2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
32 #define CREATE_TRACE_POINTS
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/sections.h>
50 __asm__(".arch_extension virt");
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
55 static unsigned long hyp_default_vectors;
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
66 static bool vgic_present;
68 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
70 BUG_ON(preemptible());
71 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
76 * Must be called from non-preemptible context
78 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
80 BUG_ON(preemptible());
81 return __this_cpu_read(kvm_arm_running_vcpu);
85 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
87 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
89 return &kvm_arm_running_vcpu;
92 int kvm_arch_hardware_enable(void)
97 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
99 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
102 int kvm_arch_hardware_setup(void)
107 void kvm_arch_check_processor_compat(void *rtn)
114 * kvm_arch_init_vm - initializes a VM data structure
115 * @kvm: pointer to the KVM struct
117 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
124 ret = kvm_alloc_stage2_pgd(kvm);
128 ret = create_hyp_mappings(kvm, kvm + 1);
130 goto out_free_stage2_pgd;
132 kvm_vgic_early_init(kvm);
135 /* Mark the initial VMID generation invalid */
136 kvm->arch.vmid_gen = 0;
138 /* The maximum number of VCPUs is limited by the host's GIC model */
139 kvm->arch.max_vcpus = vgic_present ?
140 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144 kvm_free_stage2_pgd(kvm);
149 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
151 return VM_FAULT_SIGBUS;
156 * kvm_arch_destroy_vm - destroy the VM data structure
157 * @kvm: pointer to the KVM struct
159 void kvm_arch_destroy_vm(struct kvm *kvm)
163 kvm_free_stage2_pgd(kvm);
165 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
167 kvm_arch_vcpu_free(kvm->vcpus[i]);
168 kvm->vcpus[i] = NULL;
172 kvm_vgic_destroy(kvm);
175 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
179 case KVM_CAP_IRQCHIP:
182 case KVM_CAP_IOEVENTFD:
183 case KVM_CAP_DEVICE_CTRL:
184 case KVM_CAP_USER_MEMORY:
185 case KVM_CAP_SYNC_MMU:
186 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
187 case KVM_CAP_ONE_REG:
188 case KVM_CAP_ARM_PSCI:
189 case KVM_CAP_ARM_PSCI_0_2:
190 case KVM_CAP_READONLY_MEM:
191 case KVM_CAP_MP_STATE:
194 case KVM_CAP_COALESCED_MMIO:
195 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
197 case KVM_CAP_ARM_SET_DEVICE_ADDR:
200 case KVM_CAP_NR_VCPUS:
201 r = num_online_cpus();
203 case KVM_CAP_MAX_VCPUS:
207 r = kvm_arch_dev_ioctl_check_extension(ext);
213 long kvm_arch_dev_ioctl(struct file *filp,
214 unsigned int ioctl, unsigned long arg)
220 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
223 struct kvm_vcpu *vcpu;
225 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
230 if (id >= kvm->arch.max_vcpus) {
235 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
241 err = kvm_vcpu_init(vcpu, kvm, id);
245 err = create_hyp_mappings(vcpu, vcpu + 1);
251 kvm_vcpu_uninit(vcpu);
253 kmem_cache_free(kvm_vcpu_cache, vcpu);
258 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
260 kvm_vgic_vcpu_early_init(vcpu);
263 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
265 kvm_mmu_free_memory_caches(vcpu);
266 kvm_timer_vcpu_terminate(vcpu);
267 kvm_vgic_vcpu_destroy(vcpu);
268 kmem_cache_free(kvm_vcpu_cache, vcpu);
271 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
273 kvm_arch_vcpu_free(vcpu);
276 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
278 return kvm_timer_should_fire(vcpu);
281 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
283 kvm_timer_schedule(vcpu);
286 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
288 kvm_timer_unschedule(vcpu);
291 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
293 /* Force users to call KVM_ARM_VCPU_INIT */
294 vcpu->arch.target = -1;
295 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
297 /* Set up the timer */
298 kvm_timer_vcpu_init(vcpu);
300 kvm_arm_reset_debug_ptr(vcpu);
305 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
308 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
310 kvm_arm_set_running_vcpu(vcpu);
313 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
316 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
317 * if the vcpu is no longer assigned to a cpu. This is used for the
318 * optimized make_all_cpus_request path.
322 kvm_arm_set_running_vcpu(NULL);
325 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
326 struct kvm_mp_state *mp_state)
328 if (vcpu->arch.power_off)
329 mp_state->mp_state = KVM_MP_STATE_STOPPED;
331 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
336 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
337 struct kvm_mp_state *mp_state)
339 switch (mp_state->mp_state) {
340 case KVM_MP_STATE_RUNNABLE:
341 vcpu->arch.power_off = false;
343 case KVM_MP_STATE_STOPPED:
344 vcpu->arch.power_off = true;
354 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
355 * @v: The VCPU pointer
357 * If the guest CPU is not waiting for interrupts or an interrupt line is
358 * asserted, the CPU is by definition runnable.
360 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
362 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
363 && !v->arch.power_off && !v->arch.pause);
366 /* Just ensure a guest exit from a particular CPU */
367 static void exit_vm_noop(void *info)
371 void force_vm_exit(const cpumask_t *mask)
373 smp_call_function_many(mask, exit_vm_noop, NULL, true);
377 * need_new_vmid_gen - check that the VMID is still valid
378 * @kvm: The VM's VMID to checkt
380 * return true if there is a new generation of VMIDs being used
382 * The hardware supports only 256 values with the value zero reserved for the
383 * host, so we check if an assigned value belongs to a previous generation,
384 * which which requires us to assign a new value. If we're the first to use a
385 * VMID for the new generation, we must flush necessary caches and TLBs on all
388 static bool need_new_vmid_gen(struct kvm *kvm)
390 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
394 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
395 * @kvm The guest that we are about to run
397 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
398 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
401 static void update_vttbr(struct kvm *kvm)
403 phys_addr_t pgd_phys;
406 if (!need_new_vmid_gen(kvm))
409 spin_lock(&kvm_vmid_lock);
412 * We need to re-check the vmid_gen here to ensure that if another vcpu
413 * already allocated a valid vmid for this vm, then this vcpu should
416 if (!need_new_vmid_gen(kvm)) {
417 spin_unlock(&kvm_vmid_lock);
421 /* First user of a new VMID generation? */
422 if (unlikely(kvm_next_vmid == 0)) {
423 atomic64_inc(&kvm_vmid_gen);
427 * On SMP we know no other CPUs can use this CPU's or each
428 * other's VMID after force_vm_exit returns since the
429 * kvm_vmid_lock blocks them from reentry to the guest.
431 force_vm_exit(cpu_all_mask);
433 * Now broadcast TLB + ICACHE invalidation over the inner
434 * shareable domain to make sure all data structures are
437 kvm_call_hyp(__kvm_flush_vm_context);
440 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
441 kvm->arch.vmid = kvm_next_vmid;
443 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
445 /* update vttbr to be used with the new vmid */
446 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
447 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
448 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
449 kvm->arch.vttbr = pgd_phys | vmid;
451 spin_unlock(&kvm_vmid_lock);
454 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
456 struct kvm *kvm = vcpu->kvm;
459 if (likely(vcpu->arch.has_run_once))
462 vcpu->arch.has_run_once = true;
465 * Map the VGIC hardware resources before running a vcpu the first
468 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
469 ret = kvm_vgic_map_resources(kvm);
475 * Enable the arch timers only if we have an in-kernel VGIC
476 * and it has been properly initialized, since we cannot handle
477 * interrupts from the virtual timer with a userspace gic.
479 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
480 kvm_timer_enable(kvm);
485 bool kvm_arch_intc_initialized(struct kvm *kvm)
487 return vgic_initialized(kvm);
490 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
491 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
493 static void kvm_arm_halt_guest(struct kvm *kvm)
496 struct kvm_vcpu *vcpu;
498 kvm_for_each_vcpu(i, vcpu, kvm)
499 vcpu->arch.pause = true;
500 force_vm_exit(cpu_all_mask);
503 static void kvm_arm_resume_guest(struct kvm *kvm)
506 struct kvm_vcpu *vcpu;
508 kvm_for_each_vcpu(i, vcpu, kvm) {
509 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
511 vcpu->arch.pause = false;
512 wake_up_interruptible(wq);
516 static void vcpu_sleep(struct kvm_vcpu *vcpu)
518 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
520 wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
521 (!vcpu->arch.pause)));
524 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
526 return vcpu->arch.target >= 0;
530 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
531 * @vcpu: The VCPU pointer
532 * @run: The kvm_run structure pointer used for userspace state exchange
534 * This function is called through the VCPU_RUN ioctl called from user space. It
535 * will execute VM code in a loop until the time slice for the process is used
536 * or some emulation is needed from user space in which case the function will
537 * return with return value 0 and with the kvm_run structure filled in with the
538 * required data for the requested emulation.
540 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
545 if (unlikely(!kvm_vcpu_initialized(vcpu)))
548 ret = kvm_vcpu_first_run_init(vcpu);
552 if (run->exit_reason == KVM_EXIT_MMIO) {
553 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
558 if (vcpu->sigset_active)
559 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
562 run->exit_reason = KVM_EXIT_UNKNOWN;
565 * Check conditions before entering the guest
569 update_vttbr(vcpu->kvm);
571 if (vcpu->arch.power_off || vcpu->arch.pause)
575 * Preparing the interrupts to be injected also
576 * involves poking the GIC, which must be done in a
577 * non-preemptible context.
580 kvm_timer_flush_hwstate(vcpu);
581 kvm_vgic_flush_hwstate(vcpu);
586 * Re-check atomic conditions
588 if (signal_pending(current)) {
590 run->exit_reason = KVM_EXIT_INTR;
593 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
594 vcpu->arch.power_off || vcpu->arch.pause) {
596 kvm_timer_sync_hwstate(vcpu);
597 kvm_vgic_sync_hwstate(vcpu);
602 kvm_arm_setup_debug(vcpu);
604 /**************************************************************
607 trace_kvm_entry(*vcpu_pc(vcpu));
609 vcpu->mode = IN_GUEST_MODE;
611 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
613 vcpu->mode = OUTSIDE_GUEST_MODE;
617 *************************************************************/
619 kvm_arm_clear_debug(vcpu);
622 * We may have taken a host interrupt in HYP mode (ie
623 * while executing the guest). This interrupt is still
624 * pending, as we haven't serviced it yet!
626 * We're now back in SVC mode, with interrupts
627 * disabled. Enabling the interrupts now will have
628 * the effect of taking the interrupt again, in SVC
634 * We do local_irq_enable() before calling kvm_guest_exit() so
635 * that if a timer interrupt hits while running the guest we
636 * account that tick as being spent in the guest. We enable
637 * preemption after calling kvm_guest_exit() so that if we get
638 * preempted we make sure ticks after that is not counted as
642 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
645 * We must sync the timer state before the vgic state so that
646 * the vgic can properly sample the updated state of the
649 kvm_timer_sync_hwstate(vcpu);
651 kvm_vgic_sync_hwstate(vcpu);
655 ret = handle_exit(vcpu, run, ret);
658 if (vcpu->sigset_active)
659 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
663 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
669 if (number == KVM_ARM_IRQ_CPU_IRQ)
670 bit_index = __ffs(HCR_VI);
671 else /* KVM_ARM_IRQ_CPU_FIQ */
672 bit_index = __ffs(HCR_VF);
674 ptr = (unsigned long *)&vcpu->arch.irq_lines;
676 set = test_and_set_bit(bit_index, ptr);
678 set = test_and_clear_bit(bit_index, ptr);
681 * If we didn't change anything, no need to wake up or kick other CPUs
687 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
688 * trigger a world-switch round on the running physical CPU to set the
689 * virtual IRQ/FIQ fields in the HCR appropriately.
696 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
699 u32 irq = irq_level->irq;
700 unsigned int irq_type, vcpu_idx, irq_num;
701 int nrcpus = atomic_read(&kvm->online_vcpus);
702 struct kvm_vcpu *vcpu = NULL;
703 bool level = irq_level->level;
705 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
706 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
707 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
709 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
712 case KVM_ARM_IRQ_TYPE_CPU:
713 if (irqchip_in_kernel(kvm))
716 if (vcpu_idx >= nrcpus)
719 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
723 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
726 return vcpu_interrupt_line(vcpu, irq_num, level);
727 case KVM_ARM_IRQ_TYPE_PPI:
728 if (!irqchip_in_kernel(kvm))
731 if (vcpu_idx >= nrcpus)
734 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
738 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
741 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
742 case KVM_ARM_IRQ_TYPE_SPI:
743 if (!irqchip_in_kernel(kvm))
746 if (irq_num < VGIC_NR_PRIVATE_IRQS)
749 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
755 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
756 const struct kvm_vcpu_init *init)
759 int phys_target = kvm_target_cpu();
761 if (init->target != phys_target)
765 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
766 * use the same target.
768 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
771 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
772 for (i = 0; i < sizeof(init->features) * 8; i++) {
773 bool set = (init->features[i / 32] & (1 << (i % 32)));
775 if (set && i >= KVM_VCPU_MAX_FEATURES)
779 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
780 * use the same feature set.
782 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
783 test_bit(i, vcpu->arch.features) != set)
787 set_bit(i, vcpu->arch.features);
790 vcpu->arch.target = phys_target;
792 /* Now we know what it is, we can reset it. */
793 return kvm_reset_vcpu(vcpu);
797 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
798 struct kvm_vcpu_init *init)
802 ret = kvm_vcpu_set_target(vcpu, init);
807 * Ensure a rebooted VM will fault in RAM pages and detect if the
808 * guest MMU is turned off and flush the caches as needed.
810 if (vcpu->arch.has_run_once)
811 stage2_unmap_vm(vcpu->kvm);
813 vcpu_reset_hcr(vcpu);
816 * Handle the "start in power-off" case.
818 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
819 vcpu->arch.power_off = true;
821 vcpu->arch.power_off = false;
826 long kvm_arch_vcpu_ioctl(struct file *filp,
827 unsigned int ioctl, unsigned long arg)
829 struct kvm_vcpu *vcpu = filp->private_data;
830 void __user *argp = (void __user *)arg;
833 case KVM_ARM_VCPU_INIT: {
834 struct kvm_vcpu_init init;
836 if (copy_from_user(&init, argp, sizeof(init)))
839 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
841 case KVM_SET_ONE_REG:
842 case KVM_GET_ONE_REG: {
843 struct kvm_one_reg reg;
845 if (unlikely(!kvm_vcpu_initialized(vcpu)))
848 if (copy_from_user(®, argp, sizeof(reg)))
850 if (ioctl == KVM_SET_ONE_REG)
851 return kvm_arm_set_reg(vcpu, ®);
853 return kvm_arm_get_reg(vcpu, ®);
855 case KVM_GET_REG_LIST: {
856 struct kvm_reg_list __user *user_list = argp;
857 struct kvm_reg_list reg_list;
860 if (unlikely(!kvm_vcpu_initialized(vcpu)))
863 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
866 reg_list.n = kvm_arm_num_regs(vcpu);
867 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
871 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
879 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
881 * @log: slot id and address to which we copy the log
883 * Steps 1-4 below provide general overview of dirty page logging. See
884 * kvm_get_dirty_log_protect() function description for additional details.
886 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
887 * always flush the TLB (step 4) even if previous step failed and the dirty
888 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
889 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
890 * writes will be marked dirty for next log read.
892 * 1. Take a snapshot of the bit and clear it if needed.
893 * 2. Write protect the corresponding page.
894 * 3. Copy the snapshot to the userspace.
895 * 4. Flush TLB's if needed.
897 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
899 bool is_dirty = false;
902 mutex_lock(&kvm->slots_lock);
904 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
907 kvm_flush_remote_tlbs(kvm);
909 mutex_unlock(&kvm->slots_lock);
913 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
914 struct kvm_arm_device_addr *dev_addr)
916 unsigned long dev_id, type;
918 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
919 KVM_ARM_DEVICE_ID_SHIFT;
920 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
921 KVM_ARM_DEVICE_TYPE_SHIFT;
924 case KVM_ARM_DEVICE_VGIC_V2:
927 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
933 long kvm_arch_vm_ioctl(struct file *filp,
934 unsigned int ioctl, unsigned long arg)
936 struct kvm *kvm = filp->private_data;
937 void __user *argp = (void __user *)arg;
940 case KVM_CREATE_IRQCHIP: {
943 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
945 case KVM_ARM_SET_DEVICE_ADDR: {
946 struct kvm_arm_device_addr dev_addr;
948 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
950 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
952 case KVM_ARM_PREFERRED_TARGET: {
954 struct kvm_vcpu_init init;
956 err = kvm_vcpu_preferred_target(&init);
960 if (copy_to_user(argp, &init, sizeof(init)))
970 static void cpu_init_hyp_mode(void *dummy)
972 phys_addr_t boot_pgd_ptr;
974 unsigned long hyp_stack_ptr;
975 unsigned long stack_page;
976 unsigned long vector_ptr;
978 /* Switch from the HYP stub to our own HYP init vector */
979 __hyp_set_vectors(kvm_get_idmap_vector());
981 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
982 pgd_ptr = kvm_mmu_get_httbr();
983 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
984 hyp_stack_ptr = stack_page + PAGE_SIZE;
985 vector_ptr = (unsigned long)__kvm_hyp_vector;
987 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
989 kvm_arm_init_debug();
992 static int hyp_init_cpu_notify(struct notifier_block *self,
993 unsigned long action, void *cpu)
997 case CPU_STARTING_FROZEN:
998 if (__hyp_get_vectors() == hyp_default_vectors)
999 cpu_init_hyp_mode(NULL);
1006 static struct notifier_block hyp_init_cpu_nb = {
1007 .notifier_call = hyp_init_cpu_notify,
1010 #ifdef CONFIG_CPU_PM
1011 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1015 if (cmd == CPU_PM_EXIT &&
1016 __hyp_get_vectors() == hyp_default_vectors) {
1017 cpu_init_hyp_mode(NULL);
1024 static struct notifier_block hyp_init_cpu_pm_nb = {
1025 .notifier_call = hyp_init_cpu_pm_notifier,
1028 static void __init hyp_cpu_pm_init(void)
1030 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1033 static inline void hyp_cpu_pm_init(void)
1039 * Inits Hyp-mode on all online CPUs
1041 static int init_hyp_mode(void)
1047 * Allocate Hyp PGD and setup Hyp identity mapping
1049 err = kvm_mmu_init();
1054 * It is probably enough to obtain the default on one
1055 * CPU. It's unlikely to be different on the others.
1057 hyp_default_vectors = __hyp_get_vectors();
1060 * Allocate stack pages for Hypervisor-mode
1062 for_each_possible_cpu(cpu) {
1063 unsigned long stack_page;
1065 stack_page = __get_free_page(GFP_KERNEL);
1068 goto out_free_stack_pages;
1071 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1075 * Map the Hyp-code called directly from the host
1077 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1079 kvm_err("Cannot map world-switch code\n");
1080 goto out_free_mappings;
1083 err = create_hyp_mappings(__start_rodata, __end_rodata);
1085 kvm_err("Cannot map rodata section\n");
1086 goto out_free_mappings;
1090 * Map the Hyp stack pages
1092 for_each_possible_cpu(cpu) {
1093 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1094 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1097 kvm_err("Cannot map hyp stack\n");
1098 goto out_free_mappings;
1103 * Map the host CPU structures
1105 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1106 if (!kvm_host_cpu_state) {
1108 kvm_err("Cannot allocate host CPU state\n");
1109 goto out_free_mappings;
1112 for_each_possible_cpu(cpu) {
1113 kvm_cpu_context_t *cpu_ctxt;
1115 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1116 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1119 kvm_err("Cannot map host CPU state: %d\n", err);
1120 goto out_free_context;
1125 * Execute the init code on each CPU.
1127 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1130 * Init HYP view of VGIC
1132 err = kvm_vgic_hyp_init();
1135 vgic_present = true;
1139 vgic_present = false;
1142 goto out_free_context;
1146 * Init HYP architected timer support
1148 err = kvm_timer_hyp_init();
1150 goto out_free_context;
1152 #ifndef CONFIG_HOTPLUG_CPU
1153 free_boot_hyp_pgd();
1158 /* set size of VMID supported by CPU */
1159 kvm_vmid_bits = kvm_get_vmid_bits();
1160 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1162 kvm_info("Hyp mode initialized successfully\n");
1166 free_percpu(kvm_host_cpu_state);
1169 out_free_stack_pages:
1170 for_each_possible_cpu(cpu)
1171 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1173 kvm_err("error initializing Hyp mode: %d\n", err);
1177 static void check_kvm_target_cpu(void *ret)
1179 *(int *)ret = kvm_target_cpu();
1182 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1184 struct kvm_vcpu *vcpu;
1187 mpidr &= MPIDR_HWID_BITMASK;
1188 kvm_for_each_vcpu(i, vcpu, kvm) {
1189 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1196 * Initialize Hyp-mode and memory mappings on all CPUs.
1198 int kvm_arch_init(void *opaque)
1203 if (!is_hyp_mode_available()) {
1204 kvm_err("HYP mode not available\n");
1208 for_each_online_cpu(cpu) {
1209 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1211 kvm_err("Error, CPU %d not supported!\n", cpu);
1216 cpu_notifier_register_begin();
1218 err = init_hyp_mode();
1222 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1224 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1228 cpu_notifier_register_done();
1232 kvm_coproc_table_init();
1235 cpu_notifier_register_done();
1239 /* NOP: Compiling as a module not supported */
1240 void kvm_arch_exit(void)
1242 kvm_perf_teardown();
1245 static int arm_init(void)
1247 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1251 module_init(arm_init);