The Device Feature List (DFL) FPGA framework (and drivers according to
-this framework) hides the very details of low layer hardwares and provides
+this framework) hides the very details of low layer hardware and provides
unified interfaces to userspace. Applications could use these interfaces to
configure, enumerate, open and access FPGA accelerators on platforms which
implement the DFL in the device memory. Besides this, the DFL framework
also abstracts operations for the private features and exposes common ops to
feature device drivers.
-The FPGA DFL Device could be different hardwares, e.g. PCIe device, platform
+The FPGA DFL Device could be different hardware, e.g. PCIe device, platform
device and etc. Its driver module is always loaded first once the device is
created by the system. This driver plays an infrastructural role in the
driver architecture. It locates the DFLs in the device memory, handles them
}
if (val & VSE_CVP_STATUS_CFG_RDY) {
- dev_warn(&mgr->dev, "CvP already started, teardown first\n");
+ dev_warn(&mgr->dev, "CvP already started, tear down first\n");
ret = altera_cvp_teardown(mgr, info);
if (ret)
return ret;
/*
* it allows userspace to reset the PR region's logic by disabling and
- * reenabling the bridge to clear things out between accleration runs.
+ * reenabling the bridge to clear things out between acceleration runs.
* so no need to hold the bridges after partial reconfiguration.
*/
if (region->get_bridges)
* We don't use the time based timeout here for performance.
*
* The regbus read/write is on the critical path of Intel PAC N3000
- * image programing. The time based timeout checking will add too much
+ * image programming. The time based timeout checking will add too much
* overhead on it. Usually the state changes in 1 or 2 loops on the
* test server, and we set 10000 times loop here for safety.
*/
* @id: sub feature id.
* @resource_index: each sub feature has one mmio resource for its registers.
* this index is used to find its mmio resource from the
- * feature dev (platform device)'s reources.
+ * feature dev (platform device)'s resources.
* @ioaddr: mapped mmio resource address.
* @irq_ctx: interrupt context list.
* @nr_irqs: number of interrupt contexts.
*
* Get an exclusive reference to the bridge and and it to the list.
*
- * Return 0 for success, error code from of_fpga_bridge_get() othewise.
+ * Return 0 for success, error code from of_fpga_bridge_get() otherwise.
*/
int of_fpga_bridge_get_to_list(struct device_node *np,
struct fpga_image_info *info,
*
* Get an exclusive reference to the bridge and and it to the list.
*
- * Return 0 for success, error code from fpga_bridge_get() othewise.
+ * Return 0 for success, error code from fpga_bridge_get() otherwise.
*/
int fpga_bridge_get_to_list(struct device *dev,
struct fpga_image_info *info,
/* Once the first transfer is queued we can turn on the ISR, future
* calls to zynq_step_dma will happen from the ISR context. The
- * dma_lock spinlock guarentees this handover is done coherently, the
+ * dma_lock spinlock guarantees this handover is done coherently, the
* ISR enable is put at the end to avoid another CPU spinning in the
* ISR on this lock.
*/
ctrl = zynq_fpga_read(priv, CTRL_OFFSET);
if (!(ctrl & CTRL_SEC_EN_MASK)) {
dev_err(&mgr->dev,
- "System not secure, can't use crypted bitstreams\n");
+ "System not secure, can't use encrypted bitstreams\n");
err = -EINVAL;
goto out_err;
}
/* set configuration register with following options:
* - enable PCAP interface
- * - set throughput for maximum speed (if bistream not crypted)
+ * - set throughput for maximum speed (if bistream not encrypted)
* - set CPU in user mode
*/
ctrl = zynq_fpga_read(priv, CTRL_OFFSET);
* @initial_header_size: Maximum number of bytes that should be passed into write_init
* @state: returns an enum value of the FPGA's state
* @status: returns status of the FPGA, including reconfiguration error code
- * @write_init: prepare the FPGA to receive confuration data
+ * @write_init: prepare the FPGA to receive configuration data
* @write: write count bytes of configuration data to the FPGA
* @write_sg: write the scatter list of configuration data to the FPGA
* @write_complete: set FPGA to operating state after writing is done