#define INVALID_PAGE (~(hpa_t)0)
#define VALID_PAGE(x) ((x) != INVALID_PAGE)
- #define INVALID_GPA (~(gpa_t)0)
-
/* KVM Hugepage definitions for x86 */
#define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
#define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
#define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
#define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
#define KVM_PMC_MAX_FIXED 3
+#define MSR_ARCH_PERFMON_FIXED_CTR_MAX (MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1)
#define KVM_AMD_PMC_MAX_GENERIC 6
struct kvm_pmu {
unsigned nr_arch_gp_counters;
} nested;
};
+struct kvm_hypervisor_cpuid {
+ u32 base;
+ u32 limit;
+};
+
/* Xen HVM per vcpu emulation context */
struct kvm_vcpu_xen {
u64 hypercall_rip;
struct hrtimer timer;
int poll_evtchn;
struct timer_list poll_timer;
+ struct kvm_hypervisor_cpuid cpuid;
};
struct kvm_queued_exception {
int cpuid_nent;
struct kvm_cpuid_entry2 *cpuid_entries;
- u32 kvm_cpuid_base;
+ struct kvm_hypervisor_cpuid kvm_cpuid;
u64 reserved_gpa_bits;
int maxphyaddr;
};
/*
- * We use as the mode the number of bits allocated in the LDR for the
- * logical processor ID. It happens that these are all powers of two.
- * This makes it is very easy to detect cases where the APICs are
- * configured for multiple modes; in that case, we cannot use the map and
- * hence cannot use kvm_irq_delivery_to_apic_fast either.
+ * Track the mode of the optimized logical map, as the rules for decoding the
+ * destination vary per mode. Enabling the optimized logical map requires all
+ * software-enabled local APIs to be in the same mode, each addressable APIC to
+ * be mapped to only one MDA, and each MDA to map to at most one APIC.
*/
-#define KVM_APIC_MODE_XAPIC_CLUSTER 4
-#define KVM_APIC_MODE_XAPIC_FLAT 8
-#define KVM_APIC_MODE_X2APIC 16
+enum kvm_apic_logical_mode {
+ /* All local APICs are software disabled. */
+ KVM_APIC_MODE_SW_DISABLED,
+ /* All software enabled local APICs in xAPIC cluster addressing mode. */
+ KVM_APIC_MODE_XAPIC_CLUSTER,
+ /* All software enabled local APICs in xAPIC flat addressing mode. */
+ KVM_APIC_MODE_XAPIC_FLAT,
+ /* All software enabled local APICs in x2APIC mode. */
+ KVM_APIC_MODE_X2APIC,
+ /*
+ * Optimized map disabled, e.g. not all local APICs in the same logical
+ * mode, same logical ID assigned to multiple APICs, etc.
+ */
+ KVM_APIC_MODE_MAP_DISABLED,
+};
struct kvm_apic_map {
struct rcu_head rcu;
- u8 mode;
+ enum kvm_apic_logical_mode logical_mode;
u32 max_apic_id;
union {
struct kvm_lapic *xapic_flat_map[8];
struct msr_bitmap_range ranges[16];
};
+struct kvm_x86_pmu_event_filter {
+ __u32 action;
+ __u32 nevents;
+ __u32 fixed_counter_bitmap;
+ __u32 flags;
+ __u32 nr_includes;
+ __u32 nr_excludes;
+ __u64 *includes;
+ __u64 *excludes;
+ __u64 events[];
+};
+
enum kvm_apicv_inhibit {
/********************************************************************/
*/
APICV_INHIBIT_REASON_BLOCKIRQ,
+ /*
+ * APICv is disabled because not all vCPUs have a 1:1 mapping between
+ * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
+ */
+ APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
+
/*
* For simplicity, the APIC acceleration is inhibited
* first time either APIC ID or APIC base are changed by the guest
* AVIC is disabled because SEV doesn't support it.
*/
APICV_INHIBIT_REASON_SEV,
+
+ /*
+ * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
+ * mapping between logical ID and vCPU.
+ */
+ APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
};
struct kvm_arch {
struct kvm_apic_map __rcu *apic_map;
atomic_t apic_map_dirty;
- /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
- struct rw_semaphore apicv_update_lock;
-
bool apic_access_memslot_enabled;
+ bool apic_access_memslot_inhibited;
+
+ /* Protects apicv_inhibit_reasons */
+ struct rw_semaphore apicv_update_lock;
unsigned long apicv_inhibit_reasons;
gpa_t wall_clock;
u32 bsp_vcpu_id;
u64 disabled_quirks;
- int cpu_dirty_logging_count;
enum kvm_irqchip_mode irqchip_mode;
u8 nr_reserved_ioapic_pins;
/* Guest can access the SGX PROVISIONKEY. */
bool sgx_provisioning_allowed;
- struct kvm_pmu_event_filter __rcu *pmu_event_filter;
+ struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
struct task_struct *nx_huge_page_recovery_thread;
#ifdef CONFIG_X86_64
void (*enable_irq_window)(struct kvm_vcpu *vcpu);
void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
+ const unsigned long required_apicv_inhibits;
+ bool allow_apicv_in_x2apic_without_x2apic_virtualization;
void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
void (*hwapic_isr_update)(int isr);
bool kvm_apicv_activated(struct kvm *kvm);
bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
-void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
+void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
enum kvm_apicv_inhibit reason, bool set);
void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
TASK_SWITCH_GATE = 3,
};
-#define HF_GIF_MASK (1 << 0)
-#define HF_NMI_MASK (1 << 3)
-#define HF_IRET_MASK (1 << 4)
-#define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
+#define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */
#ifdef CONFIG_KVM_SMM
-#define HF_SMM_MASK (1 << 6)
-#define HF_SMM_INSIDE_NMI_MASK (1 << 7)
+#define HF_SMM_MASK (1 << 1)
+#define HF_SMM_INSIDE_NMI_MASK (1 << 2)
# define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
# define KVM_ADDRESS_SPACE_NUM 2
GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
}
+static void guest_check_no_s1ptw_wr_in_dirty_log(void)
+{
+ GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG);
+}
+
static void guest_exec(void)
{
int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
/* Returns true to continue the test, and false if it should be skipped. */
static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
- struct uffd_args *args, bool expect_write)
+ struct uffd_args *args)
{
uint64_t addr = msg->arg.pagefault.address;
uint64_t flags = msg->arg.pagefault.flags;
TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
"The only expected UFFD mode is MISSING");
- ASSERT_EQ(!!(flags & UFFD_PAGEFAULT_FLAG_WRITE), expect_write);
ASSERT_EQ(addr, (uint64_t)args->hva);
pr_debug("uffd fault: addr=%p write=%d\n",
return 0;
}
-static int uffd_pt_write_handler(int mode, int uffd, struct uffd_msg *msg)
-{
- return uffd_generic_handler(mode, uffd, msg, &pt_args, true);
-}
-
-static int uffd_data_write_handler(int mode, int uffd, struct uffd_msg *msg)
+static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg)
{
- return uffd_generic_handler(mode, uffd, msg, &data_args, true);
+ return uffd_generic_handler(mode, uffd, msg, &pt_args);
}
-static int uffd_data_read_handler(int mode, int uffd, struct uffd_msg *msg)
+static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg)
{
- return uffd_generic_handler(mode, uffd, msg, &data_args, false);
+ return uffd_generic_handler(mode, uffd, msg, &data_args);
}
static void setup_uffd_args(struct userspace_mem_region *region,
{
struct userspace_mem_region *data_region, *pt_region;
bool continue_test = true;
+ uint64_t pte_gpa, pte_pg;
data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
+ pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
+ pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize();
if (cmd == CMD_SKIP_TEST)
continue_test = false;
TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
"Missing write in dirty log");
if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
- TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, 0),
+ TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg),
"Missing s1ptw write in dirty log");
if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
"Unexpected write in dirty log");
if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
- TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, 0),
+ TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg),
"Unexpected s1ptw write in dirty log");
return continue_test;
.expected_events = { .uffd_faults = _uffd_faults, }, \
}
-#define TEST_DIRTY_LOG(_access, _with_af, _test_check) \
+#define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check) \
{ \
.name = SCAT3(dirty_log, _access, _with_af), \
.data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.guest_prepare = { _PREPARE(_with_af), \
_PREPARE(_access) }, \
.guest_test = _access, \
- .guest_test_check = { _CHECK(_with_af), _test_check, \
- guest_check_s1ptw_wr_in_dirty_log}, \
+ .guest_test_check = { _CHECK(_with_af), _test_check, _pt_check }, \
.expected_events = { 0 }, \
}
#define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler, \
- _uffd_faults, _test_check) \
+ _uffd_faults, _test_check, _pt_check) \
{ \
.name = SCAT3(uffd_and_dirty_log, _access, _with_af), \
.data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
_PREPARE(_access) }, \
.guest_test = _access, \
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
- .guest_test_check = { _CHECK(_with_af), _test_check }, \
+ .guest_test_check = { _CHECK(_with_af), _test_check, _pt_check }, \
.uffd_data_handler = _uffd_data_handler, \
- .uffd_pt_handler = uffd_pt_write_handler, \
+ .uffd_pt_handler = uffd_pt_handler, \
.expected_events = { .uffd_faults = _uffd_faults, }, \
}
#define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits) \
{ \
- .name = SCAT3(ro_memslot, _access, _with_af), \
+ .name = SCAT2(ro_memslot, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
+ .pt_memslot_flags = KVM_MEM_READONLY, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.mmio_handler = _mmio_handler, \
{ \
.name = SCAT2(ro_memslot_no_syndrome, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
+ .pt_memslot_flags = KVM_MEM_READONLY, \
.guest_test = _access, \
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
.expected_events = { .fail_vcpu_runs = 1 }, \
#define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits, \
_test_check) \
{ \
- .name = SCAT3(ro_memslot, _access, _with_af), \
+ .name = SCAT2(ro_memslot, _access), \
.data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
- .pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
+ .pt_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.guest_test_check = { _test_check }, \
{ \
.name = SCAT2(ro_memslot_no_syn_and_dlog, _access), \
.data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
- .pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
+ .pt_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
.guest_test = _access, \
.guest_test_check = { _test_check }, \
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
{ \
.name = SCAT2(ro_memslot_uffd, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
+ .pt_memslot_flags = KVM_MEM_READONLY, \
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.uffd_data_handler = _uffd_data_handler, \
- .uffd_pt_handler = uffd_pt_write_handler, \
+ .uffd_pt_handler = uffd_pt_handler, \
.mmio_handler = _mmio_handler, \
.expected_events = { .mmio_exits = _mmio_exits, \
.uffd_faults = _uffd_faults }, \
{ \
.name = SCAT2(ro_memslot_no_syndrome, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
+ .pt_memslot_flags = KVM_MEM_READONLY, \
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
.guest_test = _access, \
.uffd_data_handler = _uffd_data_handler, \
- .uffd_pt_handler = uffd_pt_write_handler, \
+ .uffd_pt_handler = uffd_pt_handler, \
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
.expected_events = { .fail_vcpu_runs = 1, \
.uffd_faults = _uffd_faults }, \
* (S1PTW).
*/
TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
- uffd_data_read_handler, uffd_pt_write_handler, 2),
- /* no_af should also lead to a PT write. */
+ uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
- uffd_data_read_handler, uffd_pt_write_handler, 2),
- /* Note how that cas invokes the read handler. */
+ uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
- uffd_data_read_handler, uffd_pt_write_handler, 2),
+ uffd_data_handler, uffd_pt_handler, 2),
/*
* Can't test guest_at with_af as it's IMPDEF whether the AF is set.
* The S1PTW fault should still be marked as a write.
*/
TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
- uffd_data_read_handler, uffd_pt_write_handler, 1),
+ uffd_no_handler, uffd_pt_handler, 1),
TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
- uffd_data_read_handler, uffd_pt_write_handler, 2),
+ uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
- uffd_data_write_handler, uffd_pt_write_handler, 2),
+ uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
- uffd_data_write_handler, uffd_pt_write_handler, 2),
+ uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
- uffd_data_write_handler, uffd_pt_write_handler, 2),
+ uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
- uffd_data_read_handler, uffd_pt_write_handler, 2),
+ uffd_data_handler, uffd_pt_handler, 2),
/*
* Try accesses when the data and PT memory regions are both
* tracked for dirty logging.
*/
- TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log),
- /* no_af should also lead to a PT write. */
- TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log),
- TEST_DIRTY_LOG(guest_ld_preidx, with_af, guest_check_no_write_in_dirty_log),
- TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log),
- TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log),
- TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log),
- TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log),
- TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log),
- TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log),
+ TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log,
+ guest_check_no_s1ptw_wr_in_dirty_log),
+ TEST_DIRTY_LOG(guest_ld_preidx, with_af,
+ guest_check_no_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log,
+ guest_check_no_s1ptw_wr_in_dirty_log),
+ TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
/*
* Access when the data and PT memory regions are both marked for
* fault, and nothing in the dirty log. Any S1PTW should result in
* a write in the dirty log and a userfaultfd write.
*/
- TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af, uffd_data_read_handler, 2,
- guest_check_no_write_in_dirty_log),
- /* no_af should also lead to a PT write. */
- TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af, uffd_data_read_handler, 2,
- guest_check_no_write_in_dirty_log),
- TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af, uffd_data_read_handler,
- 2, guest_check_no_write_in_dirty_log),
- TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, 0, 1,
- guest_check_no_write_in_dirty_log),
- TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af, uffd_data_read_handler, 2,
- guest_check_no_write_in_dirty_log),
- TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af, uffd_data_write_handler,
- 2, guest_check_write_in_dirty_log),
- TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af, uffd_data_read_handler, 2,
- guest_check_write_in_dirty_log),
- TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af, uffd_data_write_handler,
- 2, guest_check_write_in_dirty_log),
+ TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af,
+ uffd_data_handler, 2,
+ guest_check_no_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af,
+ uffd_data_handler, 2,
+ guest_check_no_write_in_dirty_log,
+ guest_check_no_s1ptw_wr_in_dirty_log),
+ TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af,
+ uffd_data_handler,
+ 2, guest_check_no_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1,
+ guest_check_no_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af,
+ uffd_data_handler, 2,
+ guest_check_no_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af,
+ uffd_data_handler,
+ 2, guest_check_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af,
+ uffd_data_handler, 2,
+ guest_check_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
+ TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af,
+ uffd_data_handler,
+ 2, guest_check_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
- uffd_data_write_handler, 2,
- guest_check_write_in_dirty_log),
-
+ uffd_data_handler, 2,
+ guest_check_write_in_dirty_log,
+ guest_check_s1ptw_wr_in_dirty_log),
/*
- * Try accesses when the data memory region is marked read-only
+ * Access when both the PT and data regions are marked read-only
* (with KVM_MEM_READONLY). Writes with a syndrome result in an
* MMIO exit, writes with no syndrome (e.g., CAS) result in a
* failed vcpu run, and reads/execs with and without syndroms do
TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
/*
- * Access when both the data region is both read-only and marked
+ * The PT and data regions are both read-only and marked
* for dirty logging at the same time. The expected result is that
* for writes there should be no write in the dirty log. The
* readonly handling is the same as if the memslot was not marked
guest_check_no_write_in_dirty_log),
/*
- * Access when the data region is both read-only and punched with
+ * The PT and data regions are both read-only and punched with
* holes tracked with userfaultfd. The expected result is the
* union of both userfaultfd and read-only behaviors. For example,
* write accesses result in a userfaultfd write fault and an MMIO
* no userfaultfd write fault. Reads result in userfaultfd getting
* triggered.
*/
- TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0,
- uffd_data_read_handler, 2),
- TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0,
- uffd_data_read_handler, 2),
- TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0,
- uffd_no_handler, 1),
- TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0,
- uffd_data_read_handler, 2),
+ TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2),
+ TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2),
+ TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1),
+ TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2),
TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
- uffd_data_write_handler, 2),
- TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas,
- uffd_data_read_handler, 2),
- TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva,
- uffd_no_handler, 1),
- TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx,
- uffd_no_handler, 1),
+ uffd_data_handler, 2),
+ TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2),
+ TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1),
+ TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1),
{ 0 }
};
enum vm_mem_backing_src_type src_type;
int opt;
- setbuf(stdout, NULL);
-
src_type = DEFAULT_VM_MEM_SRC;
while ((opt = getopt(argc, argv, "hm:s:")) != -1) {