2 * Intel Running Average Power Limit (RAPL) Driver
3 * Copyright (c) 2013, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list.h>
23 #include <linux/types.h>
24 #include <linux/device.h>
25 #include <linux/slab.h>
26 #include <linux/log2.h>
27 #include <linux/bitmap.h>
28 #include <linux/delay.h>
29 #include <linux/sysfs.h>
30 #include <linux/cpu.h>
31 #include <linux/powercap.h>
32 #include <asm/iosf_mbi.h>
34 #include <asm/processor.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/intel-family.h>
39 #define MSR_PLATFORM_POWER_LIMIT 0x0000065C
41 /* bitmasks for RAPL MSRs, used by primitive access functions */
42 #define ENERGY_STATUS_MASK 0xffffffff
44 #define POWER_LIMIT1_MASK 0x7FFF
45 #define POWER_LIMIT1_ENABLE BIT(15)
46 #define POWER_LIMIT1_CLAMP BIT(16)
48 #define POWER_LIMIT2_MASK (0x7FFFULL<<32)
49 #define POWER_LIMIT2_ENABLE BIT_ULL(47)
50 #define POWER_LIMIT2_CLAMP BIT_ULL(48)
51 #define POWER_PACKAGE_LOCK BIT_ULL(63)
52 #define POWER_PP_LOCK BIT(31)
54 #define TIME_WINDOW1_MASK (0x7FULL<<17)
55 #define TIME_WINDOW2_MASK (0x7FULL<<49)
57 #define POWER_UNIT_OFFSET 0
58 #define POWER_UNIT_MASK 0x0F
60 #define ENERGY_UNIT_OFFSET 0x08
61 #define ENERGY_UNIT_MASK 0x1F00
63 #define TIME_UNIT_OFFSET 0x10
64 #define TIME_UNIT_MASK 0xF0000
66 #define POWER_INFO_MAX_MASK (0x7fffULL<<32)
67 #define POWER_INFO_MIN_MASK (0x7fffULL<<16)
68 #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
69 #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
71 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
72 #define PP_POLICY_MASK 0x1F
74 /* Non HW constants */
75 #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
76 #define RAPL_PRIMITIVE_DUMMY BIT(2)
78 #define TIME_WINDOW_MAX_MSEC 40000
79 #define TIME_WINDOW_MIN_MSEC 250
80 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
82 ARBITRARY_UNIT, /* no translation */
88 enum rapl_domain_type {
89 RAPL_DOMAIN_PACKAGE, /* entire package/socket */
90 RAPL_DOMAIN_PP0, /* core power plane */
91 RAPL_DOMAIN_PP1, /* graphics uncore */
92 RAPL_DOMAIN_DRAM,/* DRAM control_type */
93 RAPL_DOMAIN_PLATFORM, /* PSys control_type */
97 enum rapl_domain_msr_id {
98 RAPL_DOMAIN_MSR_LIMIT,
99 RAPL_DOMAIN_MSR_STATUS,
100 RAPL_DOMAIN_MSR_PERF,
101 RAPL_DOMAIN_MSR_POLICY,
102 RAPL_DOMAIN_MSR_INFO,
106 /* per domain data, some are optional */
107 enum rapl_primitives {
113 PL1_ENABLE, /* power limit 1, aka long term */
114 PL1_CLAMP, /* allow frequency to go below OS request */
115 PL2_ENABLE, /* power limit 2, aka short term, instantaneous */
118 TIME_WINDOW1, /* long term */
119 TIME_WINDOW2, /* short term */
128 /* below are not raw primitive data */
133 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
135 /* Can be expanded to include events, etc.*/
136 struct rapl_domain_data {
137 u64 primitives[NR_RAPL_PRIMITIVES];
138 unsigned long timestamp;
148 #define DOMAIN_STATE_INACTIVE BIT(0)
149 #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
150 #define DOMAIN_STATE_BIOS_LOCKED BIT(2)
152 #define NR_POWER_LIMITS (2)
153 struct rapl_power_limit {
154 struct powercap_zone_constraint *constraint;
155 int prim_id; /* primitive ID used to enable */
156 struct rapl_domain *domain;
160 static const char pl1_name[] = "long_term";
161 static const char pl2_name[] = "short_term";
166 enum rapl_domain_type id;
167 int msrs[RAPL_DOMAIN_MSR_MAX];
168 struct powercap_zone power_zone;
169 struct rapl_domain_data rdd;
170 struct rapl_power_limit rpl[NR_POWER_LIMITS];
171 u64 attr_map; /* track capabilities */
173 unsigned int domain_energy_unit;
174 struct rapl_package *rp;
176 #define power_zone_to_rapl_domain(_zone) \
177 container_of(_zone, struct rapl_domain, power_zone)
180 /* Each physical package contains multiple domains, these are the common
181 * data across RAPL domains within a package.
183 struct rapl_package {
184 unsigned int id; /* physical package/socket id */
185 unsigned int nr_domains;
186 unsigned long domain_map; /* bit map of active domains */
187 unsigned int power_unit;
188 unsigned int energy_unit;
189 unsigned int time_unit;
190 struct rapl_domain *domains; /* array of domains, sized at runtime */
191 struct powercap_zone *power_zone; /* keep track of parent zone */
192 int nr_cpus; /* active cpus on the package, topology info is lost during
193 * cpu hotplug. so we have to track ourselves.
195 unsigned long power_limit_irq; /* keep track of package power limit
196 * notify interrupt enable status.
198 struct list_head plist;
199 int lead_cpu; /* one active cpu per package for access */
202 struct rapl_defaults {
203 u8 floor_freq_reg_addr;
204 int (*check_unit)(struct rapl_package *rp, int cpu);
205 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
206 u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
208 unsigned int dram_domain_energy_unit;
210 static struct rapl_defaults *rapl_defaults;
212 /* Sideband MBI registers */
213 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
214 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
216 #define PACKAGE_PLN_INT_SAVED BIT(0)
217 #define MAX_PRIM_NAME (32)
219 /* per domain data. used to describe individual knobs such that access function
220 * can be consolidated into one instead of many inline functions.
222 struct rapl_primitive_info {
226 enum rapl_domain_msr_id id;
231 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
240 static void rapl_init_domains(struct rapl_package *rp);
241 static int rapl_read_data_raw(struct rapl_domain *rd,
242 enum rapl_primitives prim,
243 bool xlate, u64 *data);
244 static int rapl_write_data_raw(struct rapl_domain *rd,
245 enum rapl_primitives prim,
246 unsigned long long value);
247 static u64 rapl_unit_xlate(struct rapl_domain *rd,
248 enum unit_type type, u64 value,
250 static void package_power_limit_irq_save(struct rapl_package *rp);
252 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
254 static const char * const rapl_domain_names[] = {
262 static struct powercap_control_type *control_type; /* PowerCap Controller */
263 static struct rapl_domain *platform_rapl_domain; /* Platform (PSys) domain */
265 /* caller to ensure CPU hotplug lock is held */
266 static struct rapl_package *find_package_by_id(int id)
268 struct rapl_package *rp;
270 list_for_each_entry(rp, &rapl_packages, plist) {
278 /* caller must hold cpu hotplug lock */
279 static void rapl_cleanup_data(void)
281 struct rapl_package *p, *tmp;
283 list_for_each_entry_safe(p, tmp, &rapl_packages, plist) {
290 static int get_energy_counter(struct powercap_zone *power_zone, u64 *energy_raw)
292 struct rapl_domain *rd;
295 /* prevent CPU hotplug, make sure the RAPL domain does not go
296 * away while reading the counter.
299 rd = power_zone_to_rapl_domain(power_zone);
301 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
302 *energy_raw = energy_now;
312 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
314 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
316 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
320 static int release_zone(struct powercap_zone *power_zone)
322 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
323 struct rapl_package *rp = rd->rp;
325 /* package zone is the last zone of a package, we can free
326 * memory here since all children has been unregistered.
328 if (rd->id == RAPL_DOMAIN_PACKAGE) {
337 static int find_nr_power_limit(struct rapl_domain *rd)
341 for (i = 0; i < NR_POWER_LIMITS; i++) {
349 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
351 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
353 if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
357 rapl_write_data_raw(rd, PL1_ENABLE, mode);
358 if (rapl_defaults->set_floor_freq)
359 rapl_defaults->set_floor_freq(rd, mode);
365 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
367 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
370 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
375 if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
385 /* per RAPL domain ops, in the order of rapl_domain_type */
386 static const struct powercap_zone_ops zone_ops[] = {
387 /* RAPL_DOMAIN_PACKAGE */
389 .get_energy_uj = get_energy_counter,
390 .get_max_energy_range_uj = get_max_energy_counter,
391 .release = release_zone,
392 .set_enable = set_domain_enable,
393 .get_enable = get_domain_enable,
395 /* RAPL_DOMAIN_PP0 */
397 .get_energy_uj = get_energy_counter,
398 .get_max_energy_range_uj = get_max_energy_counter,
399 .release = release_zone,
400 .set_enable = set_domain_enable,
401 .get_enable = get_domain_enable,
403 /* RAPL_DOMAIN_PP1 */
405 .get_energy_uj = get_energy_counter,
406 .get_max_energy_range_uj = get_max_energy_counter,
407 .release = release_zone,
408 .set_enable = set_domain_enable,
409 .get_enable = get_domain_enable,
411 /* RAPL_DOMAIN_DRAM */
413 .get_energy_uj = get_energy_counter,
414 .get_max_energy_range_uj = get_max_energy_counter,
415 .release = release_zone,
416 .set_enable = set_domain_enable,
417 .get_enable = get_domain_enable,
419 /* RAPL_DOMAIN_PLATFORM */
421 .get_energy_uj = get_energy_counter,
422 .get_max_energy_range_uj = get_max_energy_counter,
423 .release = release_zone,
424 .set_enable = set_domain_enable,
425 .get_enable = get_domain_enable,
431 * Constraint index used by powercap can be different than power limit (PL)
432 * index in that some PLs maybe missing due to non-existant MSRs. So we
433 * need to convert here by finding the valid PLs only (name populated).
435 static int contraint_to_pl(struct rapl_domain *rd, int cid)
439 for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
440 if ((rd->rpl[i].name) && j++ == cid) {
441 pr_debug("%s: index %d\n", __func__, i);
449 static int set_power_limit(struct powercap_zone *power_zone, int cid,
452 struct rapl_domain *rd;
453 struct rapl_package *rp;
458 rd = power_zone_to_rapl_domain(power_zone);
459 id = contraint_to_pl(rd, cid);
463 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
464 dev_warn(&power_zone->dev, "%s locked by BIOS, monitoring only\n",
470 switch (rd->rpl[id].prim_id) {
472 rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
475 rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
481 package_power_limit_irq_save(rp);
487 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
490 struct rapl_domain *rd;
497 rd = power_zone_to_rapl_domain(power_zone);
498 id = contraint_to_pl(rd, cid);
499 switch (rd->rpl[id].prim_id) {
510 if (rapl_read_data_raw(rd, prim, true, &val))
520 static int set_time_window(struct powercap_zone *power_zone, int cid,
523 struct rapl_domain *rd;
528 rd = power_zone_to_rapl_domain(power_zone);
529 id = contraint_to_pl(rd, cid);
531 switch (rd->rpl[id].prim_id) {
533 rapl_write_data_raw(rd, TIME_WINDOW1, window);
536 rapl_write_data_raw(rd, TIME_WINDOW2, window);
545 static int get_time_window(struct powercap_zone *power_zone, int cid, u64 *data)
547 struct rapl_domain *rd;
553 rd = power_zone_to_rapl_domain(power_zone);
554 id = contraint_to_pl(rd, cid);
556 switch (rd->rpl[id].prim_id) {
558 ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
561 ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
574 static const char *get_constraint_name(struct powercap_zone *power_zone, int cid)
576 struct rapl_domain *rd;
579 rd = power_zone_to_rapl_domain(power_zone);
580 id = contraint_to_pl(rd, cid);
582 return rd->rpl[id].name;
588 static int get_max_power(struct powercap_zone *power_zone, int id,
591 struct rapl_domain *rd;
597 rd = power_zone_to_rapl_domain(power_zone);
598 switch (rd->rpl[id].prim_id) {
600 prim = THERMAL_SPEC_POWER;
609 if (rapl_read_data_raw(rd, prim, true, &val))
619 static const struct powercap_zone_constraint_ops constraint_ops = {
620 .set_power_limit_uw = set_power_limit,
621 .get_power_limit_uw = get_current_power_limit,
622 .set_time_window_us = set_time_window,
623 .get_time_window_us = get_time_window,
624 .get_max_power_uw = get_max_power,
625 .get_name = get_constraint_name,
628 /* called after domain detection and package level data are set */
629 static void rapl_init_domains(struct rapl_package *rp)
632 struct rapl_domain *rd = rp->domains;
634 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
635 unsigned int mask = rp->domain_map & (1 << i);
637 case BIT(RAPL_DOMAIN_PACKAGE):
638 rd->name = rapl_domain_names[RAPL_DOMAIN_PACKAGE];
639 rd->id = RAPL_DOMAIN_PACKAGE;
640 rd->msrs[0] = MSR_PKG_POWER_LIMIT;
641 rd->msrs[1] = MSR_PKG_ENERGY_STATUS;
642 rd->msrs[2] = MSR_PKG_PERF_STATUS;
644 rd->msrs[4] = MSR_PKG_POWER_INFO;
645 rd->rpl[0].prim_id = PL1_ENABLE;
646 rd->rpl[0].name = pl1_name;
647 rd->rpl[1].prim_id = PL2_ENABLE;
648 rd->rpl[1].name = pl2_name;
650 case BIT(RAPL_DOMAIN_PP0):
651 rd->name = rapl_domain_names[RAPL_DOMAIN_PP0];
652 rd->id = RAPL_DOMAIN_PP0;
653 rd->msrs[0] = MSR_PP0_POWER_LIMIT;
654 rd->msrs[1] = MSR_PP0_ENERGY_STATUS;
656 rd->msrs[3] = MSR_PP0_POLICY;
658 rd->rpl[0].prim_id = PL1_ENABLE;
659 rd->rpl[0].name = pl1_name;
661 case BIT(RAPL_DOMAIN_PP1):
662 rd->name = rapl_domain_names[RAPL_DOMAIN_PP1];
663 rd->id = RAPL_DOMAIN_PP1;
664 rd->msrs[0] = MSR_PP1_POWER_LIMIT;
665 rd->msrs[1] = MSR_PP1_ENERGY_STATUS;
667 rd->msrs[3] = MSR_PP1_POLICY;
669 rd->rpl[0].prim_id = PL1_ENABLE;
670 rd->rpl[0].name = pl1_name;
672 case BIT(RAPL_DOMAIN_DRAM):
673 rd->name = rapl_domain_names[RAPL_DOMAIN_DRAM];
674 rd->id = RAPL_DOMAIN_DRAM;
675 rd->msrs[0] = MSR_DRAM_POWER_LIMIT;
676 rd->msrs[1] = MSR_DRAM_ENERGY_STATUS;
677 rd->msrs[2] = MSR_DRAM_PERF_STATUS;
679 rd->msrs[4] = MSR_DRAM_POWER_INFO;
680 rd->rpl[0].prim_id = PL1_ENABLE;
681 rd->rpl[0].name = pl1_name;
682 rd->domain_energy_unit =
683 rapl_defaults->dram_domain_energy_unit;
684 if (rd->domain_energy_unit)
685 pr_info("DRAM domain energy unit %dpj\n",
686 rd->domain_energy_unit);
696 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
697 u64 value, int to_raw)
700 struct rapl_package *rp = rd->rp;
705 units = rp->power_unit;
708 scale = ENERGY_UNIT_SCALE;
709 /* per domain unit takes precedence */
710 if (rd && rd->domain_energy_unit)
711 units = rd->domain_energy_unit;
713 units = rp->energy_unit;
716 return rapl_defaults->compute_time_window(rp, value, to_raw);
723 return div64_u64(value, units) * scale;
727 return div64_u64(value, scale);
730 /* in the order of enum rapl_primitives */
731 static struct rapl_primitive_info rpi[] = {
732 /* name, mask, shift, msr index, unit divisor */
733 PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
734 RAPL_DOMAIN_MSR_STATUS, ENERGY_UNIT, 0),
735 PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
736 RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
737 PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
738 RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
739 PRIMITIVE_INFO_INIT(FW_LOCK, POWER_PP_LOCK, 31,
740 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
741 PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
742 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
743 PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
744 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
745 PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
746 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
747 PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
748 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
749 PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
750 RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
751 PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
752 RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
753 PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
754 0, RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
755 PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
756 RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
757 PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
758 RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
759 PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
760 RAPL_DOMAIN_MSR_INFO, TIME_UNIT, 0),
761 PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
762 RAPL_DOMAIN_MSR_PERF, TIME_UNIT, 0),
763 PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
764 RAPL_DOMAIN_MSR_POLICY, ARBITRARY_UNIT, 0),
766 PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
767 RAPL_PRIMITIVE_DERIVED),
771 /* Read primitive data based on its related struct rapl_primitive_info.
772 * if xlate flag is set, return translated data based on data units, i.e.
773 * time, energy, and power.
774 * RAPL MSRs are non-architectual and are laid out not consistently across
775 * domains. Here we use primitive info to allow writing consolidated access
777 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
778 * is pre-assigned based on RAPL unit MSRs read at init time.
779 * 63-------------------------- 31--------------------------- 0
781 * | |<- shift ----------------|
782 * 63-------------------------- 31--------------------------- 0
784 static int rapl_read_data_raw(struct rapl_domain *rd,
785 enum rapl_primitives prim,
786 bool xlate, u64 *data)
790 struct rapl_primitive_info *rp = &rpi[prim];
793 if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
796 msr = rd->msrs[rp->id];
800 cpu = rd->rp->lead_cpu;
802 /* special-case package domain, which uses a different bit*/
803 if (prim == FW_LOCK && rd->id == RAPL_DOMAIN_PACKAGE) {
804 rp->mask = POWER_PACKAGE_LOCK;
807 /* non-hardware data are collected by the polling thread */
808 if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
809 *data = rd->rdd.primitives[prim];
813 if (rdmsrl_safe_on_cpu(cpu, msr, &value)) {
814 pr_debug("failed to read msr 0x%x on cpu %d\n", msr, cpu);
818 final = value & rp->mask;
819 final = final >> rp->shift;
821 *data = rapl_unit_xlate(rd, rp->unit, final, 0);
829 static int msrl_update_safe(u32 msr_no, u64 clear_mask, u64 set_mask)
834 err = rdmsrl_safe(msr_no, &val);
841 err = wrmsrl_safe(msr_no, val);
847 static void msrl_update_func(void *info)
849 struct msrl_action *ma = info;
851 ma->err = msrl_update_safe(ma->msr_no, ma->clear_mask, ma->set_mask);
854 /* Similar use of primitive info in the read counterpart */
855 static int rapl_write_data_raw(struct rapl_domain *rd,
856 enum rapl_primitives prim,
857 unsigned long long value)
859 struct rapl_primitive_info *rp = &rpi[prim];
862 struct msrl_action ma;
865 cpu = rd->rp->lead_cpu;
866 bits = rapl_unit_xlate(rd, rp->unit, value, 1);
867 bits |= bits << rp->shift;
868 memset(&ma, 0, sizeof(ma));
870 ma.msr_no = rd->msrs[rp->id];
871 ma.clear_mask = rp->mask;
874 ret = smp_call_function_single(cpu, msrl_update_func, &ma, 1);
884 * Raw RAPL data stored in MSRs are in certain scales. We need to
885 * convert them into standard units based on the units reported in
886 * the RAPL unit MSRs. This is specific to CPUs as the method to
887 * calculate units differ on different CPUs.
888 * We convert the units to below format based on CPUs.
890 * energy unit: picoJoules : Represented in picoJoules by default
891 * power unit : microWatts : Represented in milliWatts by default
892 * time unit : microseconds: Represented in seconds by default
894 static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
899 if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
900 pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
901 MSR_RAPL_POWER_UNIT, cpu);
905 value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
906 rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
908 value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
909 rp->power_unit = 1000000 / (1 << value);
911 value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
912 rp->time_unit = 1000000 / (1 << value);
914 pr_debug("Core CPU package %d energy=%dpJ, time=%dus, power=%duW\n",
915 rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
920 static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
925 if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
926 pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
927 MSR_RAPL_POWER_UNIT, cpu);
930 value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
931 rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
933 value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
934 rp->power_unit = (1 << value) * 1000;
936 value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
937 rp->time_unit = 1000000 / (1 << value);
939 pr_debug("Atom package %d energy=%dpJ, time=%dus, power=%duW\n",
940 rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
945 static void power_limit_irq_save_cpu(void *info)
948 struct rapl_package *rp = (struct rapl_package *)info;
950 /* save the state of PLN irq mask bit before disabling it */
951 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
952 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
953 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
954 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
956 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
957 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
962 * When package power limit is set artificially low by RAPL, LVT
963 * thermal interrupt for package power limit should be ignored
964 * since we are not really exceeding the real limit. The intention
965 * is to avoid excessive interrupts while we are trying to save power.
966 * A useful feature might be routing the package_power_limit interrupt
967 * to userspace via eventfd. once we have a usecase, this is simple
968 * to do by adding an atomic notifier.
971 static void package_power_limit_irq_save(struct rapl_package *rp)
973 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
976 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
979 static void power_limit_irq_restore_cpu(void *info)
982 struct rapl_package *rp = (struct rapl_package *)info;
984 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
986 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
987 l |= PACKAGE_THERM_INT_PLN_ENABLE;
989 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
991 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
994 /* restore per package power limit interrupt enable state */
995 static void package_power_limit_irq_restore(struct rapl_package *rp)
997 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1000 /* irq enable state not saved, nothing to restore */
1001 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1004 smp_call_function_single(rp->lead_cpu, power_limit_irq_restore_cpu, rp, 1);
1007 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1009 int nr_powerlimit = find_nr_power_limit(rd);
1011 /* always enable clamp such that p-state can go below OS requested
1012 * range. power capping priority over guranteed frequency.
1014 rapl_write_data_raw(rd, PL1_CLAMP, mode);
1016 /* some domains have pl2 */
1017 if (nr_powerlimit > 1) {
1018 rapl_write_data_raw(rd, PL2_ENABLE, mode);
1019 rapl_write_data_raw(rd, PL2_CLAMP, mode);
1023 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1025 static u32 power_ctrl_orig_val;
1028 if (!rapl_defaults->floor_freq_reg_addr) {
1029 pr_err("Invalid floor frequency config register\n");
1033 if (!power_ctrl_orig_val)
1034 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1035 rapl_defaults->floor_freq_reg_addr,
1036 &power_ctrl_orig_val);
1037 mdata = power_ctrl_orig_val;
1039 mdata &= ~(0x7f << 8);
1042 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1043 rapl_defaults->floor_freq_reg_addr, mdata);
1046 static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
1049 u64 f, y; /* fraction and exp. used for time unit */
1052 * Special processing based on 2^Y*(1+F/4), refer
1053 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1056 f = (value & 0x60) >> 5;
1058 value = (1 << y) * (4 + f) * rp->time_unit / 4;
1060 do_div(value, rp->time_unit);
1062 f = div64_u64(4 * (value - (1 << y)), 1 << y);
1063 value = (y & 0x1f) | ((f & 0x3) << 5);
1068 static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
1072 * Atom time unit encoding is straight forward val * time_unit,
1073 * where time_unit is default to 1 sec. Never 0.
1076 return (value) ? value *= rp->time_unit : rp->time_unit;
1078 value = div64_u64(value, rp->time_unit);
1083 static const struct rapl_defaults rapl_defaults_core = {
1084 .floor_freq_reg_addr = 0,
1085 .check_unit = rapl_check_unit_core,
1086 .set_floor_freq = set_floor_freq_default,
1087 .compute_time_window = rapl_compute_time_window_core,
1090 static const struct rapl_defaults rapl_defaults_hsw_server = {
1091 .check_unit = rapl_check_unit_core,
1092 .set_floor_freq = set_floor_freq_default,
1093 .compute_time_window = rapl_compute_time_window_core,
1094 .dram_domain_energy_unit = 15300,
1097 static const struct rapl_defaults rapl_defaults_byt = {
1098 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1099 .check_unit = rapl_check_unit_atom,
1100 .set_floor_freq = set_floor_freq_atom,
1101 .compute_time_window = rapl_compute_time_window_atom,
1104 static const struct rapl_defaults rapl_defaults_tng = {
1105 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1106 .check_unit = rapl_check_unit_atom,
1107 .set_floor_freq = set_floor_freq_atom,
1108 .compute_time_window = rapl_compute_time_window_atom,
1111 static const struct rapl_defaults rapl_defaults_ann = {
1112 .floor_freq_reg_addr = 0,
1113 .check_unit = rapl_check_unit_atom,
1114 .set_floor_freq = NULL,
1115 .compute_time_window = rapl_compute_time_window_atom,
1118 static const struct rapl_defaults rapl_defaults_cht = {
1119 .floor_freq_reg_addr = 0,
1120 .check_unit = rapl_check_unit_atom,
1121 .set_floor_freq = NULL,
1122 .compute_time_window = rapl_compute_time_window_atom,
1125 #define RAPL_CPU(_model, _ops) { \
1126 .vendor = X86_VENDOR_INTEL, \
1129 .driver_data = (kernel_ulong_t)&_ops, \
1132 static const struct x86_cpu_id rapl_ids[] __initconst = {
1133 RAPL_CPU(INTEL_FAM6_SANDYBRIDGE, rapl_defaults_core),
1134 RAPL_CPU(INTEL_FAM6_SANDYBRIDGE_X, rapl_defaults_core),
1136 RAPL_CPU(INTEL_FAM6_IVYBRIDGE, rapl_defaults_core),
1137 RAPL_CPU(INTEL_FAM6_IVYBRIDGE_X, rapl_defaults_core),
1139 RAPL_CPU(INTEL_FAM6_HASWELL_CORE, rapl_defaults_core),
1140 RAPL_CPU(INTEL_FAM6_HASWELL_ULT, rapl_defaults_core),
1141 RAPL_CPU(INTEL_FAM6_HASWELL_GT3E, rapl_defaults_core),
1142 RAPL_CPU(INTEL_FAM6_HASWELL_X, rapl_defaults_hsw_server),
1144 RAPL_CPU(INTEL_FAM6_BROADWELL_CORE, rapl_defaults_core),
1145 RAPL_CPU(INTEL_FAM6_BROADWELL_GT3E, rapl_defaults_core),
1146 RAPL_CPU(INTEL_FAM6_BROADWELL_XEON_D, rapl_defaults_core),
1147 RAPL_CPU(INTEL_FAM6_BROADWELL_X, rapl_defaults_hsw_server),
1149 RAPL_CPU(INTEL_FAM6_SKYLAKE_DESKTOP, rapl_defaults_core),
1150 RAPL_CPU(INTEL_FAM6_SKYLAKE_MOBILE, rapl_defaults_core),
1151 RAPL_CPU(INTEL_FAM6_SKYLAKE_X, rapl_defaults_hsw_server),
1152 RAPL_CPU(INTEL_FAM6_KABYLAKE_MOBILE, rapl_defaults_core),
1153 RAPL_CPU(INTEL_FAM6_KABYLAKE_DESKTOP, rapl_defaults_core),
1155 RAPL_CPU(INTEL_FAM6_ATOM_SILVERMONT1, rapl_defaults_byt),
1156 RAPL_CPU(INTEL_FAM6_ATOM_AIRMONT, rapl_defaults_cht),
1157 RAPL_CPU(INTEL_FAM6_ATOM_MERRIFIELD, rapl_defaults_tng),
1158 RAPL_CPU(INTEL_FAM6_ATOM_MOOREFIELD, rapl_defaults_ann),
1159 RAPL_CPU(INTEL_FAM6_ATOM_GOLDMONT, rapl_defaults_core),
1160 RAPL_CPU(INTEL_FAM6_ATOM_DENVERTON, rapl_defaults_core),
1162 RAPL_CPU(INTEL_FAM6_XEON_PHI_KNL, rapl_defaults_hsw_server),
1165 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1167 /* read once for all raw primitive data for all packages, domains */
1168 static void rapl_update_domain_data(void)
1172 struct rapl_package *rp;
1174 list_for_each_entry(rp, &rapl_packages, plist) {
1175 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1176 pr_debug("update package %d domain %s data\n", rp->id,
1177 rp->domains[dmn].name);
1178 /* exclude non-raw primitives */
1179 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++)
1180 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1183 rp->domains[dmn].rdd.primitives[prim] =
1190 static int rapl_unregister_powercap(void)
1192 struct rapl_package *rp;
1193 struct rapl_domain *rd, *rd_package = NULL;
1195 /* unregister all active rapl packages from the powercap layer,
1198 list_for_each_entry(rp, &rapl_packages, plist) {
1199 package_power_limit_irq_restore(rp);
1201 for (rd = rp->domains; rd < rp->domains + rp->nr_domains;
1203 pr_debug("remove package, undo power limit on %d: %s\n",
1205 rapl_write_data_raw(rd, PL1_ENABLE, 0);
1206 rapl_write_data_raw(rd, PL1_CLAMP, 0);
1207 if (find_nr_power_limit(rd) > 1) {
1208 rapl_write_data_raw(rd, PL2_ENABLE, 0);
1209 rapl_write_data_raw(rd, PL2_CLAMP, 0);
1211 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1215 powercap_unregister_zone(control_type, &rd->power_zone);
1217 /* do the package zone last */
1219 powercap_unregister_zone(control_type,
1220 &rd_package->power_zone);
1223 if (platform_rapl_domain) {
1224 powercap_unregister_zone(control_type,
1225 &platform_rapl_domain->power_zone);
1226 kfree(platform_rapl_domain);
1229 powercap_unregister_control_type(control_type);
1234 static int rapl_package_register_powercap(struct rapl_package *rp)
1236 struct rapl_domain *rd;
1238 char dev_name[17]; /* max domain name = 7 + 1 + 8 for int + 1 for null*/
1239 struct powercap_zone *power_zone = NULL;
1242 /* first we register package domain as the parent zone*/
1243 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1244 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1245 nr_pl = find_nr_power_limit(rd);
1246 pr_debug("register socket %d package domain %s\n",
1248 memset(dev_name, 0, sizeof(dev_name));
1249 snprintf(dev_name, sizeof(dev_name), "%s-%d",
1251 power_zone = powercap_register_zone(&rd->power_zone,
1257 if (IS_ERR(power_zone)) {
1258 pr_debug("failed to register package, %d\n",
1260 ret = PTR_ERR(power_zone);
1263 /* track parent zone in per package/socket data */
1264 rp->power_zone = power_zone;
1265 /* done, only one package domain per socket */
1270 pr_err("no package domain found, unknown topology!\n");
1274 /* now register domains as children of the socket/package*/
1275 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1276 if (rd->id == RAPL_DOMAIN_PACKAGE)
1278 /* number of power limits per domain varies */
1279 nr_pl = find_nr_power_limit(rd);
1280 power_zone = powercap_register_zone(&rd->power_zone,
1281 control_type, rd->name,
1283 &zone_ops[rd->id], nr_pl,
1286 if (IS_ERR(power_zone)) {
1287 pr_debug("failed to register power_zone, %d:%s:%s\n",
1288 rp->id, rd->name, dev_name);
1289 ret = PTR_ERR(power_zone);
1297 /* clean up previously initialized domains within the package if we
1298 * failed after the first domain setup.
1300 while (--rd >= rp->domains) {
1301 pr_debug("unregister package %d domain %s\n", rp->id, rd->name);
1302 powercap_unregister_zone(control_type, &rd->power_zone);
1308 static int rapl_register_psys(void)
1310 struct rapl_domain *rd;
1311 struct powercap_zone *power_zone;
1314 if (rdmsrl_safe_on_cpu(0, MSR_PLATFORM_ENERGY_STATUS, &val) || !val)
1317 if (rdmsrl_safe_on_cpu(0, MSR_PLATFORM_POWER_LIMIT, &val) || !val)
1320 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
1324 rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
1325 rd->id = RAPL_DOMAIN_PLATFORM;
1326 rd->msrs[0] = MSR_PLATFORM_POWER_LIMIT;
1327 rd->msrs[1] = MSR_PLATFORM_ENERGY_STATUS;
1328 rd->rpl[0].prim_id = PL1_ENABLE;
1329 rd->rpl[0].name = pl1_name;
1330 rd->rpl[1].prim_id = PL2_ENABLE;
1331 rd->rpl[1].name = pl2_name;
1332 rd->rp = find_package_by_id(0);
1334 power_zone = powercap_register_zone(&rd->power_zone, control_type,
1336 &zone_ops[RAPL_DOMAIN_PLATFORM],
1337 2, &constraint_ops);
1339 if (IS_ERR(power_zone)) {
1341 return PTR_ERR(power_zone);
1344 platform_rapl_domain = rd;
1349 static int rapl_register_powercap(void)
1351 struct rapl_domain *rd;
1352 struct rapl_package *rp;
1355 control_type = powercap_register_control_type(NULL, "intel-rapl", NULL);
1356 if (IS_ERR(control_type)) {
1357 pr_debug("failed to register powercap control_type.\n");
1358 return PTR_ERR(control_type);
1360 /* read the initial data */
1361 rapl_update_domain_data();
1362 list_for_each_entry(rp, &rapl_packages, plist)
1363 if (rapl_package_register_powercap(rp))
1364 goto err_cleanup_package;
1366 /* Don't bail out if PSys is not supported */
1367 rapl_register_psys();
1371 err_cleanup_package:
1372 /* clean up previously initialized packages */
1373 list_for_each_entry_continue_reverse(rp, &rapl_packages, plist) {
1374 for (rd = rp->domains; rd < rp->domains + rp->nr_domains;
1376 pr_debug("unregister zone/package %d, %s domain\n",
1378 powercap_unregister_zone(control_type, &rd->power_zone);
1385 static int rapl_check_domain(int cpu, int domain)
1391 case RAPL_DOMAIN_PACKAGE:
1392 msr = MSR_PKG_ENERGY_STATUS;
1394 case RAPL_DOMAIN_PP0:
1395 msr = MSR_PP0_ENERGY_STATUS;
1397 case RAPL_DOMAIN_PP1:
1398 msr = MSR_PP1_ENERGY_STATUS;
1400 case RAPL_DOMAIN_DRAM:
1401 msr = MSR_DRAM_ENERGY_STATUS;
1403 case RAPL_DOMAIN_PLATFORM:
1404 /* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
1407 pr_err("invalid domain id %d\n", domain);
1410 /* make sure domain counters are available and contains non-zero
1411 * values, otherwise skip it.
1413 if (rdmsrl_safe_on_cpu(cpu, msr, &val) || !val)
1421 * Check if power limits are available. Two cases when they are not available:
1422 * 1. Locked by BIOS, in this case we still provide read-only access so that
1423 * users can see what limit is set by the BIOS.
1424 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1425 * exist at all. In this case, we do not show the contraints in powercap.
1427 * Called after domains are detected and initialized.
1429 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1434 /* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1435 if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1437 pr_info("RAPL package %d domain %s locked by BIOS\n",
1438 rd->rp->id, rd->name);
1439 rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1442 /* check if power limit MSRs exists, otherwise domain is monitoring only */
1443 for (i = 0; i < NR_POWER_LIMITS; i++) {
1444 int prim = rd->rpl[i].prim_id;
1445 if (rapl_read_data_raw(rd, prim, false, &val64))
1446 rd->rpl[i].name = NULL;
1450 /* Detect active and valid domains for the given CPU, caller must
1451 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1453 static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1457 struct rapl_domain *rd;
1459 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1460 /* use physical package id to read counters */
1461 if (!rapl_check_domain(cpu, i)) {
1462 rp->domain_map |= 1 << i;
1463 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1466 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1467 if (!rp->nr_domains) {
1468 pr_debug("no valid rapl domains found in package %d\n", rp->id);
1472 pr_debug("found %d domains on package %d\n", rp->nr_domains, rp->id);
1474 rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1480 rapl_init_domains(rp);
1482 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1483 rapl_detect_powerlimit(rd);
1491 static bool is_package_new(int package)
1493 struct rapl_package *rp;
1495 /* caller prevents cpu hotplug, there will be no new packages added
1496 * or deleted while traversing the package list, no need for locking.
1498 list_for_each_entry(rp, &rapl_packages, plist)
1499 if (package == rp->id)
1505 /* RAPL interface can be made of a two-level hierarchy: package level and domain
1506 * level. We first detect the number of packages then domains of each package.
1507 * We have to consider the possiblity of CPU online/offline due to hotplug and
1510 static int rapl_detect_topology(void)
1514 struct rapl_package *new_package, *rp;
1516 for_each_online_cpu(i) {
1517 phy_package_id = topology_physical_package_id(i);
1518 if (is_package_new(phy_package_id)) {
1519 new_package = kzalloc(sizeof(*rp), GFP_KERNEL);
1521 rapl_cleanup_data();
1524 /* add the new package to the list */
1525 new_package->id = phy_package_id;
1526 new_package->nr_cpus = 1;
1527 /* use the first active cpu of the package to access */
1528 new_package->lead_cpu = i;
1529 /* check if the package contains valid domains */
1530 if (rapl_detect_domains(new_package, i) ||
1531 rapl_defaults->check_unit(new_package, i)) {
1532 kfree(new_package->domains);
1534 /* free up the packages already initialized */
1535 rapl_cleanup_data();
1538 INIT_LIST_HEAD(&new_package->plist);
1539 list_add(&new_package->plist, &rapl_packages);
1541 rp = find_package_by_id(phy_package_id);
1550 /* called from CPU hotplug notifier, hotplug lock held */
1551 static void rapl_remove_package(struct rapl_package *rp)
1553 struct rapl_domain *rd, *rd_package = NULL;
1555 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1556 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1560 pr_debug("remove package %d, %s domain\n", rp->id, rd->name);
1561 powercap_unregister_zone(control_type, &rd->power_zone);
1563 /* do parent zone last */
1564 powercap_unregister_zone(control_type, &rd_package->power_zone);
1565 list_del(&rp->plist);
1569 /* called from CPU hotplug notifier, hotplug lock held */
1570 static int rapl_add_package(int cpu)
1574 struct rapl_package *rp;
1576 phy_package_id = topology_physical_package_id(cpu);
1577 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1581 /* add the new package to the list */
1582 rp->id = phy_package_id;
1586 /* check if the package contains valid domains */
1587 if (rapl_detect_domains(rp, cpu) ||
1588 rapl_defaults->check_unit(rp, cpu)) {
1590 goto err_free_package;
1592 if (!rapl_package_register_powercap(rp)) {
1593 INIT_LIST_HEAD(&rp->plist);
1594 list_add(&rp->plist, &rapl_packages);
1605 /* Handles CPU hotplug on multi-socket systems.
1606 * If a CPU goes online as the first CPU of the physical package
1607 * we add the RAPL package to the system. Similarly, when the last
1608 * CPU of the package is removed, we remove the RAPL package and its
1609 * associated domains. Cooling devices are handled accordingly at
1612 static int rapl_cpu_callback(struct notifier_block *nfb,
1613 unsigned long action, void *hcpu)
1615 unsigned long cpu = (unsigned long)hcpu;
1617 struct rapl_package *rp;
1620 phy_package_id = topology_physical_package_id(cpu);
1623 case CPU_ONLINE_FROZEN:
1624 case CPU_DOWN_FAILED:
1625 case CPU_DOWN_FAILED_FROZEN:
1626 rp = find_package_by_id(phy_package_id);
1630 rapl_add_package(cpu);
1632 case CPU_DOWN_PREPARE:
1633 case CPU_DOWN_PREPARE_FROZEN:
1634 rp = find_package_by_id(phy_package_id);
1637 if (--rp->nr_cpus == 0)
1638 rapl_remove_package(rp);
1639 else if (cpu == rp->lead_cpu) {
1640 /* choose another active cpu in the package */
1641 lead_cpu = cpumask_any_but(topology_core_cpumask(cpu), cpu);
1642 if (lead_cpu < nr_cpu_ids)
1643 rp->lead_cpu = lead_cpu;
1644 else /* should never go here */
1645 pr_err("no active cpu available for package %d\n",
1653 static struct notifier_block rapl_cpu_notifier = {
1654 .notifier_call = rapl_cpu_callback,
1657 static int __init rapl_init(void)
1660 const struct x86_cpu_id *id;
1662 id = x86_match_cpu(rapl_ids);
1664 pr_err("driver does not support CPU family %d model %d\n",
1665 boot_cpu_data.x86, boot_cpu_data.x86_model);
1670 rapl_defaults = (struct rapl_defaults *)id->driver_data;
1672 cpu_notifier_register_begin();
1674 /* prevent CPU hotplug during detection */
1676 ret = rapl_detect_topology();
1680 if (rapl_register_powercap()) {
1681 rapl_cleanup_data();
1685 __register_hotcpu_notifier(&rapl_cpu_notifier);
1688 cpu_notifier_register_done();
1693 static void __exit rapl_exit(void)
1695 cpu_notifier_register_begin();
1697 __unregister_hotcpu_notifier(&rapl_cpu_notifier);
1698 rapl_unregister_powercap();
1699 rapl_cleanup_data();
1701 cpu_notifier_register_done();
1704 module_init(rapl_init);
1705 module_exit(rapl_exit);
1707 MODULE_DESCRIPTION("Driver for Intel RAPL (Running Average Power Limit)");
1709 MODULE_LICENSE("GPL v2");