This device has four video ports. Their connections are modeled using the
OF graph bindings specified in Documentation/devicetree/bindings/graph.txt.
- The device can operate in single-link mode or dual-link mode. In
- single-link mode, all pixels are received on port@0, and port@1 shall not
- contain any endpoint. In dual-link mode, even-numbered pixels are
- received on port@0 and odd-numbered pixels on port@1, and both port@0 and
- port@1 shall contain endpoints.
+ The device can operate in single or dual input and output modes.
+
+ When operating in single input mode, all pixels are received on port@0,
+ and port@1 shall not contain any endpoint. In dual input mode,
+ even-numbered pixels are received on port@0 and odd-numbered pixels on
+ port@1, and both port@0 and port@1 shall contain endpoints.
+
+ When operating in single output mode all pixels are output from the first
+ CMOS/TTL port and port@3 shall not contain any endpoint. In dual output
+ mode pixels are output from both CMOS/TTL ports and both port@2 and
+ port@3 shall contain endpoints.
properties:
'#address-cells':
description: Power down GPIO signal, pin name "/PDWN", active low.
vcc-supply:
- maxItems: 1
description:
Power supply for the TTL output, TTL CLOCKOUT signal, LVDS input, PLL and
digital circuitry.
kref_init(&dev->ref);
dev->dev = get_device(parent);
- #ifdef CONFIG_DRM_LEGACY
- dev->driver = (struct drm_driver *)driver;
- #else
dev->driver = driver;
- #endif
INIT_LIST_HEAD(&dev->managed.resources);
spin_lock_init(&dev->managed.lock);
if (ret)
return ret;
- ret = devm_add_action(parent, devm_drm_dev_init_release, dev);
- if (ret)
- devm_drm_dev_init_release(dev);
-
- return ret;
+ return devm_add_action_or_reset(parent,
+ devm_drm_dev_init_release, dev);
}
void *__devm_drm_dev_alloc(struct device *parent,
if (drm_core_check_feature(dev, DRIVER_MODESET))
drm_modeset_register_all(dev);
- ret = 0;
-
DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
driver->name, driver->major, driver->minor,
driver->patchlevel, driver->date,
DEFINE_DRM_GEM_CMA_FOPS(fops);
- static struct drm_driver kmb_driver = {
+ static const struct drm_driver kmb_driver = {
.driver_features = DRIVER_GEM |
DRIVER_MODESET | DRIVER_ATOMIC,
.irq_handler = kmb_isr,
static int __maybe_unused kmb_pm_suspend(struct device *dev)
{
struct drm_device *drm = dev_get_drvdata(dev);
- struct kmb_drm_private *kmb = drm ? to_kmb(drm) : NULL;
+ struct kmb_drm_private *kmb = to_kmb(drm);
drm_kms_helper_poll_disable(drm);
*/
if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
- struct rcar_du_encoder *encoder =
- rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
+ struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
const struct drm_display_mode *mode =
&crtc->state->adjusted_mode;
- struct drm_bridge *bridge;
- bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
rcar_lvds_clk_enable(bridge, mode->clock * 1000);
}
if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
- struct rcar_du_encoder *encoder =
- rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
- struct drm_bridge *bridge;
+ struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
/*
* Disable the LVDS clock output, see
* rcar_du_crtc_atomic_enable().
*/
- bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
rcar_lvds_clk_disable(bridge);
}
.set_crc_source = rcar_du_crtc_set_crc_source,
.verify_crc_source = rcar_du_crtc_verify_crc_source,
.get_crc_sources = rcar_du_crtc_get_crc_sources,
- .gamma_set = drm_atomic_helper_legacy_gamma_set,
};
/* -----------------------------------------------------------------------------
else
primary = &rgrp->planes[swindex % 2].plane;
- ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
+ ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
rcdu->info->gen <= 2 ?
&crtc_funcs_gen2 : &crtc_funcs_gen3,
NULL);
* The usual way to implement this is to cache the EDID retrieved in the
* probe callback somewhere in the driver-private connector structure.
* In this function drivers then parse the modes in the EDID and add
- * them by calling drm_add_edid_modes(). But connectors that driver a
+ * them by calling drm_add_edid_modes(). But connectors that drive a
* fixed panel can also manually add specific modes using
* drm_mode_probed_add(). Drivers which manually add modes should also
* make sure that the &drm_connector.display_info,
* &drm_connector.width_mm and &drm_connector.height_mm fields are
* filled in.
+ *
+ * Note that the caller function will automatically add standard VESA
+ * DMT modes up to 1024x768 if the .get_modes() helper operation returns
+ * no mode and if the connector status is connector_status_connected or
+ * connector_status_unknown. There is no need to call
+ * drm_add_modes_noedid() manually in that case.
*
* Virtual drivers that just want some standard VESA mode with a given
* resolution can call drm_add_modes_noedid(), and mark the preferred
* drm_atomic_helper_commit_tail().
*/
void (*atomic_commit_tail)(struct drm_atomic_state *state);
+
+ /**
+ * @atomic_commit_setup:
+ *
+ * This hook is used by the default atomic_commit() hook implemented in
+ * drm_atomic_helper_commit() together with the nonblocking helpers (see
+ * drm_atomic_helper_setup_commit()) to extend the DRM commit setup. It
+ * is not used by the atomic helpers.
+ *
+ * This function is called at the end of
+ * drm_atomic_helper_setup_commit(), so once the commit has been
+ * properly setup across the generic DRM object states. It allows
+ * drivers to do some additional commit tracking that isn't related to a
+ * CRTC, plane or connector, tracked in a &drm_private_obj structure.
+ *
+ * Note that the documentation of &drm_private_obj has more details on
+ * how one should implement this.
+ *
+ * This hook is optional.
+ */
+ int (*atomic_commit_setup)(struct drm_atomic_state *state);
};
#endif