2 * Copyright © 2006-2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
21 #define pr_fmt(fmt) "DMAR: " fmt
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
53 #include "irq_remapping.h"
55 #define ROOT_SIZE VTD_PAGE_SIZE
56 #define CONTEXT_SIZE VTD_PAGE_SIZE
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
63 #define IOAPIC_RANGE_START (0xfee00000)
64 #define IOAPIC_RANGE_END (0xfeefffff)
65 #define IOVA_START_ADDR (0x1000)
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
72 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
78 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN (1)
84 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
85 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
86 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
88 /* page table handling */
89 #define LEVEL_STRIDE (9)
90 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
93 * This bitmap is used to advertise the page sizes our hardware support
94 * to the IOMMU core, which will then use this information to split
95 * physically contiguous memory regions it is mapping into page sizes
98 * Traditionally the IOMMU core just handed us the mappings directly,
99 * after making sure the size is an order of a 4KiB page and that the
100 * mapping has natural alignment.
102 * To retain this behavior, we currently advertise that we support
103 * all page sizes that are an order of 4KiB.
105 * If at some point we'd like to utilize the IOMMU core's new behavior,
106 * we could change this to advertise the real page sizes we support.
108 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
110 static inline int agaw_to_level(int agaw)
115 static inline int agaw_to_width(int agaw)
117 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
120 static inline int width_to_agaw(int width)
122 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
125 static inline unsigned int level_to_offset_bits(int level)
127 return (level - 1) * LEVEL_STRIDE;
130 static inline int pfn_level_offset(unsigned long pfn, int level)
132 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
135 static inline unsigned long level_mask(int level)
137 return -1UL << level_to_offset_bits(level);
140 static inline unsigned long level_size(int level)
142 return 1UL << level_to_offset_bits(level);
145 static inline unsigned long align_to_level(unsigned long pfn, int level)
147 return (pfn + level_size(level) - 1) & level_mask(level);
150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
152 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156 are never going to work. */
157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
159 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
164 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
166 static inline unsigned long page_to_dma_pfn(struct page *pg)
168 return mm_to_dma_pfn(page_to_pfn(pg));
170 static inline unsigned long virt_to_dma_pfn(void *p)
172 return page_to_dma_pfn(virt_to_page(p));
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
182 * set to 1 to panic kernel if can't successfully enable VT-d
183 * (used when kernel is launched w/ TXT)
185 static int force_on = 0;
190 * 12-63: Context Ptr (12 - (haw-1))
197 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
200 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
203 static phys_addr_t root_entry_lctp(struct root_entry *re)
208 return re->lo & VTD_PAGE_MASK;
212 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
215 static phys_addr_t root_entry_uctp(struct root_entry *re)
220 return re->hi & VTD_PAGE_MASK;
225 * 1: fault processing disable
226 * 2-3: translation type
227 * 12-63: address space root
233 struct context_entry {
238 static inline void context_clear_pasid_enable(struct context_entry *context)
240 context->lo &= ~(1ULL << 11);
243 static inline bool context_pasid_enabled(struct context_entry *context)
245 return !!(context->lo & (1ULL << 11));
248 static inline void context_set_copied(struct context_entry *context)
250 context->hi |= (1ull << 3);
253 static inline bool context_copied(struct context_entry *context)
255 return !!(context->hi & (1ULL << 3));
258 static inline bool __context_present(struct context_entry *context)
260 return (context->lo & 1);
263 static inline bool context_present(struct context_entry *context)
265 return context_pasid_enabled(context) ?
266 __context_present(context) :
267 __context_present(context) && !context_copied(context);
270 static inline void context_set_present(struct context_entry *context)
275 static inline void context_set_fault_enable(struct context_entry *context)
277 context->lo &= (((u64)-1) << 2) | 1;
280 static inline void context_set_translation_type(struct context_entry *context,
283 context->lo &= (((u64)-1) << 4) | 3;
284 context->lo |= (value & 3) << 2;
287 static inline void context_set_address_root(struct context_entry *context,
290 context->lo &= ~VTD_PAGE_MASK;
291 context->lo |= value & VTD_PAGE_MASK;
294 static inline void context_set_address_width(struct context_entry *context,
297 context->hi |= value & 7;
300 static inline void context_set_domain_id(struct context_entry *context,
303 context->hi |= (value & ((1 << 16) - 1)) << 8;
306 static inline int context_domain_id(struct context_entry *c)
308 return((c->hi >> 8) & 0xffff);
311 static inline void context_clear_entry(struct context_entry *context)
324 * 12-63: Host physcial address
330 static inline void dma_clear_pte(struct dma_pte *pte)
335 static inline u64 dma_pte_addr(struct dma_pte *pte)
338 return pte->val & VTD_PAGE_MASK;
340 /* Must have a full atomic 64-bit read */
341 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
345 static inline bool dma_pte_present(struct dma_pte *pte)
347 return (pte->val & 3) != 0;
350 static inline bool dma_pte_superpage(struct dma_pte *pte)
352 return (pte->val & DMA_PTE_LARGE_PAGE);
355 static inline int first_pte_in_page(struct dma_pte *pte)
357 return !((unsigned long)pte & ~VTD_PAGE_MASK);
361 * This domain is a statically identity mapping domain.
362 * 1. This domain creats a static 1:1 mapping to all usable memory.
363 * 2. It maps to each iommu if successful.
364 * 3. Each iommu mapps to this domain if successful.
366 static struct dmar_domain *si_domain;
367 static int hw_pass_through = 1;
370 * Domain represents a virtual machine, more than one devices
371 * across iommus may be owned in one domain, e.g. kvm guest.
373 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
375 /* si_domain contains mulitple devices */
376 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
378 #define for_each_domain_iommu(idx, domain) \
379 for (idx = 0; idx < g_num_of_iommus; idx++) \
380 if (domain->iommu_refcnt[idx])
383 int nid; /* node id */
385 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
386 /* Refcount of devices per iommu */
389 u16 iommu_did[DMAR_UNITS_SUPPORTED];
390 /* Domain ids per IOMMU. Use u16 since
391 * domain ids are 16 bit wide according
392 * to VT-d spec, section 9.3 */
394 bool has_iotlb_device;
395 struct list_head devices; /* all devices' list */
396 struct iova_domain iovad; /* iova's that belong to this domain */
398 struct dma_pte *pgd; /* virtual address */
399 int gaw; /* max guest address width */
401 /* adjusted guest address width, 0 is level 2 30-bit */
404 int flags; /* flags to find out type of domain */
406 int iommu_coherency;/* indicate coherency of iommu access */
407 int iommu_snooping; /* indicate snooping control feature*/
408 int iommu_count; /* reference count of iommu */
409 int iommu_superpage;/* Level of superpages supported:
410 0 == 4KiB (no superpages), 1 == 2MiB,
411 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
412 u64 max_addr; /* maximum mapped address */
414 struct iommu_domain domain; /* generic domain data structure for
418 /* PCI domain-device relationship */
419 struct device_domain_info {
420 struct list_head link; /* link to domain siblings */
421 struct list_head global; /* link to global list */
422 u8 bus; /* PCI bus number */
423 u8 devfn; /* PCI devfn number */
424 u8 pasid_supported:3;
431 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
432 struct intel_iommu *iommu; /* IOMMU used by this device */
433 struct dmar_domain *domain; /* pointer to domain */
436 struct dmar_rmrr_unit {
437 struct list_head list; /* list of rmrr units */
438 struct acpi_dmar_header *hdr; /* ACPI header */
439 u64 base_address; /* reserved base address*/
440 u64 end_address; /* reserved end address */
441 struct dmar_dev_scope *devices; /* target devices */
442 int devices_cnt; /* target device count */
445 struct dmar_atsr_unit {
446 struct list_head list; /* list of ATSR units */
447 struct acpi_dmar_header *hdr; /* ACPI header */
448 struct dmar_dev_scope *devices; /* target devices */
449 int devices_cnt; /* target device count */
450 u8 include_all:1; /* include all ports */
453 static LIST_HEAD(dmar_atsr_units);
454 static LIST_HEAD(dmar_rmrr_units);
456 #define for_each_rmrr_units(rmrr) \
457 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
459 static void flush_unmaps_timeout(unsigned long data);
461 struct deferred_flush_entry {
462 unsigned long iova_pfn;
463 unsigned long nrpages;
464 struct dmar_domain *domain;
465 struct page *freelist;
468 #define HIGH_WATER_MARK 250
469 struct deferred_flush_table {
471 struct deferred_flush_entry entries[HIGH_WATER_MARK];
474 struct deferred_flush_data {
477 struct timer_list timer;
479 struct deferred_flush_table *tables;
482 DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
484 /* bitmap for indexing intel_iommus */
485 static int g_num_of_iommus;
487 static void domain_exit(struct dmar_domain *domain);
488 static void domain_remove_dev_info(struct dmar_domain *domain);
489 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
491 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
492 static void domain_context_clear(struct intel_iommu *iommu,
494 static int domain_detach_iommu(struct dmar_domain *domain,
495 struct intel_iommu *iommu);
497 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
498 int dmar_disabled = 0;
500 int dmar_disabled = 1;
501 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
503 int intel_iommu_enabled = 0;
504 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
506 static int dmar_map_gfx = 1;
507 static int dmar_forcedac;
508 static int intel_iommu_strict;
509 static int intel_iommu_superpage = 1;
510 static int intel_iommu_ecs = 1;
511 static int intel_iommu_pasid28;
512 static int iommu_identity_mapping;
514 #define IDENTMAP_ALL 1
515 #define IDENTMAP_GFX 2
516 #define IDENTMAP_AZALIA 4
518 /* Broadwell and Skylake have broken ECS support — normal so-called "second
519 * level" translation of DMA requests-without-PASID doesn't actually happen
520 * unless you also set the NESTE bit in an extended context-entry. Which of
521 * course means that SVM doesn't work because it's trying to do nested
522 * translation of the physical addresses it finds in the process page tables,
523 * through the IOVA->phys mapping found in the "second level" page tables.
525 * The VT-d specification was retroactively changed to change the definition
526 * of the capability bits and pretend that Broadwell/Skylake never happened...
527 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
528 * for some reason it was the PASID capability bit which was redefined (from
529 * bit 28 on BDW/SKL to bit 40 in future).
531 * So our test for ECS needs to eschew those implementations which set the old
532 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
533 * Unless we are working around the 'pasid28' limitations, that is, by putting
534 * the device into passthrough mode for normal DMA and thus masking the bug.
536 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
537 (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
538 /* PASID support is thus enabled if ECS is enabled and *either* of the old
539 * or new capability bits are set. */
540 #define pasid_enabled(iommu) (ecs_enabled(iommu) && \
541 (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
543 int intel_iommu_gfx_mapped;
544 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
546 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
547 static DEFINE_SPINLOCK(device_domain_lock);
548 static LIST_HEAD(device_domain_list);
550 static const struct iommu_ops intel_iommu_ops;
552 static bool translation_pre_enabled(struct intel_iommu *iommu)
554 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
557 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
559 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
562 static void init_translation_status(struct intel_iommu *iommu)
566 gsts = readl(iommu->reg + DMAR_GSTS_REG);
567 if (gsts & DMA_GSTS_TES)
568 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
571 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
572 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
574 return container_of(dom, struct dmar_domain, domain);
577 static int __init intel_iommu_setup(char *str)
582 if (!strncmp(str, "on", 2)) {
584 pr_info("IOMMU enabled\n");
585 } else if (!strncmp(str, "off", 3)) {
587 pr_info("IOMMU disabled\n");
588 } else if (!strncmp(str, "igfx_off", 8)) {
590 pr_info("Disable GFX device mapping\n");
591 } else if (!strncmp(str, "forcedac", 8)) {
592 pr_info("Forcing DAC for PCI devices\n");
594 } else if (!strncmp(str, "strict", 6)) {
595 pr_info("Disable batched IOTLB flush\n");
596 intel_iommu_strict = 1;
597 } else if (!strncmp(str, "sp_off", 6)) {
598 pr_info("Disable supported super page\n");
599 intel_iommu_superpage = 0;
600 } else if (!strncmp(str, "ecs_off", 7)) {
602 "Intel-IOMMU: disable extended context table support\n");
604 } else if (!strncmp(str, "pasid28", 7)) {
606 "Intel-IOMMU: enable pre-production PASID support\n");
607 intel_iommu_pasid28 = 1;
608 iommu_identity_mapping |= IDENTMAP_GFX;
611 str += strcspn(str, ",");
617 __setup("intel_iommu=", intel_iommu_setup);
619 static struct kmem_cache *iommu_domain_cache;
620 static struct kmem_cache *iommu_devinfo_cache;
622 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
624 struct dmar_domain **domains;
627 domains = iommu->domains[idx];
631 return domains[did & 0xff];
634 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
635 struct dmar_domain *domain)
637 struct dmar_domain **domains;
640 if (!iommu->domains[idx]) {
641 size_t size = 256 * sizeof(struct dmar_domain *);
642 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
645 domains = iommu->domains[idx];
646 if (WARN_ON(!domains))
649 domains[did & 0xff] = domain;
652 static inline void *alloc_pgtable_page(int node)
657 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
659 vaddr = page_address(page);
663 static inline void free_pgtable_page(void *vaddr)
665 free_page((unsigned long)vaddr);
668 static inline void *alloc_domain_mem(void)
670 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
673 static void free_domain_mem(void *vaddr)
675 kmem_cache_free(iommu_domain_cache, vaddr);
678 static inline void * alloc_devinfo_mem(void)
680 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
683 static inline void free_devinfo_mem(void *vaddr)
685 kmem_cache_free(iommu_devinfo_cache, vaddr);
688 static inline int domain_type_is_vm(struct dmar_domain *domain)
690 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
693 static inline int domain_type_is_si(struct dmar_domain *domain)
695 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
698 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
700 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
701 DOMAIN_FLAG_STATIC_IDENTITY);
704 static inline int domain_pfn_supported(struct dmar_domain *domain,
707 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
709 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
712 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
717 sagaw = cap_sagaw(iommu->cap);
718 for (agaw = width_to_agaw(max_gaw);
720 if (test_bit(agaw, &sagaw))
728 * Calculate max SAGAW for each iommu.
730 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
732 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
736 * calculate agaw for each iommu.
737 * "SAGAW" may be different across iommus, use a default agaw, and
738 * get a supported less agaw for iommus that don't support the default agaw.
740 int iommu_calculate_agaw(struct intel_iommu *iommu)
742 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
745 /* This functionin only returns single iommu in a domain */
746 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
750 /* si_domain and vm domain should not get here. */
751 BUG_ON(domain_type_is_vm_or_si(domain));
752 for_each_domain_iommu(iommu_id, domain)
755 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
758 return g_iommus[iommu_id];
761 static void domain_update_iommu_coherency(struct dmar_domain *domain)
763 struct dmar_drhd_unit *drhd;
764 struct intel_iommu *iommu;
768 domain->iommu_coherency = 1;
770 for_each_domain_iommu(i, domain) {
772 if (!ecap_coherent(g_iommus[i]->ecap)) {
773 domain->iommu_coherency = 0;
780 /* No hardware attached; use lowest common denominator */
782 for_each_active_iommu(iommu, drhd) {
783 if (!ecap_coherent(iommu->ecap)) {
784 domain->iommu_coherency = 0;
791 static int domain_update_iommu_snooping(struct intel_iommu *skip)
793 struct dmar_drhd_unit *drhd;
794 struct intel_iommu *iommu;
798 for_each_active_iommu(iommu, drhd) {
800 if (!ecap_sc_support(iommu->ecap)) {
811 static int domain_update_iommu_superpage(struct intel_iommu *skip)
813 struct dmar_drhd_unit *drhd;
814 struct intel_iommu *iommu;
817 if (!intel_iommu_superpage) {
821 /* set iommu_superpage to the smallest common denominator */
823 for_each_active_iommu(iommu, drhd) {
825 mask &= cap_super_page_val(iommu->cap);
835 /* Some capabilities may be different across iommus */
836 static void domain_update_iommu_cap(struct dmar_domain *domain)
838 domain_update_iommu_coherency(domain);
839 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
840 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
843 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
844 u8 bus, u8 devfn, int alloc)
846 struct root_entry *root = &iommu->root_entry[bus];
847 struct context_entry *context;
851 if (ecs_enabled(iommu)) {
859 context = phys_to_virt(*entry & VTD_PAGE_MASK);
861 unsigned long phy_addr;
865 context = alloc_pgtable_page(iommu->node);
869 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
870 phy_addr = virt_to_phys((void *)context);
871 *entry = phy_addr | 1;
872 __iommu_flush_cache(iommu, entry, sizeof(*entry));
874 return &context[devfn];
877 static int iommu_dummy(struct device *dev)
879 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
882 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
884 struct dmar_drhd_unit *drhd = NULL;
885 struct intel_iommu *iommu;
887 struct pci_dev *ptmp, *pdev = NULL;
891 if (iommu_dummy(dev))
894 if (dev_is_pci(dev)) {
895 pdev = to_pci_dev(dev);
896 segment = pci_domain_nr(pdev->bus);
897 } else if (has_acpi_companion(dev))
898 dev = &ACPI_COMPANION(dev)->dev;
901 for_each_active_iommu(iommu, drhd) {
902 if (pdev && segment != drhd->segment)
905 for_each_active_dev_scope(drhd->devices,
906 drhd->devices_cnt, i, tmp) {
908 *bus = drhd->devices[i].bus;
909 *devfn = drhd->devices[i].devfn;
913 if (!pdev || !dev_is_pci(tmp))
916 ptmp = to_pci_dev(tmp);
917 if (ptmp->subordinate &&
918 ptmp->subordinate->number <= pdev->bus->number &&
919 ptmp->subordinate->busn_res.end >= pdev->bus->number)
923 if (pdev && drhd->include_all) {
925 *bus = pdev->bus->number;
926 *devfn = pdev->devfn;
937 static void domain_flush_cache(struct dmar_domain *domain,
938 void *addr, int size)
940 if (!domain->iommu_coherency)
941 clflush_cache_range(addr, size);
944 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
946 struct context_entry *context;
950 spin_lock_irqsave(&iommu->lock, flags);
951 context = iommu_context_addr(iommu, bus, devfn, 0);
953 ret = context_present(context);
954 spin_unlock_irqrestore(&iommu->lock, flags);
958 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
960 struct context_entry *context;
963 spin_lock_irqsave(&iommu->lock, flags);
964 context = iommu_context_addr(iommu, bus, devfn, 0);
966 context_clear_entry(context);
967 __iommu_flush_cache(iommu, context, sizeof(*context));
969 spin_unlock_irqrestore(&iommu->lock, flags);
972 static void free_context_table(struct intel_iommu *iommu)
976 struct context_entry *context;
978 spin_lock_irqsave(&iommu->lock, flags);
979 if (!iommu->root_entry) {
982 for (i = 0; i < ROOT_ENTRY_NR; i++) {
983 context = iommu_context_addr(iommu, i, 0, 0);
985 free_pgtable_page(context);
987 if (!ecs_enabled(iommu))
990 context = iommu_context_addr(iommu, i, 0x80, 0);
992 free_pgtable_page(context);
995 free_pgtable_page(iommu->root_entry);
996 iommu->root_entry = NULL;
998 spin_unlock_irqrestore(&iommu->lock, flags);
1001 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
1002 unsigned long pfn, int *target_level)
1004 struct dma_pte *parent, *pte = NULL;
1005 int level = agaw_to_level(domain->agaw);
1008 BUG_ON(!domain->pgd);
1010 if (!domain_pfn_supported(domain, pfn))
1011 /* Address beyond IOMMU's addressing capabilities. */
1014 parent = domain->pgd;
1019 offset = pfn_level_offset(pfn, level);
1020 pte = &parent[offset];
1021 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1023 if (level == *target_level)
1026 if (!dma_pte_present(pte)) {
1029 tmp_page = alloc_pgtable_page(domain->nid);
1034 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1035 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1036 if (cmpxchg64(&pte->val, 0ULL, pteval))
1037 /* Someone else set it while we were thinking; use theirs. */
1038 free_pgtable_page(tmp_page);
1040 domain_flush_cache(domain, pte, sizeof(*pte));
1045 parent = phys_to_virt(dma_pte_addr(pte));
1050 *target_level = level;
1056 /* return address's pte at specific level */
1057 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1059 int level, int *large_page)
1061 struct dma_pte *parent, *pte = NULL;
1062 int total = agaw_to_level(domain->agaw);
1065 parent = domain->pgd;
1066 while (level <= total) {
1067 offset = pfn_level_offset(pfn, total);
1068 pte = &parent[offset];
1072 if (!dma_pte_present(pte)) {
1073 *large_page = total;
1077 if (dma_pte_superpage(pte)) {
1078 *large_page = total;
1082 parent = phys_to_virt(dma_pte_addr(pte));
1088 /* clear last level pte, a tlb flush should be followed */
1089 static void dma_pte_clear_range(struct dmar_domain *domain,
1090 unsigned long start_pfn,
1091 unsigned long last_pfn)
1093 unsigned int large_page = 1;
1094 struct dma_pte *first_pte, *pte;
1096 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1097 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1098 BUG_ON(start_pfn > last_pfn);
1100 /* we don't need lock here; nobody else touches the iova range */
1103 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1105 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1110 start_pfn += lvl_to_nr_pages(large_page);
1112 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1114 domain_flush_cache(domain, first_pte,
1115 (void *)pte - (void *)first_pte);
1117 } while (start_pfn && start_pfn <= last_pfn);
1120 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1121 struct dma_pte *pte, unsigned long pfn,
1122 unsigned long start_pfn, unsigned long last_pfn)
1124 pfn = max(start_pfn, pfn);
1125 pte = &pte[pfn_level_offset(pfn, level)];
1128 unsigned long level_pfn;
1129 struct dma_pte *level_pte;
1131 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1134 level_pfn = pfn & level_mask(level - 1);
1135 level_pte = phys_to_virt(dma_pte_addr(pte));
1138 dma_pte_free_level(domain, level - 1, level_pte,
1139 level_pfn, start_pfn, last_pfn);
1141 /* If range covers entire pagetable, free it */
1142 if (!(start_pfn > level_pfn ||
1143 last_pfn < level_pfn + level_size(level) - 1)) {
1145 domain_flush_cache(domain, pte, sizeof(*pte));
1146 free_pgtable_page(level_pte);
1149 pfn += level_size(level);
1150 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1153 /* clear last level (leaf) ptes and free page table pages. */
1154 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1155 unsigned long start_pfn,
1156 unsigned long last_pfn)
1158 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1159 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1160 BUG_ON(start_pfn > last_pfn);
1162 dma_pte_clear_range(domain, start_pfn, last_pfn);
1164 /* We don't need lock here; nobody else touches the iova range */
1165 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1166 domain->pgd, 0, start_pfn, last_pfn);
1169 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1170 free_pgtable_page(domain->pgd);
1175 /* When a page at a given level is being unlinked from its parent, we don't
1176 need to *modify* it at all. All we need to do is make a list of all the
1177 pages which can be freed just as soon as we've flushed the IOTLB and we
1178 know the hardware page-walk will no longer touch them.
1179 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1181 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1182 int level, struct dma_pte *pte,
1183 struct page *freelist)
1187 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1188 pg->freelist = freelist;
1194 pte = page_address(pg);
1196 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1197 freelist = dma_pte_list_pagetables(domain, level - 1,
1200 } while (!first_pte_in_page(pte));
1205 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1206 struct dma_pte *pte, unsigned long pfn,
1207 unsigned long start_pfn,
1208 unsigned long last_pfn,
1209 struct page *freelist)
1211 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1213 pfn = max(start_pfn, pfn);
1214 pte = &pte[pfn_level_offset(pfn, level)];
1217 unsigned long level_pfn;
1219 if (!dma_pte_present(pte))
1222 level_pfn = pfn & level_mask(level);
1224 /* If range covers entire pagetable, free it */
1225 if (start_pfn <= level_pfn &&
1226 last_pfn >= level_pfn + level_size(level) - 1) {
1227 /* These suborbinate page tables are going away entirely. Don't
1228 bother to clear them; we're just going to *free* them. */
1229 if (level > 1 && !dma_pte_superpage(pte))
1230 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1236 } else if (level > 1) {
1237 /* Recurse down into a level that isn't *entirely* obsolete */
1238 freelist = dma_pte_clear_level(domain, level - 1,
1239 phys_to_virt(dma_pte_addr(pte)),
1240 level_pfn, start_pfn, last_pfn,
1244 pfn += level_size(level);
1245 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1248 domain_flush_cache(domain, first_pte,
1249 (void *)++last_pte - (void *)first_pte);
1254 /* We can't just free the pages because the IOMMU may still be walking
1255 the page tables, and may have cached the intermediate levels. The
1256 pages can only be freed after the IOTLB flush has been done. */
1257 static struct page *domain_unmap(struct dmar_domain *domain,
1258 unsigned long start_pfn,
1259 unsigned long last_pfn)
1261 struct page *freelist = NULL;
1263 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1264 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1265 BUG_ON(start_pfn > last_pfn);
1267 /* we don't need lock here; nobody else touches the iova range */
1268 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1269 domain->pgd, 0, start_pfn, last_pfn, NULL);
1272 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1273 struct page *pgd_page = virt_to_page(domain->pgd);
1274 pgd_page->freelist = freelist;
1275 freelist = pgd_page;
1283 static void dma_free_pagelist(struct page *freelist)
1287 while ((pg = freelist)) {
1288 freelist = pg->freelist;
1289 free_pgtable_page(page_address(pg));
1293 /* iommu handling */
1294 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1296 struct root_entry *root;
1297 unsigned long flags;
1299 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1301 pr_err("Allocating root entry for %s failed\n",
1306 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1308 spin_lock_irqsave(&iommu->lock, flags);
1309 iommu->root_entry = root;
1310 spin_unlock_irqrestore(&iommu->lock, flags);
1315 static void iommu_set_root_entry(struct intel_iommu *iommu)
1321 addr = virt_to_phys(iommu->root_entry);
1322 if (ecs_enabled(iommu))
1323 addr |= DMA_RTADDR_RTT;
1325 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1326 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1328 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1330 /* Make sure hardware complete it */
1331 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1332 readl, (sts & DMA_GSTS_RTPS), sts);
1334 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1337 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1342 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1345 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1346 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1348 /* Make sure hardware complete it */
1349 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1350 readl, (!(val & DMA_GSTS_WBFS)), val);
1352 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1355 /* return value determine if we need a write buffer flush */
1356 static void __iommu_flush_context(struct intel_iommu *iommu,
1357 u16 did, u16 source_id, u8 function_mask,
1364 case DMA_CCMD_GLOBAL_INVL:
1365 val = DMA_CCMD_GLOBAL_INVL;
1367 case DMA_CCMD_DOMAIN_INVL:
1368 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1370 case DMA_CCMD_DEVICE_INVL:
1371 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1372 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1377 val |= DMA_CCMD_ICC;
1379 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1380 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1382 /* Make sure hardware complete it */
1383 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1384 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1386 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1389 /* return value determine if we need a write buffer flush */
1390 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1391 u64 addr, unsigned int size_order, u64 type)
1393 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1394 u64 val = 0, val_iva = 0;
1398 case DMA_TLB_GLOBAL_FLUSH:
1399 /* global flush doesn't need set IVA_REG */
1400 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1402 case DMA_TLB_DSI_FLUSH:
1403 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1405 case DMA_TLB_PSI_FLUSH:
1406 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1407 /* IH bit is passed in as part of address */
1408 val_iva = size_order | addr;
1413 /* Note: set drain read/write */
1416 * This is probably to be super secure.. Looks like we can
1417 * ignore it without any impact.
1419 if (cap_read_drain(iommu->cap))
1420 val |= DMA_TLB_READ_DRAIN;
1422 if (cap_write_drain(iommu->cap))
1423 val |= DMA_TLB_WRITE_DRAIN;
1425 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1426 /* Note: Only uses first TLB reg currently */
1428 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1429 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1431 /* Make sure hardware complete it */
1432 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1433 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1435 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1437 /* check IOTLB invalidation granularity */
1438 if (DMA_TLB_IAIG(val) == 0)
1439 pr_err("Flush IOTLB failed\n");
1440 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1441 pr_debug("TLB flush request %Lx, actual %Lx\n",
1442 (unsigned long long)DMA_TLB_IIRG(type),
1443 (unsigned long long)DMA_TLB_IAIG(val));
1446 static struct device_domain_info *
1447 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1450 struct device_domain_info *info;
1452 assert_spin_locked(&device_domain_lock);
1457 list_for_each_entry(info, &domain->devices, link)
1458 if (info->iommu == iommu && info->bus == bus &&
1459 info->devfn == devfn) {
1460 if (info->ats_supported && info->dev)
1468 static void domain_update_iotlb(struct dmar_domain *domain)
1470 struct device_domain_info *info;
1471 bool has_iotlb_device = false;
1473 assert_spin_locked(&device_domain_lock);
1475 list_for_each_entry(info, &domain->devices, link) {
1476 struct pci_dev *pdev;
1478 if (!info->dev || !dev_is_pci(info->dev))
1481 pdev = to_pci_dev(info->dev);
1482 if (pdev->ats_enabled) {
1483 has_iotlb_device = true;
1488 domain->has_iotlb_device = has_iotlb_device;
1491 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1493 struct pci_dev *pdev;
1495 assert_spin_locked(&device_domain_lock);
1497 if (!info || !dev_is_pci(info->dev))
1500 pdev = to_pci_dev(info->dev);
1502 #ifdef CONFIG_INTEL_IOMMU_SVM
1503 /* The PCIe spec, in its wisdom, declares that the behaviour of
1504 the device if you enable PASID support after ATS support is
1505 undefined. So always enable PASID support on devices which
1506 have it, even if we can't yet know if we're ever going to
1508 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1509 info->pasid_enabled = 1;
1511 if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1512 info->pri_enabled = 1;
1514 if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1515 info->ats_enabled = 1;
1516 domain_update_iotlb(info->domain);
1517 info->ats_qdep = pci_ats_queue_depth(pdev);
1521 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1523 struct pci_dev *pdev;
1525 assert_spin_locked(&device_domain_lock);
1527 if (!dev_is_pci(info->dev))
1530 pdev = to_pci_dev(info->dev);
1532 if (info->ats_enabled) {
1533 pci_disable_ats(pdev);
1534 info->ats_enabled = 0;
1535 domain_update_iotlb(info->domain);
1537 #ifdef CONFIG_INTEL_IOMMU_SVM
1538 if (info->pri_enabled) {
1539 pci_disable_pri(pdev);
1540 info->pri_enabled = 0;
1542 if (info->pasid_enabled) {
1543 pci_disable_pasid(pdev);
1544 info->pasid_enabled = 0;
1549 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1550 u64 addr, unsigned mask)
1553 unsigned long flags;
1554 struct device_domain_info *info;
1556 if (!domain->has_iotlb_device)
1559 spin_lock_irqsave(&device_domain_lock, flags);
1560 list_for_each_entry(info, &domain->devices, link) {
1561 if (!info->ats_enabled)
1564 sid = info->bus << 8 | info->devfn;
1565 qdep = info->ats_qdep;
1566 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1568 spin_unlock_irqrestore(&device_domain_lock, flags);
1571 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1572 struct dmar_domain *domain,
1573 unsigned long pfn, unsigned int pages,
1576 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1577 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1578 u16 did = domain->iommu_did[iommu->seq_id];
1585 * Fallback to domain selective flush if no PSI support or the size is
1587 * PSI requires page size to be 2 ^ x, and the base address is naturally
1588 * aligned to the size
1590 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1591 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1594 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1598 * In caching mode, changes of pages from non-present to present require
1599 * flush. However, device IOTLB doesn't need to be flushed in this case.
1601 if (!cap_caching_mode(iommu->cap) || !map)
1602 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1606 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1609 unsigned long flags;
1611 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1612 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1613 pmen &= ~DMA_PMEN_EPM;
1614 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1616 /* wait for the protected region status bit to clear */
1617 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1618 readl, !(pmen & DMA_PMEN_PRS), pmen);
1620 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1623 static void iommu_enable_translation(struct intel_iommu *iommu)
1626 unsigned long flags;
1628 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1629 iommu->gcmd |= DMA_GCMD_TE;
1630 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1632 /* Make sure hardware complete it */
1633 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1634 readl, (sts & DMA_GSTS_TES), sts);
1636 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1639 static void iommu_disable_translation(struct intel_iommu *iommu)
1644 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1645 iommu->gcmd &= ~DMA_GCMD_TE;
1646 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1648 /* Make sure hardware complete it */
1649 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1650 readl, (!(sts & DMA_GSTS_TES)), sts);
1652 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1656 static int iommu_init_domains(struct intel_iommu *iommu)
1658 u32 ndomains, nlongs;
1661 ndomains = cap_ndoms(iommu->cap);
1662 pr_debug("%s: Number of Domains supported <%d>\n",
1663 iommu->name, ndomains);
1664 nlongs = BITS_TO_LONGS(ndomains);
1666 spin_lock_init(&iommu->lock);
1668 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1669 if (!iommu->domain_ids) {
1670 pr_err("%s: Allocating domain id array failed\n",
1675 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1676 iommu->domains = kzalloc(size, GFP_KERNEL);
1678 if (iommu->domains) {
1679 size = 256 * sizeof(struct dmar_domain *);
1680 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1683 if (!iommu->domains || !iommu->domains[0]) {
1684 pr_err("%s: Allocating domain array failed\n",
1686 kfree(iommu->domain_ids);
1687 kfree(iommu->domains);
1688 iommu->domain_ids = NULL;
1689 iommu->domains = NULL;
1696 * If Caching mode is set, then invalid translations are tagged
1697 * with domain-id 0, hence we need to pre-allocate it. We also
1698 * use domain-id 0 as a marker for non-allocated domain-id, so
1699 * make sure it is not used for a real domain.
1701 set_bit(0, iommu->domain_ids);
1706 static void disable_dmar_iommu(struct intel_iommu *iommu)
1708 struct device_domain_info *info, *tmp;
1709 unsigned long flags;
1711 if (!iommu->domains || !iommu->domain_ids)
1714 spin_lock_irqsave(&device_domain_lock, flags);
1715 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1716 struct dmar_domain *domain;
1718 if (info->iommu != iommu)
1721 if (!info->dev || !info->domain)
1724 domain = info->domain;
1726 dmar_remove_one_dev_info(domain, info->dev);
1728 if (!domain_type_is_vm_or_si(domain))
1729 domain_exit(domain);
1731 spin_unlock_irqrestore(&device_domain_lock, flags);
1733 if (iommu->gcmd & DMA_GCMD_TE)
1734 iommu_disable_translation(iommu);
1737 static void free_dmar_iommu(struct intel_iommu *iommu)
1739 if ((iommu->domains) && (iommu->domain_ids)) {
1740 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1743 for (i = 0; i < elems; i++)
1744 kfree(iommu->domains[i]);
1745 kfree(iommu->domains);
1746 kfree(iommu->domain_ids);
1747 iommu->domains = NULL;
1748 iommu->domain_ids = NULL;
1751 g_iommus[iommu->seq_id] = NULL;
1753 /* free context mapping */
1754 free_context_table(iommu);
1756 #ifdef CONFIG_INTEL_IOMMU_SVM
1757 if (pasid_enabled(iommu)) {
1758 if (ecap_prs(iommu->ecap))
1759 intel_svm_finish_prq(iommu);
1760 intel_svm_free_pasid_tables(iommu);
1765 static struct dmar_domain *alloc_domain(int flags)
1767 struct dmar_domain *domain;
1769 domain = alloc_domain_mem();
1773 memset(domain, 0, sizeof(*domain));
1775 domain->flags = flags;
1776 domain->has_iotlb_device = false;
1777 INIT_LIST_HEAD(&domain->devices);
1782 /* Must be called with iommu->lock */
1783 static int domain_attach_iommu(struct dmar_domain *domain,
1784 struct intel_iommu *iommu)
1786 unsigned long ndomains;
1789 assert_spin_locked(&device_domain_lock);
1790 assert_spin_locked(&iommu->lock);
1792 domain->iommu_refcnt[iommu->seq_id] += 1;
1793 domain->iommu_count += 1;
1794 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1795 ndomains = cap_ndoms(iommu->cap);
1796 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1798 if (num >= ndomains) {
1799 pr_err("%s: No free domain ids\n", iommu->name);
1800 domain->iommu_refcnt[iommu->seq_id] -= 1;
1801 domain->iommu_count -= 1;
1805 set_bit(num, iommu->domain_ids);
1806 set_iommu_domain(iommu, num, domain);
1808 domain->iommu_did[iommu->seq_id] = num;
1809 domain->nid = iommu->node;
1811 domain_update_iommu_cap(domain);
1817 static int domain_detach_iommu(struct dmar_domain *domain,
1818 struct intel_iommu *iommu)
1820 int num, count = INT_MAX;
1822 assert_spin_locked(&device_domain_lock);
1823 assert_spin_locked(&iommu->lock);
1825 domain->iommu_refcnt[iommu->seq_id] -= 1;
1826 count = --domain->iommu_count;
1827 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1828 num = domain->iommu_did[iommu->seq_id];
1829 clear_bit(num, iommu->domain_ids);
1830 set_iommu_domain(iommu, num, NULL);
1832 domain_update_iommu_cap(domain);
1833 domain->iommu_did[iommu->seq_id] = 0;
1839 static struct iova_domain reserved_iova_list;
1840 static struct lock_class_key reserved_rbtree_key;
1842 static int dmar_init_reserved_ranges(void)
1844 struct pci_dev *pdev = NULL;
1848 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1851 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1852 &reserved_rbtree_key);
1854 /* IOAPIC ranges shouldn't be accessed by DMA */
1855 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1856 IOVA_PFN(IOAPIC_RANGE_END));
1858 pr_err("Reserve IOAPIC range failed\n");
1862 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1863 for_each_pci_dev(pdev) {
1866 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1867 r = &pdev->resource[i];
1868 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1870 iova = reserve_iova(&reserved_iova_list,
1874 pr_err("Reserve iova failed\n");
1882 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1884 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1887 static inline int guestwidth_to_adjustwidth(int gaw)
1890 int r = (gaw - 12) % 9;
1901 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1904 int adjust_width, agaw;
1905 unsigned long sagaw;
1907 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1909 domain_reserve_special_ranges(domain);
1911 /* calculate AGAW */
1912 if (guest_width > cap_mgaw(iommu->cap))
1913 guest_width = cap_mgaw(iommu->cap);
1914 domain->gaw = guest_width;
1915 adjust_width = guestwidth_to_adjustwidth(guest_width);
1916 agaw = width_to_agaw(adjust_width);
1917 sagaw = cap_sagaw(iommu->cap);
1918 if (!test_bit(agaw, &sagaw)) {
1919 /* hardware doesn't support it, choose a bigger one */
1920 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1921 agaw = find_next_bit(&sagaw, 5, agaw);
1925 domain->agaw = agaw;
1927 if (ecap_coherent(iommu->ecap))
1928 domain->iommu_coherency = 1;
1930 domain->iommu_coherency = 0;
1932 if (ecap_sc_support(iommu->ecap))
1933 domain->iommu_snooping = 1;
1935 domain->iommu_snooping = 0;
1937 if (intel_iommu_superpage)
1938 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1940 domain->iommu_superpage = 0;
1942 domain->nid = iommu->node;
1944 /* always allocate the top pgd */
1945 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1948 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1952 static void domain_exit(struct dmar_domain *domain)
1954 struct page *freelist = NULL;
1956 /* Domain 0 is reserved, so dont process it */
1960 /* Flush any lazy unmaps that may reference this domain */
1961 if (!intel_iommu_strict) {
1964 for_each_possible_cpu(cpu)
1965 flush_unmaps_timeout(cpu);
1968 /* Remove associated devices and clear attached or cached domains */
1970 domain_remove_dev_info(domain);
1974 put_iova_domain(&domain->iovad);
1976 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1978 dma_free_pagelist(freelist);
1980 free_domain_mem(domain);
1983 static int domain_context_mapping_one(struct dmar_domain *domain,
1984 struct intel_iommu *iommu,
1987 u16 did = domain->iommu_did[iommu->seq_id];
1988 int translation = CONTEXT_TT_MULTI_LEVEL;
1989 struct device_domain_info *info = NULL;
1990 struct context_entry *context;
1991 unsigned long flags;
1992 struct dma_pte *pgd;
1997 if (hw_pass_through && domain_type_is_si(domain))
1998 translation = CONTEXT_TT_PASS_THROUGH;
2000 pr_debug("Set context mapping for %02x:%02x.%d\n",
2001 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2003 BUG_ON(!domain->pgd);
2005 spin_lock_irqsave(&device_domain_lock, flags);
2006 spin_lock(&iommu->lock);
2009 context = iommu_context_addr(iommu, bus, devfn, 1);
2014 if (context_present(context))
2019 context_clear_entry(context);
2020 context_set_domain_id(context, did);
2023 * Skip top levels of page tables for iommu which has less agaw
2024 * than default. Unnecessary for PT mode.
2026 if (translation != CONTEXT_TT_PASS_THROUGH) {
2027 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2029 pgd = phys_to_virt(dma_pte_addr(pgd));
2030 if (!dma_pte_present(pgd))
2034 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2035 if (info && info->ats_supported)
2036 translation = CONTEXT_TT_DEV_IOTLB;
2038 translation = CONTEXT_TT_MULTI_LEVEL;
2040 context_set_address_root(context, virt_to_phys(pgd));
2041 context_set_address_width(context, iommu->agaw);
2044 * In pass through mode, AW must be programmed to
2045 * indicate the largest AGAW value supported by
2046 * hardware. And ASR is ignored by hardware.
2048 context_set_address_width(context, iommu->msagaw);
2051 context_set_translation_type(context, translation);
2052 context_set_fault_enable(context);
2053 context_set_present(context);
2054 domain_flush_cache(domain, context, sizeof(*context));
2057 * It's a non-present to present mapping. If hardware doesn't cache
2058 * non-present entry we only need to flush the write-buffer. If the
2059 * _does_ cache non-present entries, then it does so in the special
2060 * domain #0, which we have to flush:
2062 if (cap_caching_mode(iommu->cap)) {
2063 iommu->flush.flush_context(iommu, 0,
2064 (((u16)bus) << 8) | devfn,
2065 DMA_CCMD_MASK_NOBIT,
2066 DMA_CCMD_DEVICE_INVL);
2067 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2069 iommu_flush_write_buffer(iommu);
2071 iommu_enable_dev_iotlb(info);
2076 spin_unlock(&iommu->lock);
2077 spin_unlock_irqrestore(&device_domain_lock, flags);
2082 struct domain_context_mapping_data {
2083 struct dmar_domain *domain;
2084 struct intel_iommu *iommu;
2087 static int domain_context_mapping_cb(struct pci_dev *pdev,
2088 u16 alias, void *opaque)
2090 struct domain_context_mapping_data *data = opaque;
2092 return domain_context_mapping_one(data->domain, data->iommu,
2093 PCI_BUS_NUM(alias), alias & 0xff);
2097 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2099 struct intel_iommu *iommu;
2101 struct domain_context_mapping_data data;
2103 iommu = device_to_iommu(dev, &bus, &devfn);
2107 if (!dev_is_pci(dev))
2108 return domain_context_mapping_one(domain, iommu, bus, devfn);
2110 data.domain = domain;
2113 return pci_for_each_dma_alias(to_pci_dev(dev),
2114 &domain_context_mapping_cb, &data);
2117 static int domain_context_mapped_cb(struct pci_dev *pdev,
2118 u16 alias, void *opaque)
2120 struct intel_iommu *iommu = opaque;
2122 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2125 static int domain_context_mapped(struct device *dev)
2127 struct intel_iommu *iommu;
2130 iommu = device_to_iommu(dev, &bus, &devfn);
2134 if (!dev_is_pci(dev))
2135 return device_context_mapped(iommu, bus, devfn);
2137 return !pci_for_each_dma_alias(to_pci_dev(dev),
2138 domain_context_mapped_cb, iommu);
2141 /* Returns a number of VTD pages, but aligned to MM page size */
2142 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2145 host_addr &= ~PAGE_MASK;
2146 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2149 /* Return largest possible superpage level for a given mapping */
2150 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2151 unsigned long iov_pfn,
2152 unsigned long phy_pfn,
2153 unsigned long pages)
2155 int support, level = 1;
2156 unsigned long pfnmerge;
2158 support = domain->iommu_superpage;
2160 /* To use a large page, the virtual *and* physical addresses
2161 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2162 of them will mean we have to use smaller pages. So just
2163 merge them and check both at once. */
2164 pfnmerge = iov_pfn | phy_pfn;
2166 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2167 pages >>= VTD_STRIDE_SHIFT;
2170 pfnmerge >>= VTD_STRIDE_SHIFT;
2177 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2178 struct scatterlist *sg, unsigned long phys_pfn,
2179 unsigned long nr_pages, int prot)
2181 struct dma_pte *first_pte = NULL, *pte = NULL;
2182 phys_addr_t uninitialized_var(pteval);
2183 unsigned long sg_res = 0;
2184 unsigned int largepage_lvl = 0;
2185 unsigned long lvl_pages = 0;
2187 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2189 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2192 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2196 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2199 while (nr_pages > 0) {
2203 sg_res = aligned_nrpages(sg->offset, sg->length);
2204 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2205 sg->dma_length = sg->length;
2206 pteval = page_to_phys(sg_page(sg)) | prot;
2207 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2211 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2213 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2216 /* It is large page*/
2217 if (largepage_lvl > 1) {
2218 unsigned long nr_superpages, end_pfn;
2220 pteval |= DMA_PTE_LARGE_PAGE;
2221 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2223 nr_superpages = sg_res / lvl_pages;
2224 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2227 * Ensure that old small page tables are
2228 * removed to make room for superpage(s).
2230 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2232 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2236 /* We don't need lock here, nobody else
2237 * touches the iova range
2239 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2241 static int dumps = 5;
2242 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2243 iov_pfn, tmp, (unsigned long long)pteval);
2246 debug_dma_dump_mappings(NULL);
2251 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2253 BUG_ON(nr_pages < lvl_pages);
2254 BUG_ON(sg_res < lvl_pages);
2256 nr_pages -= lvl_pages;
2257 iov_pfn += lvl_pages;
2258 phys_pfn += lvl_pages;
2259 pteval += lvl_pages * VTD_PAGE_SIZE;
2260 sg_res -= lvl_pages;
2262 /* If the next PTE would be the first in a new page, then we
2263 need to flush the cache on the entries we've just written.
2264 And then we'll need to recalculate 'pte', so clear it and
2265 let it get set again in the if (!pte) block above.
2267 If we're done (!nr_pages) we need to flush the cache too.
2269 Also if we've been setting superpages, we may need to
2270 recalculate 'pte' and switch back to smaller pages for the
2271 end of the mapping, if the trailing size is not enough to
2272 use another superpage (i.e. sg_res < lvl_pages). */
2274 if (!nr_pages || first_pte_in_page(pte) ||
2275 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2276 domain_flush_cache(domain, first_pte,
2277 (void *)pte - (void *)first_pte);
2281 if (!sg_res && nr_pages)
2287 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2288 struct scatterlist *sg, unsigned long nr_pages,
2291 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2294 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2295 unsigned long phys_pfn, unsigned long nr_pages,
2298 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2301 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2306 clear_context_table(iommu, bus, devfn);
2307 iommu->flush.flush_context(iommu, 0, 0, 0,
2308 DMA_CCMD_GLOBAL_INVL);
2309 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2312 static inline void unlink_domain_info(struct device_domain_info *info)
2314 assert_spin_locked(&device_domain_lock);
2315 list_del(&info->link);
2316 list_del(&info->global);
2318 info->dev->archdata.iommu = NULL;
2321 static void domain_remove_dev_info(struct dmar_domain *domain)
2323 struct device_domain_info *info, *tmp;
2324 unsigned long flags;
2326 spin_lock_irqsave(&device_domain_lock, flags);
2327 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2328 __dmar_remove_one_dev_info(info);
2329 spin_unlock_irqrestore(&device_domain_lock, flags);
2334 * Note: we use struct device->archdata.iommu stores the info
2336 static struct dmar_domain *find_domain(struct device *dev)
2338 struct device_domain_info *info;
2340 /* No lock here, assumes no domain exit in normal case */
2341 info = dev->archdata.iommu;
2343 return info->domain;
2347 static inline struct device_domain_info *
2348 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2350 struct device_domain_info *info;
2352 list_for_each_entry(info, &device_domain_list, global)
2353 if (info->iommu->segment == segment && info->bus == bus &&
2354 info->devfn == devfn)
2360 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2363 struct dmar_domain *domain)
2365 struct dmar_domain *found = NULL;
2366 struct device_domain_info *info;
2367 unsigned long flags;
2370 info = alloc_devinfo_mem();
2375 info->devfn = devfn;
2376 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2377 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2380 info->domain = domain;
2381 info->iommu = iommu;
2383 if (dev && dev_is_pci(dev)) {
2384 struct pci_dev *pdev = to_pci_dev(info->dev);
2386 if (ecap_dev_iotlb_support(iommu->ecap) &&
2387 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2388 dmar_find_matched_atsr_unit(pdev))
2389 info->ats_supported = 1;
2391 if (ecs_enabled(iommu)) {
2392 if (pasid_enabled(iommu)) {
2393 int features = pci_pasid_features(pdev);
2395 info->pasid_supported = features | 1;
2398 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2399 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2400 info->pri_supported = 1;
2404 spin_lock_irqsave(&device_domain_lock, flags);
2406 found = find_domain(dev);
2409 struct device_domain_info *info2;
2410 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2412 found = info2->domain;
2418 spin_unlock_irqrestore(&device_domain_lock, flags);
2419 free_devinfo_mem(info);
2420 /* Caller must free the original domain */
2424 spin_lock(&iommu->lock);
2425 ret = domain_attach_iommu(domain, iommu);
2426 spin_unlock(&iommu->lock);
2429 spin_unlock_irqrestore(&device_domain_lock, flags);
2430 free_devinfo_mem(info);
2434 list_add(&info->link, &domain->devices);
2435 list_add(&info->global, &device_domain_list);
2437 dev->archdata.iommu = info;
2438 spin_unlock_irqrestore(&device_domain_lock, flags);
2440 if (dev && domain_context_mapping(domain, dev)) {
2441 pr_err("Domain context map for %s failed\n", dev_name(dev));
2442 dmar_remove_one_dev_info(domain, dev);
2449 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2451 *(u16 *)opaque = alias;
2455 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2457 struct device_domain_info *info = NULL;
2458 struct dmar_domain *domain = NULL;
2459 struct intel_iommu *iommu;
2460 u16 req_id, dma_alias;
2461 unsigned long flags;
2464 iommu = device_to_iommu(dev, &bus, &devfn);
2468 req_id = ((u16)bus << 8) | devfn;
2470 if (dev_is_pci(dev)) {
2471 struct pci_dev *pdev = to_pci_dev(dev);
2473 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2475 spin_lock_irqsave(&device_domain_lock, flags);
2476 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2477 PCI_BUS_NUM(dma_alias),
2480 iommu = info->iommu;
2481 domain = info->domain;
2483 spin_unlock_irqrestore(&device_domain_lock, flags);
2485 /* DMA alias already has a domain, use it */
2490 /* Allocate and initialize new domain for the device */
2491 domain = alloc_domain(0);
2494 if (domain_init(domain, iommu, gaw)) {
2495 domain_exit(domain);
2504 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2505 struct dmar_domain *domain)
2507 struct intel_iommu *iommu;
2508 struct dmar_domain *tmp;
2509 u16 req_id, dma_alias;
2512 iommu = device_to_iommu(dev, &bus, &devfn);
2516 req_id = ((u16)bus << 8) | devfn;
2518 if (dev_is_pci(dev)) {
2519 struct pci_dev *pdev = to_pci_dev(dev);
2521 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2523 /* register PCI DMA alias device */
2524 if (req_id != dma_alias) {
2525 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2526 dma_alias & 0xff, NULL, domain);
2528 if (!tmp || tmp != domain)
2533 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2534 if (!tmp || tmp != domain)
2540 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2542 struct dmar_domain *domain, *tmp;
2544 domain = find_domain(dev);
2548 domain = find_or_alloc_domain(dev, gaw);
2552 tmp = set_domain_for_dev(dev, domain);
2553 if (!tmp || domain != tmp) {
2554 domain_exit(domain);
2563 static int iommu_domain_identity_map(struct dmar_domain *domain,
2564 unsigned long long start,
2565 unsigned long long end)
2567 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2568 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2570 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2571 dma_to_mm_pfn(last_vpfn))) {
2572 pr_err("Reserving iova failed\n");
2576 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2578 * RMRR range might have overlap with physical memory range,
2581 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2583 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2584 last_vpfn - first_vpfn + 1,
2585 DMA_PTE_READ|DMA_PTE_WRITE);
2588 static int domain_prepare_identity_map(struct device *dev,
2589 struct dmar_domain *domain,
2590 unsigned long long start,
2591 unsigned long long end)
2593 /* For _hardware_ passthrough, don't bother. But for software
2594 passthrough, we do it anyway -- it may indicate a memory
2595 range which is reserved in E820, so which didn't get set
2596 up to start with in si_domain */
2597 if (domain == si_domain && hw_pass_through) {
2598 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2599 dev_name(dev), start, end);
2603 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2604 dev_name(dev), start, end);
2607 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2608 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2609 dmi_get_system_info(DMI_BIOS_VENDOR),
2610 dmi_get_system_info(DMI_BIOS_VERSION),
2611 dmi_get_system_info(DMI_PRODUCT_VERSION));
2615 if (end >> agaw_to_width(domain->agaw)) {
2616 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2617 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2618 agaw_to_width(domain->agaw),
2619 dmi_get_system_info(DMI_BIOS_VENDOR),
2620 dmi_get_system_info(DMI_BIOS_VERSION),
2621 dmi_get_system_info(DMI_PRODUCT_VERSION));
2625 return iommu_domain_identity_map(domain, start, end);
2628 static int iommu_prepare_identity_map(struct device *dev,
2629 unsigned long long start,
2630 unsigned long long end)
2632 struct dmar_domain *domain;
2635 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2639 ret = domain_prepare_identity_map(dev, domain, start, end);
2641 domain_exit(domain);
2646 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2649 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2651 return iommu_prepare_identity_map(dev, rmrr->base_address,
2655 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2656 static inline void iommu_prepare_isa(void)
2658 struct pci_dev *pdev;
2661 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2665 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2666 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2669 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2674 static inline void iommu_prepare_isa(void)
2678 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2680 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2682 static int __init si_domain_init(int hw)
2686 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2690 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2691 domain_exit(si_domain);
2695 pr_debug("Identity mapping domain allocated\n");
2700 for_each_online_node(nid) {
2701 unsigned long start_pfn, end_pfn;
2704 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2705 ret = iommu_domain_identity_map(si_domain,
2706 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2715 static int identity_mapping(struct device *dev)
2717 struct device_domain_info *info;
2719 if (likely(!iommu_identity_mapping))
2722 info = dev->archdata.iommu;
2723 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2724 return (info->domain == si_domain);
2729 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2731 struct dmar_domain *ndomain;
2732 struct intel_iommu *iommu;
2735 iommu = device_to_iommu(dev, &bus, &devfn);
2739 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2740 if (ndomain != domain)
2746 static bool device_has_rmrr(struct device *dev)
2748 struct dmar_rmrr_unit *rmrr;
2753 for_each_rmrr_units(rmrr) {
2755 * Return TRUE if this RMRR contains the device that
2758 for_each_active_dev_scope(rmrr->devices,
2759 rmrr->devices_cnt, i, tmp)
2770 * There are a couple cases where we need to restrict the functionality of
2771 * devices associated with RMRRs. The first is when evaluating a device for
2772 * identity mapping because problems exist when devices are moved in and out
2773 * of domains and their respective RMRR information is lost. This means that
2774 * a device with associated RMRRs will never be in a "passthrough" domain.
2775 * The second is use of the device through the IOMMU API. This interface
2776 * expects to have full control of the IOVA space for the device. We cannot
2777 * satisfy both the requirement that RMRR access is maintained and have an
2778 * unencumbered IOVA space. We also have no ability to quiesce the device's
2779 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2780 * We therefore prevent devices associated with an RMRR from participating in
2781 * the IOMMU API, which eliminates them from device assignment.
2783 * In both cases we assume that PCI USB devices with RMRRs have them largely
2784 * for historical reasons and that the RMRR space is not actively used post
2785 * boot. This exclusion may change if vendors begin to abuse it.
2787 * The same exception is made for graphics devices, with the requirement that
2788 * any use of the RMRR regions will be torn down before assigning the device
2791 static bool device_is_rmrr_locked(struct device *dev)
2793 if (!device_has_rmrr(dev))
2796 if (dev_is_pci(dev)) {
2797 struct pci_dev *pdev = to_pci_dev(dev);
2799 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2806 static int iommu_should_identity_map(struct device *dev, int startup)
2809 if (dev_is_pci(dev)) {
2810 struct pci_dev *pdev = to_pci_dev(dev);
2812 if (device_is_rmrr_locked(dev))
2815 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2818 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2821 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2825 * We want to start off with all devices in the 1:1 domain, and
2826 * take them out later if we find they can't access all of memory.
2828 * However, we can't do this for PCI devices behind bridges,
2829 * because all PCI devices behind the same bridge will end up
2830 * with the same source-id on their transactions.
2832 * Practically speaking, we can't change things around for these
2833 * devices at run-time, because we can't be sure there'll be no
2834 * DMA transactions in flight for any of their siblings.
2836 * So PCI devices (unless they're on the root bus) as well as
2837 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2838 * the 1:1 domain, just in _case_ one of their siblings turns out
2839 * not to be able to map all of memory.
2841 if (!pci_is_pcie(pdev)) {
2842 if (!pci_is_root_bus(pdev->bus))
2844 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2846 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2849 if (device_has_rmrr(dev))
2854 * At boot time, we don't yet know if devices will be 64-bit capable.
2855 * Assume that they will — if they turn out not to be, then we can
2856 * take them out of the 1:1 domain later.
2860 * If the device's dma_mask is less than the system's memory
2861 * size then this is not a candidate for identity mapping.
2863 u64 dma_mask = *dev->dma_mask;
2865 if (dev->coherent_dma_mask &&
2866 dev->coherent_dma_mask < dma_mask)
2867 dma_mask = dev->coherent_dma_mask;
2869 return dma_mask >= dma_get_required_mask(dev);
2875 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2879 if (!iommu_should_identity_map(dev, 1))
2882 ret = domain_add_dev_info(si_domain, dev);
2884 pr_info("%s identity mapping for device %s\n",
2885 hw ? "Hardware" : "Software", dev_name(dev));
2886 else if (ret == -ENODEV)
2887 /* device not associated with an iommu */
2894 static int __init iommu_prepare_static_identity_mapping(int hw)
2896 struct pci_dev *pdev = NULL;
2897 struct dmar_drhd_unit *drhd;
2898 struct intel_iommu *iommu;
2903 for_each_pci_dev(pdev) {
2904 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2909 for_each_active_iommu(iommu, drhd)
2910 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2911 struct acpi_device_physical_node *pn;
2912 struct acpi_device *adev;
2914 if (dev->bus != &acpi_bus_type)
2917 adev= to_acpi_device(dev);
2918 mutex_lock(&adev->physical_node_lock);
2919 list_for_each_entry(pn, &adev->physical_node_list, node) {
2920 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2924 mutex_unlock(&adev->physical_node_lock);
2932 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2935 * Start from the sane iommu hardware state.
2936 * If the queued invalidation is already initialized by us
2937 * (for example, while enabling interrupt-remapping) then
2938 * we got the things already rolling from a sane state.
2942 * Clear any previous faults.
2944 dmar_fault(-1, iommu);
2946 * Disable queued invalidation if supported and already enabled
2947 * before OS handover.
2949 dmar_disable_qi(iommu);
2952 if (dmar_enable_qi(iommu)) {
2954 * Queued Invalidate not enabled, use Register Based Invalidate
2956 iommu->flush.flush_context = __iommu_flush_context;
2957 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2958 pr_info("%s: Using Register based invalidation\n",
2961 iommu->flush.flush_context = qi_flush_context;
2962 iommu->flush.flush_iotlb = qi_flush_iotlb;
2963 pr_info("%s: Using Queued invalidation\n", iommu->name);
2967 static int copy_context_table(struct intel_iommu *iommu,
2968 struct root_entry *old_re,
2969 struct context_entry **tbl,
2972 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2973 struct context_entry *new_ce = NULL, ce;
2974 struct context_entry *old_ce = NULL;
2975 struct root_entry re;
2976 phys_addr_t old_ce_phys;
2978 tbl_idx = ext ? bus * 2 : bus;
2979 memcpy(&re, old_re, sizeof(re));
2981 for (devfn = 0; devfn < 256; devfn++) {
2982 /* First calculate the correct index */
2983 idx = (ext ? devfn * 2 : devfn) % 256;
2986 /* First save what we may have and clean up */
2988 tbl[tbl_idx] = new_ce;
2989 __iommu_flush_cache(iommu, new_ce,
2999 old_ce_phys = root_entry_lctp(&re);
3001 old_ce_phys = root_entry_uctp(&re);
3004 if (ext && devfn == 0) {
3005 /* No LCTP, try UCTP */
3014 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3019 new_ce = alloc_pgtable_page(iommu->node);
3026 /* Now copy the context entry */
3027 memcpy(&ce, old_ce + idx, sizeof(ce));
3029 if (!__context_present(&ce))
3032 did = context_domain_id(&ce);
3033 if (did >= 0 && did < cap_ndoms(iommu->cap))
3034 set_bit(did, iommu->domain_ids);
3037 * We need a marker for copied context entries. This
3038 * marker needs to work for the old format as well as
3039 * for extended context entries.
3041 * Bit 67 of the context entry is used. In the old
3042 * format this bit is available to software, in the
3043 * extended format it is the PGE bit, but PGE is ignored
3044 * by HW if PASIDs are disabled (and thus still
3047 * So disable PASIDs first and then mark the entry
3048 * copied. This means that we don't copy PASID
3049 * translations from the old kernel, but this is fine as
3050 * faults there are not fatal.
3052 context_clear_pasid_enable(&ce);
3053 context_set_copied(&ce);
3058 tbl[tbl_idx + pos] = new_ce;
3060 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3069 static int copy_translation_tables(struct intel_iommu *iommu)
3071 struct context_entry **ctxt_tbls;
3072 struct root_entry *old_rt;
3073 phys_addr_t old_rt_phys;
3074 int ctxt_table_entries;
3075 unsigned long flags;
3080 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3081 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3082 new_ext = !!ecap_ecs(iommu->ecap);
3085 * The RTT bit can only be changed when translation is disabled,
3086 * but disabling translation means to open a window for data
3087 * corruption. So bail out and don't copy anything if we would
3088 * have to change the bit.
3093 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3097 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3101 /* This is too big for the stack - allocate it from slab */
3102 ctxt_table_entries = ext ? 512 : 256;
3104 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3108 for (bus = 0; bus < 256; bus++) {
3109 ret = copy_context_table(iommu, &old_rt[bus],
3110 ctxt_tbls, bus, ext);
3112 pr_err("%s: Failed to copy context table for bus %d\n",
3118 spin_lock_irqsave(&iommu->lock, flags);
3120 /* Context tables are copied, now write them to the root_entry table */
3121 for (bus = 0; bus < 256; bus++) {
3122 int idx = ext ? bus * 2 : bus;
3125 if (ctxt_tbls[idx]) {
3126 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3127 iommu->root_entry[bus].lo = val;
3130 if (!ext || !ctxt_tbls[idx + 1])
3133 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3134 iommu->root_entry[bus].hi = val;
3137 spin_unlock_irqrestore(&iommu->lock, flags);
3141 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3151 static int __init init_dmars(void)
3153 struct dmar_drhd_unit *drhd;
3154 struct dmar_rmrr_unit *rmrr;
3155 bool copied_tables = false;
3157 struct intel_iommu *iommu;
3163 * initialize and program root entry to not present
3166 for_each_drhd_unit(drhd) {
3168 * lock not needed as this is only incremented in the single
3169 * threaded kernel __init code path all other access are read
3172 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3176 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3179 /* Preallocate enough resources for IOMMU hot-addition */
3180 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3181 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3183 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3186 pr_err("Allocating global iommu array failed\n");
3191 for_each_possible_cpu(cpu) {
3192 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3195 dfd->tables = kzalloc(g_num_of_iommus *
3196 sizeof(struct deferred_flush_table),
3203 spin_lock_init(&dfd->lock);
3204 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
3207 for_each_active_iommu(iommu, drhd) {
3208 g_iommus[iommu->seq_id] = iommu;
3210 intel_iommu_init_qi(iommu);
3212 ret = iommu_init_domains(iommu);
3216 init_translation_status(iommu);
3218 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3219 iommu_disable_translation(iommu);
3220 clear_translation_pre_enabled(iommu);
3221 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3227 * we could share the same root & context tables
3228 * among all IOMMU's. Need to Split it later.
3230 ret = iommu_alloc_root_entry(iommu);
3234 if (translation_pre_enabled(iommu)) {
3235 pr_info("Translation already enabled - trying to copy translation structures\n");
3237 ret = copy_translation_tables(iommu);
3240 * We found the IOMMU with translation
3241 * enabled - but failed to copy over the
3242 * old root-entry table. Try to proceed
3243 * by disabling translation now and
3244 * allocating a clean root-entry table.
3245 * This might cause DMAR faults, but
3246 * probably the dump will still succeed.
3248 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3250 iommu_disable_translation(iommu);
3251 clear_translation_pre_enabled(iommu);
3253 pr_info("Copied translation tables from previous kernel for %s\n",
3255 copied_tables = true;
3259 if (!ecap_pass_through(iommu->ecap))
3260 hw_pass_through = 0;
3261 #ifdef CONFIG_INTEL_IOMMU_SVM
3262 if (pasid_enabled(iommu))
3263 intel_svm_alloc_pasid_tables(iommu);
3268 * Now that qi is enabled on all iommus, set the root entry and flush
3269 * caches. This is required on some Intel X58 chipsets, otherwise the
3270 * flush_context function will loop forever and the boot hangs.
3272 for_each_active_iommu(iommu, drhd) {
3273 iommu_flush_write_buffer(iommu);
3274 iommu_set_root_entry(iommu);
3275 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3276 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3279 if (iommu_pass_through)
3280 iommu_identity_mapping |= IDENTMAP_ALL;
3282 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3283 iommu_identity_mapping |= IDENTMAP_GFX;
3286 if (iommu_identity_mapping) {
3287 ret = si_domain_init(hw_pass_through);
3292 check_tylersburg_isoch();
3295 * If we copied translations from a previous kernel in the kdump
3296 * case, we can not assign the devices to domains now, as that
3297 * would eliminate the old mappings. So skip this part and defer
3298 * the assignment to device driver initialization time.
3304 * If pass through is not set or not enabled, setup context entries for
3305 * identity mappings for rmrr, gfx, and isa and may fall back to static
3306 * identity mapping if iommu_identity_mapping is set.
3308 if (iommu_identity_mapping) {
3309 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3311 pr_crit("Failed to setup IOMMU pass-through\n");
3317 * for each dev attached to rmrr
3319 * locate drhd for dev, alloc domain for dev
3320 * allocate free domain
3321 * allocate page table entries for rmrr
3322 * if context not allocated for bus
3323 * allocate and init context
3324 * set present in root table for this bus
3325 * init context with domain, translation etc
3329 pr_info("Setting RMRR:\n");
3330 for_each_rmrr_units(rmrr) {
3331 /* some BIOS lists non-exist devices in DMAR table. */
3332 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3334 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3336 pr_err("Mapping reserved region failed\n");
3340 iommu_prepare_isa();
3347 * global invalidate context cache
3348 * global invalidate iotlb
3349 * enable translation
3351 for_each_iommu(iommu, drhd) {
3352 if (drhd->ignored) {
3354 * we always have to disable PMRs or DMA may fail on
3358 iommu_disable_protect_mem_regions(iommu);
3362 iommu_flush_write_buffer(iommu);
3364 #ifdef CONFIG_INTEL_IOMMU_SVM
3365 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3366 ret = intel_svm_enable_prq(iommu);
3371 ret = dmar_set_interrupt(iommu);
3375 if (!translation_pre_enabled(iommu))
3376 iommu_enable_translation(iommu);
3378 iommu_disable_protect_mem_regions(iommu);
3384 for_each_active_iommu(iommu, drhd) {
3385 disable_dmar_iommu(iommu);
3386 free_dmar_iommu(iommu);
3389 for_each_possible_cpu(cpu)
3390 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
3396 /* This takes a number of _MM_ pages, not VTD pages */
3397 static unsigned long intel_alloc_iova(struct device *dev,
3398 struct dmar_domain *domain,
3399 unsigned long nrpages, uint64_t dma_mask)
3401 unsigned long iova_pfn = 0;
3403 /* Restrict dma_mask to the width that the iommu can handle */
3404 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3405 /* Ensure we reserve the whole size-aligned region */
3406 nrpages = __roundup_pow_of_two(nrpages);
3408 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3410 * First try to allocate an io virtual address in
3411 * DMA_BIT_MASK(32) and if that fails then try allocating
3414 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3415 IOVA_PFN(DMA_BIT_MASK(32)));
3419 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3420 if (unlikely(!iova_pfn)) {
3421 pr_err("Allocating %ld-page iova for %s failed",
3422 nrpages, dev_name(dev));
3429 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3431 struct dmar_domain *domain, *tmp;
3432 struct dmar_rmrr_unit *rmrr;
3433 struct device *i_dev;
3436 domain = find_domain(dev);
3440 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3444 /* We have a new domain - setup possible RMRRs for the device */
3446 for_each_rmrr_units(rmrr) {
3447 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3452 ret = domain_prepare_identity_map(dev, domain,
3456 dev_err(dev, "Mapping reserved region failed\n");
3461 tmp = set_domain_for_dev(dev, domain);
3462 if (!tmp || domain != tmp) {
3463 domain_exit(domain);
3470 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3476 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3478 struct device_domain_info *info;
3480 /* No lock here, assumes no domain exit in normal case */
3481 info = dev->archdata.iommu;
3483 return info->domain;
3485 return __get_valid_domain_for_dev(dev);
3488 /* Check if the dev needs to go through non-identity map and unmap process.*/
3489 static int iommu_no_mapping(struct device *dev)
3493 if (iommu_dummy(dev))
3496 if (!iommu_identity_mapping)
3499 found = identity_mapping(dev);
3501 if (iommu_should_identity_map(dev, 0))
3505 * 32 bit DMA is removed from si_domain and fall back
3506 * to non-identity mapping.
3508 dmar_remove_one_dev_info(si_domain, dev);
3509 pr_info("32bit %s uses non-identity mapping\n",
3515 * In case of a detached 64 bit DMA device from vm, the device
3516 * is put into si_domain for identity mapping.
3518 if (iommu_should_identity_map(dev, 0)) {
3520 ret = domain_add_dev_info(si_domain, dev);
3522 pr_info("64bit %s uses identity mapping\n",
3532 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3533 size_t size, int dir, u64 dma_mask)
3535 struct dmar_domain *domain;
3536 phys_addr_t start_paddr;
3537 unsigned long iova_pfn;
3540 struct intel_iommu *iommu;
3541 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3543 BUG_ON(dir == DMA_NONE);
3545 if (iommu_no_mapping(dev))
3548 domain = get_valid_domain_for_dev(dev);
3552 iommu = domain_get_iommu(domain);
3553 size = aligned_nrpages(paddr, size);
3555 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3560 * Check if DMAR supports zero-length reads on write only
3563 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3564 !cap_zlr(iommu->cap))
3565 prot |= DMA_PTE_READ;
3566 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3567 prot |= DMA_PTE_WRITE;
3569 * paddr - (paddr + size) might be partial page, we should map the whole
3570 * page. Note: if two part of one page are separately mapped, we
3571 * might have two guest_addr mapping to the same host paddr, but this
3572 * is not a big problem
3574 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3575 mm_to_dma_pfn(paddr_pfn), size, prot);
3579 /* it's a non-present to present mapping. Only flush if caching mode */
3580 if (cap_caching_mode(iommu->cap))
3581 iommu_flush_iotlb_psi(iommu, domain,
3582 mm_to_dma_pfn(iova_pfn),
3585 iommu_flush_write_buffer(iommu);
3587 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3588 start_paddr += paddr & ~PAGE_MASK;
3593 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3594 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3595 dev_name(dev), size, (unsigned long long)paddr, dir);
3599 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3600 unsigned long offset, size_t size,
3601 enum dma_data_direction dir,
3602 unsigned long attrs)
3604 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3605 dir, *dev->dma_mask);
3608 static void flush_unmaps(struct deferred_flush_data *flush_data)
3612 flush_data->timer_on = 0;
3614 /* just flush them all */
3615 for (i = 0; i < g_num_of_iommus; i++) {
3616 struct intel_iommu *iommu = g_iommus[i];
3617 struct deferred_flush_table *flush_table =
3618 &flush_data->tables[i];
3622 if (!flush_table->next)
3625 /* In caching mode, global flushes turn emulation expensive */
3626 if (!cap_caching_mode(iommu->cap))
3627 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3628 DMA_TLB_GLOBAL_FLUSH);
3629 for (j = 0; j < flush_table->next; j++) {
3631 struct deferred_flush_entry *entry =
3632 &flush_table->entries[j];
3633 unsigned long iova_pfn = entry->iova_pfn;
3634 unsigned long nrpages = entry->nrpages;
3635 struct dmar_domain *domain = entry->domain;
3636 struct page *freelist = entry->freelist;
3638 /* On real hardware multiple invalidations are expensive */
3639 if (cap_caching_mode(iommu->cap))
3640 iommu_flush_iotlb_psi(iommu, domain,
3641 mm_to_dma_pfn(iova_pfn),
3642 nrpages, !freelist, 0);
3644 mask = ilog2(nrpages);
3645 iommu_flush_dev_iotlb(domain,
3646 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
3648 free_iova_fast(&domain->iovad, iova_pfn, nrpages);
3650 dma_free_pagelist(freelist);
3652 flush_table->next = 0;
3655 flush_data->size = 0;
3658 static void flush_unmaps_timeout(unsigned long cpuid)
3660 struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3661 unsigned long flags;
3663 spin_lock_irqsave(&flush_data->lock, flags);
3664 flush_unmaps(flush_data);
3665 spin_unlock_irqrestore(&flush_data->lock, flags);
3668 static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
3669 unsigned long nrpages, struct page *freelist)
3671 unsigned long flags;
3672 int entry_id, iommu_id;
3673 struct intel_iommu *iommu;
3674 struct deferred_flush_entry *entry;
3675 struct deferred_flush_data *flush_data;
3679 flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3681 /* Flush all CPUs' entries to avoid deferring too much. If
3682 * this becomes a bottleneck, can just flush us, and rely on
3683 * flush timer for the rest.
3685 if (flush_data->size == HIGH_WATER_MARK) {
3688 for_each_online_cpu(cpu)
3689 flush_unmaps_timeout(cpu);
3692 spin_lock_irqsave(&flush_data->lock, flags);
3694 iommu = domain_get_iommu(dom);
3695 iommu_id = iommu->seq_id;
3697 entry_id = flush_data->tables[iommu_id].next;
3698 ++(flush_data->tables[iommu_id].next);
3700 entry = &flush_data->tables[iommu_id].entries[entry_id];
3701 entry->domain = dom;
3702 entry->iova_pfn = iova_pfn;
3703 entry->nrpages = nrpages;
3704 entry->freelist = freelist;
3706 if (!flush_data->timer_on) {
3707 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3708 flush_data->timer_on = 1;
3711 spin_unlock_irqrestore(&flush_data->lock, flags);
3716 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3718 struct dmar_domain *domain;
3719 unsigned long start_pfn, last_pfn;
3720 unsigned long nrpages;
3721 unsigned long iova_pfn;
3722 struct intel_iommu *iommu;
3723 struct page *freelist;
3725 if (iommu_no_mapping(dev))
3728 domain = find_domain(dev);
3731 iommu = domain_get_iommu(domain);
3733 iova_pfn = IOVA_PFN(dev_addr);
3735 nrpages = aligned_nrpages(dev_addr, size);
3736 start_pfn = mm_to_dma_pfn(iova_pfn);
3737 last_pfn = start_pfn + nrpages - 1;
3739 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3740 dev_name(dev), start_pfn, last_pfn);
3742 freelist = domain_unmap(domain, start_pfn, last_pfn);
3744 if (intel_iommu_strict) {
3745 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3746 nrpages, !freelist, 0);
3748 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3749 dma_free_pagelist(freelist);
3751 add_unmap(domain, iova_pfn, nrpages, freelist);
3753 * queue up the release of the unmap to save the 1/6th of the
3754 * cpu used up by the iotlb flush operation...
3759 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3760 size_t size, enum dma_data_direction dir,
3761 unsigned long attrs)
3763 intel_unmap(dev, dev_addr, size);
3766 static void *intel_alloc_coherent(struct device *dev, size_t size,
3767 dma_addr_t *dma_handle, gfp_t flags,
3768 unsigned long attrs)
3770 struct page *page = NULL;
3773 size = PAGE_ALIGN(size);
3774 order = get_order(size);
3776 if (!iommu_no_mapping(dev))
3777 flags &= ~(GFP_DMA | GFP_DMA32);
3778 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3779 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3785 if (gfpflags_allow_blocking(flags)) {
3786 unsigned int count = size >> PAGE_SHIFT;
3788 page = dma_alloc_from_contiguous(dev, count, order);
3789 if (page && iommu_no_mapping(dev) &&
3790 page_to_phys(page) + size > dev->coherent_dma_mask) {
3791 dma_release_from_contiguous(dev, page, count);
3797 page = alloc_pages(flags, order);
3800 memset(page_address(page), 0, size);
3802 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3804 dev->coherent_dma_mask);
3806 return page_address(page);
3807 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3808 __free_pages(page, order);
3813 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3814 dma_addr_t dma_handle, unsigned long attrs)
3817 struct page *page = virt_to_page(vaddr);
3819 size = PAGE_ALIGN(size);
3820 order = get_order(size);
3822 intel_unmap(dev, dma_handle, size);
3823 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3824 __free_pages(page, order);
3827 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3828 int nelems, enum dma_data_direction dir,
3829 unsigned long attrs)
3831 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3832 unsigned long nrpages = 0;
3833 struct scatterlist *sg;
3836 for_each_sg(sglist, sg, nelems, i) {
3837 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3840 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3843 static int intel_nontranslate_map_sg(struct device *hddev,
3844 struct scatterlist *sglist, int nelems, int dir)
3847 struct scatterlist *sg;
3849 for_each_sg(sglist, sg, nelems, i) {
3850 BUG_ON(!sg_page(sg));
3851 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3852 sg->dma_length = sg->length;
3857 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3858 enum dma_data_direction dir, unsigned long attrs)
3861 struct dmar_domain *domain;
3864 unsigned long iova_pfn;
3866 struct scatterlist *sg;
3867 unsigned long start_vpfn;
3868 struct intel_iommu *iommu;
3870 BUG_ON(dir == DMA_NONE);
3871 if (iommu_no_mapping(dev))
3872 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3874 domain = get_valid_domain_for_dev(dev);
3878 iommu = domain_get_iommu(domain);
3880 for_each_sg(sglist, sg, nelems, i)
3881 size += aligned_nrpages(sg->offset, sg->length);
3883 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3886 sglist->dma_length = 0;
3891 * Check if DMAR supports zero-length reads on write only
3894 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3895 !cap_zlr(iommu->cap))
3896 prot |= DMA_PTE_READ;
3897 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3898 prot |= DMA_PTE_WRITE;
3900 start_vpfn = mm_to_dma_pfn(iova_pfn);
3902 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3903 if (unlikely(ret)) {
3904 dma_pte_free_pagetable(domain, start_vpfn,
3905 start_vpfn + size - 1);
3906 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3910 /* it's a non-present to present mapping. Only flush if caching mode */
3911 if (cap_caching_mode(iommu->cap))
3912 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3914 iommu_flush_write_buffer(iommu);
3919 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3924 struct dma_map_ops intel_dma_ops = {
3925 .alloc = intel_alloc_coherent,
3926 .free = intel_free_coherent,
3927 .map_sg = intel_map_sg,
3928 .unmap_sg = intel_unmap_sg,
3929 .map_page = intel_map_page,
3930 .unmap_page = intel_unmap_page,
3931 .mapping_error = intel_mapping_error,
3934 static inline int iommu_domain_cache_init(void)
3938 iommu_domain_cache = kmem_cache_create("iommu_domain",
3939 sizeof(struct dmar_domain),
3944 if (!iommu_domain_cache) {
3945 pr_err("Couldn't create iommu_domain cache\n");
3952 static inline int iommu_devinfo_cache_init(void)
3956 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3957 sizeof(struct device_domain_info),
3961 if (!iommu_devinfo_cache) {
3962 pr_err("Couldn't create devinfo cache\n");
3969 static int __init iommu_init_mempool(void)
3972 ret = iova_cache_get();
3976 ret = iommu_domain_cache_init();
3980 ret = iommu_devinfo_cache_init();
3984 kmem_cache_destroy(iommu_domain_cache);
3991 static void __init iommu_exit_mempool(void)
3993 kmem_cache_destroy(iommu_devinfo_cache);
3994 kmem_cache_destroy(iommu_domain_cache);
3998 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4000 struct dmar_drhd_unit *drhd;
4004 /* We know that this device on this chipset has its own IOMMU.
4005 * If we find it under a different IOMMU, then the BIOS is lying
4006 * to us. Hope that the IOMMU for this device is actually
4007 * disabled, and it needs no translation...
4009 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4011 /* "can't" happen */
4012 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4015 vtbar &= 0xffff0000;
4017 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4018 drhd = dmar_find_matched_drhd_unit(pdev);
4019 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4020 TAINT_FIRMWARE_WORKAROUND,
4021 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4022 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4024 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4026 static void __init init_no_remapping_devices(void)
4028 struct dmar_drhd_unit *drhd;
4032 for_each_drhd_unit(drhd) {
4033 if (!drhd->include_all) {
4034 for_each_active_dev_scope(drhd->devices,
4035 drhd->devices_cnt, i, dev)
4037 /* ignore DMAR unit if no devices exist */
4038 if (i == drhd->devices_cnt)
4043 for_each_active_drhd_unit(drhd) {
4044 if (drhd->include_all)
4047 for_each_active_dev_scope(drhd->devices,
4048 drhd->devices_cnt, i, dev)
4049 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4051 if (i < drhd->devices_cnt)
4054 /* This IOMMU has *only* gfx devices. Either bypass it or
4055 set the gfx_mapped flag, as appropriate */
4057 intel_iommu_gfx_mapped = 1;
4060 for_each_active_dev_scope(drhd->devices,
4061 drhd->devices_cnt, i, dev)
4062 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4067 #ifdef CONFIG_SUSPEND
4068 static int init_iommu_hw(void)
4070 struct dmar_drhd_unit *drhd;
4071 struct intel_iommu *iommu = NULL;
4073 for_each_active_iommu(iommu, drhd)
4075 dmar_reenable_qi(iommu);
4077 for_each_iommu(iommu, drhd) {
4078 if (drhd->ignored) {
4080 * we always have to disable PMRs or DMA may fail on
4084 iommu_disable_protect_mem_regions(iommu);
4088 iommu_flush_write_buffer(iommu);
4090 iommu_set_root_entry(iommu);
4092 iommu->flush.flush_context(iommu, 0, 0, 0,
4093 DMA_CCMD_GLOBAL_INVL);
4094 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4095 iommu_enable_translation(iommu);
4096 iommu_disable_protect_mem_regions(iommu);
4102 static void iommu_flush_all(void)
4104 struct dmar_drhd_unit *drhd;
4105 struct intel_iommu *iommu;
4107 for_each_active_iommu(iommu, drhd) {
4108 iommu->flush.flush_context(iommu, 0, 0, 0,
4109 DMA_CCMD_GLOBAL_INVL);
4110 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4111 DMA_TLB_GLOBAL_FLUSH);
4115 static int iommu_suspend(void)
4117 struct dmar_drhd_unit *drhd;
4118 struct intel_iommu *iommu = NULL;
4121 for_each_active_iommu(iommu, drhd) {
4122 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4124 if (!iommu->iommu_state)
4130 for_each_active_iommu(iommu, drhd) {
4131 iommu_disable_translation(iommu);
4133 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4135 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4136 readl(iommu->reg + DMAR_FECTL_REG);
4137 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4138 readl(iommu->reg + DMAR_FEDATA_REG);
4139 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4140 readl(iommu->reg + DMAR_FEADDR_REG);
4141 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4142 readl(iommu->reg + DMAR_FEUADDR_REG);
4144 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4149 for_each_active_iommu(iommu, drhd)
4150 kfree(iommu->iommu_state);
4155 static void iommu_resume(void)
4157 struct dmar_drhd_unit *drhd;
4158 struct intel_iommu *iommu = NULL;
4161 if (init_iommu_hw()) {
4163 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4165 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4169 for_each_active_iommu(iommu, drhd) {
4171 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4173 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4174 iommu->reg + DMAR_FECTL_REG);
4175 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4176 iommu->reg + DMAR_FEDATA_REG);
4177 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4178 iommu->reg + DMAR_FEADDR_REG);
4179 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4180 iommu->reg + DMAR_FEUADDR_REG);
4182 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4185 for_each_active_iommu(iommu, drhd)
4186 kfree(iommu->iommu_state);
4189 static struct syscore_ops iommu_syscore_ops = {
4190 .resume = iommu_resume,
4191 .suspend = iommu_suspend,
4194 static void __init init_iommu_pm_ops(void)
4196 register_syscore_ops(&iommu_syscore_ops);
4200 static inline void init_iommu_pm_ops(void) {}
4201 #endif /* CONFIG_PM */
4204 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4206 struct acpi_dmar_reserved_memory *rmrr;
4207 struct dmar_rmrr_unit *rmrru;
4209 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4213 rmrru->hdr = header;
4214 rmrr = (struct acpi_dmar_reserved_memory *)header;
4215 rmrru->base_address = rmrr->base_address;
4216 rmrru->end_address = rmrr->end_address;
4217 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4218 ((void *)rmrr) + rmrr->header.length,
4219 &rmrru->devices_cnt);
4220 if (rmrru->devices_cnt && rmrru->devices == NULL) {
4225 list_add(&rmrru->list, &dmar_rmrr_units);
4230 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4232 struct dmar_atsr_unit *atsru;
4233 struct acpi_dmar_atsr *tmp;
4235 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4236 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4237 if (atsr->segment != tmp->segment)
4239 if (atsr->header.length != tmp->header.length)
4241 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4248 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4250 struct acpi_dmar_atsr *atsr;
4251 struct dmar_atsr_unit *atsru;
4253 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4256 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4257 atsru = dmar_find_atsr(atsr);
4261 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4266 * If memory is allocated from slab by ACPI _DSM method, we need to
4267 * copy the memory content because the memory buffer will be freed
4270 atsru->hdr = (void *)(atsru + 1);
4271 memcpy(atsru->hdr, hdr, hdr->length);
4272 atsru->include_all = atsr->flags & 0x1;
4273 if (!atsru->include_all) {
4274 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4275 (void *)atsr + atsr->header.length,
4276 &atsru->devices_cnt);
4277 if (atsru->devices_cnt && atsru->devices == NULL) {
4283 list_add_rcu(&atsru->list, &dmar_atsr_units);
4288 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4290 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4294 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4296 struct acpi_dmar_atsr *atsr;
4297 struct dmar_atsr_unit *atsru;
4299 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4300 atsru = dmar_find_atsr(atsr);
4302 list_del_rcu(&atsru->list);
4304 intel_iommu_free_atsr(atsru);
4310 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4314 struct acpi_dmar_atsr *atsr;
4315 struct dmar_atsr_unit *atsru;
4317 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4318 atsru = dmar_find_atsr(atsr);
4322 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4323 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4331 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4334 struct intel_iommu *iommu = dmaru->iommu;
4336 if (g_iommus[iommu->seq_id])
4339 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4340 pr_warn("%s: Doesn't support hardware pass through.\n",
4344 if (!ecap_sc_support(iommu->ecap) &&
4345 domain_update_iommu_snooping(iommu)) {
4346 pr_warn("%s: Doesn't support snooping.\n",
4350 sp = domain_update_iommu_superpage(iommu) - 1;
4351 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4352 pr_warn("%s: Doesn't support large page.\n",
4358 * Disable translation if already enabled prior to OS handover.
4360 if (iommu->gcmd & DMA_GCMD_TE)
4361 iommu_disable_translation(iommu);
4363 g_iommus[iommu->seq_id] = iommu;
4364 ret = iommu_init_domains(iommu);
4366 ret = iommu_alloc_root_entry(iommu);
4370 #ifdef CONFIG_INTEL_IOMMU_SVM
4371 if (pasid_enabled(iommu))
4372 intel_svm_alloc_pasid_tables(iommu);
4375 if (dmaru->ignored) {
4377 * we always have to disable PMRs or DMA may fail on this device
4380 iommu_disable_protect_mem_regions(iommu);
4384 intel_iommu_init_qi(iommu);
4385 iommu_flush_write_buffer(iommu);
4387 #ifdef CONFIG_INTEL_IOMMU_SVM
4388 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4389 ret = intel_svm_enable_prq(iommu);
4394 ret = dmar_set_interrupt(iommu);
4398 iommu_set_root_entry(iommu);
4399 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4400 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4401 iommu_enable_translation(iommu);
4403 iommu_disable_protect_mem_regions(iommu);
4407 disable_dmar_iommu(iommu);
4409 free_dmar_iommu(iommu);
4413 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4416 struct intel_iommu *iommu = dmaru->iommu;
4418 if (!intel_iommu_enabled)
4424 ret = intel_iommu_add(dmaru);
4426 disable_dmar_iommu(iommu);
4427 free_dmar_iommu(iommu);
4433 static void intel_iommu_free_dmars(void)
4435 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4436 struct dmar_atsr_unit *atsru, *atsr_n;
4438 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4439 list_del(&rmrru->list);
4440 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4444 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4445 list_del(&atsru->list);
4446 intel_iommu_free_atsr(atsru);
4450 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4453 struct pci_bus *bus;
4454 struct pci_dev *bridge = NULL;
4456 struct acpi_dmar_atsr *atsr;
4457 struct dmar_atsr_unit *atsru;
4459 dev = pci_physfn(dev);
4460 for (bus = dev->bus; bus; bus = bus->parent) {
4462 /* If it's an integrated device, allow ATS */
4465 /* Connected via non-PCIe: no ATS */
4466 if (!pci_is_pcie(bridge) ||
4467 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4469 /* If we found the root port, look it up in the ATSR */
4470 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4475 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4476 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4477 if (atsr->segment != pci_domain_nr(dev->bus))
4480 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4481 if (tmp == &bridge->dev)
4484 if (atsru->include_all)
4494 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4497 struct dmar_rmrr_unit *rmrru;
4498 struct dmar_atsr_unit *atsru;
4499 struct acpi_dmar_atsr *atsr;
4500 struct acpi_dmar_reserved_memory *rmrr;
4502 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4505 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4506 rmrr = container_of(rmrru->hdr,
4507 struct acpi_dmar_reserved_memory, header);
4508 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4509 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4510 ((void *)rmrr) + rmrr->header.length,
4511 rmrr->segment, rmrru->devices,
4512 rmrru->devices_cnt);
4515 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4516 dmar_remove_dev_scope(info, rmrr->segment,
4517 rmrru->devices, rmrru->devices_cnt);
4521 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4522 if (atsru->include_all)
4525 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4526 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4527 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4528 (void *)atsr + atsr->header.length,
4529 atsr->segment, atsru->devices,
4530 atsru->devices_cnt);
4535 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4536 if (dmar_remove_dev_scope(info, atsr->segment,
4537 atsru->devices, atsru->devices_cnt))
4546 * Here we only respond to action of unbound device from driver.
4548 * Added device is not attached to its DMAR domain here yet. That will happen
4549 * when mapping the device to iova.
4551 static int device_notifier(struct notifier_block *nb,
4552 unsigned long action, void *data)
4554 struct device *dev = data;
4555 struct dmar_domain *domain;
4557 if (iommu_dummy(dev))
4560 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4563 domain = find_domain(dev);
4567 dmar_remove_one_dev_info(domain, dev);
4568 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4569 domain_exit(domain);
4574 static struct notifier_block device_nb = {
4575 .notifier_call = device_notifier,
4578 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4579 unsigned long val, void *v)
4581 struct memory_notify *mhp = v;
4582 unsigned long long start, end;
4583 unsigned long start_vpfn, last_vpfn;
4586 case MEM_GOING_ONLINE:
4587 start = mhp->start_pfn << PAGE_SHIFT;
4588 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4589 if (iommu_domain_identity_map(si_domain, start, end)) {
4590 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4597 case MEM_CANCEL_ONLINE:
4598 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4599 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4600 while (start_vpfn <= last_vpfn) {
4602 struct dmar_drhd_unit *drhd;
4603 struct intel_iommu *iommu;
4604 struct page *freelist;
4606 iova = find_iova(&si_domain->iovad, start_vpfn);
4608 pr_debug("Failed get IOVA for PFN %lx\n",
4613 iova = split_and_remove_iova(&si_domain->iovad, iova,
4614 start_vpfn, last_vpfn);
4616 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4617 start_vpfn, last_vpfn);
4621 freelist = domain_unmap(si_domain, iova->pfn_lo,
4625 for_each_active_iommu(iommu, drhd)
4626 iommu_flush_iotlb_psi(iommu, si_domain,
4627 iova->pfn_lo, iova_size(iova),
4630 dma_free_pagelist(freelist);
4632 start_vpfn = iova->pfn_hi + 1;
4633 free_iova_mem(iova);
4641 static struct notifier_block intel_iommu_memory_nb = {
4642 .notifier_call = intel_iommu_memory_notifier,
4646 static void free_all_cpu_cached_iovas(unsigned int cpu)
4650 for (i = 0; i < g_num_of_iommus; i++) {
4651 struct intel_iommu *iommu = g_iommus[i];
4652 struct dmar_domain *domain;
4658 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4659 domain = get_iommu_domain(iommu, (u16)did);
4663 free_cpu_cached_iovas(cpu, &domain->iovad);
4668 static int intel_iommu_cpu_notifier(struct notifier_block *nfb,
4669 unsigned long action, void *v)
4671 unsigned int cpu = (unsigned long)v;
4675 case CPU_DEAD_FROZEN:
4676 free_all_cpu_cached_iovas(cpu);
4677 flush_unmaps_timeout(cpu);
4683 static struct notifier_block intel_iommu_cpu_nb = {
4684 .notifier_call = intel_iommu_cpu_notifier,
4687 static ssize_t intel_iommu_show_version(struct device *dev,
4688 struct device_attribute *attr,
4691 struct intel_iommu *iommu = dev_get_drvdata(dev);
4692 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4693 return sprintf(buf, "%d:%d\n",
4694 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4696 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4698 static ssize_t intel_iommu_show_address(struct device *dev,
4699 struct device_attribute *attr,
4702 struct intel_iommu *iommu = dev_get_drvdata(dev);
4703 return sprintf(buf, "%llx\n", iommu->reg_phys);
4705 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4707 static ssize_t intel_iommu_show_cap(struct device *dev,
4708 struct device_attribute *attr,
4711 struct intel_iommu *iommu = dev_get_drvdata(dev);
4712 return sprintf(buf, "%llx\n", iommu->cap);
4714 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4716 static ssize_t intel_iommu_show_ecap(struct device *dev,
4717 struct device_attribute *attr,
4720 struct intel_iommu *iommu = dev_get_drvdata(dev);
4721 return sprintf(buf, "%llx\n", iommu->ecap);
4723 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4725 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4726 struct device_attribute *attr,
4729 struct intel_iommu *iommu = dev_get_drvdata(dev);
4730 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4732 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4734 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4735 struct device_attribute *attr,
4738 struct intel_iommu *iommu = dev_get_drvdata(dev);
4739 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4740 cap_ndoms(iommu->cap)));
4742 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4744 static struct attribute *intel_iommu_attrs[] = {
4745 &dev_attr_version.attr,
4746 &dev_attr_address.attr,
4748 &dev_attr_ecap.attr,
4749 &dev_attr_domains_supported.attr,
4750 &dev_attr_domains_used.attr,
4754 static struct attribute_group intel_iommu_group = {
4755 .name = "intel-iommu",
4756 .attrs = intel_iommu_attrs,
4759 const struct attribute_group *intel_iommu_groups[] = {
4764 int __init intel_iommu_init(void)
4767 struct dmar_drhd_unit *drhd;
4768 struct intel_iommu *iommu;
4770 /* VT-d is required for a TXT/tboot launch, so enforce that */
4771 force_on = tboot_force_iommu();
4773 if (iommu_init_mempool()) {
4775 panic("tboot: Failed to initialize iommu memory\n");
4779 down_write(&dmar_global_lock);
4780 if (dmar_table_init()) {
4782 panic("tboot: Failed to initialize DMAR table\n");
4786 if (dmar_dev_scope_init() < 0) {
4788 panic("tboot: Failed to initialize DMAR device scope\n");
4792 if (no_iommu || dmar_disabled)
4795 if (list_empty(&dmar_rmrr_units))
4796 pr_info("No RMRR found\n");
4798 if (list_empty(&dmar_atsr_units))
4799 pr_info("No ATSR found\n");
4801 if (dmar_init_reserved_ranges()) {
4803 panic("tboot: Failed to reserve iommu ranges\n");
4804 goto out_free_reserved_range;
4807 init_no_remapping_devices();
4812 panic("tboot: Failed to initialize DMARs\n");
4813 pr_err("Initialization failed\n");
4814 goto out_free_reserved_range;
4816 up_write(&dmar_global_lock);
4817 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4819 #ifdef CONFIG_SWIOTLB
4822 dma_ops = &intel_dma_ops;
4824 init_iommu_pm_ops();
4826 for_each_active_iommu(iommu, drhd)
4827 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4831 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4832 bus_register_notifier(&pci_bus_type, &device_nb);
4833 if (si_domain && !hw_pass_through)
4834 register_memory_notifier(&intel_iommu_memory_nb);
4835 register_hotcpu_notifier(&intel_iommu_cpu_nb);
4837 intel_iommu_enabled = 1;
4841 out_free_reserved_range:
4842 put_iova_domain(&reserved_iova_list);
4844 intel_iommu_free_dmars();
4845 up_write(&dmar_global_lock);
4846 iommu_exit_mempool();
4850 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4852 struct intel_iommu *iommu = opaque;
4854 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4859 * NB - intel-iommu lacks any sort of reference counting for the users of
4860 * dependent devices. If multiple endpoints have intersecting dependent
4861 * devices, unbinding the driver from any one of them will possibly leave
4862 * the others unable to operate.
4864 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4866 if (!iommu || !dev || !dev_is_pci(dev))
4869 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4872 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4874 struct intel_iommu *iommu;
4875 unsigned long flags;
4877 assert_spin_locked(&device_domain_lock);
4882 iommu = info->iommu;
4885 iommu_disable_dev_iotlb(info);
4886 domain_context_clear(iommu, info->dev);
4889 unlink_domain_info(info);
4891 spin_lock_irqsave(&iommu->lock, flags);
4892 domain_detach_iommu(info->domain, iommu);
4893 spin_unlock_irqrestore(&iommu->lock, flags);
4895 free_devinfo_mem(info);
4898 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4901 struct device_domain_info *info;
4902 unsigned long flags;
4904 spin_lock_irqsave(&device_domain_lock, flags);
4905 info = dev->archdata.iommu;
4906 __dmar_remove_one_dev_info(info);
4907 spin_unlock_irqrestore(&device_domain_lock, flags);
4910 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4914 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4916 domain_reserve_special_ranges(domain);
4918 /* calculate AGAW */
4919 domain->gaw = guest_width;
4920 adjust_width = guestwidth_to_adjustwidth(guest_width);
4921 domain->agaw = width_to_agaw(adjust_width);
4923 domain->iommu_coherency = 0;
4924 domain->iommu_snooping = 0;
4925 domain->iommu_superpage = 0;
4926 domain->max_addr = 0;
4928 /* always allocate the top pgd */
4929 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4932 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4936 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4938 struct dmar_domain *dmar_domain;
4939 struct iommu_domain *domain;
4941 if (type != IOMMU_DOMAIN_UNMANAGED)
4944 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4946 pr_err("Can't allocate dmar_domain\n");
4949 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4950 pr_err("Domain initialization failed\n");
4951 domain_exit(dmar_domain);
4954 domain_update_iommu_cap(dmar_domain);
4956 domain = &dmar_domain->domain;
4957 domain->geometry.aperture_start = 0;
4958 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4959 domain->geometry.force_aperture = true;
4964 static void intel_iommu_domain_free(struct iommu_domain *domain)
4966 domain_exit(to_dmar_domain(domain));
4969 static int intel_iommu_attach_device(struct iommu_domain *domain,
4972 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4973 struct intel_iommu *iommu;
4977 if (device_is_rmrr_locked(dev)) {
4978 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4982 /* normally dev is not mapped */
4983 if (unlikely(domain_context_mapped(dev))) {
4984 struct dmar_domain *old_domain;
4986 old_domain = find_domain(dev);
4989 dmar_remove_one_dev_info(old_domain, dev);
4992 if (!domain_type_is_vm_or_si(old_domain) &&
4993 list_empty(&old_domain->devices))
4994 domain_exit(old_domain);
4998 iommu = device_to_iommu(dev, &bus, &devfn);
5002 /* check if this iommu agaw is sufficient for max mapped address */
5003 addr_width = agaw_to_width(iommu->agaw);
5004 if (addr_width > cap_mgaw(iommu->cap))
5005 addr_width = cap_mgaw(iommu->cap);
5007 if (dmar_domain->max_addr > (1LL << addr_width)) {
5008 pr_err("%s: iommu width (%d) is not "
5009 "sufficient for the mapped address (%llx)\n",
5010 __func__, addr_width, dmar_domain->max_addr);
5013 dmar_domain->gaw = addr_width;
5016 * Knock out extra levels of page tables if necessary
5018 while (iommu->agaw < dmar_domain->agaw) {
5019 struct dma_pte *pte;
5021 pte = dmar_domain->pgd;
5022 if (dma_pte_present(pte)) {
5023 dmar_domain->pgd = (struct dma_pte *)
5024 phys_to_virt(dma_pte_addr(pte));
5025 free_pgtable_page(pte);
5027 dmar_domain->agaw--;
5030 return domain_add_dev_info(dmar_domain, dev);
5033 static void intel_iommu_detach_device(struct iommu_domain *domain,
5036 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5039 static int intel_iommu_map(struct iommu_domain *domain,
5040 unsigned long iova, phys_addr_t hpa,
5041 size_t size, int iommu_prot)
5043 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5048 if (iommu_prot & IOMMU_READ)
5049 prot |= DMA_PTE_READ;
5050 if (iommu_prot & IOMMU_WRITE)
5051 prot |= DMA_PTE_WRITE;
5052 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5053 prot |= DMA_PTE_SNP;
5055 max_addr = iova + size;
5056 if (dmar_domain->max_addr < max_addr) {
5059 /* check if minimum agaw is sufficient for mapped address */
5060 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5061 if (end < max_addr) {
5062 pr_err("%s: iommu width (%d) is not "
5063 "sufficient for the mapped address (%llx)\n",
5064 __func__, dmar_domain->gaw, max_addr);
5067 dmar_domain->max_addr = max_addr;
5069 /* Round up size to next multiple of PAGE_SIZE, if it and
5070 the low bits of hpa would take us onto the next page */
5071 size = aligned_nrpages(hpa, size);
5072 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5073 hpa >> VTD_PAGE_SHIFT, size, prot);
5077 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5078 unsigned long iova, size_t size)
5080 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5081 struct page *freelist = NULL;
5082 struct intel_iommu *iommu;
5083 unsigned long start_pfn, last_pfn;
5084 unsigned int npages;
5085 int iommu_id, level = 0;
5087 /* Cope with horrid API which requires us to unmap more than the
5088 size argument if it happens to be a large-page mapping. */
5089 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5091 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5092 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5094 start_pfn = iova >> VTD_PAGE_SHIFT;
5095 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5097 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5099 npages = last_pfn - start_pfn + 1;
5101 for_each_domain_iommu(iommu_id, dmar_domain) {
5102 iommu = g_iommus[iommu_id];
5104 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5105 start_pfn, npages, !freelist, 0);
5108 dma_free_pagelist(freelist);
5110 if (dmar_domain->max_addr == iova + size)
5111 dmar_domain->max_addr = iova;
5116 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5119 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5120 struct dma_pte *pte;
5124 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5126 phys = dma_pte_addr(pte);
5131 static bool intel_iommu_capable(enum iommu_cap cap)
5133 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5134 return domain_update_iommu_snooping(NULL) == 1;
5135 if (cap == IOMMU_CAP_INTR_REMAP)
5136 return irq_remapping_enabled == 1;
5141 static int intel_iommu_add_device(struct device *dev)
5143 struct intel_iommu *iommu;
5144 struct iommu_group *group;
5147 iommu = device_to_iommu(dev, &bus, &devfn);
5151 iommu_device_link(iommu->iommu_dev, dev);
5153 group = iommu_group_get_for_dev(dev);
5156 return PTR_ERR(group);
5158 iommu_group_put(group);
5162 static void intel_iommu_remove_device(struct device *dev)
5164 struct intel_iommu *iommu;
5167 iommu = device_to_iommu(dev, &bus, &devfn);
5171 iommu_group_remove_device(dev);
5173 iommu_device_unlink(iommu->iommu_dev, dev);
5176 #ifdef CONFIG_INTEL_IOMMU_SVM
5177 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5179 struct device_domain_info *info;
5180 struct context_entry *context;
5181 struct dmar_domain *domain;
5182 unsigned long flags;
5186 domain = get_valid_domain_for_dev(sdev->dev);
5190 spin_lock_irqsave(&device_domain_lock, flags);
5191 spin_lock(&iommu->lock);
5194 info = sdev->dev->archdata.iommu;
5195 if (!info || !info->pasid_supported)
5198 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5199 if (WARN_ON(!context))
5202 ctx_lo = context[0].lo;
5204 sdev->did = domain->iommu_did[iommu->seq_id];
5205 sdev->sid = PCI_DEVID(info->bus, info->devfn);
5207 if (!(ctx_lo & CONTEXT_PASIDE)) {
5208 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5209 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) | ecap_pss(iommu->ecap);
5211 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5212 * extended to permit requests-with-PASID if the PASIDE bit
5213 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5214 * however, the PASIDE bit is ignored and requests-with-PASID
5215 * are unconditionally blocked. Which makes less sense.
5216 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5217 * "guest mode" translation types depending on whether ATS
5218 * is available or not. Annoyingly, we can't use the new
5219 * modes *unless* PASIDE is set. */
5220 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5221 ctx_lo &= ~CONTEXT_TT_MASK;
5222 if (info->ats_supported)
5223 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5225 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5227 ctx_lo |= CONTEXT_PASIDE;
5228 if (iommu->pasid_state_table)
5229 ctx_lo |= CONTEXT_DINVE;
5230 if (info->pri_supported)
5231 ctx_lo |= CONTEXT_PRS;
5232 context[0].lo = ctx_lo;
5234 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5235 DMA_CCMD_MASK_NOBIT,
5236 DMA_CCMD_DEVICE_INVL);
5239 /* Enable PASID support in the device, if it wasn't already */
5240 if (!info->pasid_enabled)
5241 iommu_enable_dev_iotlb(info);
5243 if (info->ats_enabled) {
5244 sdev->dev_iotlb = 1;
5245 sdev->qdep = info->ats_qdep;
5246 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5252 spin_unlock(&iommu->lock);
5253 spin_unlock_irqrestore(&device_domain_lock, flags);
5258 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5260 struct intel_iommu *iommu;
5263 if (iommu_dummy(dev)) {
5265 "No IOMMU translation for device; cannot enable SVM\n");
5269 iommu = device_to_iommu(dev, &bus, &devfn);
5271 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5275 if (!iommu->pasid_table) {
5276 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5282 #endif /* CONFIG_INTEL_IOMMU_SVM */
5284 static const struct iommu_ops intel_iommu_ops = {
5285 .capable = intel_iommu_capable,
5286 .domain_alloc = intel_iommu_domain_alloc,
5287 .domain_free = intel_iommu_domain_free,
5288 .attach_dev = intel_iommu_attach_device,
5289 .detach_dev = intel_iommu_detach_device,
5290 .map = intel_iommu_map,
5291 .unmap = intel_iommu_unmap,
5292 .map_sg = default_iommu_map_sg,
5293 .iova_to_phys = intel_iommu_iova_to_phys,
5294 .add_device = intel_iommu_add_device,
5295 .remove_device = intel_iommu_remove_device,
5296 .device_group = pci_device_group,
5297 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
5300 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5302 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5303 pr_info("Disabling IOMMU for graphics on this chipset\n");
5307 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5308 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5309 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5310 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5311 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5312 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5313 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5315 static void quirk_iommu_rwbf(struct pci_dev *dev)
5318 * Mobile 4 Series Chipset neglects to set RWBF capability,
5319 * but needs it. Same seems to hold for the desktop versions.
5321 pr_info("Forcing write-buffer flush capability\n");
5325 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5326 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5327 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5328 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5329 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5330 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5331 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5334 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
5335 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
5336 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
5337 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
5338 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
5339 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
5340 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
5341 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
5343 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5347 if (pci_read_config_word(dev, GGC, &ggc))
5350 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5351 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5353 } else if (dmar_map_gfx) {
5354 /* we have to ensure the gfx device is idle before we flush */
5355 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5356 intel_iommu_strict = 1;
5359 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5360 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5361 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5362 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5364 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5365 ISOCH DMAR unit for the Azalia sound device, but not give it any
5366 TLB entries, which causes it to deadlock. Check for that. We do
5367 this in a function called from init_dmars(), instead of in a PCI
5368 quirk, because we don't want to print the obnoxious "BIOS broken"
5369 message if VT-d is actually disabled.
5371 static void __init check_tylersburg_isoch(void)
5373 struct pci_dev *pdev;
5374 uint32_t vtisochctrl;
5376 /* If there's no Azalia in the system anyway, forget it. */
5377 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5382 /* System Management Registers. Might be hidden, in which case
5383 we can't do the sanity check. But that's OK, because the
5384 known-broken BIOSes _don't_ actually hide it, so far. */
5385 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5389 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5396 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5397 if (vtisochctrl & 1)
5400 /* Drop all bits other than the number of TLB entries */
5401 vtisochctrl &= 0x1c;
5403 /* If we have the recommended number of TLB entries (16), fine. */
5404 if (vtisochctrl == 0x10)
5407 /* Zero TLB entries? You get to ride the short bus to school. */
5409 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5410 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5411 dmi_get_system_info(DMI_BIOS_VENDOR),
5412 dmi_get_system_info(DMI_BIOS_VERSION),
5413 dmi_get_system_info(DMI_PRODUCT_VERSION));
5414 iommu_identity_mapping |= IDENTMAP_AZALIA;
5418 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",