config CONTEXT_TRACKING
bool
-config RCU_USER_QS
- bool
- help
- This option sets hooks on kernel / userspace boundaries and
- puts RCU in extended quiescent state when the CPU runs in
- userspace. It means that when a CPU runs in userspace, it is
- excluded from the global RCU state machine and thus doesn't
- try to keep the timer tick on for RCU.
-
config CONTEXT_TRACKING_FORCE
bool "Force context tracking"
depends on CONTEXT_TRACKING
config RCU_NOCB_CPU
bool "Offload RCU callback processing from boot-selected CPUs"
depends on TREE_RCU || PREEMPT_RCU
+ depends on RCU_EXPERT || NO_HZ_FULL
default n
help
Use this option to reduce OS jitter for aggressive HPC or
Provides a way to freeze and unfreeze all tasks in a
cgroup.
+ config CGROUP_PIDS
+ bool "PIDs cgroup subsystem"
+ help
+ Provides enforcement of process number limits in the scope of a
+ cgroup. Any attempt to fork more processes than is allowed in the
+ cgroup will fail. PIDs are fundamentally a global resource because it
+ is fairly trivial to reach PID exhaustion before you reach even a
+ conservative kmemcg limit. As a result, it is possible to grind a
+ system to halt without being limited by other cgroup policies. The
+ PIDs cgroup subsystem is designed to stop this from happening.
+
+ It should be noted that organisational operations (such as attaching
+ to a cgroup hierarchy will *not* be blocked by the PIDs subsystem),
+ since the PIDs limit only affects a process's ability to fork, not to
+ attach to a cgroup.
+
config CGROUP_DEVICE
bool "Device controller for cgroups"
help
struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
#define cgroup_assert_mutex_or_rcu_locked() \
- rcu_lockdep_assert(rcu_read_lock_held() || \
- lockdep_is_held(&cgroup_mutex), \
+ RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
+ !lockdep_is_held(&cgroup_mutex), \
"cgroup_mutex or RCU read lock required");
/*
* part of that cgroup.
*/
struct cgroup_root cgrp_dfl_root;
+ EXPORT_SYMBOL_GPL(cgrp_dfl_root);
/*
* The default hierarchy always exists but is hidden until mounted for the
static unsigned long have_fork_callback __read_mostly;
static unsigned long have_exit_callback __read_mostly;
+ /* Ditto for the can_fork callback. */
+ static unsigned long have_canfork_callback __read_mostly;
+
static struct cftype cgroup_dfl_base_files[];
static struct cftype cgroup_legacy_base_files[];
idr_preload(gfp_mask);
spin_lock_bh(&cgroup_idr_lock);
- ret = idr_alloc(idr, ptr, start, end, gfp_mask);
+ ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
spin_unlock_bh(&cgroup_idr_lock);
idr_preload_end();
return ret;
static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
char *buf)
{
+ struct cgroup_subsys *ss = cft->ss;
+
if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
!(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
- cft->ss->name, cft->name);
+ cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
+ cft->name);
else
strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
return buf;
struct cgroup_subsys *ss;
int ssid;
- for_each_subsys(ss, ssid)
- if (root->subsys_mask & (1 << ssid))
- seq_printf(seq, ",%s", ss->name);
+ if (root != &cgrp_dfl_root)
+ for_each_subsys(ss, ssid)
+ if (root->subsys_mask & (1 << ssid))
+ seq_printf(seq, ",%s", ss->legacy_name);
if (root->flags & CGRP_ROOT_NOPREFIX)
seq_puts(seq, ",noprefix");
if (root->flags & CGRP_ROOT_XATTR)
}
for_each_subsys(ss, i) {
- if (strcmp(token, ss->name))
+ if (strcmp(token, ss->legacy_name))
continue;
if (ss->disabled)
continue;
lockdep_assert_held(&cgroup_mutex);
- ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
+ ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
if (ret < 0)
goto out;
root_cgrp->id = ret;
if (err)
goto err_free_css;
- err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
+ err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
if (err < 0)
goto err_free_percpu_ref;
css->id = err;
* Temporarily set the pointer to NULL, so idr_find() won't return
* a half-baked cgroup.
*/
- cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
+ cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
if (cgrp->id < 0) {
ret = -ENOMEM;
goto out_cancel_ref;
have_fork_callback |= (bool)ss->fork << ss->id;
have_exit_callback |= (bool)ss->exit << ss->id;
+ have_canfork_callback |= (bool)ss->can_fork << ss->id;
/* At system boot, before all subsystems have been
* registered, no tasks have been forked, so we don't
ss->id = i;
ss->name = cgroup_subsys_name[i];
+ if (!ss->legacy_name)
+ ss->legacy_name = cgroup_subsys_name[i];
if (ss->early_init)
cgroup_init_subsys(ss, true);
continue;
seq_printf(m, "%d:", root->hierarchy_id);
- for_each_subsys(ss, ssid)
- if (root->subsys_mask & (1 << ssid))
- seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
+ if (root != &cgrp_dfl_root)
+ for_each_subsys(ss, ssid)
+ if (root->subsys_mask & (1 << ssid))
+ seq_printf(m, "%s%s", count++ ? "," : "",
+ ss->legacy_name);
if (strlen(root->name))
seq_printf(m, "%sname=%s", count ? "," : "",
root->name);
for_each_subsys(ss, i)
seq_printf(m, "%s\t%d\t%d\t%d\n",
- ss->name, ss->root->hierarchy_id,
+ ss->legacy_name, ss->root->hierarchy_id,
atomic_read(&ss->root->nr_cgrps), !ss->disabled);
mutex_unlock(&cgroup_mutex);
.release = single_release,
};
+ static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
+ {
+ if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
+ return &ss_priv[i - CGROUP_CANFORK_START];
+ return NULL;
+ }
+
+ static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
+ {
+ void **private = subsys_canfork_priv_p(ss_priv, i);
+ return private ? *private : NULL;
+ }
+
/**
* cgroup_fork - initialize cgroup related fields during copy_process()
* @child: pointer to task_struct of forking parent process.
INIT_LIST_HEAD(&child->cg_list);
}
+ /**
+ * cgroup_can_fork - called on a new task before the process is exposed
+ * @child: the task in question.
+ *
+ * This calls the subsystem can_fork() callbacks. If the can_fork() callback
+ * returns an error, the fork aborts with that error code. This allows for
+ * a cgroup subsystem to conditionally allow or deny new forks.
+ */
+ int cgroup_can_fork(struct task_struct *child,
+ void *ss_priv[CGROUP_CANFORK_COUNT])
+ {
+ struct cgroup_subsys *ss;
+ int i, j, ret;
+
+ for_each_subsys_which(ss, i, &have_canfork_callback) {
+ ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
+ if (ret)
+ goto out_revert;
+ }
+
+ return 0;
+
+ out_revert:
+ for_each_subsys(ss, j) {
+ if (j >= i)
+ break;
+ if (ss->cancel_fork)
+ ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
+ }
+
+ return ret;
+ }
+
+ /**
+ * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
+ * @child: the task in question
+ *
+ * This calls the cancel_fork() callbacks if a fork failed *after*
+ * cgroup_can_fork() succeded.
+ */
+ void cgroup_cancel_fork(struct task_struct *child,
+ void *ss_priv[CGROUP_CANFORK_COUNT])
+ {
+ struct cgroup_subsys *ss;
+ int i;
+
+ for_each_subsys(ss, i)
+ if (ss->cancel_fork)
+ ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
+ }
+
/**
* cgroup_post_fork - called on a new task after adding it to the task list
* @child: the task in question
* cgroup_task_iter_start() - to guarantee that the new task ends up on its
* list.
*/
- void cgroup_post_fork(struct task_struct *child)
+ void cgroup_post_fork(struct task_struct *child,
+ void *old_ss_priv[CGROUP_CANFORK_COUNT])
{
struct cgroup_subsys *ss;
int i;
* and addition to css_set.
*/
for_each_subsys_which(ss, i, &have_fork_callback)
- ss->fork(child);
+ ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
}
/**
continue;
for_each_subsys(ss, i) {
- if (!strcmp(token, ss->name)) {
- ss->disabled = 1;
- printk(KERN_INFO "Disabling %s control group"
- " subsystem\n", ss->name);
- break;
- }
+ if (strcmp(token, ss->name) &&
+ strcmp(token, ss->legacy_name))
+ continue;
+
+ ss->disabled = 1;
+ printk(KERN_INFO "Disabling %s control group subsystem\n",
+ ss->name);
+ break;
}
}
return 1;
max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
}
+#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
+/* Initialized by the architecture: */
+int arch_task_struct_size __read_mostly;
+#endif
+
void __init fork_init(void)
{
#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
#endif
/* create a slab on which task_structs can be allocated */
task_struct_cachep =
- kmem_cache_create("task_struct", sizeof(struct task_struct),
+ kmem_cache_create("task_struct", arch_task_struct_size,
ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
#endif
rcu_assign_pointer(tsk->sighand, sig);
if (!sig)
return -ENOMEM;
+
atomic_set(&sig->count, 1);
memcpy(sig->action, current->sighand->action, sizeof(sig->action));
return 0;
init_sigpending(&sig->shared_pending);
INIT_LIST_HEAD(&sig->posix_timers);
seqlock_init(&sig->stats_lock);
+ prev_cputime_init(&sig->prev_cputime);
hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sig->real_timer.function = it_real_fn;
{
int retval;
struct task_struct *p;
+ void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL);
/*
* If the new process will be in a different pid or user namespace
- * do not allow it to share a thread group or signal handlers or
- * parent with the forking task.
+ * do not allow it to share a thread group with the forking task.
*/
- if (clone_flags & CLONE_SIGHAND) {
+ if (clone_flags & CLONE_THREAD) {
if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
(task_active_pid_ns(current) !=
current->nsproxy->pid_ns_for_children))
p->utime = p->stime = p->gtime = 0;
p->utimescaled = p->stimescaled = 0;
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
- p->prev_cputime.utime = p->prev_cputime.stime = 0;
-#endif
+ prev_cputime_init(&p->prev_cputime);
+
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
seqlock_init(&p->vtime_seqlock);
p->vtime_snap = 0;
INIT_LIST_HEAD(&p->thread_group);
p->task_works = NULL;
+ /*
+ * Ensure that the cgroup subsystem policies allow the new process to be
+ * forked. It should be noted the the new process's css_set can be changed
+ * between here and cgroup_post_fork() if an organisation operation is in
+ * progress.
+ */
+ retval = cgroup_can_fork(p, cgrp_ss_priv);
+ if (retval)
+ goto bad_fork_free_pid;
+
/*
* Make it visible to the rest of the system, but dont wake it up yet.
* Need tasklist lock for parent etc handling!
spin_unlock(¤t->sighand->siglock);
write_unlock_irq(&tasklist_lock);
retval = -ERESTARTNOINTR;
- goto bad_fork_free_pid;
+ goto bad_fork_cancel_cgroup;
}
if (likely(p->pid)) {
write_unlock_irq(&tasklist_lock);
proc_fork_connector(p);
- cgroup_post_fork(p);
+ cgroup_post_fork(p, cgrp_ss_priv);
if (clone_flags & CLONE_THREAD)
threadgroup_change_end(current);
perf_event_fork(p);
return p;
+ bad_fork_cancel_cgroup:
+ cgroup_cancel_fork(p, cgrp_ss_priv);
bad_fork_free_pid:
if (pid != &init_struct_pid)
free_pid(pid);
CLONE_NEWUSER|CLONE_NEWPID))
return -EINVAL;
/*
- * Not implemented, but pretend it works if there is nothing to
- * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
- * needs to unshare vm.
+ * Not implemented, but pretend it works if there is nothing
+ * to unshare. Note that unsharing the address space or the
+ * signal handlers also need to unshare the signal queues (aka
+ * CLONE_THREAD).
*/
if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
- /* FIXME: get_task_mm() increments ->mm_users */
- if (atomic_read(¤t->mm->mm_users) > 1)
+ if (!thread_group_empty(current))
+ return -EINVAL;
+ }
+ if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
+ if (atomic_read(¤t->sighand->count) > 1)
+ return -EINVAL;
+ }
+ if (unshare_flags & CLONE_VM) {
+ if (!current_is_single_threaded())
return -EINVAL;
}
int err;
/*
- * If unsharing a user namespace must also unshare the thread.
+ * If unsharing a user namespace must also unshare the thread group
+ * and unshare the filesystem root and working directories.
*/
if (unshare_flags & CLONE_NEWUSER)
unshare_flags |= CLONE_THREAD | CLONE_FS;
- /*
- * If unsharing a thread from a thread group, must also unshare vm.
- */
- if (unshare_flags & CLONE_THREAD)
- unshare_flags |= CLONE_VM;
/*
* If unsharing vm, must also unshare signal handlers.
*/
if (unshare_flags & CLONE_VM)
unshare_flags |= CLONE_SIGHAND;
+ /*
+ * If unsharing a signal handlers, must also unshare the signal queues.
+ */
+ if (unshare_flags & CLONE_SIGHAND)
+ unshare_flags |= CLONE_THREAD;
/*
* If unsharing namespace, must also unshare filesystem information.
*/
return 0;
}
-void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+/*
+ * sched_class::set_cpus_allowed must do the below, but is not required to
+ * actually call this function.
+ */
+void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
{
- if (p->sched_class->set_cpus_allowed)
- p->sched_class->set_cpus_allowed(p, new_mask);
-
cpumask_copy(&p->cpus_allowed, new_mask);
p->nr_cpus_allowed = cpumask_weight(new_mask);
}
+void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+{
+ struct rq *rq = task_rq(p);
+ bool queued, running;
+
+ lockdep_assert_held(&p->pi_lock);
+
+ queued = task_on_rq_queued(p);
+ running = task_current(rq, p);
+
+ if (queued) {
+ /*
+ * Because __kthread_bind() calls this on blocked tasks without
+ * holding rq->lock.
+ */
+ lockdep_assert_held(&rq->lock);
+ dequeue_task(rq, p, 0);
+ }
+ if (running)
+ put_prev_task(rq, p);
+
+ p->sched_class->set_cpus_allowed(p, new_mask);
+
+ if (running)
+ p->sched_class->set_curr_task(rq);
+ if (queued)
+ enqueue_task(rq, p, 0);
+}
+
/*
* Change a given task's CPU affinity. Migrate the thread to a
* proper CPU and schedule it away if the CPU it's executing on
* task must not exit() & deallocate itself prematurely. The
* call is not atomic; no spinlocks may be held.
*/
-int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
+static int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, bool check)
{
unsigned long flags;
struct rq *rq;
rq = task_rq_lock(p, &flags);
+ /*
+ * Must re-check here, to close a race against __kthread_bind(),
+ * sched_setaffinity() is not guaranteed to observe the flag.
+ */
+ if (check && (p->flags & PF_NO_SETAFFINITY)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
if (cpumask_equal(&p->cpus_allowed, new_mask))
goto out;
return ret;
}
+
+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
+{
+ return __set_cpus_allowed_ptr(p, new_mask, false);
+}
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
s64 diff = sample - *avg;
*avg += diff >> 3;
}
+
+#else
+
+static inline int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, bool check)
+{
+ return set_cpus_allowed_ptr(p, new_mask);
+}
+
#endif /* CONFIG_SMP */
static void
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
{
check_preempt_curr(rq, p, wake_flags);
- trace_sched_wakeup(p, true);
-
p->state = TASK_RUNNING;
+ trace_sched_wakeup(p);
+
#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
if (!(p->state & state))
goto out;
+ trace_sched_waking(p);
+
success = 1; /* we're going to change ->state */
cpu = task_cpu(p);
if (!(p->state & TASK_NORMAL))
goto out;
+ trace_sched_waking(p);
+
if (!task_on_rq_queued(p))
ttwu_activate(rq, p, ENQUEUE_WAKEUP);
p->se.prev_sum_exec_runtime = 0;
p->se.nr_migrations = 0;
p->se.vruntime = 0;
-#ifdef CONFIG_SMP
- p->se.avg.decay_count = 0;
-#endif
INIT_LIST_HEAD(&p->se.group_node);
#ifdef CONFIG_SCHEDSTATS
#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
- rcu_lockdep_assert(rcu_read_lock_sched_held(),
- "sched RCU must be held");
+ RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
+ "sched RCU must be held");
return &cpu_rq(i)->rd->dl_bw;
}
struct root_domain *rd = cpu_rq(i)->rd;
int cpus = 0;
- rcu_lockdep_assert(rcu_read_lock_sched_held(),
- "sched RCU must be held");
+ RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
+ "sched RCU must be held");
for_each_cpu_and(i, rd->span, cpu_active_mask)
cpus++;
#endif
/* Initialize new task's runnable average */
- init_task_runnable_average(p);
+ init_entity_runnable_average(&p->se);
rq = __task_rq_lock(p);
activate_task(rq, p, 0);
p->on_rq = TASK_ON_RQ_QUEUED;
- trace_sched_wakeup_new(p, true);
+ trace_sched_wakeup_new(p);
check_preempt_curr(rq, p, WF_FORK);
#ifdef CONFIG_SMP
if (p->sched_class->task_woken)
*/
prev_state = prev->state;
vtime_task_switch(prev);
- finish_arch_switch(prev);
perf_event_task_sched_in(prev, current);
finish_lock_switch(rq, prev);
finish_arch_post_lock_switch();
put_task_struct(prev);
}
- tick_nohz_task_switch(current);
+ tick_nohz_task_switch();
return rq;
}
}
#endif
again:
- retval = set_cpus_allowed_ptr(p, new_mask);
+ retval = __set_cpus_allowed_ptr(p, new_mask, true);
if (!retval) {
cpuset_cpus_allowed(p, cpus_allowed);
int __sched _cond_resched(void)
{
- if (should_resched()) {
+ if (should_resched(0)) {
preempt_schedule_common();
return 1;
}
*/
int __cond_resched_lock(spinlock_t *lock)
{
- int resched = should_resched();
+ int resched = should_resched(PREEMPT_LOCK_OFFSET);
int ret = 0;
lockdep_assert_held(lock);
{
BUG_ON(!in_softirq());
- if (should_resched()) {
+ if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
local_bh_enable();
preempt_schedule_common();
local_bh_disable();
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
- raw_spin_lock_irqsave(&rq->lock, flags);
+ raw_spin_lock_irqsave(&idle->pi_lock, flags);
+ raw_spin_lock(&rq->lock);
__sched_fork(0, idle);
idle->state = TASK_RUNNING;
#if defined(CONFIG_SMP)
idle->on_cpu = 1;
#endif
- raw_spin_unlock_irqrestore(&rq->lock, flags);
+ raw_spin_unlock(&rq->lock);
+ raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
/* Set the preempt count _outside_ the spinlocks! */
init_idle_preempt_count(idle, cpu);
/* may be called multiple times per register */
static void unregister_sched_domain_sysctl(void)
{
- if (sd_sysctl_header)
- unregister_sysctl_table(sd_sysctl_header);
+ unregister_sysctl_table(sd_sysctl_header);
sd_sysctl_header = NULL;
if (sd_ctl_dir[0].child)
sd_free_ctl_entry(&sd_ctl_dir[0].child);
case CPU_STARTING:
set_cpu_rq_start_time();
return NOTIFY_OK;
+ case CPU_ONLINE:
+ /*
+ * At this point a starting CPU has marked itself as online via
+ * set_cpu_online(). But it might not yet have marked itself
+ * as active, which is essential from here on.
+ *
+ * Thus, fall-through and help the starting CPU along.
+ */
case CPU_DOWN_FAILED:
set_cpu_active((long)hcpu, true);
return NOTIFY_OK;
n = sched_max_numa_distance;
- if (n <= 1)
+ if (sched_domains_numa_levels <= 1) {
sched_numa_topology_type = NUMA_DIRECT;
+ return;
+ }
for_each_online_node(a) {
for_each_online_node(b) {
sched_offline_group(tg);
}
- static void cpu_cgroup_fork(struct task_struct *task)
+ static void cpu_cgroup_fork(struct task_struct *task, void *private)
{
sched_move_task(task);
}