]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c
Merge tag 'regulator-fix-v4.16-suspend' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
65
66
67 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
68 {
69         SDMA0_REGISTER_OFFSET,
70         SDMA1_REGISTER_OFFSET
71 };
72
73 static const u32 golden_settings_tonga_a11[] =
74 {
75         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
76         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
77         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
78         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
79         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
80         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
81         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
82         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
83         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
84         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
85 };
86
87 static const u32 tonga_mgcg_cgcg_init[] =
88 {
89         mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
90         mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
91 };
92
93 static const u32 golden_settings_fiji_a10[] =
94 {
95         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
96         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
97         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
98         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
99         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
100         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 };
104
105 static const u32 fiji_mgcg_cgcg_init[] =
106 {
107         mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
108         mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
109 };
110
111 static const u32 golden_settings_polaris11_a11[] =
112 {
113         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
114         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
115         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
116         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
117         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
118         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
119         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
120         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
121         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
122         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
123 };
124
125 static const u32 golden_settings_polaris10_a11[] =
126 {
127         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
128         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
129         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
130         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
131         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
132         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
133         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
134         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
135         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
136         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
137 };
138
139 static const u32 cz_golden_settings_a11[] =
140 {
141         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
142         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
143         mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
144         mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
145         mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
146         mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
147         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
148         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
149         mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
150         mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
151         mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
152         mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
153 };
154
155 static const u32 cz_mgcg_cgcg_init[] =
156 {
157         mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
158         mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
159 };
160
161 static const u32 stoney_golden_settings_a11[] =
162 {
163         mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
164         mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
165         mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
166         mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
167 };
168
169 static const u32 stoney_mgcg_cgcg_init[] =
170 {
171         mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
172 };
173
174 /*
175  * sDMA - System DMA
176  * Starting with CIK, the GPU has new asynchronous
177  * DMA engines.  These engines are used for compute
178  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
179  * and each one supports 1 ring buffer used for gfx
180  * and 2 queues used for compute.
181  *
182  * The programming model is very similar to the CP
183  * (ring buffer, IBs, etc.), but sDMA has it's own
184  * packet format that is different from the PM4 format
185  * used by the CP. sDMA supports copying data, writing
186  * embedded data, solid fills, and a number of other
187  * things.  It also has support for tiling/detiling of
188  * buffers.
189  */
190
191 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
192 {
193         switch (adev->asic_type) {
194         case CHIP_FIJI:
195                 amdgpu_device_program_register_sequence(adev,
196                                                         fiji_mgcg_cgcg_init,
197                                                         ARRAY_SIZE(fiji_mgcg_cgcg_init));
198                 amdgpu_device_program_register_sequence(adev,
199                                                         golden_settings_fiji_a10,
200                                                         ARRAY_SIZE(golden_settings_fiji_a10));
201                 break;
202         case CHIP_TONGA:
203                 amdgpu_device_program_register_sequence(adev,
204                                                         tonga_mgcg_cgcg_init,
205                                                         ARRAY_SIZE(tonga_mgcg_cgcg_init));
206                 amdgpu_device_program_register_sequence(adev,
207                                                         golden_settings_tonga_a11,
208                                                         ARRAY_SIZE(golden_settings_tonga_a11));
209                 break;
210         case CHIP_POLARIS11:
211         case CHIP_POLARIS12:
212                 amdgpu_device_program_register_sequence(adev,
213                                                         golden_settings_polaris11_a11,
214                                                         ARRAY_SIZE(golden_settings_polaris11_a11));
215                 break;
216         case CHIP_POLARIS10:
217                 amdgpu_device_program_register_sequence(adev,
218                                                         golden_settings_polaris10_a11,
219                                                         ARRAY_SIZE(golden_settings_polaris10_a11));
220                 break;
221         case CHIP_CARRIZO:
222                 amdgpu_device_program_register_sequence(adev,
223                                                         cz_mgcg_cgcg_init,
224                                                         ARRAY_SIZE(cz_mgcg_cgcg_init));
225                 amdgpu_device_program_register_sequence(adev,
226                                                         cz_golden_settings_a11,
227                                                         ARRAY_SIZE(cz_golden_settings_a11));
228                 break;
229         case CHIP_STONEY:
230                 amdgpu_device_program_register_sequence(adev,
231                                                         stoney_mgcg_cgcg_init,
232                                                         ARRAY_SIZE(stoney_mgcg_cgcg_init));
233                 amdgpu_device_program_register_sequence(adev,
234                                                         stoney_golden_settings_a11,
235                                                         ARRAY_SIZE(stoney_golden_settings_a11));
236                 break;
237         default:
238                 break;
239         }
240 }
241
242 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
243 {
244         int i;
245         for (i = 0; i < adev->sdma.num_instances; i++) {
246                 release_firmware(adev->sdma.instance[i].fw);
247                 adev->sdma.instance[i].fw = NULL;
248         }
249 }
250
251 /**
252  * sdma_v3_0_init_microcode - load ucode images from disk
253  *
254  * @adev: amdgpu_device pointer
255  *
256  * Use the firmware interface to load the ucode images into
257  * the driver (not loaded into hw).
258  * Returns 0 on success, error on failure.
259  */
260 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
261 {
262         const char *chip_name;
263         char fw_name[30];
264         int err = 0, i;
265         struct amdgpu_firmware_info *info = NULL;
266         const struct common_firmware_header *header = NULL;
267         const struct sdma_firmware_header_v1_0 *hdr;
268
269         DRM_DEBUG("\n");
270
271         switch (adev->asic_type) {
272         case CHIP_TONGA:
273                 chip_name = "tonga";
274                 break;
275         case CHIP_FIJI:
276                 chip_name = "fiji";
277                 break;
278         case CHIP_POLARIS11:
279                 chip_name = "polaris11";
280                 break;
281         case CHIP_POLARIS10:
282                 chip_name = "polaris10";
283                 break;
284         case CHIP_POLARIS12:
285                 chip_name = "polaris12";
286                 break;
287         case CHIP_CARRIZO:
288                 chip_name = "carrizo";
289                 break;
290         case CHIP_STONEY:
291                 chip_name = "stoney";
292                 break;
293         default: BUG();
294         }
295
296         for (i = 0; i < adev->sdma.num_instances; i++) {
297                 if (i == 0)
298                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
299                 else
300                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
301                 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
302                 if (err)
303                         goto out;
304                 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
305                 if (err)
306                         goto out;
307                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
308                 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
309                 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
310                 if (adev->sdma.instance[i].feature_version >= 20)
311                         adev->sdma.instance[i].burst_nop = true;
312
313                 if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
314                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316                         info->fw = adev->sdma.instance[i].fw;
317                         header = (const struct common_firmware_header *)info->fw->data;
318                         adev->firmware.fw_size +=
319                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320                 }
321         }
322 out:
323         if (err) {
324                 pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
325                 for (i = 0; i < adev->sdma.num_instances; i++) {
326                         release_firmware(adev->sdma.instance[i].fw);
327                         adev->sdma.instance[i].fw = NULL;
328                 }
329         }
330         return err;
331 }
332
333 /**
334  * sdma_v3_0_ring_get_rptr - get the current read pointer
335  *
336  * @ring: amdgpu ring pointer
337  *
338  * Get the current rptr from the hardware (VI+).
339  */
340 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
341 {
342         /* XXX check if swapping is necessary on BE */
343         return ring->adev->wb.wb[ring->rptr_offs] >> 2;
344 }
345
346 /**
347  * sdma_v3_0_ring_get_wptr - get the current write pointer
348  *
349  * @ring: amdgpu ring pointer
350  *
351  * Get the current wptr from the hardware (VI+).
352  */
353 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
354 {
355         struct amdgpu_device *adev = ring->adev;
356         u32 wptr;
357
358         if (ring->use_doorbell || ring->use_pollmem) {
359                 /* XXX check if swapping is necessary on BE */
360                 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
361         } else {
362                 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
363
364                 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
365         }
366
367         return wptr;
368 }
369
370 /**
371  * sdma_v3_0_ring_set_wptr - commit the write pointer
372  *
373  * @ring: amdgpu ring pointer
374  *
375  * Write the wptr back to the hardware (VI+).
376  */
377 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
378 {
379         struct amdgpu_device *adev = ring->adev;
380
381         if (ring->use_doorbell) {
382                 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
383                 /* XXX check if swapping is necessary on BE */
384                 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
385                 WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
386         } else if (ring->use_pollmem) {
387                 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
388
389                 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
390         } else {
391                 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
392
393                 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
394         }
395 }
396
397 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
398 {
399         struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
400         int i;
401
402         for (i = 0; i < count; i++)
403                 if (sdma && sdma->burst_nop && (i == 0))
404                         amdgpu_ring_write(ring, ring->funcs->nop |
405                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
406                 else
407                         amdgpu_ring_write(ring, ring->funcs->nop);
408 }
409
410 /**
411  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
412  *
413  * @ring: amdgpu ring pointer
414  * @ib: IB object to schedule
415  *
416  * Schedule an IB in the DMA ring (VI).
417  */
418 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
419                                    struct amdgpu_ib *ib,
420                                    unsigned vmid, bool ctx_switch)
421 {
422         /* IB packet must end on a 8 DW boundary */
423         sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
424
425         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
426                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
427         /* base must be 32 byte aligned */
428         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
429         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
430         amdgpu_ring_write(ring, ib->length_dw);
431         amdgpu_ring_write(ring, 0);
432         amdgpu_ring_write(ring, 0);
433
434 }
435
436 /**
437  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
438  *
439  * @ring: amdgpu ring pointer
440  *
441  * Emit an hdp flush packet on the requested DMA ring.
442  */
443 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
444 {
445         u32 ref_and_mask = 0;
446
447         if (ring == &ring->adev->sdma.instance[0].ring)
448                 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
449         else
450                 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
451
452         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
453                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
454                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
455         amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
456         amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
457         amdgpu_ring_write(ring, ref_and_mask); /* reference */
458         amdgpu_ring_write(ring, ref_and_mask); /* mask */
459         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
460                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
461 }
462
463 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
464 {
465         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
466                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
467         amdgpu_ring_write(ring, mmHDP_DEBUG0);
468         amdgpu_ring_write(ring, 1);
469 }
470
471 /**
472  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
473  *
474  * @ring: amdgpu ring pointer
475  * @fence: amdgpu fence object
476  *
477  * Add a DMA fence packet to the ring to write
478  * the fence seq number and DMA trap packet to generate
479  * an interrupt if needed (VI).
480  */
481 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
482                                       unsigned flags)
483 {
484         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
485         /* write the fence */
486         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
487         amdgpu_ring_write(ring, lower_32_bits(addr));
488         amdgpu_ring_write(ring, upper_32_bits(addr));
489         amdgpu_ring_write(ring, lower_32_bits(seq));
490
491         /* optionally write high bits as well */
492         if (write64bit) {
493                 addr += 4;
494                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
495                 amdgpu_ring_write(ring, lower_32_bits(addr));
496                 amdgpu_ring_write(ring, upper_32_bits(addr));
497                 amdgpu_ring_write(ring, upper_32_bits(seq));
498         }
499
500         /* generate an interrupt */
501         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
502         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
503 }
504
505 /**
506  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
507  *
508  * @adev: amdgpu_device pointer
509  *
510  * Stop the gfx async dma ring buffers (VI).
511  */
512 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
513 {
514         struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
515         struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
516         u32 rb_cntl, ib_cntl;
517         int i;
518
519         if ((adev->mman.buffer_funcs_ring == sdma0) ||
520             (adev->mman.buffer_funcs_ring == sdma1))
521                 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
522
523         for (i = 0; i < adev->sdma.num_instances; i++) {
524                 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
525                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
526                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
527                 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
528                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
529                 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
530         }
531         sdma0->ready = false;
532         sdma1->ready = false;
533 }
534
535 /**
536  * sdma_v3_0_rlc_stop - stop the compute async dma engines
537  *
538  * @adev: amdgpu_device pointer
539  *
540  * Stop the compute async dma queues (VI).
541  */
542 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
543 {
544         /* XXX todo */
545 }
546
547 /**
548  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
549  *
550  * @adev: amdgpu_device pointer
551  * @enable: enable/disable the DMA MEs context switch.
552  *
553  * Halt or unhalt the async dma engines context switch (VI).
554  */
555 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
556 {
557         u32 f32_cntl, phase_quantum = 0;
558         int i;
559
560         if (amdgpu_sdma_phase_quantum) {
561                 unsigned value = amdgpu_sdma_phase_quantum;
562                 unsigned unit = 0;
563
564                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
565                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
566                         value = (value + 1) >> 1;
567                         unit++;
568                 }
569                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
570                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
571                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
572                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
573                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
574                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
575                         WARN_ONCE(1,
576                         "clamping sdma_phase_quantum to %uK clock cycles\n",
577                                   value << unit);
578                 }
579                 phase_quantum =
580                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
581                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
582         }
583
584         for (i = 0; i < adev->sdma.num_instances; i++) {
585                 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
586                 if (enable) {
587                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
588                                         AUTO_CTXSW_ENABLE, 1);
589                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
590                                         ATC_L1_ENABLE, 1);
591                         if (amdgpu_sdma_phase_quantum) {
592                                 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
593                                        phase_quantum);
594                                 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
595                                        phase_quantum);
596                         }
597                 } else {
598                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
599                                         AUTO_CTXSW_ENABLE, 0);
600                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
601                                         ATC_L1_ENABLE, 1);
602                 }
603
604                 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
605         }
606 }
607
608 /**
609  * sdma_v3_0_enable - stop the async dma engines
610  *
611  * @adev: amdgpu_device pointer
612  * @enable: enable/disable the DMA MEs.
613  *
614  * Halt or unhalt the async dma engines (VI).
615  */
616 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
617 {
618         u32 f32_cntl;
619         int i;
620
621         if (!enable) {
622                 sdma_v3_0_gfx_stop(adev);
623                 sdma_v3_0_rlc_stop(adev);
624         }
625
626         for (i = 0; i < adev->sdma.num_instances; i++) {
627                 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
628                 if (enable)
629                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
630                 else
631                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
632                 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
633         }
634 }
635
636 /**
637  * sdma_v3_0_gfx_resume - setup and start the async dma engines
638  *
639  * @adev: amdgpu_device pointer
640  *
641  * Set up the gfx DMA ring buffers and enable them (VI).
642  * Returns 0 for success, error for failure.
643  */
644 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
645 {
646         struct amdgpu_ring *ring;
647         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
648         u32 rb_bufsz;
649         u32 wb_offset;
650         u32 doorbell;
651         u64 wptr_gpu_addr;
652         int i, j, r;
653
654         for (i = 0; i < adev->sdma.num_instances; i++) {
655                 ring = &adev->sdma.instance[i].ring;
656                 amdgpu_ring_clear_ring(ring);
657                 wb_offset = (ring->rptr_offs * 4);
658
659                 mutex_lock(&adev->srbm_mutex);
660                 for (j = 0; j < 16; j++) {
661                         vi_srbm_select(adev, 0, 0, 0, j);
662                         /* SDMA GFX */
663                         WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
664                         WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
665                 }
666                 vi_srbm_select(adev, 0, 0, 0, 0);
667                 mutex_unlock(&adev->srbm_mutex);
668
669                 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
670                        adev->gfx.config.gb_addr_config & 0x70);
671
672                 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
673
674                 /* Set ring buffer size in dwords */
675                 rb_bufsz = order_base_2(ring->ring_size / 4);
676                 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
677                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
678 #ifdef __BIG_ENDIAN
679                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
680                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
681                                         RPTR_WRITEBACK_SWAP_ENABLE, 1);
682 #endif
683                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
684
685                 /* Initialize the ring buffer's read and write pointers */
686                 ring->wptr = 0;
687                 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
688                 sdma_v3_0_ring_set_wptr(ring);
689                 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
690                 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
691
692                 /* set the wb address whether it's enabled or not */
693                 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
694                        upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
695                 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
696                        lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
697
698                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
699
700                 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
701                 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
702
703                 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
704
705                 if (ring->use_doorbell) {
706                         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
707                                                  OFFSET, ring->doorbell_index);
708                         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
709                 } else {
710                         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
711                 }
712                 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
713
714                 /* setup the wptr shadow polling */
715                 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
716
717                 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
718                        lower_32_bits(wptr_gpu_addr));
719                 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
720                        upper_32_bits(wptr_gpu_addr));
721                 wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
722                 if (ring->use_pollmem)
723                         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
724                                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
725                                                        ENABLE, 1);
726                 else
727                         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
728                                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
729                                                        ENABLE, 0);
730                 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
731
732                 /* enable DMA RB */
733                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
734                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
735
736                 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
737                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
738 #ifdef __BIG_ENDIAN
739                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
740 #endif
741                 /* enable DMA IBs */
742                 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
743
744                 ring->ready = true;
745         }
746
747         /* unhalt the MEs */
748         sdma_v3_0_enable(adev, true);
749         /* enable sdma ring preemption */
750         sdma_v3_0_ctx_switch_enable(adev, true);
751
752         for (i = 0; i < adev->sdma.num_instances; i++) {
753                 ring = &adev->sdma.instance[i].ring;
754                 r = amdgpu_ring_test_ring(ring);
755                 if (r) {
756                         ring->ready = false;
757                         return r;
758                 }
759
760                 if (adev->mman.buffer_funcs_ring == ring)
761                         amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
762         }
763
764         return 0;
765 }
766
767 /**
768  * sdma_v3_0_rlc_resume - setup and start the async dma engines
769  *
770  * @adev: amdgpu_device pointer
771  *
772  * Set up the compute DMA queues and enable them (VI).
773  * Returns 0 for success, error for failure.
774  */
775 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
776 {
777         /* XXX todo */
778         return 0;
779 }
780
781 /**
782  * sdma_v3_0_load_microcode - load the sDMA ME ucode
783  *
784  * @adev: amdgpu_device pointer
785  *
786  * Loads the sDMA0/1 ucode.
787  * Returns 0 for success, -EINVAL if the ucode is not available.
788  */
789 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
790 {
791         const struct sdma_firmware_header_v1_0 *hdr;
792         const __le32 *fw_data;
793         u32 fw_size;
794         int i, j;
795
796         /* halt the MEs */
797         sdma_v3_0_enable(adev, false);
798
799         for (i = 0; i < adev->sdma.num_instances; i++) {
800                 if (!adev->sdma.instance[i].fw)
801                         return -EINVAL;
802                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
803                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
804                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
805                 fw_data = (const __le32 *)
806                         (adev->sdma.instance[i].fw->data +
807                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
808                 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
809                 for (j = 0; j < fw_size; j++)
810                         WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
811                 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
812         }
813
814         return 0;
815 }
816
817 /**
818  * sdma_v3_0_start - setup and start the async dma engines
819  *
820  * @adev: amdgpu_device pointer
821  *
822  * Set up the DMA engines and enable them (VI).
823  * Returns 0 for success, error for failure.
824  */
825 static int sdma_v3_0_start(struct amdgpu_device *adev)
826 {
827         int r;
828
829         if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
830                 r = sdma_v3_0_load_microcode(adev);
831                 if (r)
832                         return r;
833         }
834
835         /* disable sdma engine before programing it */
836         sdma_v3_0_ctx_switch_enable(adev, false);
837         sdma_v3_0_enable(adev, false);
838
839         /* start the gfx rings and rlc compute queues */
840         r = sdma_v3_0_gfx_resume(adev);
841         if (r)
842                 return r;
843         r = sdma_v3_0_rlc_resume(adev);
844         if (r)
845                 return r;
846
847         return 0;
848 }
849
850 /**
851  * sdma_v3_0_ring_test_ring - simple async dma engine test
852  *
853  * @ring: amdgpu_ring structure holding ring information
854  *
855  * Test the DMA engine by writing using it to write an
856  * value to memory. (VI).
857  * Returns 0 for success, error for failure.
858  */
859 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
860 {
861         struct amdgpu_device *adev = ring->adev;
862         unsigned i;
863         unsigned index;
864         int r;
865         u32 tmp;
866         u64 gpu_addr;
867
868         r = amdgpu_device_wb_get(adev, &index);
869         if (r) {
870                 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
871                 return r;
872         }
873
874         gpu_addr = adev->wb.gpu_addr + (index * 4);
875         tmp = 0xCAFEDEAD;
876         adev->wb.wb[index] = cpu_to_le32(tmp);
877
878         r = amdgpu_ring_alloc(ring, 5);
879         if (r) {
880                 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
881                 amdgpu_device_wb_free(adev, index);
882                 return r;
883         }
884
885         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
886                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
887         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
888         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
889         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
890         amdgpu_ring_write(ring, 0xDEADBEEF);
891         amdgpu_ring_commit(ring);
892
893         for (i = 0; i < adev->usec_timeout; i++) {
894                 tmp = le32_to_cpu(adev->wb.wb[index]);
895                 if (tmp == 0xDEADBEEF)
896                         break;
897                 DRM_UDELAY(1);
898         }
899
900         if (i < adev->usec_timeout) {
901                 DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
902         } else {
903                 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
904                           ring->idx, tmp);
905                 r = -EINVAL;
906         }
907         amdgpu_device_wb_free(adev, index);
908
909         return r;
910 }
911
912 /**
913  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
914  *
915  * @ring: amdgpu_ring structure holding ring information
916  *
917  * Test a simple IB in the DMA ring (VI).
918  * Returns 0 on success, error on failure.
919  */
920 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
921 {
922         struct amdgpu_device *adev = ring->adev;
923         struct amdgpu_ib ib;
924         struct dma_fence *f = NULL;
925         unsigned index;
926         u32 tmp = 0;
927         u64 gpu_addr;
928         long r;
929
930         r = amdgpu_device_wb_get(adev, &index);
931         if (r) {
932                 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
933                 return r;
934         }
935
936         gpu_addr = adev->wb.gpu_addr + (index * 4);
937         tmp = 0xCAFEDEAD;
938         adev->wb.wb[index] = cpu_to_le32(tmp);
939         memset(&ib, 0, sizeof(ib));
940         r = amdgpu_ib_get(adev, NULL, 256, &ib);
941         if (r) {
942                 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
943                 goto err0;
944         }
945
946         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
947                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
948         ib.ptr[1] = lower_32_bits(gpu_addr);
949         ib.ptr[2] = upper_32_bits(gpu_addr);
950         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
951         ib.ptr[4] = 0xDEADBEEF;
952         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
953         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
954         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
955         ib.length_dw = 8;
956
957         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
958         if (r)
959                 goto err1;
960
961         r = dma_fence_wait_timeout(f, false, timeout);
962         if (r == 0) {
963                 DRM_ERROR("amdgpu: IB test timed out\n");
964                 r = -ETIMEDOUT;
965                 goto err1;
966         } else if (r < 0) {
967                 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
968                 goto err1;
969         }
970         tmp = le32_to_cpu(adev->wb.wb[index]);
971         if (tmp == 0xDEADBEEF) {
972                 DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
973                 r = 0;
974         } else {
975                 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
976                 r = -EINVAL;
977         }
978 err1:
979         amdgpu_ib_free(adev, &ib, NULL);
980         dma_fence_put(f);
981 err0:
982         amdgpu_device_wb_free(adev, index);
983         return r;
984 }
985
986 /**
987  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
988  *
989  * @ib: indirect buffer to fill with commands
990  * @pe: addr of the page entry
991  * @src: src addr to copy from
992  * @count: number of page entries to update
993  *
994  * Update PTEs by copying them from the GART using sDMA (CIK).
995  */
996 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
997                                   uint64_t pe, uint64_t src,
998                                   unsigned count)
999 {
1000         unsigned bytes = count * 8;
1001
1002         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1003                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1004         ib->ptr[ib->length_dw++] = bytes;
1005         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1006         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1007         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1008         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1009         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1010 }
1011
1012 /**
1013  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1014  *
1015  * @ib: indirect buffer to fill with commands
1016  * @pe: addr of the page entry
1017  * @value: dst addr to write into pe
1018  * @count: number of page entries to update
1019  * @incr: increase next addr by incr bytes
1020  *
1021  * Update PTEs by writing them manually using sDMA (CIK).
1022  */
1023 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1024                                    uint64_t value, unsigned count,
1025                                    uint32_t incr)
1026 {
1027         unsigned ndw = count * 2;
1028
1029         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1030                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1031         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1032         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1033         ib->ptr[ib->length_dw++] = ndw;
1034         for (; ndw > 0; ndw -= 2) {
1035                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1036                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1037                 value += incr;
1038         }
1039 }
1040
1041 /**
1042  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1043  *
1044  * @ib: indirect buffer to fill with commands
1045  * @pe: addr of the page entry
1046  * @addr: dst addr to write into pe
1047  * @count: number of page entries to update
1048  * @incr: increase next addr by incr bytes
1049  * @flags: access flags
1050  *
1051  * Update the page tables using sDMA (CIK).
1052  */
1053 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1054                                      uint64_t addr, unsigned count,
1055                                      uint32_t incr, uint64_t flags)
1056 {
1057         /* for physically contiguous pages (vram) */
1058         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1059         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1060         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1061         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1062         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1063         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1064         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1065         ib->ptr[ib->length_dw++] = incr; /* increment size */
1066         ib->ptr[ib->length_dw++] = 0;
1067         ib->ptr[ib->length_dw++] = count; /* number of entries */
1068 }
1069
1070 /**
1071  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1072  *
1073  * @ib: indirect buffer to fill with padding
1074  *
1075  */
1076 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1077 {
1078         struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1079         u32 pad_count;
1080         int i;
1081
1082         pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1083         for (i = 0; i < pad_count; i++)
1084                 if (sdma && sdma->burst_nop && (i == 0))
1085                         ib->ptr[ib->length_dw++] =
1086                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1087                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1088                 else
1089                         ib->ptr[ib->length_dw++] =
1090                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1091 }
1092
1093 /**
1094  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1095  *
1096  * @ring: amdgpu_ring pointer
1097  *
1098  * Make sure all previous operations are completed (CIK).
1099  */
1100 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1101 {
1102         uint32_t seq = ring->fence_drv.sync_seq;
1103         uint64_t addr = ring->fence_drv.gpu_addr;
1104
1105         /* wait for idle */
1106         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1107                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1108                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1109                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1110         amdgpu_ring_write(ring, addr & 0xfffffffc);
1111         amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1112         amdgpu_ring_write(ring, seq); /* reference */
1113         amdgpu_ring_write(ring, 0xfffffff); /* mask */
1114         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1115                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1116 }
1117
1118 /**
1119  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1120  *
1121  * @ring: amdgpu_ring pointer
1122  * @vm: amdgpu_vm pointer
1123  *
1124  * Update the page table base and flush the VM TLB
1125  * using sDMA (VI).
1126  */
1127 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1128                                          unsigned vmid, uint64_t pd_addr)
1129 {
1130         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1131                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1132         if (vmid < 8) {
1133                 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vmid));
1134         } else {
1135                 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8));
1136         }
1137         amdgpu_ring_write(ring, pd_addr >> 12);
1138
1139         /* flush TLB */
1140         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1141                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1142         amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1143         amdgpu_ring_write(ring, 1 << vmid);
1144
1145         /* wait for flush */
1146         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1147                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1148                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1149         amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1150         amdgpu_ring_write(ring, 0);
1151         amdgpu_ring_write(ring, 0); /* reference */
1152         amdgpu_ring_write(ring, 0); /* mask */
1153         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1154                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1155 }
1156
1157 static int sdma_v3_0_early_init(void *handle)
1158 {
1159         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1160
1161         switch (adev->asic_type) {
1162         case CHIP_STONEY:
1163                 adev->sdma.num_instances = 1;
1164                 break;
1165         default:
1166                 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1167                 break;
1168         }
1169
1170         sdma_v3_0_set_ring_funcs(adev);
1171         sdma_v3_0_set_buffer_funcs(adev);
1172         sdma_v3_0_set_vm_pte_funcs(adev);
1173         sdma_v3_0_set_irq_funcs(adev);
1174
1175         return 0;
1176 }
1177
1178 static int sdma_v3_0_sw_init(void *handle)
1179 {
1180         struct amdgpu_ring *ring;
1181         int r, i;
1182         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1183
1184         /* SDMA trap event */
1185         r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
1186                               &adev->sdma.trap_irq);
1187         if (r)
1188                 return r;
1189
1190         /* SDMA Privileged inst */
1191         r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
1192                               &adev->sdma.illegal_inst_irq);
1193         if (r)
1194                 return r;
1195
1196         /* SDMA Privileged inst */
1197         r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
1198                               &adev->sdma.illegal_inst_irq);
1199         if (r)
1200                 return r;
1201
1202         r = sdma_v3_0_init_microcode(adev);
1203         if (r) {
1204                 DRM_ERROR("Failed to load sdma firmware!\n");
1205                 return r;
1206         }
1207
1208         for (i = 0; i < adev->sdma.num_instances; i++) {
1209                 ring = &adev->sdma.instance[i].ring;
1210                 ring->ring_obj = NULL;
1211                 if (!amdgpu_sriov_vf(adev)) {
1212                         ring->use_doorbell = true;
1213                         ring->doorbell_index = (i == 0) ?
1214                                 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1215                 } else {
1216                         ring->use_pollmem = true;
1217                 }
1218
1219                 sprintf(ring->name, "sdma%d", i);
1220                 r = amdgpu_ring_init(adev, ring, 1024,
1221                                      &adev->sdma.trap_irq,
1222                                      (i == 0) ?
1223                                      AMDGPU_SDMA_IRQ_TRAP0 :
1224                                      AMDGPU_SDMA_IRQ_TRAP1);
1225                 if (r)
1226                         return r;
1227         }
1228
1229         return r;
1230 }
1231
1232 static int sdma_v3_0_sw_fini(void *handle)
1233 {
1234         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1235         int i;
1236
1237         for (i = 0; i < adev->sdma.num_instances; i++)
1238                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1239
1240         sdma_v3_0_free_microcode(adev);
1241         return 0;
1242 }
1243
1244 static int sdma_v3_0_hw_init(void *handle)
1245 {
1246         int r;
1247         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1248
1249         sdma_v3_0_init_golden_registers(adev);
1250
1251         r = sdma_v3_0_start(adev);
1252         if (r)
1253                 return r;
1254
1255         return r;
1256 }
1257
1258 static int sdma_v3_0_hw_fini(void *handle)
1259 {
1260         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1261
1262         sdma_v3_0_ctx_switch_enable(adev, false);
1263         sdma_v3_0_enable(adev, false);
1264
1265         return 0;
1266 }
1267
1268 static int sdma_v3_0_suspend(void *handle)
1269 {
1270         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1271
1272         return sdma_v3_0_hw_fini(adev);
1273 }
1274
1275 static int sdma_v3_0_resume(void *handle)
1276 {
1277         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1278
1279         return sdma_v3_0_hw_init(adev);
1280 }
1281
1282 static bool sdma_v3_0_is_idle(void *handle)
1283 {
1284         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1285         u32 tmp = RREG32(mmSRBM_STATUS2);
1286
1287         if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1288                    SRBM_STATUS2__SDMA1_BUSY_MASK))
1289             return false;
1290
1291         return true;
1292 }
1293
1294 static int sdma_v3_0_wait_for_idle(void *handle)
1295 {
1296         unsigned i;
1297         u32 tmp;
1298         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1299
1300         for (i = 0; i < adev->usec_timeout; i++) {
1301                 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1302                                 SRBM_STATUS2__SDMA1_BUSY_MASK);
1303
1304                 if (!tmp)
1305                         return 0;
1306                 udelay(1);
1307         }
1308         return -ETIMEDOUT;
1309 }
1310
1311 static bool sdma_v3_0_check_soft_reset(void *handle)
1312 {
1313         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1314         u32 srbm_soft_reset = 0;
1315         u32 tmp = RREG32(mmSRBM_STATUS2);
1316
1317         if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1318             (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1319                 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1320                 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1321         }
1322
1323         if (srbm_soft_reset) {
1324                 adev->sdma.srbm_soft_reset = srbm_soft_reset;
1325                 return true;
1326         } else {
1327                 adev->sdma.srbm_soft_reset = 0;
1328                 return false;
1329         }
1330 }
1331
1332 static int sdma_v3_0_pre_soft_reset(void *handle)
1333 {
1334         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1335         u32 srbm_soft_reset = 0;
1336
1337         if (!adev->sdma.srbm_soft_reset)
1338                 return 0;
1339
1340         srbm_soft_reset = adev->sdma.srbm_soft_reset;
1341
1342         if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1343             REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1344                 sdma_v3_0_ctx_switch_enable(adev, false);
1345                 sdma_v3_0_enable(adev, false);
1346         }
1347
1348         return 0;
1349 }
1350
1351 static int sdma_v3_0_post_soft_reset(void *handle)
1352 {
1353         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1354         u32 srbm_soft_reset = 0;
1355
1356         if (!adev->sdma.srbm_soft_reset)
1357                 return 0;
1358
1359         srbm_soft_reset = adev->sdma.srbm_soft_reset;
1360
1361         if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1362             REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1363                 sdma_v3_0_gfx_resume(adev);
1364                 sdma_v3_0_rlc_resume(adev);
1365         }
1366
1367         return 0;
1368 }
1369
1370 static int sdma_v3_0_soft_reset(void *handle)
1371 {
1372         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1373         u32 srbm_soft_reset = 0;
1374         u32 tmp;
1375
1376         if (!adev->sdma.srbm_soft_reset)
1377                 return 0;
1378
1379         srbm_soft_reset = adev->sdma.srbm_soft_reset;
1380
1381         if (srbm_soft_reset) {
1382                 tmp = RREG32(mmSRBM_SOFT_RESET);
1383                 tmp |= srbm_soft_reset;
1384                 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1385                 WREG32(mmSRBM_SOFT_RESET, tmp);
1386                 tmp = RREG32(mmSRBM_SOFT_RESET);
1387
1388                 udelay(50);
1389
1390                 tmp &= ~srbm_soft_reset;
1391                 WREG32(mmSRBM_SOFT_RESET, tmp);
1392                 tmp = RREG32(mmSRBM_SOFT_RESET);
1393
1394                 /* Wait a little for things to settle down */
1395                 udelay(50);
1396         }
1397
1398         return 0;
1399 }
1400
1401 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1402                                         struct amdgpu_irq_src *source,
1403                                         unsigned type,
1404                                         enum amdgpu_interrupt_state state)
1405 {
1406         u32 sdma_cntl;
1407
1408         switch (type) {
1409         case AMDGPU_SDMA_IRQ_TRAP0:
1410                 switch (state) {
1411                 case AMDGPU_IRQ_STATE_DISABLE:
1412                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1413                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1414                         WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1415                         break;
1416                 case AMDGPU_IRQ_STATE_ENABLE:
1417                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1418                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1419                         WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1420                         break;
1421                 default:
1422                         break;
1423                 }
1424                 break;
1425         case AMDGPU_SDMA_IRQ_TRAP1:
1426                 switch (state) {
1427                 case AMDGPU_IRQ_STATE_DISABLE:
1428                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1429                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1430                         WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1431                         break;
1432                 case AMDGPU_IRQ_STATE_ENABLE:
1433                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1434                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1435                         WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1436                         break;
1437                 default:
1438                         break;
1439                 }
1440                 break;
1441         default:
1442                 break;
1443         }
1444         return 0;
1445 }
1446
1447 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1448                                       struct amdgpu_irq_src *source,
1449                                       struct amdgpu_iv_entry *entry)
1450 {
1451         u8 instance_id, queue_id;
1452
1453         instance_id = (entry->ring_id & 0x3) >> 0;
1454         queue_id = (entry->ring_id & 0xc) >> 2;
1455         DRM_DEBUG("IH: SDMA trap\n");
1456         switch (instance_id) {
1457         case 0:
1458                 switch (queue_id) {
1459                 case 0:
1460                         amdgpu_fence_process(&adev->sdma.instance[0].ring);
1461                         break;
1462                 case 1:
1463                         /* XXX compute */
1464                         break;
1465                 case 2:
1466                         /* XXX compute */
1467                         break;
1468                 }
1469                 break;
1470         case 1:
1471                 switch (queue_id) {
1472                 case 0:
1473                         amdgpu_fence_process(&adev->sdma.instance[1].ring);
1474                         break;
1475                 case 1:
1476                         /* XXX compute */
1477                         break;
1478                 case 2:
1479                         /* XXX compute */
1480                         break;
1481                 }
1482                 break;
1483         }
1484         return 0;
1485 }
1486
1487 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1488                                               struct amdgpu_irq_src *source,
1489                                               struct amdgpu_iv_entry *entry)
1490 {
1491         DRM_ERROR("Illegal instruction in SDMA command stream\n");
1492         schedule_work(&adev->reset_work);
1493         return 0;
1494 }
1495
1496 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1497                 struct amdgpu_device *adev,
1498                 bool enable)
1499 {
1500         uint32_t temp, data;
1501         int i;
1502
1503         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1504                 for (i = 0; i < adev->sdma.num_instances; i++) {
1505                         temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1506                         data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1507                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1508                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1509                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1510                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1511                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1512                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1513                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1514                         if (data != temp)
1515                                 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1516                 }
1517         } else {
1518                 for (i = 0; i < adev->sdma.num_instances; i++) {
1519                         temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1520                         data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1521                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1522                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1523                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1524                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1525                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1526                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1527                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1528
1529                         if (data != temp)
1530                                 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1531                 }
1532         }
1533 }
1534
1535 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1536                 struct amdgpu_device *adev,
1537                 bool enable)
1538 {
1539         uint32_t temp, data;
1540         int i;
1541
1542         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1543                 for (i = 0; i < adev->sdma.num_instances; i++) {
1544                         temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1545                         data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1546
1547                         if (temp != data)
1548                                 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1549                 }
1550         } else {
1551                 for (i = 0; i < adev->sdma.num_instances; i++) {
1552                         temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1553                         data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1554
1555                         if (temp != data)
1556                                 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1557                 }
1558         }
1559 }
1560
1561 static int sdma_v3_0_set_clockgating_state(void *handle,
1562                                           enum amd_clockgating_state state)
1563 {
1564         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1565
1566         if (amdgpu_sriov_vf(adev))
1567                 return 0;
1568
1569         switch (adev->asic_type) {
1570         case CHIP_FIJI:
1571         case CHIP_CARRIZO:
1572         case CHIP_STONEY:
1573                 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1574                                 state == AMD_CG_STATE_GATE);
1575                 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1576                                 state == AMD_CG_STATE_GATE);
1577                 break;
1578         default:
1579                 break;
1580         }
1581         return 0;
1582 }
1583
1584 static int sdma_v3_0_set_powergating_state(void *handle,
1585                                           enum amd_powergating_state state)
1586 {
1587         return 0;
1588 }
1589
1590 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1591 {
1592         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1593         int data;
1594
1595         if (amdgpu_sriov_vf(adev))
1596                 *flags = 0;
1597
1598         /* AMD_CG_SUPPORT_SDMA_MGCG */
1599         data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1600         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1601                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1602
1603         /* AMD_CG_SUPPORT_SDMA_LS */
1604         data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1605         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1606                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1607 }
1608
1609 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1610         .name = "sdma_v3_0",
1611         .early_init = sdma_v3_0_early_init,
1612         .late_init = NULL,
1613         .sw_init = sdma_v3_0_sw_init,
1614         .sw_fini = sdma_v3_0_sw_fini,
1615         .hw_init = sdma_v3_0_hw_init,
1616         .hw_fini = sdma_v3_0_hw_fini,
1617         .suspend = sdma_v3_0_suspend,
1618         .resume = sdma_v3_0_resume,
1619         .is_idle = sdma_v3_0_is_idle,
1620         .wait_for_idle = sdma_v3_0_wait_for_idle,
1621         .check_soft_reset = sdma_v3_0_check_soft_reset,
1622         .pre_soft_reset = sdma_v3_0_pre_soft_reset,
1623         .post_soft_reset = sdma_v3_0_post_soft_reset,
1624         .soft_reset = sdma_v3_0_soft_reset,
1625         .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1626         .set_powergating_state = sdma_v3_0_set_powergating_state,
1627         .get_clockgating_state = sdma_v3_0_get_clockgating_state,
1628 };
1629
1630 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1631         .type = AMDGPU_RING_TYPE_SDMA,
1632         .align_mask = 0xf,
1633         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1634         .support_64bit_ptrs = false,
1635         .get_rptr = sdma_v3_0_ring_get_rptr,
1636         .get_wptr = sdma_v3_0_ring_get_wptr,
1637         .set_wptr = sdma_v3_0_ring_set_wptr,
1638         .emit_frame_size =
1639                 6 + /* sdma_v3_0_ring_emit_hdp_flush */
1640                 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1641                 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1642                 12 + /* sdma_v3_0_ring_emit_vm_flush */
1643                 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1644         .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1645         .emit_ib = sdma_v3_0_ring_emit_ib,
1646         .emit_fence = sdma_v3_0_ring_emit_fence,
1647         .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1648         .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1649         .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1650         .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1651         .test_ring = sdma_v3_0_ring_test_ring,
1652         .test_ib = sdma_v3_0_ring_test_ib,
1653         .insert_nop = sdma_v3_0_ring_insert_nop,
1654         .pad_ib = sdma_v3_0_ring_pad_ib,
1655 };
1656
1657 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1658 {
1659         int i;
1660
1661         for (i = 0; i < adev->sdma.num_instances; i++)
1662                 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1663 }
1664
1665 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1666         .set = sdma_v3_0_set_trap_irq_state,
1667         .process = sdma_v3_0_process_trap_irq,
1668 };
1669
1670 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1671         .process = sdma_v3_0_process_illegal_inst_irq,
1672 };
1673
1674 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1675 {
1676         adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1677         adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1678         adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1679 }
1680
1681 /**
1682  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1683  *
1684  * @ring: amdgpu_ring structure holding ring information
1685  * @src_offset: src GPU address
1686  * @dst_offset: dst GPU address
1687  * @byte_count: number of bytes to xfer
1688  *
1689  * Copy GPU buffers using the DMA engine (VI).
1690  * Used by the amdgpu ttm implementation to move pages if
1691  * registered as the asic copy callback.
1692  */
1693 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1694                                        uint64_t src_offset,
1695                                        uint64_t dst_offset,
1696                                        uint32_t byte_count)
1697 {
1698         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1699                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1700         ib->ptr[ib->length_dw++] = byte_count;
1701         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1702         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1703         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1704         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1705         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1706 }
1707
1708 /**
1709  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1710  *
1711  * @ring: amdgpu_ring structure holding ring information
1712  * @src_data: value to write to buffer
1713  * @dst_offset: dst GPU address
1714  * @byte_count: number of bytes to xfer
1715  *
1716  * Fill GPU buffers using the DMA engine (VI).
1717  */
1718 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1719                                        uint32_t src_data,
1720                                        uint64_t dst_offset,
1721                                        uint32_t byte_count)
1722 {
1723         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1724         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1725         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1726         ib->ptr[ib->length_dw++] = src_data;
1727         ib->ptr[ib->length_dw++] = byte_count;
1728 }
1729
1730 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1731         .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1732         .copy_num_dw = 7,
1733         .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1734
1735         .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1736         .fill_num_dw = 5,
1737         .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1738 };
1739
1740 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1741 {
1742         if (adev->mman.buffer_funcs == NULL) {
1743                 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1744                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1745         }
1746 }
1747
1748 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1749         .copy_pte_num_dw = 7,
1750         .copy_pte = sdma_v3_0_vm_copy_pte,
1751
1752         .write_pte = sdma_v3_0_vm_write_pte,
1753
1754         /* not 0x3fffff due to HW limitation */
1755         .set_max_nums_pte_pde = 0x3fffe0 >> 3,
1756         .set_pte_pde_num_dw = 10,
1757         .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1758 };
1759
1760 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1761 {
1762         unsigned i;
1763
1764         if (adev->vm_manager.vm_pte_funcs == NULL) {
1765                 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1766                 for (i = 0; i < adev->sdma.num_instances; i++)
1767                         adev->vm_manager.vm_pte_rings[i] =
1768                                 &adev->sdma.instance[i].ring;
1769
1770                 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1771         }
1772 }
1773
1774 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1775 {
1776         .type = AMD_IP_BLOCK_TYPE_SDMA,
1777         .major = 3,
1778         .minor = 0,
1779         .rev = 0,
1780         .funcs = &sdma_v3_0_ip_funcs,
1781 };
1782
1783 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1784 {
1785         .type = AMD_IP_BLOCK_TYPE_SDMA,
1786         .major = 3,
1787         .minor = 1,
1788         .rev = 0,
1789         .funcs = &sdma_v3_0_ip_funcs,
1790 };
This page took 0.137706 seconds and 4 git commands to generate.