extern int ext4_write_inode(struct inode *, struct writeback_control *);
extern int ext4_setattr(struct user_namespace *, struct dentry *,
struct iattr *);
+extern u32 ext4_dio_alignment(struct inode *inode);
extern int ext4_getattr(struct user_namespace *, const struct path *,
struct kstat *, u32, unsigned int);
extern void ext4_evict_inode(struct inode *);
extern struct buffer_head *ext4_get_first_inline_block(struct inode *inode,
struct ext4_dir_entry_2 **parent_de,
int *retval);
- extern int ext4_inline_data_fiemap(struct inode *inode,
- struct fiemap_extent_info *fieinfo,
- int *has_inline, __u64 start, __u64 len);
extern void *ext4_read_inline_link(struct inode *inode);
struct iomap;
extern struct ext4_ext_path *ext4_find_extent(struct inode *, ext4_lblk_t,
struct ext4_ext_path **,
int flags);
- extern void ext4_ext_drop_refs(struct ext4_ext_path *);
+ extern void ext4_free_ext_path(struct ext4_ext_path *);
extern int ext4_ext_check_inode(struct inode *inode);
extern ext4_lblk_t ext4_ext_next_allocated_block(struct ext4_ext_path *path);
extern int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
#include "acl.h"
#include "truncate.h"
-static bool ext4_dio_supported(struct kiocb *iocb, struct iov_iter *iter)
+/*
+ * Returns %true if the given DIO request should be attempted with DIO, or
+ * %false if it should fall back to buffered I/O.
+ *
+ * DIO isn't well specified; when it's unsupported (either due to the request
+ * being misaligned, or due to the file not supporting DIO at all), filesystems
+ * either fall back to buffered I/O or return EINVAL. For files that don't use
+ * any special features like encryption or verity, ext4 has traditionally
+ * returned EINVAL for misaligned DIO. iomap_dio_rw() uses this convention too.
+ * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
+ *
+ * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
+ * traditionally falls back to buffered I/O.
+ *
+ * This function implements the traditional ext4 behavior in all these cases.
+ */
+static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
{
struct inode *inode = file_inode(iocb->ki_filp);
+ u32 dio_align = ext4_dio_alignment(inode);
- if (!fscrypt_dio_supported(iocb, iter))
- return false;
- if (fsverity_active(inode))
+ if (dio_align == 0)
return false;
- if (ext4_should_journal_data(inode))
- return false;
- if (ext4_has_inline_data(inode))
- return false;
- return true;
+
+ if (dio_align == 1)
+ return true;
+
+ return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
}
static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
inode_lock_shared(inode);
}
- if (!ext4_dio_supported(iocb, to)) {
+ if (!ext4_should_use_dio(iocb, to)) {
inode_unlock_shared(inode);
/*
* Fallback to buffered I/O if the operation being performed on
}
/* Fallback to buffered I/O if the inode does not support direct I/O. */
- if (!ext4_dio_supported(iocb, from)) {
+ if (!ext4_should_use_dio(iocb, from)) {
if (ilock_shared)
inode_unlock_shared(inode);
else
ret = -EAGAIN;
goto out;
}
+ /*
+ * Make sure inline data cannot be created anymore since we are going
+ * to allocate blocks for DIO. We know the inode does not have any
+ * inline data now because ext4_dio_supported() checked for that.
+ */
+ ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
offset = iocb->ki_pos;
count = ret;
page = grab_cache_page_write_begin(mapping, index);
if (!page)
return -ENOMEM;
+ /*
+ * The same as page allocation, we prealloc buffer heads before
+ * starting the handle.
+ */
+ if (!page_has_buffers(page))
+ create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
+
unlock_page(page);
retry_journal:
int error, rc = 0;
int orphan = 0;
const unsigned int ia_valid = attr->ia_valid;
+ bool inc_ivers = true;
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
return -EIO;
return -EINVAL;
}
- if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
- inode_inc_iversion(inode);
+ if (attr->ia_size == inode->i_size)
+ inc_ivers = false;
if (shrink) {
if (ext4_should_order_data(inode)) {
}
if (!error) {
+ if (inc_ivers)
+ inode_inc_iversion(inode);
setattr_copy(mnt_userns, inode, attr);
mark_inode_dirty(inode);
}
return error;
}
+u32 ext4_dio_alignment(struct inode *inode)
+{
+ if (fsverity_active(inode))
+ return 0;
+ if (ext4_should_journal_data(inode))
+ return 0;
+ if (ext4_has_inline_data(inode))
+ return 0;
+ if (IS_ENCRYPTED(inode)) {
+ if (!fscrypt_dio_supported(inode))
+ return 0;
+ return i_blocksize(inode);
+ }
+ return 1; /* use the iomap defaults */
+}
+
int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
struct kstat *stat, u32 request_mask, unsigned int query_flags)
{
stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
}
+ /*
+ * Return the DIO alignment restrictions if requested. We only return
+ * this information when requested, since on encrypted files it might
+ * take a fair bit of work to get if the file wasn't opened recently.
+ */
+ if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
+ u32 dio_align = ext4_dio_alignment(inode);
+
+ stat->result_mask |= STATX_DIOALIGN;
+ if (dio_align == 1) {
+ struct block_device *bdev = inode->i_sb->s_bdev;
+
+ /* iomap defaults */
+ stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
+ stat->dio_offset_align = bdev_logical_block_size(bdev);
+ } else {
+ stat->dio_mem_align = dio_align;
+ stat->dio_offset_align = dio_align;
+ }
+ }
+
flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
if (flags & EXT4_APPEND_FL)
stat->attributes |= STATX_ATTR_APPEND;
}
ext4_fc_track_inode(handle, inode);
- if (IS_I_VERSION(inode))
- inode_inc_iversion(inode);
-
/* the do_update_inode consumes one bh->b_count */
get_bh(iloc->bh);
static __always_inline void set_buffer_uptodate(struct buffer_head *bh)
{
+ /*
+ * If somebody else already set this uptodate, they will
+ * have done the memory barrier, and a reader will thus
+ * see *some* valid buffer state.
+ *
+ * Any other serialization (with IO errors or whatever that
+ * might clear the bit) has to come from other state (eg BH_Lock).
+ */
+ if (test_bit(BH_Uptodate, &bh->b_state))
+ return;
+
/*
* make it consistent with folio_mark_uptodate
* pairs with smp_load_acquire in buffer_uptodate
int sync_dirty_buffer(struct buffer_head *bh);
int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags);
void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags);
- int submit_bh(blk_opf_t, struct buffer_head *);
+ void submit_bh(blk_opf_t, struct buffer_head *);
void write_boundary_block(struct block_device *bdev,
sector_t bblock, unsigned blocksize);
int bh_uptodate_or_lock(struct buffer_head *bh);
const struct xattr_handler **s_xattr;
#ifdef CONFIG_FS_ENCRYPTION
const struct fscrypt_operations *s_cop;
- struct key *s_master_keys; /* master crypto keys in use */
+ struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */
#endif
#ifdef CONFIG_FS_VERITY
const struct fsverity_operations *s_vop;
* the kernel specify what kind of dirent layout it wants to have.
* This allows the kernel to read directories into kernel space or
* to have different dirent layouts depending on the binary type.
+ * Return 'true' to keep going and 'false' if there are no more entries.
*/
struct dir_context;
-typedef int (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
+typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
unsigned);
struct dir_context {
* don't have to write inode on fdatasync() when only
* e.g. the timestamps have changed.
* I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean.
- * I_DIRTY_TIME The inode itself only has dirty timestamps, and the
+ * I_DIRTY_TIME The inode itself has dirty timestamps, and the
* lazytime mount option is enabled. We keep track of this
* separately from I_DIRTY_SYNC in order to implement
* lazytime. This gets cleared if I_DIRTY_INODE
- * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. I.e.
- * either I_DIRTY_TIME *or* I_DIRTY_INODE can be set in
- * i_state, but not both. I_DIRTY_PAGES may still be set.
+ * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
+ * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
+ * in place because writeback might already be in progress
+ * and we don't want to lose the time update
* I_NEW Serves as both a mutex and completion notification.
* New inodes set I_NEW. If two processes both create
* the same inode, one of them will release its inode and
const char *name, int namelen,
u64 ino, unsigned type)
{
- return ctx->actor(ctx, name, namelen, ctx->pos, ino, type) == 0;
+ return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
}
static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
{
return ctx->actor(ctx, ".", 1, ctx->pos,
- file->f_path.dentry->d_inode->i_ino, DT_DIR) == 0;
+ file->f_path.dentry->d_inode->i_ino, DT_DIR);
}
static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
{
return ctx->actor(ctx, "..", 2, ctx->pos,
- parent_ino(file->f_path.dentry), DT_DIR) == 0;
+ parent_ino(file->f_path.dentry), DT_DIR);
}
static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
{