--- /dev/null
-#define FMT_NUM_PLANES = 3;
+ <title>Input/Output</title>
+
+ <para>The V4L2 API defines several different methods to read from or
+ write to a device. All drivers exchanging data with applications must
+ support at least one of them.</para>
+
+ <para>The classic I/O method using the <function>read()</function>
+ and <function>write()</function> function is automatically selected
+ after opening a V4L2 device. When the driver does not support this
+ method attempts to read or write will fail at any time.</para>
+
+ <para>Other methods must be negotiated. To select the streaming I/O
+ method with memory mapped or user buffers applications call the
+ &VIDIOC-REQBUFS; ioctl. The asynchronous I/O method is not defined
+ yet.</para>
+
+ <para>Video overlay can be considered another I/O method, although
+ the application does not directly receive the image data. It is
+ selected by initiating video overlay with the &VIDIOC-S-FMT; ioctl.
+ For more information see <xref linkend="overlay" />.</para>
+
+ <para>Generally exactly one I/O method, including overlay, is
+ associated with each file descriptor. The only exceptions are
+ applications not exchanging data with a driver ("panel applications",
+ see <xref linkend="open" />) and drivers permitting simultaneous video capturing
+ and overlay using the same file descriptor, for compatibility with V4L
+ and earlier versions of V4L2.</para>
+
+ <para><constant>VIDIOC_S_FMT</constant> and
+ <constant>VIDIOC_REQBUFS</constant> would permit this to some degree,
+ but for simplicity drivers need not support switching the I/O method
+ (after first switching away from read/write) other than by closing
+ and reopening the device.</para>
+
+ <para>The following sections describe the various I/O methods in
+ more detail.</para>
+
+ <section id="rw">
+ <title>Read/Write</title>
+
+ <para>Input and output devices support the
+ <function>read()</function> and <function>write()</function> function,
+ respectively, when the <constant>V4L2_CAP_READWRITE</constant> flag in
+ the <structfield>capabilities</structfield> field of &v4l2-capability;
+ returned by the &VIDIOC-QUERYCAP; ioctl is set.</para>
+
+ <para>Drivers may need the CPU to copy the data, but they may also
+ support DMA to or from user memory, so this I/O method is not
+ necessarily less efficient than other methods merely exchanging buffer
+ pointers. It is considered inferior though because no meta-information
+ like frame counters or timestamps are passed. This information is
+ necessary to recognize frame dropping and to synchronize with other
+ data streams. However this is also the simplest I/O method, requiring
+ little or no setup to exchange data. It permits command line stunts
+ like this (the <application>vidctrl</application> tool is
+ fictitious):</para>
+
+ <informalexample>
+ <screen>
+ > vidctrl /dev/video --input=0 --format=YUYV --size=352x288
+ > dd if=/dev/video of=myimage.422 bs=202752 count=1
+ </screen>
+ </informalexample>
+
+ <para>To read from the device applications use the
+ &func-read; function, to write the &func-write; function.
+ Drivers must implement one I/O method if they
+ exchange data with applications, but it need not be this.<footnote>
+ <para>It would be desirable if applications could depend on
+ drivers supporting all I/O interfaces, but as much as the complex
+ memory mapping I/O can be inadequate for some devices we have no
+ reason to require this interface, which is most useful for simple
+ applications capturing still images.</para>
+ </footnote> When reading or writing is supported, the driver
+ must also support the &func-select; and &func-poll;
+ function.<footnote>
+ <para>At the driver level <function>select()</function> and
+ <function>poll()</function> are the same, and
+ <function>select()</function> is too important to be optional.</para>
+ </footnote></para>
+ </section>
+
+ <section id="mmap">
+ <title>Streaming I/O (Memory Mapping)</title>
+
+ <para>Input and output devices support this I/O method when the
+ <constant>V4L2_CAP_STREAMING</constant> flag in the
+ <structfield>capabilities</structfield> field of &v4l2-capability;
+ returned by the &VIDIOC-QUERYCAP; ioctl is set. There are two
+ streaming methods, to determine if the memory mapping flavor is
+ supported applications must call the &VIDIOC-REQBUFS; ioctl.</para>
+
+ <para>Streaming is an I/O method where only pointers to buffers
+ are exchanged between application and driver, the data itself is not
+ copied. Memory mapping is primarily intended to map buffers in device
+ memory into the application's address space. Device memory can be for
+ example the video memory on a graphics card with a video capture
+ add-on. However, being the most efficient I/O method available for a
+ long time, many other drivers support streaming as well, allocating
+ buffers in DMA-able main memory.</para>
+
+ <para>A driver can support many sets of buffers. Each set is
+ identified by a unique buffer type value. The sets are independent and
+ each set can hold a different type of data. To access different sets
+ at the same time different file descriptors must be used.<footnote>
+ <para>One could use one file descriptor and set the buffer
+ type field accordingly when calling &VIDIOC-QBUF; etc., but it makes
+ the <function>select()</function> function ambiguous. We also like the
+ clean approach of one file descriptor per logical stream. Video
+ overlay for example is also a logical stream, although the CPU is not
+ needed for continuous operation.</para>
+ </footnote></para>
+
+ <para>To allocate device buffers applications call the
+ &VIDIOC-REQBUFS; ioctl with the desired number of buffers and buffer
+ type, for example <constant>V4L2_BUF_TYPE_VIDEO_CAPTURE</constant>.
+ This ioctl can also be used to change the number of buffers or to free
+ the allocated memory, provided none of the buffers are still
+ mapped.</para>
+
+ <para>Before applications can access the buffers they must map
+ them into their address space with the &func-mmap; function. The
+ location of the buffers in device memory can be determined with the
+ &VIDIOC-QUERYBUF; ioctl. In the single-planar API case, the
+ <structfield>m.offset</structfield> and <structfield>length</structfield>
+ returned in a &v4l2-buffer; are passed as sixth and second parameter to the
+ <function>mmap()</function> function. When using the multi-planar API,
+ struct &v4l2-buffer; contains an array of &v4l2-plane; structures, each
+ containing its own <structfield>m.offset</structfield> and
+ <structfield>length</structfield>. When using the multi-planar API, every
+ plane of every buffer has to be mapped separately, so the number of
+ calls to &func-mmap; should be equal to number of buffers times number of
+ planes in each buffer. The offset and length values must not be modified.
+ Remember, the buffers are allocated in physical memory, as opposed to virtual
+ memory, which can be swapped out to disk. Applications should free the buffers
+ as soon as possible with the &func-munmap; function.</para>
+
+ <example>
+ <title>Mapping buffers in the single-planar API</title>
+ <programlisting>
+ &v4l2-requestbuffers; reqbuf;
+ struct {
+ void *start;
+ size_t length;
+ } *buffers;
+ unsigned int i;
+
+ memset(&reqbuf, 0, sizeof(reqbuf));
+ reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
+ reqbuf.memory = V4L2_MEMORY_MMAP;
+ reqbuf.count = 20;
+
+ if (-1 == ioctl (fd, &VIDIOC-REQBUFS;, &reqbuf)) {
+ if (errno == EINVAL)
+ printf("Video capturing or mmap-streaming is not supported\n");
+ else
+ perror("VIDIOC_REQBUFS");
+
+ exit(EXIT_FAILURE);
+ }
+
+ /* We want at least five buffers. */
+
+ if (reqbuf.count < 5) {
+ /* You may need to free the buffers here. */
+ printf("Not enough buffer memory\n");
+ exit(EXIT_FAILURE);
+ }
+
+ buffers = calloc(reqbuf.count, sizeof(*buffers));
+ assert(buffers != NULL);
+
+ for (i = 0; i < reqbuf.count; i++) {
+ &v4l2-buffer; buffer;
+
+ memset(&buffer, 0, sizeof(buffer));
+ buffer.type = reqbuf.type;
+ buffer.memory = V4L2_MEMORY_MMAP;
+ buffer.index = i;
+
+ if (-1 == ioctl (fd, &VIDIOC-QUERYBUF;, &buffer)) {
+ perror("VIDIOC_QUERYBUF");
+ exit(EXIT_FAILURE);
+ }
+
+ buffers[i].length = buffer.length; /* remember for munmap() */
+
+ buffers[i].start = mmap(NULL, buffer.length,
+ PROT_READ | PROT_WRITE, /* recommended */
+ MAP_SHARED, /* recommended */
+ fd, buffer.m.offset);
+
+ if (MAP_FAILED == buffers[i].start) {
+ /* If you do not exit here you should unmap() and free()
+ the buffers mapped so far. */
+ perror("mmap");
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ /* Cleanup. */
+
+ for (i = 0; i < reqbuf.count; i++)
+ munmap(buffers[i].start, buffers[i].length);
+ </programlisting>
+ </example>
+
+ <example>
+ <title>Mapping buffers in the multi-planar API</title>
+ <programlisting>
+ &v4l2-requestbuffers; reqbuf;
+ /* Our current format uses 3 planes per buffer */
++#define FMT_NUM_PLANES = 3
+
+ struct {
+ void *start[FMT_NUM_PLANES];
+ size_t length[FMT_NUM_PLANES];
+ } *buffers;
+ unsigned int i, j;
+
+ memset(&reqbuf, 0, sizeof(reqbuf));
+ reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
+ reqbuf.memory = V4L2_MEMORY_MMAP;
+ reqbuf.count = 20;
+
+ if (ioctl(fd, &VIDIOC-REQBUFS;, &reqbuf) < 0) {
+ if (errno == EINVAL)
+ printf("Video capturing or mmap-streaming is not supported\n");
+ else
+ perror("VIDIOC_REQBUFS");
+
+ exit(EXIT_FAILURE);
+ }
+
+ /* We want at least five buffers. */
+
+ if (reqbuf.count < 5) {
+ /* You may need to free the buffers here. */
+ printf("Not enough buffer memory\n");
+ exit(EXIT_FAILURE);
+ }
+
+ buffers = calloc(reqbuf.count, sizeof(*buffers));
+ assert(buffers != NULL);
+
+ for (i = 0; i < reqbuf.count; i++) {
+ &v4l2-buffer; buffer;
+ &v4l2-plane; planes[FMT_NUM_PLANES];
+
+ memset(&buffer, 0, sizeof(buffer));
+ buffer.type = reqbuf.type;
+ buffer.memory = V4L2_MEMORY_MMAP;
+ buffer.index = i;
+ /* length in struct v4l2_buffer in multi-planar API stores the size
+ * of planes array. */
+ buffer.length = FMT_NUM_PLANES;
+ buffer.m.planes = planes;
+
+ if (ioctl(fd, &VIDIOC-QUERYBUF;, &buffer) < 0) {
+ perror("VIDIOC_QUERYBUF");
+ exit(EXIT_FAILURE);
+ }
+
+ /* Every plane has to be mapped separately */
+ for (j = 0; j < FMT_NUM_PLANES; j++) {
+ buffers[i].length[j] = buffer.m.planes[j].length; /* remember for munmap() */
+
+ buffers[i].start[j] = mmap(NULL, buffer.m.planes[j].length,
+ PROT_READ | PROT_WRITE, /* recommended */
+ MAP_SHARED, /* recommended */
+ fd, buffer.m.planes[j].m.offset);
+
+ if (MAP_FAILED == buffers[i].start[j]) {
+ /* If you do not exit here you should unmap() and free()
+ the buffers and planes mapped so far. */
+ perror("mmap");
+ exit(EXIT_FAILURE);
+ }
+ }
+ }
+
+ /* Cleanup. */
+
+ for (i = 0; i < reqbuf.count; i++)
+ for (j = 0; j < FMT_NUM_PLANES; j++)
+ munmap(buffers[i].start[j], buffers[i].length[j]);
+ </programlisting>
+ </example>
+
+ <para>Conceptually streaming drivers maintain two buffer queues, an incoming
+ and an outgoing queue. They separate the synchronous capture or output
+ operation locked to a video clock from the application which is
+ subject to random disk or network delays and preemption by
+ other processes, thereby reducing the probability of data loss.
+ The queues are organized as FIFOs, buffers will be
+ output in the order enqueued in the incoming FIFO, and were
+ captured in the order dequeued from the outgoing FIFO.</para>
+
+ <para>The driver may require a minimum number of buffers enqueued
+ at all times to function, apart of this no limit exists on the number
+ of buffers applications can enqueue in advance, or dequeue and
+ process. They can also enqueue in a different order than buffers have
+ been dequeued, and the driver can <emphasis>fill</emphasis> enqueued
+ <emphasis>empty</emphasis> buffers in any order. <footnote>
+ <para>Random enqueue order permits applications processing
+ images out of order (such as video codecs) to return buffers earlier,
+ reducing the probability of data loss. Random fill order allows
+ drivers to reuse buffers on a LIFO-basis, taking advantage of caches
+ holding scatter-gather lists and the like.</para>
+ </footnote> The index number of a buffer (&v4l2-buffer;
+ <structfield>index</structfield>) plays no role here, it only
+ identifies the buffer.</para>
+
+ <para>Initially all mapped buffers are in dequeued state,
+ inaccessible by the driver. For capturing applications it is customary
+ to first enqueue all mapped buffers, then to start capturing and enter
+ the read loop. Here the application waits until a filled buffer can be
+ dequeued, and re-enqueues the buffer when the data is no longer
+ needed. Output applications fill and enqueue buffers, when enough
+ buffers are stacked up the output is started with
+ <constant>VIDIOC_STREAMON</constant>. In the write loop, when
+ the application runs out of free buffers, it must wait until an empty
+ buffer can be dequeued and reused.</para>
+
+ <para>To enqueue and dequeue a buffer applications use the
+ &VIDIOC-QBUF; and &VIDIOC-DQBUF; ioctl. The status of a buffer being
+ mapped, enqueued, full or empty can be determined at any time using the
+ &VIDIOC-QUERYBUF; ioctl. Two methods exist to suspend execution of the
+ application until one or more buffers can be dequeued. By default
+ <constant>VIDIOC_DQBUF</constant> blocks when no buffer is in the
+ outgoing queue. When the <constant>O_NONBLOCK</constant> flag was
+ given to the &func-open; function, <constant>VIDIOC_DQBUF</constant>
+ returns immediately with an &EAGAIN; when no buffer is available. The
+ &func-select; or &func-poll; function are always available.</para>
+
+ <para>To start and stop capturing or output applications call the
+ &VIDIOC-STREAMON; and &VIDIOC-STREAMOFF; ioctl. Note
+ <constant>VIDIOC_STREAMOFF</constant> removes all buffers from both
+ queues as a side effect. Since there is no notion of doing anything
+ "now" on a multitasking system, if an application needs to synchronize
+ with another event it should examine the &v4l2-buffer;
+ <structfield>timestamp</structfield> of captured buffers, or set the
+ field before enqueuing buffers for output.</para>
+
+ <para>Drivers implementing memory mapping I/O must
+ support the <constant>VIDIOC_REQBUFS</constant>,
+ <constant>VIDIOC_QUERYBUF</constant>,
+ <constant>VIDIOC_QBUF</constant>, <constant>VIDIOC_DQBUF</constant>,
+ <constant>VIDIOC_STREAMON</constant> and
+ <constant>VIDIOC_STREAMOFF</constant> ioctl, the
+ <function>mmap()</function>, <function>munmap()</function>,
+ <function>select()</function> and <function>poll()</function>
+ function.<footnote>
+ <para>At the driver level <function>select()</function> and
+ <function>poll()</function> are the same, and
+ <function>select()</function> is too important to be optional. The
+ rest should be evident.</para>
+ </footnote></para>
+
+ <para>[capture example]</para>
+
+ </section>
+
+ <section id="userp">
+ <title>Streaming I/O (User Pointers)</title>
+
+ <para>Input and output devices support this I/O method when the
+ <constant>V4L2_CAP_STREAMING</constant> flag in the
+ <structfield>capabilities</structfield> field of &v4l2-capability;
+ returned by the &VIDIOC-QUERYCAP; ioctl is set. If the particular user
+ pointer method (not only memory mapping) is supported must be
+ determined by calling the &VIDIOC-REQBUFS; ioctl.</para>
+
+ <para>This I/O method combines advantages of the read/write and
+ memory mapping methods. Buffers (planes) are allocated by the application
+ itself, and can reside for example in virtual or shared memory. Only
+ pointers to data are exchanged, these pointers and meta-information
+ are passed in &v4l2-buffer; (or in &v4l2-plane; in the multi-planar API case).
+ The driver must be switched into user pointer I/O mode by calling the
+ &VIDIOC-REQBUFS; with the desired buffer type. No buffers (planes) are allocated
+ beforehand, consequently they are not indexed and cannot be queried like mapped
+ buffers with the <constant>VIDIOC_QUERYBUF</constant> ioctl.</para>
+
+ <example>
+ <title>Initiating streaming I/O with user pointers</title>
+
+ <programlisting>
+ &v4l2-requestbuffers; reqbuf;
+
+ memset (&reqbuf, 0, sizeof (reqbuf));
+ reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
+ reqbuf.memory = V4L2_MEMORY_USERPTR;
+
+ if (ioctl (fd, &VIDIOC-REQBUFS;, &reqbuf) == -1) {
+ if (errno == EINVAL)
+ printf ("Video capturing or user pointer streaming is not supported\n");
+ else
+ perror ("VIDIOC_REQBUFS");
+
+ exit (EXIT_FAILURE);
+ }
+ </programlisting>
+ </example>
+
+ <para>Buffer (plane) addresses and sizes are passed on the fly with the
+ &VIDIOC-QBUF; ioctl. Although buffers are commonly cycled,
+ applications can pass different addresses and sizes at each
+ <constant>VIDIOC_QBUF</constant> call. If required by the hardware the
+ driver swaps memory pages within physical memory to create a
+ continuous area of memory. This happens transparently to the
+ application in the virtual memory subsystem of the kernel. When buffer
+ pages have been swapped out to disk they are brought back and finally
+ locked in physical memory for DMA.<footnote>
+ <para>We expect that frequently used buffers are typically not
+ swapped out. Anyway, the process of swapping, locking or generating
+ scatter-gather lists may be time consuming. The delay can be masked by
+ the depth of the incoming buffer queue, and perhaps by maintaining
+ caches assuming a buffer will be soon enqueued again. On the other
+ hand, to optimize memory usage drivers can limit the number of buffers
+ locked in advance and recycle the most recently used buffers first. Of
+ course, the pages of empty buffers in the incoming queue need not be
+ saved to disk. Output buffers must be saved on the incoming and
+ outgoing queue because an application may share them with other
+ processes.</para>
+ </footnote></para>
+
+ <para>Filled or displayed buffers are dequeued with the
+ &VIDIOC-DQBUF; ioctl. The driver can unlock the memory pages at any
+ time between the completion of the DMA and this ioctl. The memory is
+ also unlocked when &VIDIOC-STREAMOFF; is called, &VIDIOC-REQBUFS;, or
+ when the device is closed. Applications must take care not to free
+ buffers without dequeuing. For once, the buffers remain locked until
+ further, wasting physical memory. Second the driver will not be
+ notified when the memory is returned to the application's free list
+ and subsequently reused for other purposes, possibly completing the
+ requested DMA and overwriting valuable data.</para>
+
+ <para>For capturing applications it is customary to enqueue a
+ number of empty buffers, to start capturing and enter the read loop.
+ Here the application waits until a filled buffer can be dequeued, and
+ re-enqueues the buffer when the data is no longer needed. Output
+ applications fill and enqueue buffers, when enough buffers are stacked
+ up output is started. In the write loop, when the application
+ runs out of free buffers it must wait until an empty buffer can be
+ dequeued and reused. Two methods exist to suspend execution of the
+ application until one or more buffers can be dequeued. By default
+ <constant>VIDIOC_DQBUF</constant> blocks when no buffer is in the
+ outgoing queue. When the <constant>O_NONBLOCK</constant> flag was
+ given to the &func-open; function, <constant>VIDIOC_DQBUF</constant>
+ returns immediately with an &EAGAIN; when no buffer is available. The
+ &func-select; or &func-poll; function are always available.</para>
+
+ <para>To start and stop capturing or output applications call the
+ &VIDIOC-STREAMON; and &VIDIOC-STREAMOFF; ioctl. Note
+ <constant>VIDIOC_STREAMOFF</constant> removes all buffers from both
+ queues and unlocks all buffers as a side effect. Since there is no
+ notion of doing anything "now" on a multitasking system, if an
+ application needs to synchronize with another event it should examine
+ the &v4l2-buffer; <structfield>timestamp</structfield> of captured
+ buffers, or set the field before enqueuing buffers for output.</para>
+
+ <para>Drivers implementing user pointer I/O must
+ support the <constant>VIDIOC_REQBUFS</constant>,
+ <constant>VIDIOC_QBUF</constant>, <constant>VIDIOC_DQBUF</constant>,
+ <constant>VIDIOC_STREAMON</constant> and
+ <constant>VIDIOC_STREAMOFF</constant> ioctl, the
+ <function>select()</function> and <function>poll()</function> function.<footnote>
+ <para>At the driver level <function>select()</function> and
+ <function>poll()</function> are the same, and
+ <function>select()</function> is too important to be optional. The
+ rest should be evident.</para>
+ </footnote></para>
+ </section>
+
+ <section id="async">
+ <title>Asynchronous I/O</title>
+
+ <para>This method is not defined yet.</para>
+ </section>
+
+ <section id="buffer">
+ <title>Buffers</title>
+
+ <para>A buffer contains data exchanged by application and
+ driver using one of the Streaming I/O methods. In the multi-planar API, the
+ data is held in planes, while the buffer structure acts as a container
+ for the planes. Only pointers to buffers (planes) are exchanged, the data
+ itself is not copied. These pointers, together with meta-information like
+ timestamps or field parity, are stored in a struct
+ <structname>v4l2_buffer</structname>, argument to
+ the &VIDIOC-QUERYBUF;, &VIDIOC-QBUF; and &VIDIOC-DQBUF; ioctl.
+ In the multi-planar API, some plane-specific members of struct
+ <structname>v4l2_buffer</structname>, such as pointers and sizes for each
+ plane, are stored in struct <structname>v4l2_plane</structname> instead.
+ In that case, struct <structname>v4l2_buffer</structname> contains an array of
+ plane structures.</para>
+
+ <para>Nominally timestamps refer to the first data byte transmitted.
+ In practice however the wide range of hardware covered by the V4L2 API
+ limits timestamp accuracy. Often an interrupt routine will
+ sample the system clock shortly after the field or frame was stored
+ completely in memory. So applications must expect a constant
+ difference up to one field or frame period plus a small (few scan
+ lines) random error. The delay and error can be much
+ larger due to compression or transmission over an external bus when
+ the frames are not properly stamped by the sender. This is frequently
+ the case with USB cameras. Here timestamps refer to the instant the
+ field or frame was received by the driver, not the capture time. These
+ devices identify by not enumerating any video standards, see <xref
+ linkend="standard" />.</para>
+
+ <para>Similar limitations apply to output timestamps. Typically
+ the video hardware locks to a clock controlling the video timing, the
+ horizontal and vertical synchronization pulses. At some point in the
+ line sequence, possibly the vertical blanking, an interrupt routine
+ samples the system clock, compares against the timestamp and programs
+ the hardware to repeat the previous field or frame, or to display the
+ buffer contents.</para>
+
+ <para>Apart of limitations of the video device and natural
+ inaccuracies of all clocks, it should be noted system time itself is
+ not perfectly stable. It can be affected by power saving cycles,
+ warped to insert leap seconds, or even turned back or forth by the
+ system administrator affecting long term measurements. <footnote>
+ <para>Since no other Linux multimedia
+ API supports unadjusted time it would be foolish to introduce here. We
+ must use a universally supported clock to synchronize different media,
+ hence time of day.</para>
+ </footnote></para>
+
+ <table frame="none" pgwide="1" id="v4l2-buffer">
+ <title>struct <structname>v4l2_buffer</structname></title>
+ <tgroup cols="4">
+ &cs-ustr;
+ <tbody valign="top">
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>index</structfield></entry>
+ <entry></entry>
+ <entry>Number of the buffer, set by the application. This
+ field is only used for <link linkend="mmap">memory mapping</link> I/O
+ and can range from zero to the number of buffers allocated
+ with the &VIDIOC-REQBUFS; ioctl (&v4l2-requestbuffers; <structfield>count</structfield>) minus one.</entry>
+ </row>
+ <row>
+ <entry>&v4l2-buf-type;</entry>
+ <entry><structfield>type</structfield></entry>
+ <entry></entry>
+ <entry>Type of the buffer, same as &v4l2-format;
+ <structfield>type</structfield> or &v4l2-requestbuffers;
+ <structfield>type</structfield>, set by the application.</entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>bytesused</structfield></entry>
+ <entry></entry>
+ <entry>The number of bytes occupied by the data in the
+ buffer. It depends on the negotiated data format and may change with
+ each buffer for compressed variable size data like JPEG images.
+ Drivers must set this field when <structfield>type</structfield>
+ refers to an input stream, applications when an output stream.</entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>flags</structfield></entry>
+ <entry></entry>
+ <entry>Flags set by the application or driver, see <xref
+ linkend="buffer-flags" />.</entry>
+ </row>
+ <row>
+ <entry>&v4l2-field;</entry>
+ <entry><structfield>field</structfield></entry>
+ <entry></entry>
+ <entry>Indicates the field order of the image in the
+ buffer, see <xref linkend="v4l2-field" />. This field is not used when
+ the buffer contains VBI data. Drivers must set it when
+ <structfield>type</structfield> refers to an input stream,
+ applications when an output stream.</entry>
+ </row>
+ <row>
+ <entry>struct timeval</entry>
+ <entry><structfield>timestamp</structfield></entry>
+ <entry></entry>
+ <entry><para>For input streams this is the
+ system time (as returned by the <function>gettimeofday()</function>
+ function) when the first data byte was captured. For output streams
+ the data will not be displayed before this time, secondary to the
+ nominal frame rate determined by the current video standard in
+ enqueued order. Applications can for example zero this field to
+ display frames as soon as possible. The driver stores the time at
+ which the first data byte was actually sent out in the
+ <structfield>timestamp</structfield> field. This permits
+ applications to monitor the drift between the video and system
+ clock.</para></entry>
+ </row>
+ <row>
+ <entry>&v4l2-timecode;</entry>
+ <entry><structfield>timecode</structfield></entry>
+ <entry></entry>
+ <entry>When <structfield>type</structfield> is
+ <constant>V4L2_BUF_TYPE_VIDEO_CAPTURE</constant> and the
+ <constant>V4L2_BUF_FLAG_TIMECODE</constant> flag is set in
+ <structfield>flags</structfield>, this structure contains a frame
+ timecode. In <link linkend="v4l2-field">V4L2_FIELD_ALTERNATE</link>
+ mode the top and bottom field contain the same timecode.
+ Timecodes are intended to help video editing and are typically recorded on
+ video tapes, but also embedded in compressed formats like MPEG. This
+ field is independent of the <structfield>timestamp</structfield> and
+ <structfield>sequence</structfield> fields.</entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>sequence</structfield></entry>
+ <entry></entry>
+ <entry>Set by the driver, counting the frames in the
+ sequence.</entry>
+ </row>
+ <row>
+ <entry spanname="hspan"><para>In <link
+ linkend="v4l2-field">V4L2_FIELD_ALTERNATE</link> mode the top and
+ bottom field have the same sequence number. The count starts at zero
+ and includes dropped or repeated frames. A dropped frame was received
+ by an input device but could not be stored due to lack of free buffer
+ space. A repeated frame was displayed again by an output device
+ because the application did not pass new data in
+ time.</para><para>Note this may count the frames received
+ e.g. over USB, without taking into account the frames dropped by the
+ remote hardware due to limited compression throughput or bus
+ bandwidth. These devices identify by not enumerating any video
+ standards, see <xref linkend="standard" />.</para></entry>
+ </row>
+ <row>
+ <entry>&v4l2-memory;</entry>
+ <entry><structfield>memory</structfield></entry>
+ <entry></entry>
+ <entry>This field must be set by applications and/or drivers
+ in accordance with the selected I/O method.</entry>
+ </row>
+ <row>
+ <entry>union</entry>
+ <entry><structfield>m</structfield></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry>__u32</entry>
+ <entry><structfield>offset</structfield></entry>
+ <entry>For the single-planar API and when
+ <structfield>memory</structfield> is <constant>V4L2_MEMORY_MMAP</constant> this
+ is the offset of the buffer from the start of the device memory. The value is
+ returned by the driver and apart of serving as parameter to the &func-mmap;
+ function not useful for applications. See <xref linkend="mmap" /> for details
+ </entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry>unsigned long</entry>
+ <entry><structfield>userptr</structfield></entry>
+ <entry>For the single-planar API and when
+ <structfield>memory</structfield> is <constant>V4L2_MEMORY_USERPTR</constant>
+ this is a pointer to the buffer (casted to unsigned long type) in virtual
+ memory, set by the application. See <xref linkend="userp" /> for details.
+ </entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry>struct v4l2_plane</entry>
+ <entry><structfield>*planes</structfield></entry>
+ <entry>When using the multi-planar API, contains a userspace pointer
+ to an array of &v4l2-plane;. The size of the array should be put
+ in the <structfield>length</structfield> field of this
+ <structname>v4l2_buffer</structname> structure.</entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>length</structfield></entry>
+ <entry></entry>
+ <entry>Size of the buffer (not the payload) in bytes for the
+ single-planar API. For the multi-planar API should contain the
+ number of elements in the <structfield>planes</structfield> array.
+ </entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>input</structfield></entry>
+ <entry></entry>
+ <entry>Some video capture drivers support rapid and
+ synchronous video input changes, a function useful for example in
+ video surveillance applications. For this purpose applications set the
+ <constant>V4L2_BUF_FLAG_INPUT</constant> flag, and this field to the
+ number of a video input as in &v4l2-input; field
+ <structfield>index</structfield>.</entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>reserved</structfield></entry>
+ <entry></entry>
+ <entry>A place holder for future extensions and custom
+ (driver defined) buffer types
+ <constant>V4L2_BUF_TYPE_PRIVATE</constant> and higher. Applications
+ should set this to 0.</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
+ <table frame="none" pgwide="1" id="v4l2-plane">
+ <title>struct <structname>v4l2_plane</structname></title>
+ <tgroup cols="4">
+ &cs-ustr;
+ <tbody valign="top">
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>bytesused</structfield></entry>
+ <entry></entry>
+ <entry>The number of bytes occupied by data in the plane
+ (its payload).</entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>length</structfield></entry>
+ <entry></entry>
+ <entry>Size in bytes of the plane (not its payload).</entry>
+ </row>
+ <row>
+ <entry>union</entry>
+ <entry><structfield>m</structfield></entry>
+ <entry></entry>
+ <entry></entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry>__u32</entry>
+ <entry><structfield>mem_offset</structfield></entry>
+ <entry>When the memory type in the containing &v4l2-buffer; is
+ <constant>V4L2_MEMORY_MMAP</constant>, this is the value that
+ should be passed to &func-mmap;, similar to the
+ <structfield>offset</structfield> field in &v4l2-buffer;.</entry>
+ </row>
+ <row>
+ <entry></entry>
+ <entry>__unsigned long</entry>
+ <entry><structfield>userptr</structfield></entry>
+ <entry>When the memory type in the containing &v4l2-buffer; is
+ <constant>V4L2_MEMORY_USERPTR</constant>, this is a userspace
+ pointer to the memory allocated for this plane by an application.
+ </entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>data_offset</structfield></entry>
+ <entry></entry>
+ <entry>Offset in bytes to video data in the plane, if applicable.
+ </entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>reserved[11]</structfield></entry>
+ <entry></entry>
+ <entry>Reserved for future use. Should be zeroed by an
+ application.</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
+ <table frame="none" pgwide="1" id="v4l2-buf-type">
+ <title>enum v4l2_buf_type</title>
+ <tgroup cols="3">
+ &cs-def;
+ <tbody valign="top">
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_VIDEO_CAPTURE</constant></entry>
+ <entry>1</entry>
+ <entry>Buffer of a single-planar video capture stream, see <xref
+ linkend="capture" />.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE</constant>
+ </entry>
+ <entry>9</entry>
+ <entry>Buffer of a multi-planar video capture stream, see <xref
+ linkend="capture" />.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT</constant></entry>
+ <entry>2</entry>
+ <entry>Buffer of a single-planar video output stream, see <xref
+ linkend="output" />.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE</constant>
+ </entry>
+ <entry>10</entry>
+ <entry>Buffer of a multi-planar video output stream, see <xref
+ linkend="output" />.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_VIDEO_OVERLAY</constant></entry>
+ <entry>3</entry>
+ <entry>Buffer for video overlay, see <xref linkend="overlay" />.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_VBI_CAPTURE</constant></entry>
+ <entry>4</entry>
+ <entry>Buffer of a raw VBI capture stream, see <xref
+ linkend="raw-vbi" />.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_VBI_OUTPUT</constant></entry>
+ <entry>5</entry>
+ <entry>Buffer of a raw VBI output stream, see <xref
+ linkend="raw-vbi" />.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_SLICED_VBI_CAPTURE</constant></entry>
+ <entry>6</entry>
+ <entry>Buffer of a sliced VBI capture stream, see <xref
+ linkend="sliced" />.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_SLICED_VBI_OUTPUT</constant></entry>
+ <entry>7</entry>
+ <entry>Buffer of a sliced VBI output stream, see <xref
+ linkend="sliced" />.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY</constant></entry>
+ <entry>8</entry>
+ <entry>Buffer for video output overlay (OSD), see <xref
+ linkend="osd" />. Status: <link
+ linkend="experimental">Experimental</link>.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_TYPE_PRIVATE</constant></entry>
+ <entry>0x80</entry>
+ <entry>This and higher values are reserved for custom
+ (driver defined) buffer types.</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
+ <table frame="none" pgwide="1" id="buffer-flags">
+ <title>Buffer Flags</title>
+ <tgroup cols="3">
+ &cs-def;
+ <tbody valign="top">
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_MAPPED</constant></entry>
+ <entry>0x0001</entry>
+ <entry>The buffer resides in device memory and has been mapped
+ into the application's address space, see <xref linkend="mmap" /> for details.
+ Drivers set or clear this flag when the
+ <link linkend="vidioc-querybuf">VIDIOC_QUERYBUF</link>, <link
+ linkend="vidioc-qbuf">VIDIOC_QBUF</link> or <link
+ linkend="vidioc-qbuf">VIDIOC_DQBUF</link> ioctl is called. Set by the driver.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_QUEUED</constant></entry>
+ <entry>0x0002</entry>
+ <entry>Internally drivers maintain two buffer queues, an
+ incoming and outgoing queue. When this flag is set, the buffer is
+ currently on the incoming queue. It automatically moves to the
+ outgoing queue after the buffer has been filled (capture devices) or
+ displayed (output devices). Drivers set or clear this flag when the
+ <constant>VIDIOC_QUERYBUF</constant> ioctl is called. After
+ (successful) calling the <constant>VIDIOC_QBUF </constant>ioctl it is
+ always set and after <constant>VIDIOC_DQBUF</constant> always
+ cleared.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_DONE</constant></entry>
+ <entry>0x0004</entry>
+ <entry>When this flag is set, the buffer is currently on
+ the outgoing queue, ready to be dequeued from the driver. Drivers set
+ or clear this flag when the <constant>VIDIOC_QUERYBUF</constant> ioctl
+ is called. After calling the <constant>VIDIOC_QBUF</constant> or
+ <constant>VIDIOC_DQBUF</constant> it is always cleared. Of course a
+ buffer cannot be on both queues at the same time, the
+ <constant>V4L2_BUF_FLAG_QUEUED</constant> and
+ <constant>V4L2_BUF_FLAG_DONE</constant> flag are mutually exclusive.
+ They can be both cleared however, then the buffer is in "dequeued"
+ state, in the application domain to say so.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_ERROR</constant></entry>
+ <entry>0x0040</entry>
+ <entry>When this flag is set, the buffer has been dequeued
+ successfully, although the data might have been corrupted.
+ This is recoverable, streaming may continue as normal and
+ the buffer may be reused normally.
+ Drivers set this flag when the <constant>VIDIOC_DQBUF</constant>
+ ioctl is called.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_KEYFRAME</constant></entry>
+ <entry>0x0008</entry>
+ <entry>Drivers set or clear this flag when calling the
+ <constant>VIDIOC_DQBUF</constant> ioctl. It may be set by video
+ capture devices when the buffer contains a compressed image which is a
+ key frame (or field), &ie; can be decompressed on its own.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_PFRAME</constant></entry>
+ <entry>0x0010</entry>
+ <entry>Similar to <constant>V4L2_BUF_FLAG_KEYFRAME</constant>
+ this flags predicted frames or fields which contain only differences to a
+ previous key frame.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_BFRAME</constant></entry>
+ <entry>0x0020</entry>
+ <entry>Similar to <constant>V4L2_BUF_FLAG_PFRAME</constant>
+ this is a bidirectional predicted frame or field. [ooc tbd]</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_TIMECODE</constant></entry>
+ <entry>0x0100</entry>
+ <entry>The <structfield>timecode</structfield> field is valid.
+ Drivers set or clear this flag when the <constant>VIDIOC_DQBUF</constant>
+ ioctl is called.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_BUF_FLAG_INPUT</constant></entry>
+ <entry>0x0200</entry>
+ <entry>The <structfield>input</structfield> field is valid.
+ Applications set or clear this flag before calling the
+ <constant>VIDIOC_QBUF</constant> ioctl.</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
+ <table pgwide="1" frame="none" id="v4l2-memory">
+ <title>enum v4l2_memory</title>
+ <tgroup cols="3">
+ &cs-def;
+ <tbody valign="top">
+ <row>
+ <entry><constant>V4L2_MEMORY_MMAP</constant></entry>
+ <entry>1</entry>
+ <entry>The buffer is used for <link linkend="mmap">memory
+ mapping</link> I/O.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_MEMORY_USERPTR</constant></entry>
+ <entry>2</entry>
+ <entry>The buffer is used for <link linkend="userp">user
+ pointer</link> I/O.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_MEMORY_OVERLAY</constant></entry>
+ <entry>3</entry>
+ <entry>[to do]</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
+ <section>
+ <title>Timecodes</title>
+
+ <para>The <structname>v4l2_timecode</structname> structure is
+ designed to hold a <xref linkend="smpte12m" /> or similar timecode.
+ (struct <structname>timeval</structname> timestamps are stored in
+ &v4l2-buffer; field <structfield>timestamp</structfield>.)</para>
+
+ <table frame="none" pgwide="1" id="v4l2-timecode">
+ <title>struct <structname>v4l2_timecode</structname></title>
+ <tgroup cols="3">
+ &cs-str;
+ <tbody valign="top">
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>type</structfield></entry>
+ <entry>Frame rate the timecodes are based on, see <xref
+ linkend="timecode-type" />.</entry>
+ </row>
+ <row>
+ <entry>__u32</entry>
+ <entry><structfield>flags</structfield></entry>
+ <entry>Timecode flags, see <xref linkend="timecode-flags" />.</entry>
+ </row>
+ <row>
+ <entry>__u8</entry>
+ <entry><structfield>frames</structfield></entry>
+ <entry>Frame count, 0 ... 23/24/29/49/59, depending on the
+ type of timecode.</entry>
+ </row>
+ <row>
+ <entry>__u8</entry>
+ <entry><structfield>seconds</structfield></entry>
+ <entry>Seconds count, 0 ... 59. This is a binary, not BCD number.</entry>
+ </row>
+ <row>
+ <entry>__u8</entry>
+ <entry><structfield>minutes</structfield></entry>
+ <entry>Minutes count, 0 ... 59. This is a binary, not BCD number.</entry>
+ </row>
+ <row>
+ <entry>__u8</entry>
+ <entry><structfield>hours</structfield></entry>
+ <entry>Hours count, 0 ... 29. This is a binary, not BCD number.</entry>
+ </row>
+ <row>
+ <entry>__u8</entry>
+ <entry><structfield>userbits</structfield>[4]</entry>
+ <entry>The "user group" bits from the timecode.</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
+ <table frame="none" pgwide="1" id="timecode-type">
+ <title>Timecode Types</title>
+ <tgroup cols="3">
+ &cs-def;
+ <tbody valign="top">
+ <row>
+ <entry><constant>V4L2_TC_TYPE_24FPS</constant></entry>
+ <entry>1</entry>
+ <entry>24 frames per second, i. e. film.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_TC_TYPE_25FPS</constant></entry>
+ <entry>2</entry>
+ <entry>25 frames per second, &ie; PAL or SECAM video.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_TC_TYPE_30FPS</constant></entry>
+ <entry>3</entry>
+ <entry>30 frames per second, &ie; NTSC video.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_TC_TYPE_50FPS</constant></entry>
+ <entry>4</entry>
+ <entry></entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_TC_TYPE_60FPS</constant></entry>
+ <entry>5</entry>
+ <entry></entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
+ <table frame="none" pgwide="1" id="timecode-flags">
+ <title>Timecode Flags</title>
+ <tgroup cols="3">
+ &cs-def;
+ <tbody valign="top">
+ <row>
+ <entry><constant>V4L2_TC_FLAG_DROPFRAME</constant></entry>
+ <entry>0x0001</entry>
+ <entry>Indicates "drop frame" semantics for counting frames
+ in 29.97 fps material. When set, frame numbers 0 and 1 at the start of
+ each minute, except minutes 0, 10, 20, 30, 40, 50 are omitted from the
+ count.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_TC_FLAG_COLORFRAME</constant></entry>
+ <entry>0x0002</entry>
+ <entry>The "color frame" flag.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_TC_USERBITS_field</constant></entry>
+ <entry>0x000C</entry>
+ <entry>Field mask for the "binary group flags".</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_TC_USERBITS_USERDEFINED</constant></entry>
+ <entry>0x0000</entry>
+ <entry>Unspecified format.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_TC_USERBITS_8BITCHARS</constant></entry>
+ <entry>0x0008</entry>
+ <entry>8-bit ISO characters.</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+ </section>
+ </section>
+
+ <section id="field-order">
+ <title>Field Order</title>
+
+ <para>We have to distinguish between progressive and interlaced
+ video. Progressive video transmits all lines of a video image
+ sequentially. Interlaced video divides an image into two fields,
+ containing only the odd and even lines of the image, respectively.
+ Alternating the so called odd and even field are transmitted, and due
+ to a small delay between fields a cathode ray TV displays the lines
+ interleaved, yielding the original frame. This curious technique was
+ invented because at refresh rates similar to film the image would
+ fade out too quickly. Transmitting fields reduces the flicker without
+ the necessity of doubling the frame rate and with it the bandwidth
+ required for each channel.</para>
+
+ <para>It is important to understand a video camera does not expose
+ one frame at a time, merely transmitting the frames separated into
+ fields. The fields are in fact captured at two different instances in
+ time. An object on screen may well move between one field and the
+ next. For applications analysing motion it is of paramount importance
+ to recognize which field of a frame is older, the <emphasis>temporal
+ order</emphasis>.</para>
+
+ <para>When the driver provides or accepts images field by field
+ rather than interleaved, it is also important applications understand
+ how the fields combine to frames. We distinguish between top (aka odd) and
+ bottom (aka even) fields, the <emphasis>spatial order</emphasis>: The first line
+ of the top field is the first line of an interlaced frame, the first
+ line of the bottom field is the second line of that frame.</para>
+
+ <para>However because fields were captured one after the other,
+ arguing whether a frame commences with the top or bottom field is
+ pointless. Any two successive top and bottom, or bottom and top fields
+ yield a valid frame. Only when the source was progressive to begin
+ with, ⪚ when transferring film to video, two fields may come from
+ the same frame, creating a natural order.</para>
+
+ <para>Counter to intuition the top field is not necessarily the
+ older field. Whether the older field contains the top or bottom lines
+ is a convention determined by the video standard. Hence the
+ distinction between temporal and spatial order of fields. The diagrams
+ below should make this clearer.</para>
+
+ <para>All video capture and output devices must report the current
+ field order. Some drivers may permit the selection of a different
+ order, to this end applications initialize the
+ <structfield>field</structfield> field of &v4l2-pix-format; before
+ calling the &VIDIOC-S-FMT; ioctl. If this is not desired it should
+ have the value <constant>V4L2_FIELD_ANY</constant> (0).</para>
+
+ <table frame="none" pgwide="1" id="v4l2-field">
+ <title>enum v4l2_field</title>
+ <tgroup cols="3">
+ &cs-def;
+ <tbody valign="top">
+ <row>
+ <entry><constant>V4L2_FIELD_ANY</constant></entry>
+ <entry>0</entry>
+ <entry>Applications request this field order when any
+ one of the <constant>V4L2_FIELD_NONE</constant>,
+ <constant>V4L2_FIELD_TOP</constant>,
+ <constant>V4L2_FIELD_BOTTOM</constant>, or
+ <constant>V4L2_FIELD_INTERLACED</constant> formats is acceptable.
+ Drivers choose depending on hardware capabilities or e. g. the
+ requested image size, and return the actual field order. &v4l2-buffer;
+ <structfield>field</structfield> can never be
+ <constant>V4L2_FIELD_ANY</constant>.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FIELD_NONE</constant></entry>
+ <entry>1</entry>
+ <entry>Images are in progressive format, not interlaced.
+ The driver may also indicate this order when it cannot distinguish
+ between <constant>V4L2_FIELD_TOP</constant> and
+ <constant>V4L2_FIELD_BOTTOM</constant>.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FIELD_TOP</constant></entry>
+ <entry>2</entry>
+ <entry>Images consist of the top (aka odd) field only.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FIELD_BOTTOM</constant></entry>
+ <entry>3</entry>
+ <entry>Images consist of the bottom (aka even) field only.
+ Applications may wish to prevent a device from capturing interlaced
+ images because they will have "comb" or "feathering" artefacts around
+ moving objects.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FIELD_INTERLACED</constant></entry>
+ <entry>4</entry>
+ <entry>Images contain both fields, interleaved line by
+ line. The temporal order of the fields (whether the top or bottom
+ field is first transmitted) depends on the current video standard.
+ M/NTSC transmits the bottom field first, all other standards the top
+ field first.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FIELD_SEQ_TB</constant></entry>
+ <entry>5</entry>
+ <entry>Images contain both fields, the top field lines
+ are stored first in memory, immediately followed by the bottom field
+ lines. Fields are always stored in temporal order, the older one first
+ in memory. Image sizes refer to the frame, not fields.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FIELD_SEQ_BT</constant></entry>
+ <entry>6</entry>
+ <entry>Images contain both fields, the bottom field
+ lines are stored first in memory, immediately followed by the top
+ field lines. Fields are always stored in temporal order, the older one
+ first in memory. Image sizes refer to the frame, not fields.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FIELD_ALTERNATE</constant></entry>
+ <entry>7</entry>
+ <entry>The two fields of a frame are passed in separate
+ buffers, in temporal order, &ie; the older one first. To indicate the field
+ parity (whether the current field is a top or bottom field) the driver
+ or application, depending on data direction, must set &v4l2-buffer;
+ <structfield>field</structfield> to
+ <constant>V4L2_FIELD_TOP</constant> or
+ <constant>V4L2_FIELD_BOTTOM</constant>. Any two successive fields pair
+ to build a frame. If fields are successive, without any dropped fields
+ between them (fields can drop individually), can be determined from
+ the &v4l2-buffer; <structfield>sequence</structfield> field. Image
+ sizes refer to the frame, not fields. This format cannot be selected
+ when using the read/write I/O method.<!-- Where it's indistinguishable
+ from V4L2_FIELD_SEQ_*. --></entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FIELD_INTERLACED_TB</constant></entry>
+ <entry>8</entry>
+ <entry>Images contain both fields, interleaved line by
+ line, top field first. The top field is transmitted first.</entry>
+ </row>
+ <row>
+ <entry><constant>V4L2_FIELD_INTERLACED_BT</constant></entry>
+ <entry>9</entry>
+ <entry>Images contain both fields, interleaved line by
+ line, top field first. The bottom field is transmitted first.</entry>
+ </row>
+ </tbody>
+ </tgroup>
+ </table>
+
+ <figure id="fieldseq-tb">
+ <title>Field Order, Top Field First Transmitted</title>
+ <mediaobject>
+ <imageobject>
+ <imagedata fileref="fieldseq_tb.pdf" format="PS" />
+ </imageobject>
+ <imageobject>
+ <imagedata fileref="fieldseq_tb.gif" format="GIF" />
+ </imageobject>
+ </mediaobject>
+ </figure>
+
+ <figure id="fieldseq-bt">
+ <title>Field Order, Bottom Field First Transmitted</title>
+ <mediaobject>
+ <imageobject>
+ <imagedata fileref="fieldseq_bt.pdf" format="PS" />
+ </imageobject>
+ <imageobject>
+ <imagedata fileref="fieldseq_bt.gif" format="GIF" />
+ </imageobject>
+ </mediaobject>
+ </figure>
+ </section>
+
+ <!--
+ Local Variables:
+ mode: sgml
+ sgml-parent-document: "v4l2.sgml"
+ indent-tabs-mode: nil
+ End:
+ -->
#include <sound/tpa6130a2-plat.h>
#include <media/radio-si4713.h>
#include <media/si4713.h>
+#include <linux/leds-lp5523.h>
#include <../drivers/staging/iio/light/tsl2563.h>
#define RX51_WL1251_IRQ_GPIO 42
#define RX51_FMTX_RESET_GPIO 163
#define RX51_FMTX_IRQ 53
+#define RX51_LP5523_CHIP_EN_GPIO 41
#define RX51_USB_TRANSCEIVER_RST_GPIO 67
};
#endif
+#if defined(CONFIG_LEDS_LP5523) || defined(CONFIG_LEDS_LP5523_MODULE)
+static struct lp5523_led_config rx51_lp5523_led_config[] = {
+ {
+ .chan_nr = 0,
+ .led_current = 50,
+ }, {
+ .chan_nr = 1,
+ .led_current = 50,
+ }, {
+ .chan_nr = 2,
+ .led_current = 50,
+ }, {
+ .chan_nr = 3,
+ .led_current = 50,
+ }, {
+ .chan_nr = 4,
+ .led_current = 50,
+ }, {
+ .chan_nr = 5,
+ .led_current = 50,
+ }, {
+ .chan_nr = 6,
+ .led_current = 50,
+ }, {
+ .chan_nr = 7,
+ .led_current = 50,
+ }, {
+ .chan_nr = 8,
+ .led_current = 50,
+ }
+};
+
+static int rx51_lp5523_setup(void)
+{
+ return gpio_request_one(RX51_LP5523_CHIP_EN_GPIO, GPIOF_DIR_OUT,
+ "lp5523_enable");
+}
+
+static void rx51_lp5523_release(void)
+{
+ gpio_free(RX51_LP5523_CHIP_EN_GPIO);
+}
+
+static void rx51_lp5523_enable(bool state)
+{
+ gpio_set_value(RX51_LP5523_CHIP_EN_GPIO, !!state);
+}
+
+static struct lp5523_platform_data rx51_lp5523_platform_data = {
+ .led_config = rx51_lp5523_led_config,
+ .num_channels = ARRAY_SIZE(rx51_lp5523_led_config),
+ .clock_mode = LP5523_CLOCK_AUTO,
+ .setup_resources = rx51_lp5523_setup,
+ .release_resources = rx51_lp5523_release,
+ .enable = rx51_lp5523_enable,
+};
+#endif
+
static struct omap2_mcspi_device_config wl1251_mcspi_config = {
.turbo_mode = 0,
.single_channel = 1,
.rep = 1,
};
-static struct twl4030_madc_platform_data rx51_madc_data = {
- .irq_line = 1,
-};
-
/* Enable input logic and pull all lines up when eMMC is on. */
static struct omap_board_mux rx51_mmc2_on_mux[] = {
OMAP3_MUX(SDMMC2_CMD, OMAP_PIN_INPUT_PULLUP | OMAP_MUX_MODE0),
{} /* Terminator */
};
-static struct regulator_consumer_supply rx51_vmmc1_supply =
- REGULATOR_SUPPLY("vmmc", "omap_hsmmc.0");
+static struct regulator_consumer_supply rx51_vmmc1_supply[] = {
+ REGULATOR_SUPPLY("vmmc", "omap_hsmmc.0"),
+};
-static struct regulator_consumer_supply rx51_vaux2_supply =
- REGULATOR_SUPPLY("vdds_csib", "omap3isp");
++static struct regulator_consumer_supply rx51_vaux2_supply[] = {
++ REGULATOR_SUPPLY("vdds_csib", "omap3isp"),
++};
+
-static struct regulator_consumer_supply rx51_vaux3_supply =
- REGULATOR_SUPPLY("vmmc", "omap_hsmmc.1");
+static struct regulator_consumer_supply rx51_vaux3_supply[] = {
+ REGULATOR_SUPPLY("vmmc", "omap_hsmmc.1"),
+};
-static struct regulator_consumer_supply rx51_vsim_supply =
- REGULATOR_SUPPLY("vmmc_aux", "omap_hsmmc.1");
+static struct regulator_consumer_supply rx51_vsim_supply[] = {
+ REGULATOR_SUPPLY("vmmc_aux", "omap_hsmmc.1"),
+};
static struct regulator_consumer_supply rx51_vmmc2_supplies[] = {
/* tlv320aic3x analog supplies */
REGULATOR_SUPPLY("vdd", "2-0063"),
};
-static struct regulator_consumer_supply rx51_vdac_supply[] = {
- REGULATOR_SUPPLY("vdda_dac", "omapdss_venc"),
-};
-
static struct regulator_init_data rx51_vaux1 = {
.constraints = {
.name = "V28",
.valid_ops_mask = REGULATOR_CHANGE_MODE
| REGULATOR_CHANGE_STATUS,
},
- .num_consumer_supplies = 1,
- .consumer_supplies = &rx51_vaux2_supply,
++ .num_consumer_supplies = ARRAY_SIZE(rx51_vaux2_supply),
++ .consumer_supplies = rx51_vaux2_supply,
};
/* VAUX3 - adds more power to VIO_18 rail */
| REGULATOR_CHANGE_MODE
| REGULATOR_CHANGE_STATUS,
},
- .num_consumer_supplies = 1,
- .consumer_supplies = &rx51_vaux3_supply,
+ .num_consumer_supplies = ARRAY_SIZE(rx51_vaux3_supply),
+ .consumer_supplies = rx51_vaux3_supply,
};
static struct regulator_init_data rx51_vaux4 = {
| REGULATOR_CHANGE_MODE
| REGULATOR_CHANGE_STATUS,
},
- .num_consumer_supplies = 1,
- .consumer_supplies = &rx51_vmmc1_supply,
+ .num_consumer_supplies = ARRAY_SIZE(rx51_vmmc1_supply),
+ .consumer_supplies = rx51_vmmc1_supply,
};
static struct regulator_init_data rx51_vmmc2 = {
.consumer_supplies = rx51_vmmc2_supplies,
};
-static struct regulator_init_data rx51_vsim = {
+static struct regulator_init_data rx51_vpll1 = {
.constraints = {
- .name = "VMMC2_IO_18",
+ .name = "VPLL",
.min_uV = 1800000,
.max_uV = 1800000,
.apply_uV = true,
+ .always_on = true,
.valid_modes_mask = REGULATOR_MODE_NORMAL
| REGULATOR_MODE_STANDBY,
- .valid_ops_mask = REGULATOR_CHANGE_MODE
- | REGULATOR_CHANGE_STATUS,
+ .valid_ops_mask = REGULATOR_CHANGE_MODE,
},
- .num_consumer_supplies = 1,
- .consumer_supplies = &rx51_vsim_supply,
};
-static struct regulator_init_data rx51_vdac = {
+static struct regulator_init_data rx51_vpll2 = {
.constraints = {
- .name = "VDAC",
+ .name = "VSDI_CSI",
+ .min_uV = 1800000,
+ .max_uV = 1800000,
+ .apply_uV = true,
+ .always_on = true,
+ .valid_modes_mask = REGULATOR_MODE_NORMAL
+ | REGULATOR_MODE_STANDBY,
+ .valid_ops_mask = REGULATOR_CHANGE_MODE,
+ },
+};
+
+static struct regulator_init_data rx51_vsim = {
+ .constraints = {
+ .name = "VMMC2_IO_18",
.min_uV = 1800000,
.max_uV = 1800000,
.apply_uV = true,
.valid_ops_mask = REGULATOR_CHANGE_MODE
| REGULATOR_CHANGE_STATUS,
},
- .num_consumer_supplies = 1,
- .consumer_supplies = rx51_vdac_supply,
+ .num_consumer_supplies = ARRAY_SIZE(rx51_vsim_supply),
+ .consumer_supplies = rx51_vsim_supply,
};
static struct regulator_init_data rx51_vio = {
.consumer_supplies = rx51_vio_supplies,
};
+static struct regulator_init_data rx51_vintana1 = {
+ .constraints = {
+ .name = "VINTANA1",
+ .min_uV = 1500000,
+ .max_uV = 1500000,
+ .always_on = true,
+ .valid_modes_mask = REGULATOR_MODE_NORMAL
+ | REGULATOR_MODE_STANDBY,
+ .valid_ops_mask = REGULATOR_CHANGE_MODE,
+ },
+};
+
+static struct regulator_init_data rx51_vintana2 = {
+ .constraints = {
+ .name = "VINTANA2",
+ .min_uV = 2750000,
+ .max_uV = 2750000,
+ .apply_uV = true,
+ .always_on = true,
+ .valid_modes_mask = REGULATOR_MODE_NORMAL
+ | REGULATOR_MODE_STANDBY,
+ .valid_ops_mask = REGULATOR_CHANGE_MODE,
+ },
+};
+
+static struct regulator_init_data rx51_vintdig = {
+ .constraints = {
+ .name = "VINTDIG",
+ .min_uV = 1500000,
+ .max_uV = 1500000,
+ .always_on = true,
+ .valid_modes_mask = REGULATOR_MODE_NORMAL
+ | REGULATOR_MODE_STANDBY,
+ .valid_ops_mask = REGULATOR_CHANGE_MODE,
+ },
+};
+
static struct si4713_platform_data rx51_si4713_i2c_data __initdata_or_module = {
.gpio_reset = RX51_FMTX_RESET_GPIO,
};
.setup = rx51_twlgpio_setup,
};
-static struct twl4030_usb_data rx51_usb_data = {
- .usb_mode = T2_USB_MODE_ULPI,
-};
-
static struct twl4030_ins sleep_on_seq[] __initdata = {
/*
* Turn off everything
.resource_config = twl4030_rconfig,
};
-struct twl4030_codec_vibra_data rx51_vibra_data __initdata = {
+struct twl4030_vibra_data rx51_vibra_data __initdata = {
.coexist = 0,
};
-struct twl4030_codec_data rx51_codec_data __initdata = {
+struct twl4030_audio_data rx51_audio_data __initdata = {
.audio_mclk = 26000000,
.vibra = &rx51_vibra_data,
};
static struct twl4030_platform_data rx51_twldata __initdata = {
- .irq_base = TWL4030_IRQ_BASE,
- .irq_end = TWL4030_IRQ_END,
-
/* platform_data for children goes here */
.gpio = &rx51_gpio_data,
.keypad = &rx51_kp_data,
- .madc = &rx51_madc_data,
- .usb = &rx51_usb_data,
.power = &rx51_t2scripts_data,
- .codec = &rx51_codec_data,
+ .audio = &rx51_audio_data,
.vaux1 = &rx51_vaux1,
.vaux2 = &rx51_vaux2,
.vaux4 = &rx51_vaux4,
.vmmc1 = &rx51_vmmc1,
+ .vpll1 = &rx51_vpll1,
+ .vpll2 = &rx51_vpll2,
.vsim = &rx51_vsim,
- .vdac = &rx51_vdac,
+ .vintana1 = &rx51_vintana1,
+ .vintana2 = &rx51_vintana2,
+ .vintdig = &rx51_vintdig,
.vio = &rx51_vio,
};
I2C_BOARD_INFO("tsl2563", 0x29),
.platform_data = &rx51_tsl2563_platform_data,
},
+#endif
+#if defined(CONFIG_LEDS_LP5523) || defined(CONFIG_LEDS_LP5523_MODULE)
+ {
+ I2C_BOARD_INFO("lp5523", 0x32),
+ .platform_data = &rx51_lp5523_platform_data,
+ },
#endif
{
I2C_BOARD_INFO("tpa6130a2", 0x60),
rx51_twldata.vaux3 = &rx51_vaux3_cam;
}
rx51_twldata.vmmc2 = &rx51_vmmc2;
+ omap3_pmic_get_config(&rx51_twldata,
+ TWL_COMMON_PDATA_USB | TWL_COMMON_PDATA_MADC,
+ TWL_COMMON_REGULATOR_VDAC);
+
+ rx51_twldata.vdac->constraints.apply_uV = true;
+ rx51_twldata.vdac->constraints.name = "VDAC";
+
omap_pmic_init(1, 2200, "twl5030", INT_34XX_SYS_NIRQ, &rx51_twldata);
omap_register_i2c_bus(2, 100, rx51_peripherals_i2c_board_info_2,
ARRAY_SIZE(rx51_peripherals_i2c_board_info_2));
void __init rx51_peripherals_init(void)
{
rx51_i2c_init();
+ regulator_has_full_constraints();
gpmc_onenand_init(board_onenand_data);
board_smc91x_init();
rx51_add_gpio_keys();
/*
* cxd2099.c: Driver for the CXD2099AR Common Interface Controller
*
- * Copyright (C) 2010 DigitalDevices UG
+ * Copyright (C) 2010-2011 Digital Devices GmbH
*
*
* This program is free software; you can redistribute it and/or
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
-#include <linux/version.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
struct dvb_ca_en50221 en;
struct i2c_adapter *i2c;
- u8 adr;
+ struct cxd2099_cfg cfg;
+
u8 regs[0x23];
u8 lastaddress;
u8 clk_reg_f;
u8 clk_reg_b;
int mode;
- u32 bitrate;
int ready;
int dr;
int slot_stat;
u8 reg, u8 *val)
{
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
- .buf = ®, .len = 1 },
+ .buf = ®, .len = 1},
{.addr = adr, .flags = I2C_M_RD,
- .buf = val, .len = 1 } };
+ .buf = val, .len = 1} };
if (i2c_transfer(adapter, msgs, 2) != 2) {
printk(KERN_ERR "error in i2c_read_reg\n");
u8 reg, u8 *data, u8 n)
{
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
- .buf = ®, .len = 1 },
- {.addr = adr, .flags = I2C_M_RD,
- .buf = data, .len = n } };
+ .buf = ®, .len = 1},
+ {.addr = adr, .flags = I2C_M_RD,
+ .buf = data, .len = n} };
if (i2c_transfer(adapter, msgs, 2) != 2) {
printk(KERN_ERR "error in i2c_read\n");
{
int status;
- status = i2c_write_reg(ci->i2c, ci->adr, 0, adr);
+ status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
if (!status) {
ci->lastaddress = adr;
- status = i2c_read(ci->i2c, ci->adr, 1, data, n);
+ status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, n);
}
return status;
}
static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
{
int status;
- u8 addr[3] = { 2, address&0xff, address>>8 };
+ u8 addr[3] = {2, address & 0xff, address >> 8};
- status = i2c_write(ci->i2c, ci->adr, addr, 3);
+ status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status)
- status = i2c_read(ci->i2c, ci->adr, 3, data, n);
+ status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
return status;
}
static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
{
int status;
- u8 addr[3] = { 2, address&0xff, address>>8 };
+ u8 addr[3] = {2, address & 0xff, address >> 8};
- status = i2c_write(ci->i2c, ci->adr, addr, 3);
+ status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status) {
u8 buf[256] = {3};
memcpy(buf+1, data, n);
- status = i2c_write(ci->i2c, ci->adr, buf, n+1);
+ status = i2c_write(ci->i2c, ci->cfg.adr, buf, n+1);
}
return status;
}
static int read_io(struct cxd *ci, u16 address, u8 *val)
{
int status;
- u8 addr[3] = { 2, address&0xff, address>>8 };
+ u8 addr[3] = {2, address & 0xff, address >> 8};
- status = i2c_write(ci->i2c, ci->adr, addr, 3);
+ status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status)
- status = i2c_read(ci->i2c, ci->adr, 3, val, 1);
+ status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1);
return status;
}
static int write_io(struct cxd *ci, u16 address, u8 val)
{
int status;
- u8 addr[3] = { 2, address&0xff, address>>8 };
- u8 buf[2] = { 3, val };
+ u8 addr[3] = {2, address & 0xff, address >> 8};
+ u8 buf[2] = {3, val};
- status = i2c_write(ci->i2c, ci->adr, addr, 3);
+ status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status)
- status = i2c_write(ci->i2c, ci->adr, buf, 2);
-
+ status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2);
return status;
}
+ #if 0
+ static int read_io_data(struct cxd *ci, u8 *data, u8 n)
+ {
+ int status;
+ u8 addr[3] = { 2, 0, 0 };
+
+ status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
+ if (!status)
+ status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
+ return 0;
+ }
+
+ static int write_io_data(struct cxd *ci, u8 *data, u8 n)
+ {
+ int status;
+ u8 addr[3] = {2, 0, 0};
+
+ status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
+ if (!status) {
+ u8 buf[256] = {3};
+ memcpy(buf+1, data, n);
+ status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
+ }
+ return 0;
+ }
+ #endif
static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
{
int status;
- status = i2c_write_reg(ci->i2c, ci->adr, 0, reg);
+ status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
if (!status && reg >= 6 && reg <= 8 && mask != 0xff)
- status = i2c_read_reg(ci->i2c, ci->adr, 1, &ci->regs[reg]);
- ci->regs[reg] = (ci->regs[reg]&(~mask))|val;
+ status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]);
+ ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
if (!status) {
ci->lastaddress = reg;
- status = i2c_write_reg(ci->i2c, ci->adr, 1, ci->regs[reg]);
+ status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]);
}
if (reg == 0x20)
ci->regs[reg] &= 0x7f;
int status;
u8 buf[256] = {1};
- status = i2c_write_reg(ci->i2c, ci->adr, 0, adr);
+ status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
if (!status) {
ci->lastaddress = adr;
- memcpy(buf+1, data, n);
- status = i2c_write(ci->i2c, ci->adr, buf, n+1);
+ memcpy(buf + 1, data, n);
+ status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
}
return status;
}
write_regm(ci, 0x20, 0x80, 0x80);
break;
case 0x01:
+ #ifdef BUFFER_MODE
+ if (!ci->en.read_data)
+ return;
printk(KERN_INFO "enable cam buffer mode\n");
/* write_reg(ci, 0x0d, 0x00); */
/* write_reg(ci, 0x0e, 0x01); */
write_regm(ci, 0x08, 0x40, 0x40);
/* read_reg(ci, 0x12, &dummy); */
write_regm(ci, 0x08, 0x80, 0x80);
+ #endif
break;
default:
break;
- #define CHK_ERROR(s) if ((status = s)) break
-
static int init(struct cxd *ci)
{
int status;
mutex_lock(&ci->lock);
ci->mode = -1;
do {
- CHK_ERROR(write_reg(ci, 0x00, 0x00));
- CHK_ERROR(write_reg(ci, 0x01, 0x00));
- CHK_ERROR(write_reg(ci, 0x02, 0x10));
- CHK_ERROR(write_reg(ci, 0x03, 0x00));
- CHK_ERROR(write_reg(ci, 0x05, 0xFF));
- CHK_ERROR(write_reg(ci, 0x06, 0x1F));
- CHK_ERROR(write_reg(ci, 0x07, 0x1F));
- CHK_ERROR(write_reg(ci, 0x08, 0x28));
- CHK_ERROR(write_reg(ci, 0x14, 0x20));
-
- CHK_ERROR(write_reg(ci, 0x09, 0x4D)); /* Input Mode C, BYPass Serial, TIVAL = low, MSB */
- CHK_ERROR(write_reg(ci, 0x0A, 0xA7)); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */
-
- /* Sync detector */
- CHK_ERROR(write_reg(ci, 0x0B, 0x33));
- CHK_ERROR(write_reg(ci, 0x0C, 0x33));
-
- CHK_ERROR(write_regm(ci, 0x14, 0x00, 0x0F));
- CHK_ERROR(write_reg(ci, 0x15, ci->clk_reg_b));
- CHK_ERROR(write_regm(ci, 0x16, 0x00, 0x0F));
- CHK_ERROR(write_reg(ci, 0x17, ci->clk_reg_f));
-
- CHK_ERROR(write_reg(ci, 0x20, 0x28)); /* Integer Divider, Falling Edge, Internal Sync, */
- CHK_ERROR(write_reg(ci, 0x21, 0x00)); /* MCLKI = TICLK/8 */
- CHK_ERROR(write_reg(ci, 0x22, 0x07)); /* MCLKI = TICLK/8 */
-
-
- CHK_ERROR(write_regm(ci, 0x20, 0x80, 0x80)); /* Reset CAM state machine */
-
- CHK_ERROR(write_regm(ci, 0x03, 0x02, 02)); /* Enable IREQA Interrupt */
- CHK_ERROR(write_reg(ci, 0x01, 0x04)); /* Enable CD Interrupt */
- CHK_ERROR(write_reg(ci, 0x00, 0x31)); /* Enable TS1,Hot Swap,Slot A */
- CHK_ERROR(write_regm(ci, 0x09, 0x08, 0x08)); /* Put TS in bypass */
+ status = write_reg(ci, 0x00, 0x00);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x01, 0x00);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x02, 0x10);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x03, 0x00);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x05, 0xFF);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x06, 0x1F);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x07, 0x1F);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x08, 0x28);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x14, 0x20);
+ if (status < 0)
+ break;
+
+ #if 0
+ status = write_reg(ci, 0x09, 0x4D); /* Input Mode C, BYPass Serial, TIVAL = low, MSB */
+ if (status < 0)
+ break;
+ #endif
+ status = write_reg(ci, 0x0A, 0xA7); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */
+ if (status < 0)
+ break;
+
+ status = write_reg(ci, 0x0B, 0x33);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x0C, 0x33);
+ if (status < 0)
+ break;
+
+ status = write_regm(ci, 0x14, 0x00, 0x0F);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x15, ci->clk_reg_b);
+ if (status < 0)
+ break;
+ status = write_regm(ci, 0x16, 0x00, 0x0F);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x17, ci->clk_reg_f);
+ if (status < 0)
+ break;
+
+ if (ci->cfg.clock_mode) {
+ if (ci->cfg.polarity) {
+ status = write_reg(ci, 0x09, 0x6f);
+ if (status < 0)
+ break;
+ } else {
+ status = write_reg(ci, 0x09, 0x6d);
+ if (status < 0)
+ break;
+ }
+ status = write_reg(ci, 0x20, 0x68);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x21, 0x00);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x22, 0x02);
+ if (status < 0)
+ break;
+ } else {
+ if (ci->cfg.polarity) {
+ status = write_reg(ci, 0x09, 0x4f);
+ if (status < 0)
+ break;
+ } else {
+ status = write_reg(ci, 0x09, 0x4d);
+ if (status < 0)
+ break;
+ }
+
+ status = write_reg(ci, 0x20, 0x28);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x21, 0x00);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x22, 0x07);
+ if (status < 0)
+ break;
+ }
+
+ status = write_regm(ci, 0x20, 0x80, 0x80);
+ if (status < 0)
+ break;
+ status = write_regm(ci, 0x03, 0x02, 0x02);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x01, 0x04);
+ if (status < 0)
+ break;
+ status = write_reg(ci, 0x00, 0x31);
+ if (status < 0)
+ break;
+
+ /* Put TS in bypass */
+ status = write_regm(ci, 0x09, 0x08, 0x08);
+ if (status < 0)
+ break;
ci->cammode = -1;
- #ifdef BUFFER_MODE
cam_mode(ci, 0);
- #endif
} while (0);
mutex_unlock(&ci->lock);
return 0;
}
-
static int read_attribute_mem(struct dvb_ca_en50221 *ca,
int slot, int address)
{
struct cxd *ci = ca->data;
+ #if 0
+ if (ci->amem_read) {
+ if (address <= 0 || address > 1024)
+ return -EIO;
+ return ci->amem[address];
+ }
+
+ mutex_lock(&ci->lock);
+ write_regm(ci, 0x06, 0x00, 0x05);
+ read_pccard(ci, 0, &ci->amem[0], 128);
+ read_pccard(ci, 128, &ci->amem[0], 128);
+ read_pccard(ci, 256, &ci->amem[0], 128);
+ read_pccard(ci, 384, &ci->amem[0], 128);
+ write_regm(ci, 0x06, 0x05, 0x05);
+ mutex_unlock(&ci->lock);
+ return ci->amem[address];
+ #else
u8 val;
mutex_lock(&ci->lock);
set_mode(ci, 1);
read_pccard(ci, address, &val, 1);
mutex_unlock(&ci->lock);
+ /* printk(KERN_INFO "%02x:%02x\n", address,val); */
return val;
+ #endif
}
-
static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
int address, u8 value)
{
struct cxd *ci = ca->data;
mutex_lock(&ci->lock);
+ #if 0
+ write_reg(ci, 0x00, 0x21);
+ write_reg(ci, 0x06, 0x1F);
+ write_reg(ci, 0x00, 0x31);
+ #else
+ #if 0
+ write_reg(ci, 0x06, 0x1F);
+ write_reg(ci, 0x06, 0x2F);
+ #else
cam_mode(ci, 0);
write_reg(ci, 0x00, 0x21);
write_reg(ci, 0x06, 0x1F);
write_regm(ci, 0x20, 0x80, 0x80);
write_reg(ci, 0x03, 0x02);
ci->ready = 0;
+ #endif
+ #endif
ci->mode = -1;
{
int i;
+ #if 0
+ u8 val;
+ #endif
for (i = 0; i < 100; i++) {
msleep(10);
+ #if 0
+ read_reg(ci, 0x06, &val);
+ printk(KERN_INFO "%d:%02x\n", i, val);
+ if (!(val&0x10))
+ break;
+ #else
if (ci->ready)
break;
+ #endif
}
}
mutex_unlock(&ci->lock);
printk(KERN_INFO "slot_shutdown\n");
mutex_lock(&ci->lock);
- /* write_regm(ci, 0x09, 0x08, 0x08); */
- write_regm(ci, 0x20, 0x80, 0x80);
- write_regm(ci, 0x06, 0x07, 0x07);
+ write_regm(ci, 0x09, 0x08, 0x08);
+ write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
+ write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
ci->mode = -1;
mutex_unlock(&ci->lock);
- return 0; /* shutdown(ci); */
+ return 0;
}
static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
if (istat&8 && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
ci->ready = 1;
ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
- printk(KERN_INFO "READY\n");
}
}
return 0;
struct cxd *ci = ca->data;
mutex_lock(&ci->lock);
- printk(KERN_INFO "write_data %d\n", ecount);
+ printk(kern_INFO "write_data %d\n", ecount);
write_reg(ci, 0x0d, ecount>>8);
write_reg(ci, 0x0e, ecount&0xff);
write_block(ci, 0x11, ebuf, ecount);
};
- struct dvb_ca_en50221 *cxd2099_attach(u8 adr, void *priv,
+ struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
+ void *priv,
struct i2c_adapter *i2c)
{
struct cxd *ci = 0;
- u32 bitrate = 62000000;
u8 val;
- if (i2c_read_reg(i2c, adr, 0, &val) < 0) {
- printk(KERN_ERR "No CXD2099 detected at %02x\n", adr);
+ if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) {
+ printk(KERN_INFO "No CXD2099 detected at %02x\n", cfg->adr);
return 0;
}
memset(ci, 0, sizeof(*ci));
mutex_init(&ci->lock);
+ memcpy(&ci->cfg, cfg, sizeof(struct cxd2099_cfg));
ci->i2c = i2c;
- ci->adr = adr;
ci->lastaddress = 0xff;
ci->clk_reg_b = 0x4a;
ci->clk_reg_f = 0x1b;
- ci->bitrate = bitrate;
memcpy(&ci->en, &en_templ, sizeof(en_templ));
ci->en.data = ci;
init(ci);
- printk(KERN_INFO "Attached CXD2099AR at %02x\n", ci->adr);
+ printk(KERN_INFO "Attached CXD2099AR at %02x\n", ci->cfg.adr);
return &ci->en;
}
EXPORT_SYMBOL(cxd2099_attach);
MODULE_DESCRIPTION("cxd2099");
+ MODULE_AUTHOR("Ralph Metzler");
MODULE_LICENSE("GPL");