It's a pathname. It should use the pathname allocators and
deallocators, and PATH_MAX instead of PAGE_SIZE. Never mind that the
two are commonly the same.
With this, the allocations scale up nicely too, and I can do getcwd()
system calls at a rate of about 300M/s, with no lock contention
anywhere.
Of course, nobody sane does that, especially since getcwd() is
traditionally a very slow operation in Unix. But this was also the
simplest way to benchmark the prepend_path() improvements by Waiman, and
once I saw the profiles I couldn't leave it well enough alone.
But apart from being an performance improvement (from using per-cpu slab
allocators instead of the raw page allocator), it's actually a valid and
real cleanup.
Signed-off-by: Linus "OCD" Torvalds <[email protected]>
{
int error;
struct path pwd, root;
- char *page = (char *) __get_free_page(GFP_USER);
+ char *page = __getname();
if (!page)
return -ENOMEM;
br_read_lock(&vfsmount_lock);
if (!d_unlinked(pwd.dentry)) {
unsigned long len;
- char *cwd = page + PAGE_SIZE;
- int buflen = PAGE_SIZE;
+ char *cwd = page + PATH_MAX;
+ int buflen = PATH_MAX;
prepend(&cwd, &buflen, "\0", 1);
error = prepend_path(&pwd, &root, &cwd, &buflen);
}
error = -ERANGE;
- len = PAGE_SIZE + page - cwd;
+ len = PATH_MAX + page - cwd;
if (len <= size) {
error = len;
if (copy_to_user(buf, cwd, len))
}
out:
- free_page((unsigned long) page);
+ __putname(page);
return error;
}