status) |
158142c2 FB |
6483 | { |
6484 | flag aSign, bSign; | |
6485 | ||
6486 | aSign = extractFloat128Sign( a ); | |
6487 | bSign = extractFloat128Sign( b ); | |
6488 | if ( aSign == bSign ) { | |
ff32e16e | 6489 | return subFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6490 | } |
6491 | else { | |
ff32e16e | 6492 | return addFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6493 | } |
6494 | ||
6495 | } | |
6496 | ||
6497 | /*---------------------------------------------------------------------------- | |
6498 | | Returns the result of multiplying the quadruple-precision floating-point | |
6499 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
6500 | | Standard for Binary Floating-Point Arithmetic. | |
6501 | *----------------------------------------------------------------------------*/ | |
6502 | ||
e5a41ffa | 6503 | float128 float128_mul(float128 a, float128 b, float_status *status) |
158142c2 FB |
6504 | { |
6505 | flag aSign, bSign, zSign; | |
6506 | int32 aExp, bExp, zExp; | |
bb98fe42 | 6507 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; |
158142c2 FB |
6508 | float128 z; |
6509 | ||
6510 | aSig1 = extractFloat128Frac1( a ); | |
6511 | aSig0 = extractFloat128Frac0( a ); | |
6512 | aExp = extractFloat128Exp( a ); | |
6513 | aSign = extractFloat128Sign( a ); | |
6514 | bSig1 = extractFloat128Frac1( b ); | |
6515 | bSig0 = extractFloat128Frac0( b ); | |
6516 | bExp = extractFloat128Exp( b ); | |
6517 | bSign = extractFloat128Sign( b ); | |
6518 | zSign = aSign ^ bSign; | |
6519 | if ( aExp == 0x7FFF ) { | |
6520 | if ( ( aSig0 | aSig1 ) | |
6521 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
ff32e16e | 6522 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6523 | } |
6524 | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; | |
6525 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6526 | } | |
6527 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6528 | if (bSig0 | bSig1) { |
6529 | return propagateFloat128NaN(a, b, status); | |
6530 | } | |
158142c2 FB |
6531 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { |
6532 | invalid: | |
ff32e16e | 6533 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6534 | z.low = float128_default_nan_low; |
6535 | z.high = float128_default_nan_high; | |
6536 | return z; | |
6537 | } | |
6538 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6539 | } | |
6540 | if ( aExp == 0 ) { | |
6541 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6542 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6543 | } | |
6544 | if ( bExp == 0 ) { | |
6545 | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6546 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6547 | } | |
6548 | zExp = aExp + bExp - 0x4000; | |
6549 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6550 | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); | |
6551 | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); | |
6552 | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
6553 | zSig2 |= ( zSig3 != 0 ); | |
6554 | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { | |
6555 | shift128ExtraRightJamming( | |
6556 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
6557 | ++zExp; | |
6558 | } | |
ff32e16e | 6559 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6560 | |
6561 | } | |
6562 | ||
6563 | /*---------------------------------------------------------------------------- | |
6564 | | Returns the result of dividing the quadruple-precision floating-point value | |
6565 | | `a' by the corresponding value `b'. The operation is performed according to | |
6566 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6567 | *----------------------------------------------------------------------------*/ | |
6568 | ||
e5a41ffa | 6569 | float128 float128_div(float128 a, float128 b, float_status *status) |
158142c2 FB |
6570 | { |
6571 | flag aSign, bSign, zSign; | |
6572 | int32 aExp, bExp, zExp; | |
bb98fe42 AF |
6573 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
6574 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6575 | float128 z; |
6576 | ||
6577 | aSig1 = extractFloat128Frac1( a ); | |
6578 | aSig0 = extractFloat128Frac0( a ); | |
6579 | aExp = extractFloat128Exp( a ); | |
6580 | aSign = extractFloat128Sign( a ); | |
6581 | bSig1 = extractFloat128Frac1( b ); | |
6582 | bSig0 = extractFloat128Frac0( b ); | |
6583 | bExp = extractFloat128Exp( b ); | |
6584 | bSign = extractFloat128Sign( b ); | |
6585 | zSign = aSign ^ bSign; | |
6586 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6587 | if (aSig0 | aSig1) { |
6588 | return propagateFloat128NaN(a, b, status); | |
6589 | } | |
158142c2 | 6590 | if ( bExp == 0x7FFF ) { |
ff32e16e PM |
6591 | if (bSig0 | bSig1) { |
6592 | return propagateFloat128NaN(a, b, status); | |
6593 | } | |
158142c2 FB |
6594 | goto invalid; |
6595 | } | |
6596 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6597 | } | |
6598 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6599 | if (bSig0 | bSig1) { |
6600 | return propagateFloat128NaN(a, b, status); | |
6601 | } | |
158142c2 FB |
6602 | return packFloat128( zSign, 0, 0, 0 ); |
6603 | } | |
6604 | if ( bExp == 0 ) { | |
6605 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6606 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
6607 | invalid: | |
ff32e16e | 6608 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6609 | z.low = float128_default_nan_low; |
6610 | z.high = float128_default_nan_high; | |
6611 | return z; | |
6612 | } | |
ff32e16e | 6613 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
6614 | return packFloat128( zSign, 0x7FFF, 0, 0 ); |
6615 | } | |
6616 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6617 | } | |
6618 | if ( aExp == 0 ) { | |
6619 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6620 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6621 | } | |
6622 | zExp = aExp - bExp + 0x3FFD; | |
6623 | shortShift128Left( | |
6624 | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); | |
6625 | shortShift128Left( | |
6626 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6627 | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { | |
6628 | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); | |
6629 | ++zExp; | |
6630 | } | |
6631 | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6632 | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); | |
6633 | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); | |
bb98fe42 | 6634 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6635 | --zSig0; |
6636 | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); | |
6637 | } | |
6638 | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); | |
6639 | if ( ( zSig1 & 0x3FFF ) <= 4 ) { | |
6640 | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); | |
6641 | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6642 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6643 | --zSig1; |
6644 | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); | |
6645 | } | |
6646 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6647 | } | |
6648 | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); | |
ff32e16e | 6649 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6650 | |
6651 | } | |
6652 | ||
6653 | /*---------------------------------------------------------------------------- | |
6654 | | Returns the remainder of the quadruple-precision floating-point value `a' | |
6655 | | with respect to the corresponding value `b'. The operation is performed | |
6656 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6657 | *----------------------------------------------------------------------------*/ | |
6658 | ||
e5a41ffa | 6659 | float128 float128_rem(float128 a, float128 b, float_status *status) |
158142c2 | 6660 | { |
ed086f3d | 6661 | flag aSign, zSign; |
158142c2 | 6662 | int32 aExp, bExp, expDiff; |
bb98fe42 AF |
6663 | uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; |
6664 | uint64_t allZero, alternateASig0, alternateASig1, sigMean1; | |
6665 | int64_t sigMean0; | |
158142c2 FB |
6666 | float128 z; |
6667 | ||
6668 | aSig1 = extractFloat128Frac1( a ); | |
6669 | aSig0 = extractFloat128Frac0( a ); | |
6670 | aExp = extractFloat128Exp( a ); | |
6671 | aSign = extractFloat128Sign( a ); | |
6672 | bSig1 = extractFloat128Frac1( b ); | |
6673 | bSig0 = extractFloat128Frac0( b ); | |
6674 | bExp = extractFloat128Exp( b ); | |
158142c2 FB |
6675 | if ( aExp == 0x7FFF ) { |
6676 | if ( ( aSig0 | aSig1 ) | |
6677 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
ff32e16e | 6678 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6679 | } |
6680 | goto invalid; | |
6681 | } | |
6682 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6683 | if (bSig0 | bSig1) { |
6684 | return propagateFloat128NaN(a, b, status); | |
6685 | } | |
158142c2 FB |
6686 | return a; |
6687 | } | |
6688 | if ( bExp == 0 ) { | |
6689 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6690 | invalid: | |
ff32e16e | 6691 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6692 | z.low = float128_default_nan_low; |
6693 | z.high = float128_default_nan_high; | |
6694 | return z; | |
6695 | } | |
6696 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6697 | } | |
6698 | if ( aExp == 0 ) { | |
6699 | if ( ( aSig0 | aSig1 ) == 0 ) return a; | |
6700 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6701 | } | |
6702 | expDiff = aExp - bExp; | |
6703 | if ( expDiff < -1 ) return a; | |
6704 | shortShift128Left( | |
6705 | aSig0 | LIT64( 0x0001000000000000 ), | |
6706 | aSig1, | |
6707 | 15 - ( expDiff < 0 ), | |
6708 | &aSig0, | |
6709 | &aSig1 | |
6710 | ); | |
6711 | shortShift128Left( | |
6712 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6713 | q = le128( bSig0, bSig1, aSig0, aSig1 ); | |
6714 | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
6715 | expDiff -= 64; | |
6716 | while ( 0 < expDiff ) { | |
6717 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6718 | q = ( 4 < q ) ? q - 4 : 0; | |
6719 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6720 | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); | |
6721 | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); | |
6722 | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); | |
6723 | expDiff -= 61; | |
6724 | } | |
6725 | if ( -64 < expDiff ) { | |
6726 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6727 | q = ( 4 < q ) ? q - 4 : 0; | |
6728 | q >>= - expDiff; | |
6729 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6730 | expDiff += 52; | |
6731 | if ( expDiff < 0 ) { | |
6732 | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6733 | } | |
6734 | else { | |
6735 | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); | |
6736 | } | |
6737 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6738 | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); | |
6739 | } | |
6740 | else { | |
6741 | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); | |
6742 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6743 | } | |
6744 | do { | |
6745 | alternateASig0 = aSig0; | |
6746 | alternateASig1 = aSig1; | |
6747 | ++q; | |
6748 | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
bb98fe42 | 6749 | } while ( 0 <= (int64_t) aSig0 ); |
158142c2 | 6750 | add128( |
bb98fe42 | 6751 | aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); |
158142c2 FB |
6752 | if ( ( sigMean0 < 0 ) |
6753 | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { | |
6754 | aSig0 = alternateASig0; | |
6755 | aSig1 = alternateASig1; | |
6756 | } | |
bb98fe42 | 6757 | zSign = ( (int64_t) aSig0 < 0 ); |
158142c2 | 6758 | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); |
ff32e16e PM |
6759 | return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1, |
6760 | status); | |
158142c2 FB |
6761 | } |
6762 | ||
6763 | /*---------------------------------------------------------------------------- | |
6764 | | Returns the square root of the quadruple-precision floating-point value `a'. | |
6765 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
6766 | | Floating-Point Arithmetic. | |
6767 | *----------------------------------------------------------------------------*/ | |
6768 | ||
e5a41ffa | 6769 | float128 float128_sqrt(float128 a, float_status *status) |
158142c2 FB |
6770 | { |
6771 | flag aSign; | |
6772 | int32 aExp, zExp; | |
bb98fe42 AF |
6773 | uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; |
6774 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6775 | float128 z; |
6776 | ||
6777 | aSig1 = extractFloat128Frac1( a ); | |
6778 | aSig0 = extractFloat128Frac0( a ); | |
6779 | aExp = extractFloat128Exp( a ); | |
6780 | aSign = extractFloat128Sign( a ); | |
6781 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6782 | if (aSig0 | aSig1) { |
6783 | return propagateFloat128NaN(a, a, status); | |
6784 | } | |
158142c2 FB |
6785 | if ( ! aSign ) return a; |
6786 | goto invalid; | |
6787 | } | |
6788 | if ( aSign ) { | |
6789 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; | |
6790 | invalid: | |
ff32e16e | 6791 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6792 | z.low = float128_default_nan_low; |
6793 | z.high = float128_default_nan_high; | |
6794 | return z; | |
6795 | } | |
6796 | if ( aExp == 0 ) { | |
6797 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
6798 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6799 | } | |
6800 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; | |
6801 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6802 | zSig0 = estimateSqrt32( aExp, aSig0>>17 ); | |
6803 | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); | |
6804 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
6805 | doubleZSig0 = zSig0<<1; | |
6806 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
6807 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 6808 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6809 | --zSig0; |
6810 | doubleZSig0 -= 2; | |
6811 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
6812 | } | |
6813 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
6814 | if ( ( zSig1 & 0x1FFF ) <= 5 ) { | |
6815 | if ( zSig1 == 0 ) zSig1 = 1; | |
6816 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
6817 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
6818 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
6819 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6820 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6821 | --zSig1; |
6822 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
6823 | term3 |= 1; | |
6824 | term2 |= doubleZSig0; | |
6825 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
6826 | } | |
6827 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6828 | } | |
6829 | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); | |
ff32e16e | 6830 | return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6831 | |
6832 | } | |
6833 | ||
6834 | /*---------------------------------------------------------------------------- | |
6835 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
b689362d AJ |
6836 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
6837 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
6838 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
6839 | *----------------------------------------------------------------------------*/ | |
6840 | ||
e5a41ffa | 6841 | int float128_eq(float128 a, float128 b, float_status *status) |
158142c2 FB |
6842 | { |
6843 | ||
6844 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6845 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6846 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6847 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6848 | ) { | |
ff32e16e | 6849 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6850 | return 0; |
6851 | } | |
6852 | return | |
6853 | ( a.low == b.low ) | |
6854 | && ( ( a.high == b.high ) | |
6855 | || ( ( a.low == 0 ) | |
bb98fe42 | 6856 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6857 | ); |
6858 | ||
6859 | } | |
6860 | ||
6861 | /*---------------------------------------------------------------------------- | |
6862 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
6863 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
6864 | | exception is raised if either operand is a NaN. The comparison is performed | |
6865 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6866 | *----------------------------------------------------------------------------*/ |
6867 | ||
e5a41ffa | 6868 | int float128_le(float128 a, float128 b, float_status *status) |
158142c2 FB |
6869 | { |
6870 | flag aSign, bSign; | |
6871 | ||
6872 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6873 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6874 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6875 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6876 | ) { | |
ff32e16e | 6877 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6878 | return 0; |
6879 | } | |
6880 | aSign = extractFloat128Sign( a ); | |
6881 | bSign = extractFloat128Sign( b ); | |
6882 | if ( aSign != bSign ) { | |
6883 | return | |
6884 | aSign | |
bb98fe42 | 6885 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6886 | == 0 ); |
6887 | } | |
6888 | return | |
6889 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
6890 | : le128( a.high, a.low, b.high, b.low ); | |
6891 | ||
6892 | } | |
6893 | ||
6894 | /*---------------------------------------------------------------------------- | |
6895 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
6896 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
6897 | | raised if either operand is a NaN. The comparison is performed according | |
6898 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6899 | *----------------------------------------------------------------------------*/ |
6900 | ||
e5a41ffa | 6901 | int float128_lt(float128 a, float128 b, float_status *status) |
158142c2 FB |
6902 | { |
6903 | flag aSign, bSign; | |
6904 | ||
6905 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6906 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6907 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6908 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6909 | ) { | |
ff32e16e | 6910 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6911 | return 0; |
6912 | } | |
6913 | aSign = extractFloat128Sign( a ); | |
6914 | bSign = extractFloat128Sign( b ); | |
6915 | if ( aSign != bSign ) { | |
6916 | return | |
6917 | aSign | |
bb98fe42 | 6918 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6919 | != 0 ); |
6920 | } | |
6921 | return | |
6922 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
6923 | : lt128( a.high, a.low, b.high, b.low ); | |
6924 | ||
6925 | } | |
6926 | ||
67b7861d AJ |
6927 | /*---------------------------------------------------------------------------- |
6928 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
6929 | | be compared, and 0 otherwise. The invalid exception is raised if either |
6930 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
6931 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
6932 | *----------------------------------------------------------------------------*/ |
6933 | ||
e5a41ffa | 6934 | int float128_unordered(float128 a, float128 b, float_status *status) |
67b7861d AJ |
6935 | { |
6936 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6937 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6938 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6939 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6940 | ) { | |
ff32e16e | 6941 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
6942 | return 1; |
6943 | } | |
6944 | return 0; | |
6945 | } | |
6946 | ||
158142c2 FB |
6947 | /*---------------------------------------------------------------------------- |
6948 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
f5a64251 AJ |
6949 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
6950 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
6951 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6952 | *----------------------------------------------------------------------------*/ |
6953 | ||
e5a41ffa | 6954 | int float128_eq_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
6955 | { |
6956 | ||
6957 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6958 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6959 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6960 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6961 | ) { | |
b689362d AJ |
6962 | if ( float128_is_signaling_nan( a ) |
6963 | || float128_is_signaling_nan( b ) ) { | |
ff32e16e | 6964 | float_raise(float_flag_invalid, status); |
b689362d | 6965 | } |
158142c2 FB |
6966 | return 0; |
6967 | } | |
6968 | return | |
6969 | ( a.low == b.low ) | |
6970 | && ( ( a.high == b.high ) | |
6971 | || ( ( a.low == 0 ) | |
bb98fe42 | 6972 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6973 | ); |
6974 | ||
6975 | } | |
6976 | ||
6977 | /*---------------------------------------------------------------------------- | |
6978 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
6979 | | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
6980 | | cause an exception. Otherwise, the comparison is performed according to the | |
6981 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6982 | *----------------------------------------------------------------------------*/ | |
6983 | ||
e5a41ffa | 6984 | int float128_le_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
6985 | { |
6986 | flag aSign, bSign; | |
6987 | ||
6988 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6989 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6990 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6991 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6992 | ) { | |
6993 | if ( float128_is_signaling_nan( a ) | |
6994 | || float128_is_signaling_nan( b ) ) { | |
ff32e16e | 6995 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6996 | } |
6997 | return 0; | |
6998 | } | |
6999 | aSign = extractFloat128Sign( a ); | |
7000 | bSign = extractFloat128Sign( b ); | |
7001 | if ( aSign != bSign ) { | |
7002 | return | |
7003 | aSign | |
bb98fe42 | 7004 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7005 | == 0 ); |
7006 | } | |
7007 | return | |
7008 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
7009 | : le128( a.high, a.low, b.high, b.low ); | |
7010 | ||
7011 | } | |
7012 | ||
7013 | /*---------------------------------------------------------------------------- | |
7014 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
7015 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
7016 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
7017 | | Standard for Binary Floating-Point Arithmetic. | |
7018 | *----------------------------------------------------------------------------*/ | |
7019 | ||
e5a41ffa | 7020 | int float128_lt_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
7021 | { |
7022 | flag aSign, bSign; | |
7023 | ||
7024 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7025 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7026 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7027 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7028 | ) { | |
7029 | if ( float128_is_signaling_nan( a ) | |
7030 | || float128_is_signaling_nan( b ) ) { | |
ff32e16e | 7031 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7032 | } |
7033 | return 0; | |
7034 | } | |
7035 | aSign = extractFloat128Sign( a ); | |
7036 | bSign = extractFloat128Sign( b ); | |
7037 | if ( aSign != bSign ) { | |
7038 | return | |
7039 | aSign | |
bb98fe42 | 7040 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7041 | != 0 ); |
7042 | } | |
7043 | return | |
7044 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
7045 | : lt128( a.high, a.low, b.high, b.low ); | |
7046 | ||
7047 | } | |
7048 | ||
67b7861d AJ |
7049 | /*---------------------------------------------------------------------------- |
7050 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
7051 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
7052 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
7053 | | Floating-Point Arithmetic. | |
7054 | *----------------------------------------------------------------------------*/ | |
7055 | ||
e5a41ffa | 7056 | int float128_unordered_quiet(float128 a, float128 b, float_status *status) |
67b7861d AJ |
7057 | { |
7058 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7059 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7060 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7061 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7062 | ) { | |
7063 | if ( float128_is_signaling_nan( a ) | |
7064 | || float128_is_signaling_nan( b ) ) { | |
ff32e16e | 7065 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
7066 | } |
7067 | return 1; | |
7068 | } | |
7069 | return 0; | |
7070 | } | |
7071 | ||
1d6bda35 | 7072 | /* misc functions */ |
e5a41ffa | 7073 | float32 uint32_to_float32(uint32_t a, float_status *status) |
1d6bda35 | 7074 | { |
ff32e16e | 7075 | return int64_to_float32(a, status); |
1d6bda35 FB |
7076 | } |
7077 | ||
e5a41ffa | 7078 | float64 uint32_to_float64(uint32_t a, float_status *status) |
1d6bda35 | 7079 | { |
ff32e16e | 7080 | return int64_to_float64(a, status); |
1d6bda35 FB |
7081 | } |
7082 | ||
e5a41ffa | 7083 | uint32 float32_to_uint32(float32 a, float_status *status) |
1d6bda35 FB |
7084 | { |
7085 | int64_t v; | |
9f8d2a09 | 7086 | uint32 res; |
34e1c27b | 7087 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7088 | |
ff32e16e | 7089 | v = float32_to_int64(a, status); |
1d6bda35 FB |
7090 | if (v < 0) { |
7091 | res = 0; | |
1d6bda35 FB |
7092 | } else if (v > 0xffffffff) { |
7093 | res = 0xffffffff; | |
1d6bda35 | 7094 | } else { |
34e1c27b | 7095 | return v; |
1d6bda35 | 7096 | } |
34e1c27b | 7097 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7098 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7099 | return res; |
7100 | } | |
7101 | ||
e5a41ffa | 7102 | uint32 float32_to_uint32_round_to_zero(float32 a, float_status *status) |
1d6bda35 FB |
7103 | { |
7104 | int64_t v; | |
9f8d2a09 | 7105 | uint32 res; |
34e1c27b | 7106 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7107 | |
ff32e16e | 7108 | v = float32_to_int64_round_to_zero(a, status); |
1d6bda35 FB |
7109 | if (v < 0) { |
7110 | res = 0; | |
1d6bda35 FB |
7111 | } else if (v > 0xffffffff) { |
7112 | res = 0xffffffff; | |
1d6bda35 | 7113 | } else { |
34e1c27b | 7114 | return v; |
1d6bda35 | 7115 | } |
34e1c27b | 7116 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7117 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7118 | return res; |
7119 | } | |
7120 | ||
e5a41ffa | 7121 | int_fast16_t float32_to_int16(float32 a, float_status *status) |
f581bf54 WN |
7122 | { |
7123 | int32_t v; | |
7124 | int_fast16_t res; | |
7125 | int old_exc_flags = get_float_exception_flags(status); | |
7126 | ||
ff32e16e | 7127 | v = float32_to_int32(a, status); |
f581bf54 WN |
7128 | if (v < -0x8000) { |
7129 | res = -0x8000; | |
7130 | } else if (v > 0x7fff) { | |
7131 | res = 0x7fff; | |
7132 | } else { | |
7133 | return v; | |
7134 | } | |
7135 | ||
7136 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7137 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7138 | return res; |
7139 | } | |
7140 | ||
e5a41ffa | 7141 | uint_fast16_t float32_to_uint16(float32 a, float_status *status) |
f581bf54 WN |
7142 | { |
7143 | int32_t v; | |
7144 | uint_fast16_t res; | |
7145 | int old_exc_flags = get_float_exception_flags(status); | |
7146 | ||
ff32e16e | 7147 | v = float32_to_int32(a, status); |
f581bf54 WN |
7148 | if (v < 0) { |
7149 | res = 0; | |
7150 | } else if (v > 0xffff) { | |
7151 | res = 0xffff; | |
7152 | } else { | |
7153 | return v; | |
7154 | } | |
7155 | ||
7156 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7157 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7158 | return res; |
7159 | } | |
7160 | ||
e5a41ffa | 7161 | uint_fast16_t float32_to_uint16_round_to_zero(float32 a, float_status *status) |
cbcef455 PM |
7162 | { |
7163 | int64_t v; | |
5aea4c58 | 7164 | uint_fast16_t res; |
34e1c27b | 7165 | int old_exc_flags = get_float_exception_flags(status); |
cbcef455 | 7166 | |
ff32e16e | 7167 | v = float32_to_int64_round_to_zero(a, status); |
cbcef455 PM |
7168 | if (v < 0) { |
7169 | res = 0; | |
cbcef455 PM |
7170 | } else if (v > 0xffff) { |
7171 | res = 0xffff; | |
cbcef455 | 7172 | } else { |
34e1c27b | 7173 | return v; |
cbcef455 | 7174 | } |
34e1c27b | 7175 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7176 | float_raise(float_flag_invalid, status); |
cbcef455 PM |
7177 | return res; |
7178 | } | |
7179 | ||
e5a41ffa | 7180 | uint32 float64_to_uint32(float64 a, float_status *status) |
1d6bda35 | 7181 | { |
5e7f654f | 7182 | uint64_t v; |
9f8d2a09 | 7183 | uint32 res; |
5e7f654f | 7184 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7185 | |
ff32e16e | 7186 | v = float64_to_uint64(a, status); |
5e7f654f | 7187 | if (v > 0xffffffff) { |
1d6bda35 | 7188 | res = 0xffffffff; |
1d6bda35 | 7189 | } else { |
5e7f654f | 7190 | return v; |
1d6bda35 | 7191 | } |
5e7f654f | 7192 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7193 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7194 | return res; |
7195 | } | |
7196 | ||
e5a41ffa | 7197 | uint32 float64_to_uint32_round_to_zero(float64 a, float_status *status) |
1d6bda35 | 7198 | { |
fd728f2f | 7199 | uint64_t v; |
9f8d2a09 | 7200 | uint32 res; |
fd728f2f | 7201 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7202 | |
ff32e16e | 7203 | v = float64_to_uint64_round_to_zero(a, status); |
fd728f2f | 7204 | if (v > 0xffffffff) { |
1d6bda35 | 7205 | res = 0xffffffff; |
1d6bda35 | 7206 | } else { |
fd728f2f | 7207 | return v; |
1d6bda35 | 7208 | } |
fd728f2f | 7209 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7210 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7211 | return res; |
7212 | } | |
7213 | ||
e5a41ffa | 7214 | int_fast16_t float64_to_int16(float64 a, float_status *status) |
f581bf54 WN |
7215 | { |
7216 | int64_t v; | |
7217 | int_fast16_t res; | |
7218 | int old_exc_flags = get_float_exception_flags(status); | |
7219 | ||
ff32e16e | 7220 | v = float64_to_int32(a, status); |
f581bf54 WN |
7221 | if (v < -0x8000) { |
7222 | res = -0x8000; | |
7223 | } else if (v > 0x7fff) { | |
7224 | res = 0x7fff; | |
7225 | } else { | |
7226 | return v; | |
7227 | } | |
7228 | ||
7229 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7230 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7231 | return res; |
7232 | } | |
7233 | ||
e5a41ffa | 7234 | uint_fast16_t float64_to_uint16(float64 a, float_status *status) |
f581bf54 WN |
7235 | { |
7236 | int64_t v; | |
7237 | uint_fast16_t res; | |
7238 | int old_exc_flags = get_float_exception_flags(status); | |
7239 | ||
ff32e16e | 7240 | v = float64_to_int32(a, status); |
f581bf54 WN |
7241 | if (v < 0) { |
7242 | res = 0; | |
7243 | } else if (v > 0xffff) { | |
7244 | res = 0xffff; | |
7245 | } else { | |
7246 | return v; | |
7247 | } | |
7248 | ||
7249 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7250 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7251 | return res; |
7252 | } | |
7253 | ||
e5a41ffa | 7254 | uint_fast16_t float64_to_uint16_round_to_zero(float64 a, float_status *status) |
cbcef455 PM |
7255 | { |
7256 | int64_t v; | |
5aea4c58 | 7257 | uint_fast16_t res; |
34e1c27b | 7258 | int old_exc_flags = get_float_exception_flags(status); |
cbcef455 | 7259 | |
ff32e16e | 7260 | v = float64_to_int64_round_to_zero(a, status); |
cbcef455 PM |
7261 | if (v < 0) { |
7262 | res = 0; | |
cbcef455 PM |
7263 | } else if (v > 0xffff) { |
7264 | res = 0xffff; | |
cbcef455 | 7265 | } else { |
34e1c27b | 7266 | return v; |
cbcef455 | 7267 | } |
34e1c27b | 7268 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7269 | float_raise(float_flag_invalid, status); |
cbcef455 PM |
7270 | return res; |
7271 | } | |
7272 | ||
fb3ea83a TM |
7273 | /*---------------------------------------------------------------------------- |
7274 | | Returns the result of converting the double-precision floating-point value | |
7275 | | `a' to the 64-bit unsigned integer format. The conversion is | |
7276 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
7277 | | Arithmetic---which means in particular that the conversion is rounded | |
7278 | | according to the current rounding mode. If `a' is a NaN, the largest | |
7279 | | positive integer is returned. If the conversion overflows, the | |
7280 | | largest unsigned integer is returned. If 'a' is negative, the value is | |
7281 | | rounded and zero is returned; negative values that do not round to zero | |
7282 | | will raise the inexact exception. | |
7283 | *----------------------------------------------------------------------------*/ | |
75d62a58 | 7284 | |
e5a41ffa | 7285 | uint64_t float64_to_uint64(float64 a, float_status *status) |
fb3ea83a TM |
7286 | { |
7287 | flag aSign; | |
7288 | int_fast16_t aExp, shiftCount; | |
7289 | uint64_t aSig, aSigExtra; | |
ff32e16e | 7290 | a = float64_squash_input_denormal(a, status); |
75d62a58 | 7291 | |
fb3ea83a TM |
7292 | aSig = extractFloat64Frac(a); |
7293 | aExp = extractFloat64Exp(a); | |
7294 | aSign = extractFloat64Sign(a); | |
7295 | if (aSign && (aExp > 1022)) { | |
ff32e16e | 7296 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
7297 | if (float64_is_any_nan(a)) { |
7298 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
7299 | } else { | |
7300 | return 0; | |
7301 | } | |
7302 | } | |
7303 | if (aExp) { | |
7304 | aSig |= LIT64(0x0010000000000000); | |
7305 | } | |
7306 | shiftCount = 0x433 - aExp; | |
7307 | if (shiftCount <= 0) { | |
7308 | if (0x43E < aExp) { | |
ff32e16e | 7309 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
7310 | return LIT64(0xFFFFFFFFFFFFFFFF); |
7311 | } | |
7312 | aSigExtra = 0; | |
7313 | aSig <<= -shiftCount; | |
7314 | } else { | |
7315 | shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra); | |
7316 | } | |
ff32e16e | 7317 | return roundAndPackUint64(aSign, aSig, aSigExtra, status); |
75d62a58 JM |
7318 | } |
7319 | ||
e5a41ffa | 7320 | uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status) |
75d62a58 | 7321 | { |
a2f2d288 | 7322 | signed char current_rounding_mode = status->float_rounding_mode; |
ff32e16e PM |
7323 | set_float_rounding_mode(float_round_to_zero, status); |
7324 | int64_t v = float64_to_uint64(a, status); | |
7325 | set_float_rounding_mode(current_rounding_mode, status); | |
0a87a310 | 7326 | return v; |
75d62a58 JM |
7327 | } |
7328 | ||
1d6bda35 | 7329 | #define COMPARE(s, nan_exp) \ |
e5a41ffa PM |
7330 | static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\ |
7331 | int is_quiet, float_status *status) \ | |
1d6bda35 FB |
7332 | { \ |
7333 | flag aSign, bSign; \ | |
bb98fe42 | 7334 | uint ## s ## _t av, bv; \ |
ff32e16e PM |
7335 | a = float ## s ## _squash_input_denormal(a, status); \ |
7336 | b = float ## s ## _squash_input_denormal(b, status); \ | |
1d6bda35 FB |
7337 | \ |
7338 | if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \ | |
7339 | extractFloat ## s ## Frac( a ) ) || \ | |
7340 | ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \ | |
7341 | extractFloat ## s ## Frac( b ) )) { \ | |
7342 | if (!is_quiet || \ | |
7343 | float ## s ## _is_signaling_nan( a ) || \ | |
7344 | float ## s ## _is_signaling_nan( b ) ) { \ | |
ff32e16e | 7345 | float_raise(float_flag_invalid, status); \ |
1d6bda35 FB |
7346 | } \ |
7347 | return float_relation_unordered; \ | |
7348 | } \ | |
7349 | aSign = extractFloat ## s ## Sign( a ); \ | |
7350 | bSign = extractFloat ## s ## Sign( b ); \ | |
f090c9d4 | 7351 | av = float ## s ## _val(a); \ |
cd8a2533 | 7352 | bv = float ## s ## _val(b); \ |
1d6bda35 | 7353 | if ( aSign != bSign ) { \ |
bb98fe42 | 7354 | if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \ |
1d6bda35 FB |
7355 | /* zero case */ \ |
7356 | return float_relation_equal; \ | |
7357 | } else { \ | |
7358 | return 1 - (2 * aSign); \ | |
7359 | } \ | |
7360 | } else { \ | |
f090c9d4 | 7361 | if (av == bv) { \ |
1d6bda35 FB |
7362 | return float_relation_equal; \ |
7363 | } else { \ | |
f090c9d4 | 7364 | return 1 - 2 * (aSign ^ ( av < bv )); \ |
1d6bda35 FB |
7365 | } \ |
7366 | } \ | |
7367 | } \ | |
7368 | \ | |
e5a41ffa | 7369 | int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \ |
1d6bda35 | 7370 | { \ |
ff32e16e | 7371 | return float ## s ## _compare_internal(a, b, 0, status); \ |
1d6bda35 FB |
7372 | } \ |
7373 | \ | |
e5a41ffa PM |
7374 | int float ## s ## _compare_quiet(float ## s a, float ## s b, \ |
7375 | float_status *status) \ | |
1d6bda35 | 7376 | { \ |
ff32e16e | 7377 | return float ## s ## _compare_internal(a, b, 1, status); \ |
1d6bda35 FB |
7378 | } |
7379 | ||
7380 | COMPARE(32, 0xff) | |
7381 | COMPARE(64, 0x7ff) | |
9ee6e8bb | 7382 | |
e5a41ffa PM |
7383 | static inline int floatx80_compare_internal(floatx80 a, floatx80 b, |
7384 | int is_quiet, float_status *status) | |
f6714d36 AJ |
7385 | { |
7386 | flag aSign, bSign; | |
7387 | ||
7388 | if (( ( extractFloatx80Exp( a ) == 0x7fff ) && | |
7389 | ( extractFloatx80Frac( a )<<1 ) ) || | |
7390 | ( ( extractFloatx80Exp( b ) == 0x7fff ) && | |
7391 | ( extractFloatx80Frac( b )<<1 ) )) { | |
7392 | if (!is_quiet || | |
7393 | floatx80_is_signaling_nan( a ) || | |
7394 | floatx80_is_signaling_nan( b ) ) { | |
ff32e16e | 7395 | float_raise(float_flag_invalid, status); |
f6714d36 AJ |
7396 | } |
7397 | return float_relation_unordered; | |
7398 | } | |
7399 | aSign = extractFloatx80Sign( a ); | |
7400 | bSign = extractFloatx80Sign( b ); | |
7401 | if ( aSign != bSign ) { | |
7402 | ||
7403 | if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && | |
7404 | ( ( a.low | b.low ) == 0 ) ) { | |
7405 | /* zero case */ | |
7406 | return float_relation_equal; | |
7407 | } else { | |
7408 | return 1 - (2 * aSign); | |
7409 | } | |
7410 | } else { | |
7411 | if (a.low == b.low && a.high == b.high) { | |
7412 | return float_relation_equal; | |
7413 | } else { | |
7414 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
7415 | } | |
7416 | } | |
7417 | } | |
7418 | ||
e5a41ffa | 7419 | int floatx80_compare(floatx80 a, floatx80 b, float_status *status) |
f6714d36 | 7420 | { |
ff32e16e | 7421 | return floatx80_compare_internal(a, b, 0, status); |
f6714d36 AJ |
7422 | } |
7423 | ||
e5a41ffa | 7424 | int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status) |
f6714d36 | 7425 | { |
ff32e16e | 7426 | return floatx80_compare_internal(a, b, 1, status); |
f6714d36 AJ |
7427 | } |
7428 | ||
e5a41ffa PM |
7429 | static inline int float128_compare_internal(float128 a, float128 b, |
7430 | int is_quiet, float_status *status) | |
1f587329 BS |
7431 | { |
7432 | flag aSign, bSign; | |
7433 | ||
7434 | if (( ( extractFloat128Exp( a ) == 0x7fff ) && | |
7435 | ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || | |
7436 | ( ( extractFloat128Exp( b ) == 0x7fff ) && | |
7437 | ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { | |
7438 | if (!is_quiet || | |
7439 | float128_is_signaling_nan( a ) || | |
7440 | float128_is_signaling_nan( b ) ) { | |
ff32e16e | 7441 | float_raise(float_flag_invalid, status); |
1f587329 BS |
7442 | } |
7443 | return float_relation_unordered; | |
7444 | } | |
7445 | aSign = extractFloat128Sign( a ); | |
7446 | bSign = extractFloat128Sign( b ); | |
7447 | if ( aSign != bSign ) { | |
7448 | if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { | |
7449 | /* zero case */ | |
7450 | return float_relation_equal; | |
7451 | } else { | |
7452 | return 1 - (2 * aSign); | |
7453 | } | |
7454 | } else { | |
7455 | if (a.low == b.low && a.high == b.high) { | |
7456 | return float_relation_equal; | |
7457 | } else { | |
7458 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
7459 | } | |
7460 | } | |
7461 | } | |
7462 | ||
e5a41ffa | 7463 | int float128_compare(float128 a, float128 b, float_status *status) |
1f587329 | 7464 | { |
ff32e16e | 7465 | return float128_compare_internal(a, b, 0, status); |
1f587329 BS |
7466 | } |
7467 | ||
e5a41ffa | 7468 | int float128_compare_quiet(float128 a, float128 b, float_status *status) |
1f587329 | 7469 | { |
ff32e16e | 7470 | return float128_compare_internal(a, b, 1, status); |
1f587329 BS |
7471 | } |
7472 | ||
274f1b04 PM |
7473 | /* min() and max() functions. These can't be implemented as |
7474 | * 'compare and pick one input' because that would mishandle | |
7475 | * NaNs and +0 vs -0. | |
e17ab310 WN |
7476 | * |
7477 | * minnum() and maxnum() functions. These are similar to the min() | |
7478 | * and max() functions but if one of the arguments is a QNaN and | |
7479 | * the other is numerical then the numerical argument is returned. | |
7480 | * minnum() and maxnum correspond to the IEEE 754-2008 minNum() | |
7481 | * and maxNum() operations. min() and max() are the typical min/max | |
7482 | * semantics provided by many CPUs which predate that specification. | |
2d31e060 LA |
7483 | * |
7484 | * minnummag() and maxnummag() functions correspond to minNumMag() | |
7485 | * and minNumMag() from the IEEE-754 2008. | |
274f1b04 | 7486 | */ |
e70614ea | 7487 | #define MINMAX(s) \ |
a49db98d | 7488 | static inline float ## s float ## s ## _minmax(float ## s a, float ## s b, \ |
2d31e060 | 7489 | int ismin, int isieee, \ |
e5a41ffa PM |
7490 | int ismag, \ |
7491 | float_status *status) \ | |
274f1b04 PM |
7492 | { \ |
7493 | flag aSign, bSign; \ | |
2d31e060 | 7494 | uint ## s ## _t av, bv, aav, abv; \ |
ff32e16e PM |
7495 | a = float ## s ## _squash_input_denormal(a, status); \ |
7496 | b = float ## s ## _squash_input_denormal(b, status); \ | |
274f1b04 PM |
7497 | if (float ## s ## _is_any_nan(a) || \ |
7498 | float ## s ## _is_any_nan(b)) { \ | |
e17ab310 WN |
7499 | if (isieee) { \ |
7500 | if (float ## s ## _is_quiet_nan(a) && \ | |
7501 | !float ## s ##_is_any_nan(b)) { \ | |
7502 | return b; \ | |
7503 | } else if (float ## s ## _is_quiet_nan(b) && \ | |
7504 | !float ## s ## _is_any_nan(a)) { \ | |
7505 | return a; \ | |
7506 | } \ | |
7507 | } \ | |
ff32e16e | 7508 | return propagateFloat ## s ## NaN(a, b, status); \ |
274f1b04 PM |
7509 | } \ |
7510 | aSign = extractFloat ## s ## Sign(a); \ | |
7511 | bSign = extractFloat ## s ## Sign(b); \ | |
7512 | av = float ## s ## _val(a); \ | |
7513 | bv = float ## s ## _val(b); \ | |
2d31e060 LA |
7514 | if (ismag) { \ |
7515 | aav = float ## s ## _abs(av); \ | |
7516 | abv = float ## s ## _abs(bv); \ | |
7517 | if (aav != abv) { \ | |
7518 | if (ismin) { \ | |
7519 | return (aav < abv) ? a : b; \ | |
7520 | } else { \ | |
7521 | return (aav < abv) ? b : a; \ | |
7522 | } \ | |
7523 | } \ | |
7524 | } \ | |
274f1b04 PM |
7525 | if (aSign != bSign) { \ |
7526 | if (ismin) { \ | |
7527 | return aSign ? a : b; \ | |
7528 | } else { \ | |
7529 | return aSign ? b : a; \ | |
7530 | } \ | |
7531 | } else { \ | |
7532 | if (ismin) { \ | |
7533 | return (aSign ^ (av < bv)) ? a : b; \ | |
7534 | } else { \ | |
7535 | return (aSign ^ (av < bv)) ? b : a; \ | |
7536 | } \ | |
7537 | } \ | |
7538 | } \ | |
7539 | \ | |
e5a41ffa PM |
7540 | float ## s float ## s ## _min(float ## s a, float ## s b, \ |
7541 | float_status *status) \ | |
274f1b04 | 7542 | { \ |
ff32e16e | 7543 | return float ## s ## _minmax(a, b, 1, 0, 0, status); \ |
274f1b04 PM |
7544 | } \ |
7545 | \ | |
e5a41ffa PM |
7546 | float ## s float ## s ## _max(float ## s a, float ## s b, \ |
7547 | float_status *status) \ | |
274f1b04 | 7548 | { \ |
ff32e16e | 7549 | return float ## s ## _minmax(a, b, 0, 0, 0, status); \ |
e17ab310 WN |
7550 | } \ |
7551 | \ | |
e5a41ffa PM |
7552 | float ## s float ## s ## _minnum(float ## s a, float ## s b, \ |
7553 | float_status *status) \ | |
e17ab310 | 7554 | { \ |
ff32e16e | 7555 | return float ## s ## _minmax(a, b, 1, 1, 0, status); \ |
e17ab310 WN |
7556 | } \ |
7557 | \ | |
e5a41ffa PM |
7558 | float ## s float ## s ## _maxnum(float ## s a, float ## s b, \ |
7559 | float_status *status) \ | |
e17ab310 | 7560 | { \ |
ff32e16e | 7561 | return float ## s ## _minmax(a, b, 0, 1, 0, status); \ |
2d31e060 LA |
7562 | } \ |
7563 | \ | |
e5a41ffa PM |
7564 | float ## s float ## s ## _minnummag(float ## s a, float ## s b, \ |
7565 | float_status *status) \ | |
2d31e060 | 7566 | { \ |
ff32e16e | 7567 | return float ## s ## _minmax(a, b, 1, 1, 1, status); \ |
2d31e060 LA |
7568 | } \ |
7569 | \ | |
e5a41ffa PM |
7570 | float ## s float ## s ## _maxnummag(float ## s a, float ## s b, \ |
7571 | float_status *status) \ | |
2d31e060 | 7572 | { \ |
ff32e16e | 7573 | return float ## s ## _minmax(a, b, 0, 1, 1, status); \ |
274f1b04 PM |
7574 | } |
7575 | ||
e70614ea WN |
7576 | MINMAX(32) |
7577 | MINMAX(64) | |
274f1b04 PM |
7578 | |
7579 | ||
9ee6e8bb | 7580 | /* Multiply A by 2 raised to the power N. */ |
e5a41ffa | 7581 | float32 float32_scalbn(float32 a, int n, float_status *status) |
9ee6e8bb PB |
7582 | { |
7583 | flag aSign; | |
326b9e98 | 7584 | int16_t aExp; |
bb98fe42 | 7585 | uint32_t aSig; |
9ee6e8bb | 7586 | |
ff32e16e | 7587 | a = float32_squash_input_denormal(a, status); |
9ee6e8bb PB |
7588 | aSig = extractFloat32Frac( a ); |
7589 | aExp = extractFloat32Exp( a ); | |
7590 | aSign = extractFloat32Sign( a ); | |
7591 | ||
7592 | if ( aExp == 0xFF ) { | |
326b9e98 | 7593 | if ( aSig ) { |
ff32e16e | 7594 | return propagateFloat32NaN(a, a, status); |
326b9e98 | 7595 | } |
9ee6e8bb PB |
7596 | return a; |
7597 | } | |
3c85c37f | 7598 | if (aExp != 0) { |
69397542 | 7599 | aSig |= 0x00800000; |
3c85c37f | 7600 | } else if (aSig == 0) { |
69397542 | 7601 | return a; |
3c85c37f PM |
7602 | } else { |
7603 | aExp++; | |
7604 | } | |
69397542 | 7605 | |
326b9e98 AJ |
7606 | if (n > 0x200) { |
7607 | n = 0x200; | |
7608 | } else if (n < -0x200) { | |
7609 | n = -0x200; | |
7610 | } | |
7611 | ||
69397542 PB |
7612 | aExp += n - 1; |
7613 | aSig <<= 7; | |
ff32e16e | 7614 | return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status); |
9ee6e8bb PB |
7615 | } |
7616 | ||
e5a41ffa | 7617 | float64 float64_scalbn(float64 a, int n, float_status *status) |
9ee6e8bb PB |
7618 | { |
7619 | flag aSign; | |
326b9e98 | 7620 | int16_t aExp; |
bb98fe42 | 7621 | uint64_t aSig; |
9ee6e8bb | 7622 | |
ff32e16e | 7623 | a = float64_squash_input_denormal(a, status); |
9ee6e8bb PB |
7624 | aSig = extractFloat64Frac( a ); |
7625 | aExp = extractFloat64Exp( a ); | |
7626 | aSign = extractFloat64Sign( a ); | |
7627 | ||
7628 | if ( aExp == 0x7FF ) { | |
326b9e98 | 7629 | if ( aSig ) { |
ff32e16e | 7630 | return propagateFloat64NaN(a, a, status); |
326b9e98 | 7631 | } |
9ee6e8bb PB |
7632 | return a; |
7633 | } | |
3c85c37f | 7634 | if (aExp != 0) { |
69397542 | 7635 | aSig |= LIT64( 0x0010000000000000 ); |
3c85c37f | 7636 | } else if (aSig == 0) { |
69397542 | 7637 | return a; |
3c85c37f PM |
7638 | } else { |
7639 | aExp++; | |
7640 | } | |
69397542 | 7641 | |
326b9e98 AJ |
7642 | if (n > 0x1000) { |
7643 | n = 0x1000; | |
7644 | } else if (n < -0x1000) { | |
7645 | n = -0x1000; | |
7646 | } | |
7647 | ||
69397542 PB |
7648 | aExp += n - 1; |
7649 | aSig <<= 10; | |
ff32e16e | 7650 | return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status); |
9ee6e8bb PB |
7651 | } |
7652 | ||
e5a41ffa | 7653 | floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status) |
9ee6e8bb PB |
7654 | { |
7655 | flag aSign; | |
326b9e98 | 7656 | int32_t aExp; |
bb98fe42 | 7657 | uint64_t aSig; |
9ee6e8bb PB |
7658 | |
7659 | aSig = extractFloatx80Frac( a ); | |
7660 | aExp = extractFloatx80Exp( a ); | |
7661 | aSign = extractFloatx80Sign( a ); | |
7662 | ||
326b9e98 AJ |
7663 | if ( aExp == 0x7FFF ) { |
7664 | if ( aSig<<1 ) { | |
ff32e16e | 7665 | return propagateFloatx80NaN(a, a, status); |
326b9e98 | 7666 | } |
9ee6e8bb PB |
7667 | return a; |
7668 | } | |
326b9e98 | 7669 | |
3c85c37f PM |
7670 | if (aExp == 0) { |
7671 | if (aSig == 0) { | |
7672 | return a; | |
7673 | } | |
7674 | aExp++; | |
7675 | } | |
69397542 | 7676 | |
326b9e98 AJ |
7677 | if (n > 0x10000) { |
7678 | n = 0x10000; | |
7679 | } else if (n < -0x10000) { | |
7680 | n = -0x10000; | |
7681 | } | |
7682 | ||
9ee6e8bb | 7683 | aExp += n; |
a2f2d288 PM |
7684 | return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
7685 | aSign, aExp, aSig, 0, status); | |
9ee6e8bb | 7686 | } |
9ee6e8bb | 7687 | |
e5a41ffa | 7688 | float128 float128_scalbn(float128 a, int n, float_status *status) |
9ee6e8bb PB |
7689 | { |
7690 | flag aSign; | |
326b9e98 | 7691 | int32_t aExp; |
bb98fe42 | 7692 | uint64_t aSig0, aSig1; |
9ee6e8bb PB |
7693 | |
7694 | aSig1 = extractFloat128Frac1( a ); | |
7695 | aSig0 = extractFloat128Frac0( a ); | |
7696 | aExp = extractFloat128Exp( a ); | |
7697 | aSign = extractFloat128Sign( a ); | |
7698 | if ( aExp == 0x7FFF ) { | |
326b9e98 | 7699 | if ( aSig0 | aSig1 ) { |
ff32e16e | 7700 | return propagateFloat128NaN(a, a, status); |
326b9e98 | 7701 | } |
9ee6e8bb PB |
7702 | return a; |
7703 | } | |
3c85c37f | 7704 | if (aExp != 0) { |
69397542 | 7705 | aSig0 |= LIT64( 0x0001000000000000 ); |
3c85c37f | 7706 | } else if (aSig0 == 0 && aSig1 == 0) { |
69397542 | 7707 | return a; |
3c85c37f PM |
7708 | } else { |
7709 | aExp++; | |
7710 | } | |
69397542 | 7711 | |
326b9e98 AJ |
7712 | if (n > 0x10000) { |
7713 | n = 0x10000; | |
7714 | } else if (n < -0x10000) { | |
7715 | n = -0x10000; | |
7716 | } | |
7717 | ||
69397542 PB |
7718 | aExp += n - 1; |
7719 | return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 | |
ff32e16e | 7720 | , status); |
9ee6e8bb PB |
7721 | |
7722 | } |