This reverts commit
2a010c41285345da60cece35575b4e0af7e7bf44.
Rui Ueyama <
[email protected]> writes:
> I'm the creator and the maintainer of the mold linker
> (https://github.com/rui314/mold). Recently, we discovered that mold
> started causing process crashes in certain situations due to a change
> in the Linux kernel. Here are the details:
>
> - In general, overwriting an existing file is much faster than
> creating an empty file and writing to it on Linux, so mold attempts to
> reuse an existing executable file if it exists.
>
> - If a program is running, opening the executable file for writing
> previously failed with ETXTBSY. If that happens, mold falls back to
> creating a new file.
>
> - However, the Linux kernel recently changed the behavior so that
> writing to an executable file is now always permitted
> (https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
2a010c412853).
>
> That caused mold to write to an executable file even if there's a
> process running that file. Since changes to mmap'ed files are
> immediately visible to other processes, any processes running that
> file would almost certainly crash in a very mysterious way.
> Identifying the cause of these random crashes took us a few days.
>
> Rejecting writes to an executable file that is currently running is a
> well-known behavior, and Linux had operated that way for a very long
> time. So, I don’t believe relying on this behavior was our mistake;
> rather, I see this as a regression in the Linux kernel.
Quoting myself from commit
2a010c412853 ("fs: don't block i_writecount during exec")
> Yes, someone in userspace could potentially be relying on this. It's not
> completely out of the realm of possibility but let's find out if that's
> actually the case and not guess.
It seems we found out that someone is relying on this obscure behavior.
So revert the change.
Link: https://github.com/rui314/mold/issues/1361
Link: https://lore.kernel.org/r/[email protected]
Cc: <[email protected]>
Signed-off-by: Christian Brauner <[email protected]>
}
reloc_func_desc = interp_load_addr;
+ allow_write_access(interpreter);
fput(interpreter);
kfree(interp_elf_ex);
kfree(interp_elf_ex);
kfree(interp_elf_phdata);
out_free_file:
+ allow_write_access(interpreter);
if (interpreter)
fput(interpreter);
out_free_ph:
goto error;
}
+ allow_write_access(interpreter);
fput(interpreter);
interpreter = NULL;
}
retval = 0;
error:
- if (interpreter)
+ if (interpreter) {
+ allow_write_access(interpreter);
fput(interpreter);
+ }
kfree(interpreter_name);
kfree(exec_params.phdrs);
kfree(exec_params.loadmap);
if (retval < 0)
goto ret;
- if (fmt->flags & MISC_FMT_OPEN_FILE)
+ if (fmt->flags & MISC_FMT_OPEN_FILE) {
interp_file = file_clone_open(fmt->interp_file);
- else
+ if (!IS_ERR(interp_file))
+ deny_write_access(interp_file);
+ } else {
interp_file = open_exec(fmt->interpreter);
+ }
retval = PTR_ERR(interp_file);
if (IS_ERR(interp_file))
goto ret;
*/
static struct file *do_open_execat(int fd, struct filename *name, int flags)
{
- struct file *file;
+ int err;
+ struct file *file __free(fput) = NULL;
struct open_flags open_exec_flags = {
.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
.acc_mode = MAY_EXEC,
* an invariant that all non-regular files error out before we get here.
*/
if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
- path_noexec(&file->f_path)) {
- fput(file);
+ path_noexec(&file->f_path))
return ERR_PTR(-EACCES);
- }
- return file;
+ err = deny_write_access(file);
+ if (err)
+ return ERR_PTR(err);
+
+ return no_free_ptr(file);
}
/**
*
* Returns ERR_PTR on failure or allocated struct file on success.
*
- * As this is a wrapper for the internal do_open_execat(). Also see
+ * As this is a wrapper for the internal do_open_execat(), callers
+ * must call allow_write_access() before fput() on release. Also see
* do_close_execat().
*/
struct file *open_exec(const char *name)
/* Matches do_open_execat() */
static void do_close_execat(struct file *file)
{
- if (file)
- fput(file);
+ if (!file)
+ return;
+ allow_write_access(file);
+ fput(file);
}
static void free_bprm(struct linux_binprm *bprm)
bprm->file = bprm->interpreter;
bprm->interpreter = NULL;
+ allow_write_access(exec);
if (unlikely(bprm->have_execfd)) {
if (bprm->executable) {
fput(exec);
exe_file = get_mm_exe_file(oldmm);
RCU_INIT_POINTER(mm->exe_file, exe_file);
+ /*
+ * We depend on the oldmm having properly denied write access to the
+ * exe_file already.
+ */
+ if (exe_file && deny_write_access(exe_file))
+ pr_warn_once("deny_write_access() failed in %s\n", __func__);
}
#ifdef CONFIG_MMU
*/
old_exe_file = rcu_dereference_raw(mm->exe_file);
- if (new_exe_file)
+ if (new_exe_file) {
+ /*
+ * We expect the caller (i.e., sys_execve) to already denied
+ * write access, so this is unlikely to fail.
+ */
+ if (unlikely(deny_write_access(new_exe_file)))
+ return -EACCES;
get_file(new_exe_file);
+ }
rcu_assign_pointer(mm->exe_file, new_exe_file);
- if (old_exe_file)
+ if (old_exe_file) {
+ allow_write_access(old_exe_file);
fput(old_exe_file);
+ }
return 0;
}
return ret;
}
+ ret = deny_write_access(new_exe_file);
+ if (ret)
+ return -EACCES;
get_file(new_exe_file);
/* set the new file */
rcu_assign_pointer(mm->exe_file, new_exe_file);
mmap_write_unlock(mm);
- if (old_exe_file)
+ if (old_exe_file) {
+ allow_write_access(old_exe_file);
fput(old_exe_file);
+ }
return 0;
}