2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
17 #include <soc/tegra/pmc.h>
25 #include <drm/drm_atomic.h>
26 #include <drm/drm_atomic_helper.h>
27 #include <drm/drm_plane_helper.h>
29 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
37 /* Reads the active copy of a register. */
38 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
42 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
43 value = tegra_dc_readl(dc, offset);
44 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
49 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
52 if (offset >= 0x500 && offset <= 0x638) {
53 offset = 0x000 + (offset - 0x500);
54 return plane->offset + offset;
57 if (offset >= 0x700 && offset <= 0x719) {
58 offset = 0x180 + (offset - 0x700);
59 return plane->offset + offset;
62 if (offset >= 0x800 && offset <= 0x839) {
63 offset = 0x1c0 + (offset - 0x800);
64 return plane->offset + offset;
67 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
69 return plane->offset + offset;
72 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
75 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
78 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
81 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
84 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
86 struct device_node *np = dc->dev->of_node;
87 struct of_phandle_iterator it;
90 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
91 if (it.node == dev->of_node)
98 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
99 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
100 * Latching happens mmediately if the display controller is in STOP mode or
101 * on the next frame boundary otherwise.
103 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
104 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
105 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
106 * into the ACTIVE copy, either immediately if the display controller is in
107 * STOP mode, or at the next frame boundary otherwise.
109 void tegra_dc_commit(struct tegra_dc *dc)
111 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
112 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
115 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
118 fixed20_12 outf = dfixed_init(out);
119 fixed20_12 inf = dfixed_init(in);
140 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
141 inf.full -= dfixed_const(1);
143 dda_inc = dfixed_div(inf, outf);
144 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
149 static inline u32 compute_initial_dda(unsigned int in)
151 fixed20_12 inf = dfixed_init(in);
152 return dfixed_frac(inf);
155 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
157 u32 background[3] = {
158 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
159 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
160 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
162 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
163 BLEND_COLOR_KEY_NONE;
164 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
165 struct tegra_plane_state *state;
169 /* disable blending for non-overlapping case */
170 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
171 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
173 state = to_tegra_plane_state(plane->base.state);
177 * Since custom fix-weight blending isn't utilized and weight
178 * of top window is set to max, we can enforce dependent
179 * blending which in this case results in transparent bottom
180 * window if top window is opaque and if top window enables
181 * alpha blending, then bottom window is getting alpha value
182 * of 1 minus the sum of alpha components of the overlapping
185 background[0] |= BLEND_CONTROL_DEPENDENT;
186 background[1] |= BLEND_CONTROL_DEPENDENT;
189 * The region where three windows overlap is the intersection
190 * of the two regions where two windows overlap. It contributes
191 * to the area if all of the windows on top of it have an alpha
194 switch (state->base.normalized_zpos) {
196 if (state->blending[0].alpha &&
197 state->blending[1].alpha)
198 background[2] |= BLEND_CONTROL_DEPENDENT;
202 background[2] |= BLEND_CONTROL_DEPENDENT;
207 * Enable alpha blending if pixel format has an alpha
210 foreground |= BLEND_CONTROL_ALPHA;
213 * If any of the windows on top of this window is opaque, it
214 * will completely conceal this window within that area. If
215 * top window has an alpha component, it is blended over the
218 for (i = 0; i < 2; i++) {
219 if (state->blending[i].alpha &&
220 state->blending[i].top)
221 background[i] |= BLEND_CONTROL_DEPENDENT;
224 switch (state->base.normalized_zpos) {
226 if (state->blending[0].alpha &&
227 state->blending[1].alpha)
228 background[2] |= BLEND_CONTROL_DEPENDENT;
233 * When both middle and topmost windows have an alpha,
234 * these windows a mixed together and then the result
235 * is blended over the bottom window.
237 if (state->blending[0].alpha &&
238 state->blending[0].top)
239 background[2] |= BLEND_CONTROL_ALPHA;
241 if (state->blending[1].alpha &&
242 state->blending[1].top)
243 background[2] |= BLEND_CONTROL_ALPHA;
248 switch (state->base.normalized_zpos) {
250 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
251 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
252 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
257 * If window B / C is topmost, then X / Y registers are
258 * matching the order of blending[...] state indices,
259 * otherwise a swap is required.
261 if (!state->blending[0].top && state->blending[1].top) {
262 blending[0] = foreground;
263 blending[1] = background[1];
265 blending[0] = background[0];
266 blending[1] = foreground;
269 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
270 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
271 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
275 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
276 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
277 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
282 static void tegra_plane_setup_blending(struct tegra_plane *plane,
283 const struct tegra_dc_window *window)
287 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
288 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
289 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
290 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
292 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
297 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
298 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
302 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
303 const struct tegra_dc_window *window)
305 struct tegra_dc *dc = plane->dc;
307 if (window->src.w == window->dst.w)
310 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
317 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
318 const struct tegra_dc_window *window)
320 struct tegra_dc *dc = plane->dc;
322 if (window->src.h == window->dst.h)
325 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
328 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334 static void tegra_dc_setup_window(struct tegra_plane *plane,
335 const struct tegra_dc_window *window)
337 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
338 struct tegra_dc *dc = plane->dc;
343 * For YUV planar modes, the number of bytes per pixel takes into
344 * account only the luma component and therefore is 1.
346 yuv = tegra_plane_format_is_yuv(window->format, &planar);
348 bpp = window->bits_per_pixel / 8;
350 bpp = planar ? 1 : 2;
352 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
353 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
355 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
356 tegra_plane_writel(plane, value, DC_WIN_POSITION);
358 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
359 tegra_plane_writel(plane, value, DC_WIN_SIZE);
361 h_offset = window->src.x * bpp;
362 v_offset = window->src.y;
363 h_size = window->src.w * bpp;
364 v_size = window->src.h;
366 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
367 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
370 * For DDA computations the number of bytes per pixel for YUV planar
371 * modes needs to take into account all Y, U and V components.
376 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
377 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
379 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
380 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
382 h_dda = compute_initial_dda(window->src.x);
383 v_dda = compute_initial_dda(window->src.y);
385 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
386 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
388 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
389 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
391 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
394 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
395 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
396 value = window->stride[1] << 16 | window->stride[0];
397 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
399 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
402 if (window->bottom_up)
403 v_offset += window->src.h - 1;
405 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
406 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
408 if (dc->soc->supports_block_linear) {
409 unsigned long height = window->tiling.value;
411 switch (window->tiling.mode) {
412 case TEGRA_BO_TILING_MODE_PITCH:
413 value = DC_WINBUF_SURFACE_KIND_PITCH;
416 case TEGRA_BO_TILING_MODE_TILED:
417 value = DC_WINBUF_SURFACE_KIND_TILED;
420 case TEGRA_BO_TILING_MODE_BLOCK:
421 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
422 DC_WINBUF_SURFACE_KIND_BLOCK;
426 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
428 switch (window->tiling.mode) {
429 case TEGRA_BO_TILING_MODE_PITCH:
430 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
431 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
434 case TEGRA_BO_TILING_MODE_TILED:
435 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
436 DC_WIN_BUFFER_ADDR_MODE_TILE;
439 case TEGRA_BO_TILING_MODE_BLOCK:
441 * No need to handle this here because ->atomic_check
442 * will already have filtered it out.
447 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
453 /* setup default colorspace conversion coefficients */
454 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
455 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
456 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
457 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
458 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
459 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
460 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
461 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
464 } else if (window->bits_per_pixel < 24) {
465 value |= COLOR_EXPAND;
468 if (window->bottom_up)
469 value |= V_DIRECTION;
471 if (tegra_plane_use_horizontal_filtering(plane, window)) {
473 * Enable horizontal 6-tap filter and set filtering
474 * coefficients to the default values defined in TRM.
476 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
477 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
478 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
479 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
480 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
481 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
482 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
483 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
484 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
485 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
486 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
487 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
488 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
489 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
490 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
491 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
496 if (tegra_plane_use_vertical_filtering(plane, window)) {
500 * Enable vertical 2-tap filter and set filtering
501 * coefficients to the default values defined in TRM.
503 for (i = 0, k = 128; i < 16; i++, k -= 8)
504 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
509 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
511 if (dc->soc->has_legacy_blending)
512 tegra_plane_setup_blending_legacy(plane);
514 tegra_plane_setup_blending(plane, window);
517 static const u32 tegra20_primary_formats[] = {
524 /* non-native formats */
531 static const u64 tegra20_modifiers[] = {
532 DRM_FORMAT_MOD_LINEAR,
533 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
534 DRM_FORMAT_MOD_INVALID
537 static const u32 tegra114_primary_formats[] = {
544 /* new on Tegra114 */
559 static const u32 tegra124_primary_formats[] = {
566 /* new on Tegra114 */
579 /* new on Tegra124 */
584 static const u64 tegra124_modifiers[] = {
585 DRM_FORMAT_MOD_LINEAR,
586 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
587 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
588 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
589 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
590 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
591 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
592 DRM_FORMAT_MOD_INVALID
595 static int tegra_plane_atomic_check(struct drm_plane *plane,
596 struct drm_plane_state *state)
598 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
599 unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
600 struct tegra_bo_tiling *tiling = &plane_state->tiling;
601 struct tegra_plane *tegra = to_tegra_plane(plane);
602 struct tegra_dc *dc = to_tegra_dc(state->crtc);
605 /* no need for further checks if the plane is being disabled */
609 err = tegra_plane_format(state->fb->format->format,
610 &plane_state->format,
616 * Tegra20 and Tegra30 are special cases here because they support
617 * only variants of specific formats with an alpha component, but not
618 * the corresponding opaque formats. However, the opaque formats can
619 * be emulated by disabling alpha blending for the plane.
621 if (dc->soc->has_legacy_blending) {
622 err = tegra_plane_setup_legacy_state(tegra, plane_state);
627 err = tegra_fb_get_tiling(state->fb, tiling);
631 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
632 !dc->soc->supports_block_linear) {
633 DRM_ERROR("hardware doesn't support block linear mode\n");
637 rotation = drm_rotation_simplify(state->rotation, rotation);
639 if (rotation & DRM_MODE_REFLECT_Y)
640 plane_state->bottom_up = true;
642 plane_state->bottom_up = false;
645 * Tegra doesn't support different strides for U and V planes so we
646 * error out if the user tries to display a framebuffer with such a
649 if (state->fb->format->num_planes > 2) {
650 if (state->fb->pitches[2] != state->fb->pitches[1]) {
651 DRM_ERROR("unsupported UV-plane configuration\n");
656 err = tegra_plane_state_add(tegra, state);
663 static void tegra_plane_atomic_disable(struct drm_plane *plane,
664 struct drm_plane_state *old_state)
666 struct tegra_plane *p = to_tegra_plane(plane);
669 /* rien ne va plus */
670 if (!old_state || !old_state->crtc)
673 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
674 value &= ~WIN_ENABLE;
675 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
678 static void tegra_plane_atomic_update(struct drm_plane *plane,
679 struct drm_plane_state *old_state)
681 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
682 struct drm_framebuffer *fb = plane->state->fb;
683 struct tegra_plane *p = to_tegra_plane(plane);
684 struct tegra_dc_window window;
687 /* rien ne va plus */
688 if (!plane->state->crtc || !plane->state->fb)
691 if (!plane->state->visible)
692 return tegra_plane_atomic_disable(plane, old_state);
694 memset(&window, 0, sizeof(window));
695 window.src.x = plane->state->src.x1 >> 16;
696 window.src.y = plane->state->src.y1 >> 16;
697 window.src.w = drm_rect_width(&plane->state->src) >> 16;
698 window.src.h = drm_rect_height(&plane->state->src) >> 16;
699 window.dst.x = plane->state->dst.x1;
700 window.dst.y = plane->state->dst.y1;
701 window.dst.w = drm_rect_width(&plane->state->dst);
702 window.dst.h = drm_rect_height(&plane->state->dst);
703 window.bits_per_pixel = fb->format->cpp[0] * 8;
704 window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
706 /* copy from state */
707 window.zpos = plane->state->normalized_zpos;
708 window.tiling = state->tiling;
709 window.format = state->format;
710 window.swap = state->swap;
712 for (i = 0; i < fb->format->num_planes; i++) {
713 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
715 window.base[i] = bo->paddr + fb->offsets[i];
718 * Tegra uses a shared stride for UV planes. Framebuffers are
719 * already checked for this in the tegra_plane_atomic_check()
720 * function, so it's safe to ignore the V-plane pitch here.
723 window.stride[i] = fb->pitches[i];
726 tegra_dc_setup_window(p, &window);
729 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
730 .atomic_check = tegra_plane_atomic_check,
731 .atomic_disable = tegra_plane_atomic_disable,
732 .atomic_update = tegra_plane_atomic_update,
735 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
738 * Ideally this would use drm_crtc_mask(), but that would require the
739 * CRTC to already be in the mode_config's list of CRTCs. However, it
740 * will only be added to that list in the drm_crtc_init_with_planes()
741 * (in tegra_dc_init()), which in turn requires registration of these
742 * planes. So we have ourselves a nice little chicken and egg problem
745 * We work around this by manually creating the mask from the number
746 * of CRTCs that have been registered, and should therefore always be
747 * the same as drm_crtc_index() after registration.
749 return 1 << drm->mode_config.num_crtc;
752 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
755 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
756 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
757 struct tegra_plane *plane;
758 unsigned int num_formats;
759 const u64 *modifiers;
763 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
765 return ERR_PTR(-ENOMEM);
767 /* Always use window A as primary window */
768 plane->offset = 0xa00;
772 num_formats = dc->soc->num_primary_formats;
773 formats = dc->soc->primary_formats;
774 modifiers = dc->soc->modifiers;
776 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
777 &tegra_plane_funcs, formats,
778 num_formats, modifiers, type, NULL);
784 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
785 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
787 err = drm_plane_create_rotation_property(&plane->base,
792 dev_err(dc->dev, "failed to create rotation property: %d\n",
798 static const u32 tegra_cursor_plane_formats[] = {
802 static int tegra_cursor_atomic_check(struct drm_plane *plane,
803 struct drm_plane_state *state)
805 struct tegra_plane *tegra = to_tegra_plane(plane);
808 /* no need for further checks if the plane is being disabled */
812 /* scaling not supported for cursor */
813 if ((state->src_w >> 16 != state->crtc_w) ||
814 (state->src_h >> 16 != state->crtc_h))
817 /* only square cursors supported */
818 if (state->src_w != state->src_h)
821 if (state->crtc_w != 32 && state->crtc_w != 64 &&
822 state->crtc_w != 128 && state->crtc_w != 256)
825 err = tegra_plane_state_add(tegra, state);
832 static void tegra_cursor_atomic_update(struct drm_plane *plane,
833 struct drm_plane_state *old_state)
835 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
836 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
837 struct drm_plane_state *state = plane->state;
838 u32 value = CURSOR_CLIP_DISPLAY;
840 /* rien ne va plus */
841 if (!plane->state->crtc || !plane->state->fb)
844 switch (state->crtc_w) {
846 value |= CURSOR_SIZE_32x32;
850 value |= CURSOR_SIZE_64x64;
854 value |= CURSOR_SIZE_128x128;
858 value |= CURSOR_SIZE_256x256;
862 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
867 value |= (bo->paddr >> 10) & 0x3fffff;
868 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
870 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
871 value = (bo->paddr >> 32) & 0x3;
872 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
875 /* enable cursor and set blend mode */
876 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
877 value |= CURSOR_ENABLE;
878 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
880 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
881 value &= ~CURSOR_DST_BLEND_MASK;
882 value &= ~CURSOR_SRC_BLEND_MASK;
883 value |= CURSOR_MODE_NORMAL;
884 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
885 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
886 value |= CURSOR_ALPHA;
887 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
889 /* position the cursor */
890 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
891 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
894 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
895 struct drm_plane_state *old_state)
900 /* rien ne va plus */
901 if (!old_state || !old_state->crtc)
904 dc = to_tegra_dc(old_state->crtc);
906 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
907 value &= ~CURSOR_ENABLE;
908 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
911 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
912 .atomic_check = tegra_cursor_atomic_check,
913 .atomic_update = tegra_cursor_atomic_update,
914 .atomic_disable = tegra_cursor_atomic_disable,
917 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
920 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
921 struct tegra_plane *plane;
922 unsigned int num_formats;
926 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
928 return ERR_PTR(-ENOMEM);
931 * This index is kind of fake. The cursor isn't a regular plane, but
932 * its update and activation request bits in DC_CMD_STATE_CONTROL do
933 * use the same programming. Setting this fake index here allows the
934 * code in tegra_add_plane_state() to do the right thing without the
935 * need to special-casing the cursor plane.
940 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
941 formats = tegra_cursor_plane_formats;
943 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
944 &tegra_plane_funcs, formats,
946 DRM_PLANE_TYPE_CURSOR, NULL);
952 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
957 static const u32 tegra20_overlay_formats[] = {
964 /* non-native formats */
976 static const u32 tegra114_overlay_formats[] = {
983 /* new on Tegra114 */
1003 static const u32 tegra124_overlay_formats[] = {
1004 DRM_FORMAT_ARGB4444,
1005 DRM_FORMAT_ARGB1555,
1007 DRM_FORMAT_RGBA5551,
1008 DRM_FORMAT_ABGR8888,
1009 DRM_FORMAT_ARGB8888,
1010 /* new on Tegra114 */
1011 DRM_FORMAT_ABGR4444,
1012 DRM_FORMAT_ABGR1555,
1013 DRM_FORMAT_BGRA5551,
1014 DRM_FORMAT_XRGB1555,
1015 DRM_FORMAT_RGBX5551,
1016 DRM_FORMAT_XBGR1555,
1017 DRM_FORMAT_BGRX5551,
1019 DRM_FORMAT_BGRA8888,
1020 DRM_FORMAT_RGBA8888,
1021 DRM_FORMAT_XRGB8888,
1022 DRM_FORMAT_XBGR8888,
1023 /* new on Tegra124 */
1024 DRM_FORMAT_RGBX8888,
1025 DRM_FORMAT_BGRX8888,
1026 /* planar formats */
1033 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1034 struct tegra_dc *dc,
1038 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1039 struct tegra_plane *plane;
1040 unsigned int num_formats;
1041 enum drm_plane_type type;
1045 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1047 return ERR_PTR(-ENOMEM);
1049 plane->offset = 0xa00 + 0x200 * index;
1050 plane->index = index;
1053 num_formats = dc->soc->num_overlay_formats;
1054 formats = dc->soc->overlay_formats;
1057 type = DRM_PLANE_TYPE_OVERLAY;
1059 type = DRM_PLANE_TYPE_CURSOR;
1061 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1062 &tegra_plane_funcs, formats,
1063 num_formats, NULL, type, NULL);
1066 return ERR_PTR(err);
1069 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1070 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1072 err = drm_plane_create_rotation_property(&plane->base,
1075 DRM_MODE_REFLECT_Y);
1077 dev_err(dc->dev, "failed to create rotation property: %d\n",
1080 return &plane->base;
1083 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1084 struct tegra_dc *dc)
1086 struct drm_plane *plane, *primary = NULL;
1089 for (i = 0; i < dc->soc->num_wgrps; i++) {
1090 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1092 if (wgrp->dc == dc->pipe) {
1093 for (j = 0; j < wgrp->num_windows; j++) {
1094 unsigned int index = wgrp->windows[j];
1096 plane = tegra_shared_plane_create(drm, dc,
1103 * Choose the first shared plane owned by this
1104 * head as the primary plane.
1107 plane->type = DRM_PLANE_TYPE_PRIMARY;
1117 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1118 struct tegra_dc *dc)
1120 struct drm_plane *planes[2], *primary;
1121 unsigned int planes_num;
1125 primary = tegra_primary_plane_create(drm, dc);
1126 if (IS_ERR(primary))
1129 if (dc->soc->supports_cursor)
1134 for (i = 0; i < planes_num; i++) {
1135 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1137 if (IS_ERR(planes[i])) {
1138 err = PTR_ERR(planes[i]);
1141 tegra_plane_funcs.destroy(planes[i]);
1143 tegra_plane_funcs.destroy(primary);
1144 return ERR_PTR(err);
1151 static void tegra_dc_destroy(struct drm_crtc *crtc)
1153 drm_crtc_cleanup(crtc);
1156 static void tegra_crtc_reset(struct drm_crtc *crtc)
1158 struct tegra_dc_state *state;
1161 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1166 state = kzalloc(sizeof(*state), GFP_KERNEL);
1168 crtc->state = &state->base;
1169 crtc->state->crtc = crtc;
1172 drm_crtc_vblank_reset(crtc);
1175 static struct drm_crtc_state *
1176 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1178 struct tegra_dc_state *state = to_dc_state(crtc->state);
1179 struct tegra_dc_state *copy;
1181 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1185 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1186 copy->clk = state->clk;
1187 copy->pclk = state->pclk;
1188 copy->div = state->div;
1189 copy->planes = state->planes;
1194 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1195 struct drm_crtc_state *state)
1197 __drm_atomic_helper_crtc_destroy_state(state);
1201 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1203 static const struct debugfs_reg32 tegra_dc_regs[] = {
1204 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1205 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1206 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1207 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1208 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1209 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1210 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1211 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1212 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1213 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1214 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1215 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1216 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1217 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1218 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1219 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1220 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1221 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1222 DEBUGFS_REG32(DC_CMD_INT_MASK),
1223 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1224 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1225 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1226 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1227 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1228 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1229 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1230 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1231 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1232 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1233 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1234 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1235 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1236 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1237 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1238 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1239 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1240 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1241 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1242 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1243 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1244 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1245 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1246 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1247 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1248 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1249 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1250 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1251 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1252 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1253 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1254 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1255 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1256 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1257 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1258 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1259 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1260 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1261 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1262 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1263 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1264 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1265 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1266 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1267 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1268 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1269 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1270 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1271 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1272 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1273 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1274 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1275 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1276 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1277 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1278 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1279 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1280 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1281 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1282 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1283 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1284 DEBUGFS_REG32(DC_DISP_ACTIVE),
1285 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1286 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1287 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1288 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1289 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1290 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1291 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1292 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1293 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1294 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1295 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1296 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1297 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1298 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1299 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1300 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1301 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1302 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1303 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1304 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1305 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1306 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1307 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1308 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1309 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1310 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1311 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1312 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1313 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1314 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1315 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1316 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1317 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1318 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1319 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1320 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1321 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1322 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1323 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1324 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1325 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1326 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1327 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1328 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1329 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1330 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1331 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1332 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1333 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1334 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1335 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1336 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1337 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1338 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1339 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1340 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1341 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1342 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1343 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1344 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1345 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1346 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1347 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1348 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1349 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1350 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1351 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1352 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1353 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1354 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1355 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1356 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1357 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1358 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1359 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1360 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1361 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1362 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1363 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1364 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1365 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1366 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1367 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1368 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1369 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1370 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1371 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1372 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1373 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1374 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1375 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1376 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1377 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1378 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1379 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1380 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1381 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1382 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1383 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1384 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1385 DEBUGFS_REG32(DC_WIN_POSITION),
1386 DEBUGFS_REG32(DC_WIN_SIZE),
1387 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1388 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1389 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1390 DEBUGFS_REG32(DC_WIN_DDA_INC),
1391 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1392 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1393 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1394 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1395 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1396 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1397 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1398 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1399 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1400 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1401 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1402 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1403 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1404 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1405 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1406 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1407 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1408 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1409 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1410 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1411 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1412 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1413 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1414 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1415 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1418 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1420 struct drm_info_node *node = s->private;
1421 struct tegra_dc *dc = node->info_ent->data;
1425 drm_modeset_lock(&dc->base.mutex, NULL);
1427 if (!dc->base.state->active) {
1432 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1433 unsigned int offset = tegra_dc_regs[i].offset;
1435 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1436 offset, tegra_dc_readl(dc, offset));
1440 drm_modeset_unlock(&dc->base.mutex);
1444 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1446 struct drm_info_node *node = s->private;
1447 struct tegra_dc *dc = node->info_ent->data;
1451 drm_modeset_lock(&dc->base.mutex, NULL);
1453 if (!dc->base.state->active) {
1458 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1459 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1460 tegra_dc_commit(dc);
1462 drm_crtc_wait_one_vblank(&dc->base);
1463 drm_crtc_wait_one_vblank(&dc->base);
1465 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1466 seq_printf(s, "%08x\n", value);
1468 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1471 drm_modeset_unlock(&dc->base.mutex);
1475 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1477 struct drm_info_node *node = s->private;
1478 struct tegra_dc *dc = node->info_ent->data;
1480 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1481 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1482 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1483 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1488 static struct drm_info_list debugfs_files[] = {
1489 { "regs", tegra_dc_show_regs, 0, NULL },
1490 { "crc", tegra_dc_show_crc, 0, NULL },
1491 { "stats", tegra_dc_show_stats, 0, NULL },
1494 static int tegra_dc_late_register(struct drm_crtc *crtc)
1496 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1497 struct drm_minor *minor = crtc->dev->primary;
1498 struct dentry *root;
1499 struct tegra_dc *dc = to_tegra_dc(crtc);
1502 #ifdef CONFIG_DEBUG_FS
1503 root = crtc->debugfs_entry;
1508 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1510 if (!dc->debugfs_files)
1513 for (i = 0; i < count; i++)
1514 dc->debugfs_files[i].data = dc;
1516 err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1523 kfree(dc->debugfs_files);
1524 dc->debugfs_files = NULL;
1529 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1531 unsigned int count = ARRAY_SIZE(debugfs_files);
1532 struct drm_minor *minor = crtc->dev->primary;
1533 struct tegra_dc *dc = to_tegra_dc(crtc);
1535 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1536 kfree(dc->debugfs_files);
1537 dc->debugfs_files = NULL;
1540 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1542 struct tegra_dc *dc = to_tegra_dc(crtc);
1544 /* XXX vblank syncpoints don't work with nvdisplay yet */
1545 if (dc->syncpt && !dc->soc->has_nvdisplay)
1546 return host1x_syncpt_read(dc->syncpt);
1548 /* fallback to software emulated VBLANK counter */
1549 return (u32)drm_crtc_vblank_count(&dc->base);
1552 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1554 struct tegra_dc *dc = to_tegra_dc(crtc);
1557 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1558 value |= VBLANK_INT;
1559 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1564 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1566 struct tegra_dc *dc = to_tegra_dc(crtc);
1569 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1570 value &= ~VBLANK_INT;
1571 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1574 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1575 .page_flip = drm_atomic_helper_page_flip,
1576 .set_config = drm_atomic_helper_set_config,
1577 .destroy = tegra_dc_destroy,
1578 .reset = tegra_crtc_reset,
1579 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1580 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1581 .late_register = tegra_dc_late_register,
1582 .early_unregister = tegra_dc_early_unregister,
1583 .get_vblank_counter = tegra_dc_get_vblank_counter,
1584 .enable_vblank = tegra_dc_enable_vblank,
1585 .disable_vblank = tegra_dc_disable_vblank,
1588 static int tegra_dc_set_timings(struct tegra_dc *dc,
1589 struct drm_display_mode *mode)
1591 unsigned int h_ref_to_sync = 1;
1592 unsigned int v_ref_to_sync = 1;
1593 unsigned long value;
1595 if (!dc->soc->has_nvdisplay) {
1596 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1598 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1599 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1602 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1603 ((mode->hsync_end - mode->hsync_start) << 0);
1604 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1606 value = ((mode->vtotal - mode->vsync_end) << 16) |
1607 ((mode->htotal - mode->hsync_end) << 0);
1608 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1610 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1611 ((mode->hsync_start - mode->hdisplay) << 0);
1612 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1614 value = (mode->vdisplay << 16) | mode->hdisplay;
1615 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1621 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1623 * @dc: display controller
1624 * @crtc_state: CRTC atomic state
1625 * @clk: parent clock for display controller
1626 * @pclk: pixel clock
1627 * @div: shift clock divider
1630 * 0 on success or a negative error-code on failure.
1632 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1633 struct drm_crtc_state *crtc_state,
1634 struct clk *clk, unsigned long pclk,
1637 struct tegra_dc_state *state = to_dc_state(crtc_state);
1639 if (!clk_has_parent(dc->clk, clk))
1649 static void tegra_dc_commit_state(struct tegra_dc *dc,
1650 struct tegra_dc_state *state)
1655 err = clk_set_parent(dc->clk, state->clk);
1657 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1660 * Outputs may not want to change the parent clock rate. This is only
1661 * relevant to Tegra20 where only a single display PLL is available.
1662 * Since that PLL would typically be used for HDMI, an internal LVDS
1663 * panel would need to be driven by some other clock such as PLL_P
1664 * which is shared with other peripherals. Changing the clock rate
1665 * should therefore be avoided.
1667 if (state->pclk > 0) {
1668 err = clk_set_rate(state->clk, state->pclk);
1671 "failed to set clock rate to %lu Hz\n",
1675 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1677 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1679 if (!dc->soc->has_nvdisplay) {
1680 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1681 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1684 err = clk_set_rate(dc->clk, state->pclk);
1686 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1687 dc->clk, state->pclk, err);
1690 static void tegra_dc_stop(struct tegra_dc *dc)
1694 /* stop the display controller */
1695 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1696 value &= ~DISP_CTRL_MODE_MASK;
1697 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1699 tegra_dc_commit(dc);
1702 static bool tegra_dc_idle(struct tegra_dc *dc)
1706 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1708 return (value & DISP_CTRL_MODE_MASK) == 0;
1711 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1713 timeout = jiffies + msecs_to_jiffies(timeout);
1715 while (time_before(jiffies, timeout)) {
1716 if (tegra_dc_idle(dc))
1719 usleep_range(1000, 2000);
1722 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1726 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1727 struct drm_crtc_state *old_state)
1729 struct tegra_dc *dc = to_tegra_dc(crtc);
1732 if (!tegra_dc_idle(dc)) {
1736 * Ignore the return value, there isn't anything useful to do
1737 * in case this fails.
1739 tegra_dc_wait_idle(dc, 100);
1743 * This should really be part of the RGB encoder driver, but clearing
1744 * these bits has the side-effect of stopping the display controller.
1745 * When that happens no VBLANK interrupts will be raised. At the same
1746 * time the encoder is disabled before the display controller, so the
1747 * above code is always going to timeout waiting for the controller
1750 * Given the close coupling between the RGB encoder and the display
1751 * controller doing it here is still kind of okay. None of the other
1752 * encoder drivers require these bits to be cleared.
1754 * XXX: Perhaps given that the display controller is switched off at
1755 * this point anyway maybe clearing these bits isn't even useful for
1759 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1760 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1761 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1762 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1765 tegra_dc_stats_reset(&dc->stats);
1766 drm_crtc_vblank_off(crtc);
1768 spin_lock_irq(&crtc->dev->event_lock);
1770 if (crtc->state->event) {
1771 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1772 crtc->state->event = NULL;
1775 spin_unlock_irq(&crtc->dev->event_lock);
1777 pm_runtime_put_sync(dc->dev);
1780 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1781 struct drm_crtc_state *old_state)
1783 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1784 struct tegra_dc_state *state = to_dc_state(crtc->state);
1785 struct tegra_dc *dc = to_tegra_dc(crtc);
1788 pm_runtime_get_sync(dc->dev);
1790 /* initialize display controller */
1792 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1794 if (dc->soc->has_nvdisplay)
1799 value = SYNCPT_CNTRL_NO_STALL;
1800 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1802 value = enable | syncpt;
1803 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1806 if (dc->soc->has_nvdisplay) {
1807 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1809 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1811 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1812 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1813 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1814 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1815 VBLANK_INT | FRAME_END_INT;
1816 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1818 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1820 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1822 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1823 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1825 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1827 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1828 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1829 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1831 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1832 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1833 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1835 /* initialize timer */
1836 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1837 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1838 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1840 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1841 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1842 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1844 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1845 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1846 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1848 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1849 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1850 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1853 if (dc->soc->supports_background_color)
1854 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1856 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1858 /* apply PLL and pixel clock changes */
1859 tegra_dc_commit_state(dc, state);
1861 /* program display mode */
1862 tegra_dc_set_timings(dc, mode);
1864 /* interlacing isn't supported yet, so disable it */
1865 if (dc->soc->supports_interlacing) {
1866 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1867 value &= ~INTERLACE_ENABLE;
1868 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1871 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1872 value &= ~DISP_CTRL_MODE_MASK;
1873 value |= DISP_CTRL_MODE_C_DISPLAY;
1874 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1876 if (!dc->soc->has_nvdisplay) {
1877 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1878 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1879 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1880 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1883 /* enable underflow reporting and display red for missing pixels */
1884 if (dc->soc->has_nvdisplay) {
1885 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1886 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1889 tegra_dc_commit(dc);
1891 drm_crtc_vblank_on(crtc);
1894 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1895 struct drm_crtc_state *old_crtc_state)
1897 unsigned long flags;
1899 if (crtc->state->event) {
1900 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1902 if (drm_crtc_vblank_get(crtc) != 0)
1903 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1905 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1907 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1909 crtc->state->event = NULL;
1913 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1914 struct drm_crtc_state *old_crtc_state)
1916 struct tegra_dc_state *state = to_dc_state(crtc->state);
1917 struct tegra_dc *dc = to_tegra_dc(crtc);
1920 value = state->planes << 8 | GENERAL_UPDATE;
1921 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1922 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1924 value = state->planes | GENERAL_ACT_REQ;
1925 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1926 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1929 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1930 .atomic_begin = tegra_crtc_atomic_begin,
1931 .atomic_flush = tegra_crtc_atomic_flush,
1932 .atomic_enable = tegra_crtc_atomic_enable,
1933 .atomic_disable = tegra_crtc_atomic_disable,
1936 static irqreturn_t tegra_dc_irq(int irq, void *data)
1938 struct tegra_dc *dc = data;
1939 unsigned long status;
1941 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1942 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1944 if (status & FRAME_END_INT) {
1946 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1951 if (status & VBLANK_INT) {
1953 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1955 drm_crtc_handle_vblank(&dc->base);
1959 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1961 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1963 dc->stats.underflow++;
1966 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1968 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1970 dc->stats.overflow++;
1973 if (status & HEAD_UF_INT) {
1974 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1975 dc->stats.underflow++;
1981 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
1985 if (!dc->soc->wgrps)
1988 for (i = 0; i < dc->soc->num_wgrps; i++) {
1989 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1991 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
1998 static int tegra_dc_init(struct host1x_client *client)
2000 struct drm_device *drm = dev_get_drvdata(client->parent);
2001 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2002 struct tegra_dc *dc = host1x_client_to_dc(client);
2003 struct tegra_drm *tegra = drm->dev_private;
2004 struct drm_plane *primary = NULL;
2005 struct drm_plane *cursor = NULL;
2009 * XXX do not register DCs with no window groups because we cannot
2010 * assign a primary plane to them, which in turn will cause KMS to
2013 if (!tegra_dc_has_window_groups(dc))
2016 dc->syncpt = host1x_syncpt_request(client, flags);
2018 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2020 dc->group = host1x_client_iommu_attach(client, true);
2021 if (IS_ERR(dc->group)) {
2022 err = PTR_ERR(dc->group);
2023 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2028 primary = tegra_dc_add_shared_planes(drm, dc);
2030 primary = tegra_dc_add_planes(drm, dc);
2032 if (IS_ERR(primary)) {
2033 err = PTR_ERR(primary);
2037 if (dc->soc->supports_cursor) {
2038 cursor = tegra_dc_cursor_plane_create(drm, dc);
2039 if (IS_ERR(cursor)) {
2040 err = PTR_ERR(cursor);
2044 /* dedicate one overlay to mouse cursor */
2045 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2046 if (IS_ERR(cursor)) {
2047 err = PTR_ERR(cursor);
2052 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2053 &tegra_crtc_funcs, NULL);
2057 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2060 * Keep track of the minimum pitch alignment across all display
2063 if (dc->soc->pitch_align > tegra->pitch_align)
2064 tegra->pitch_align = dc->soc->pitch_align;
2066 err = tegra_dc_rgb_init(drm, dc);
2067 if (err < 0 && err != -ENODEV) {
2068 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2072 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2073 dev_name(dc->dev), dc);
2075 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2083 if (!IS_ERR_OR_NULL(cursor))
2084 drm_plane_cleanup(cursor);
2086 if (!IS_ERR(primary))
2087 drm_plane_cleanup(primary);
2089 host1x_client_iommu_detach(client, dc->group);
2090 host1x_syncpt_free(dc->syncpt);
2095 static int tegra_dc_exit(struct host1x_client *client)
2097 struct tegra_dc *dc = host1x_client_to_dc(client);
2100 if (!tegra_dc_has_window_groups(dc))
2103 devm_free_irq(dc->dev, dc->irq, dc);
2105 err = tegra_dc_rgb_exit(dc);
2107 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2111 host1x_client_iommu_detach(client, dc->group);
2112 host1x_syncpt_free(dc->syncpt);
2117 static const struct host1x_client_ops dc_client_ops = {
2118 .init = tegra_dc_init,
2119 .exit = tegra_dc_exit,
2122 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2123 .supports_background_color = false,
2124 .supports_interlacing = false,
2125 .supports_cursor = false,
2126 .supports_block_linear = false,
2127 .has_legacy_blending = true,
2129 .has_powergate = false,
2131 .has_nvdisplay = false,
2132 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2133 .primary_formats = tegra20_primary_formats,
2134 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2135 .overlay_formats = tegra20_overlay_formats,
2136 .modifiers = tegra20_modifiers,
2137 .has_win_a_without_filters = true,
2138 .has_win_c_without_vert_filter = true,
2141 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2142 .supports_background_color = false,
2143 .supports_interlacing = false,
2144 .supports_cursor = false,
2145 .supports_block_linear = false,
2146 .has_legacy_blending = true,
2148 .has_powergate = false,
2149 .coupled_pm = false,
2150 .has_nvdisplay = false,
2151 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2152 .primary_formats = tegra20_primary_formats,
2153 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2154 .overlay_formats = tegra20_overlay_formats,
2155 .modifiers = tegra20_modifiers,
2156 .has_win_a_without_filters = false,
2157 .has_win_c_without_vert_filter = false,
2160 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2161 .supports_background_color = false,
2162 .supports_interlacing = false,
2163 .supports_cursor = false,
2164 .supports_block_linear = false,
2165 .has_legacy_blending = true,
2167 .has_powergate = true,
2168 .coupled_pm = false,
2169 .has_nvdisplay = false,
2170 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2171 .primary_formats = tegra114_primary_formats,
2172 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2173 .overlay_formats = tegra114_overlay_formats,
2174 .modifiers = tegra20_modifiers,
2175 .has_win_a_without_filters = false,
2176 .has_win_c_without_vert_filter = false,
2179 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2180 .supports_background_color = true,
2181 .supports_interlacing = true,
2182 .supports_cursor = true,
2183 .supports_block_linear = true,
2184 .has_legacy_blending = false,
2186 .has_powergate = true,
2187 .coupled_pm = false,
2188 .has_nvdisplay = false,
2189 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2190 .primary_formats = tegra124_primary_formats,
2191 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2192 .overlay_formats = tegra124_overlay_formats,
2193 .modifiers = tegra124_modifiers,
2194 .has_win_a_without_filters = false,
2195 .has_win_c_without_vert_filter = false,
2198 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2199 .supports_background_color = true,
2200 .supports_interlacing = true,
2201 .supports_cursor = true,
2202 .supports_block_linear = true,
2203 .has_legacy_blending = false,
2205 .has_powergate = true,
2206 .coupled_pm = false,
2207 .has_nvdisplay = false,
2208 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2209 .primary_formats = tegra114_primary_formats,
2210 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2211 .overlay_formats = tegra114_overlay_formats,
2212 .modifiers = tegra124_modifiers,
2213 .has_win_a_without_filters = false,
2214 .has_win_c_without_vert_filter = false,
2217 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2221 .windows = (const unsigned int[]) { 0 },
2226 .windows = (const unsigned int[]) { 1 },
2231 .windows = (const unsigned int[]) { 2 },
2236 .windows = (const unsigned int[]) { 3 },
2241 .windows = (const unsigned int[]) { 4 },
2246 .windows = (const unsigned int[]) { 5 },
2251 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2252 .supports_background_color = true,
2253 .supports_interlacing = true,
2254 .supports_cursor = true,
2255 .supports_block_linear = true,
2256 .has_legacy_blending = false,
2258 .has_powergate = false,
2259 .coupled_pm = false,
2260 .has_nvdisplay = true,
2261 .wgrps = tegra186_dc_wgrps,
2262 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2265 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2269 .windows = (const unsigned int[]) { 0 },
2274 .windows = (const unsigned int[]) { 1 },
2279 .windows = (const unsigned int[]) { 2 },
2284 .windows = (const unsigned int[]) { 3 },
2289 .windows = (const unsigned int[]) { 4 },
2294 .windows = (const unsigned int[]) { 5 },
2299 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2300 .supports_background_color = true,
2301 .supports_interlacing = true,
2302 .supports_cursor = true,
2303 .supports_block_linear = true,
2304 .has_legacy_blending = false,
2306 .has_powergate = false,
2307 .coupled_pm = false,
2308 .has_nvdisplay = true,
2309 .wgrps = tegra194_dc_wgrps,
2310 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2313 static const struct of_device_id tegra_dc_of_match[] = {
2315 .compatible = "nvidia,tegra194-dc",
2316 .data = &tegra194_dc_soc_info,
2318 .compatible = "nvidia,tegra186-dc",
2319 .data = &tegra186_dc_soc_info,
2321 .compatible = "nvidia,tegra210-dc",
2322 .data = &tegra210_dc_soc_info,
2324 .compatible = "nvidia,tegra124-dc",
2325 .data = &tegra124_dc_soc_info,
2327 .compatible = "nvidia,tegra114-dc",
2328 .data = &tegra114_dc_soc_info,
2330 .compatible = "nvidia,tegra30-dc",
2331 .data = &tegra30_dc_soc_info,
2333 .compatible = "nvidia,tegra20-dc",
2334 .data = &tegra20_dc_soc_info,
2339 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2341 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2343 struct device_node *np;
2347 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2349 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2352 * If the nvidia,head property isn't present, try to find the
2353 * correct head number by looking up the position of this
2354 * display controller's node within the device tree. Assuming
2355 * that the nodes are ordered properly in the DTS file and
2356 * that the translation into a flattened device tree blob
2357 * preserves that ordering this will actually yield the right
2360 * If those assumptions don't hold, this will still work for
2361 * cases where only a single display controller is used.
2363 for_each_matching_node(np, tegra_dc_of_match) {
2364 if (np == dc->dev->of_node) {
2378 static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2380 struct tegra_dc *dc = dev_get_drvdata(dev);
2381 unsigned int pipe = (unsigned long)data;
2383 return dc->pipe == pipe;
2386 static int tegra_dc_couple(struct tegra_dc *dc)
2389 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2390 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2391 * POWER_CONTROL registers during CRTC enabling.
2393 if (dc->soc->coupled_pm && dc->pipe == 1) {
2394 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2395 struct device_link *link;
2396 struct device *partner;
2398 partner = driver_find_device(dc->dev->driver, NULL, NULL,
2399 tegra_dc_match_by_pipe);
2401 return -EPROBE_DEFER;
2403 link = device_link_add(dc->dev, partner, flags);
2405 dev_err(dc->dev, "failed to link controllers\n");
2409 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2415 static int tegra_dc_probe(struct platform_device *pdev)
2417 struct resource *regs;
2418 struct tegra_dc *dc;
2421 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2425 dc->soc = of_device_get_match_data(&pdev->dev);
2427 INIT_LIST_HEAD(&dc->list);
2428 dc->dev = &pdev->dev;
2430 err = tegra_dc_parse_dt(dc);
2434 err = tegra_dc_couple(dc);
2438 dc->clk = devm_clk_get(&pdev->dev, NULL);
2439 if (IS_ERR(dc->clk)) {
2440 dev_err(&pdev->dev, "failed to get clock\n");
2441 return PTR_ERR(dc->clk);
2444 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2445 if (IS_ERR(dc->rst)) {
2446 dev_err(&pdev->dev, "failed to get reset\n");
2447 return PTR_ERR(dc->rst);
2450 /* assert reset and disable clock */
2451 err = clk_prepare_enable(dc->clk);
2455 usleep_range(2000, 4000);
2457 err = reset_control_assert(dc->rst);
2461 usleep_range(2000, 4000);
2463 clk_disable_unprepare(dc->clk);
2465 if (dc->soc->has_powergate) {
2467 dc->powergate = TEGRA_POWERGATE_DIS;
2469 dc->powergate = TEGRA_POWERGATE_DISB;
2471 tegra_powergate_power_off(dc->powergate);
2474 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2475 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2476 if (IS_ERR(dc->regs))
2477 return PTR_ERR(dc->regs);
2479 dc->irq = platform_get_irq(pdev, 0);
2481 dev_err(&pdev->dev, "failed to get IRQ\n");
2485 err = tegra_dc_rgb_probe(dc);
2486 if (err < 0 && err != -ENODEV) {
2487 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2491 platform_set_drvdata(pdev, dc);
2492 pm_runtime_enable(&pdev->dev);
2494 INIT_LIST_HEAD(&dc->client.list);
2495 dc->client.ops = &dc_client_ops;
2496 dc->client.dev = &pdev->dev;
2498 err = host1x_client_register(&dc->client);
2500 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2508 static int tegra_dc_remove(struct platform_device *pdev)
2510 struct tegra_dc *dc = platform_get_drvdata(pdev);
2513 err = host1x_client_unregister(&dc->client);
2515 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2520 err = tegra_dc_rgb_remove(dc);
2522 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2526 pm_runtime_disable(&pdev->dev);
2532 static int tegra_dc_suspend(struct device *dev)
2534 struct tegra_dc *dc = dev_get_drvdata(dev);
2537 err = reset_control_assert(dc->rst);
2539 dev_err(dev, "failed to assert reset: %d\n", err);
2543 if (dc->soc->has_powergate)
2544 tegra_powergate_power_off(dc->powergate);
2546 clk_disable_unprepare(dc->clk);
2551 static int tegra_dc_resume(struct device *dev)
2553 struct tegra_dc *dc = dev_get_drvdata(dev);
2556 if (dc->soc->has_powergate) {
2557 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2560 dev_err(dev, "failed to power partition: %d\n", err);
2564 err = clk_prepare_enable(dc->clk);
2566 dev_err(dev, "failed to enable clock: %d\n", err);
2570 err = reset_control_deassert(dc->rst);
2572 dev_err(dev, "failed to deassert reset: %d\n", err);
2581 static const struct dev_pm_ops tegra_dc_pm_ops = {
2582 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2585 struct platform_driver tegra_dc_driver = {
2588 .of_match_table = tegra_dc_of_match,
2589 .pm = &tegra_dc_pm_ops,
2591 .probe = tegra_dc_probe,
2592 .remove = tegra_dc_remove,