]> Git Repo - linux.git/blob - fs/btrfs/ctree.c
kbuild: add $(CLANG_FLAGS) to KBUILD_CPPFLAGS
[linux.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32                       const struct btrfs_key *ins_key, struct btrfs_path *path,
33                       int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42
43 static const struct btrfs_csums {
44         u16             size;
45         const char      name[10];
46         const char      driver[12];
47 } btrfs_csums[] = {
48         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
49         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
50         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
51         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
52                                      .driver = "blake2b-256" },
53 };
54
55 /*
56  * The leaf data grows from end-to-front in the node.  this returns the address
57  * of the start of the last item, which is the stop of the leaf data stack.
58  */
59 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
60 {
61         u32 nr = btrfs_header_nritems(leaf);
62
63         if (nr == 0)
64                 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
65         return btrfs_item_offset(leaf, nr - 1);
66 }
67
68 /*
69  * Move data in a @leaf (using memmove, safe for overlapping ranges).
70  *
71  * @leaf:       leaf that we're doing a memmove on
72  * @dst_offset: item data offset we're moving to
73  * @src_offset: item data offset were' moving from
74  * @len:        length of the data we're moving
75  *
76  * Wrapper around memmove_extent_buffer() that takes into account the header on
77  * the leaf.  The btrfs_item offset's start directly after the header, so we
78  * have to adjust any offsets to account for the header in the leaf.  This
79  * handles that math to simplify the callers.
80  */
81 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
82                                      unsigned long dst_offset,
83                                      unsigned long src_offset,
84                                      unsigned long len)
85 {
86         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
87                               btrfs_item_nr_offset(leaf, 0) + src_offset, len);
88 }
89
90 /*
91  * Copy item data from @src into @dst at the given @offset.
92  *
93  * @dst:        destination leaf that we're copying into
94  * @src:        source leaf that we're copying from
95  * @dst_offset: item data offset we're copying to
96  * @src_offset: item data offset were' copying from
97  * @len:        length of the data we're copying
98  *
99  * Wrapper around copy_extent_buffer() that takes into account the header on
100  * the leaf.  The btrfs_item offset's start directly after the header, so we
101  * have to adjust any offsets to account for the header in the leaf.  This
102  * handles that math to simplify the callers.
103  */
104 static inline void copy_leaf_data(const struct extent_buffer *dst,
105                                   const struct extent_buffer *src,
106                                   unsigned long dst_offset,
107                                   unsigned long src_offset, unsigned long len)
108 {
109         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
110                            btrfs_item_nr_offset(src, 0) + src_offset, len);
111 }
112
113 /*
114  * Move items in a @leaf (using memmove).
115  *
116  * @dst:        destination leaf for the items
117  * @dst_item:   the item nr we're copying into
118  * @src_item:   the item nr we're copying from
119  * @nr_items:   the number of items to copy
120  *
121  * Wrapper around memmove_extent_buffer() that does the math to get the
122  * appropriate offsets into the leaf from the item numbers.
123  */
124 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
125                                       int dst_item, int src_item, int nr_items)
126 {
127         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
128                               btrfs_item_nr_offset(leaf, src_item),
129                               nr_items * sizeof(struct btrfs_item));
130 }
131
132 /*
133  * Copy items from @src into @dst at the given @offset.
134  *
135  * @dst:        destination leaf for the items
136  * @src:        source leaf for the items
137  * @dst_item:   the item nr we're copying into
138  * @src_item:   the item nr we're copying from
139  * @nr_items:   the number of items to copy
140  *
141  * Wrapper around copy_extent_buffer() that does the math to get the
142  * appropriate offsets into the leaf from the item numbers.
143  */
144 static inline void copy_leaf_items(const struct extent_buffer *dst,
145                                    const struct extent_buffer *src,
146                                    int dst_item, int src_item, int nr_items)
147 {
148         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
149                               btrfs_item_nr_offset(src, src_item),
150                               nr_items * sizeof(struct btrfs_item));
151 }
152
153 int btrfs_super_csum_size(const struct btrfs_super_block *s)
154 {
155         u16 t = btrfs_super_csum_type(s);
156         /*
157          * csum type is validated at mount time
158          */
159         return btrfs_csums[t].size;
160 }
161
162 const char *btrfs_super_csum_name(u16 csum_type)
163 {
164         /* csum type is validated at mount time */
165         return btrfs_csums[csum_type].name;
166 }
167
168 /*
169  * Return driver name if defined, otherwise the name that's also a valid driver
170  * name
171  */
172 const char *btrfs_super_csum_driver(u16 csum_type)
173 {
174         /* csum type is validated at mount time */
175         return btrfs_csums[csum_type].driver[0] ?
176                 btrfs_csums[csum_type].driver :
177                 btrfs_csums[csum_type].name;
178 }
179
180 size_t __attribute_const__ btrfs_get_num_csums(void)
181 {
182         return ARRAY_SIZE(btrfs_csums);
183 }
184
185 struct btrfs_path *btrfs_alloc_path(void)
186 {
187         might_sleep();
188
189         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
190 }
191
192 /* this also releases the path */
193 void btrfs_free_path(struct btrfs_path *p)
194 {
195         if (!p)
196                 return;
197         btrfs_release_path(p);
198         kmem_cache_free(btrfs_path_cachep, p);
199 }
200
201 /*
202  * path release drops references on the extent buffers in the path
203  * and it drops any locks held by this path
204  *
205  * It is safe to call this on paths that no locks or extent buffers held.
206  */
207 noinline void btrfs_release_path(struct btrfs_path *p)
208 {
209         int i;
210
211         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
212                 p->slots[i] = 0;
213                 if (!p->nodes[i])
214                         continue;
215                 if (p->locks[i]) {
216                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
217                         p->locks[i] = 0;
218                 }
219                 free_extent_buffer(p->nodes[i]);
220                 p->nodes[i] = NULL;
221         }
222 }
223
224 /*
225  * We want the transaction abort to print stack trace only for errors where the
226  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
227  * caused by external factors.
228  */
229 bool __cold abort_should_print_stack(int errno)
230 {
231         switch (errno) {
232         case -EIO:
233         case -EROFS:
234         case -ENOMEM:
235                 return false;
236         }
237         return true;
238 }
239
240 /*
241  * safely gets a reference on the root node of a tree.  A lock
242  * is not taken, so a concurrent writer may put a different node
243  * at the root of the tree.  See btrfs_lock_root_node for the
244  * looping required.
245  *
246  * The extent buffer returned by this has a reference taken, so
247  * it won't disappear.  It may stop being the root of the tree
248  * at any time because there are no locks held.
249  */
250 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
251 {
252         struct extent_buffer *eb;
253
254         while (1) {
255                 rcu_read_lock();
256                 eb = rcu_dereference(root->node);
257
258                 /*
259                  * RCU really hurts here, we could free up the root node because
260                  * it was COWed but we may not get the new root node yet so do
261                  * the inc_not_zero dance and if it doesn't work then
262                  * synchronize_rcu and try again.
263                  */
264                 if (atomic_inc_not_zero(&eb->refs)) {
265                         rcu_read_unlock();
266                         break;
267                 }
268                 rcu_read_unlock();
269                 synchronize_rcu();
270         }
271         return eb;
272 }
273
274 /*
275  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
276  * just get put onto a simple dirty list.  Transaction walks this list to make
277  * sure they get properly updated on disk.
278  */
279 static void add_root_to_dirty_list(struct btrfs_root *root)
280 {
281         struct btrfs_fs_info *fs_info = root->fs_info;
282
283         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
284             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
285                 return;
286
287         spin_lock(&fs_info->trans_lock);
288         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
289                 /* Want the extent tree to be the last on the list */
290                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
291                         list_move_tail(&root->dirty_list,
292                                        &fs_info->dirty_cowonly_roots);
293                 else
294                         list_move(&root->dirty_list,
295                                   &fs_info->dirty_cowonly_roots);
296         }
297         spin_unlock(&fs_info->trans_lock);
298 }
299
300 /*
301  * used by snapshot creation to make a copy of a root for a tree with
302  * a given objectid.  The buffer with the new root node is returned in
303  * cow_ret, and this func returns zero on success or a negative error code.
304  */
305 int btrfs_copy_root(struct btrfs_trans_handle *trans,
306                       struct btrfs_root *root,
307                       struct extent_buffer *buf,
308                       struct extent_buffer **cow_ret, u64 new_root_objectid)
309 {
310         struct btrfs_fs_info *fs_info = root->fs_info;
311         struct extent_buffer *cow;
312         int ret = 0;
313         int level;
314         struct btrfs_disk_key disk_key;
315
316         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
317                 trans->transid != fs_info->running_transaction->transid);
318         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
319                 trans->transid != root->last_trans);
320
321         level = btrfs_header_level(buf);
322         if (level == 0)
323                 btrfs_item_key(buf, &disk_key, 0);
324         else
325                 btrfs_node_key(buf, &disk_key, 0);
326
327         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
328                                      &disk_key, level, buf->start, 0,
329                                      BTRFS_NESTING_NEW_ROOT);
330         if (IS_ERR(cow))
331                 return PTR_ERR(cow);
332
333         copy_extent_buffer_full(cow, buf);
334         btrfs_set_header_bytenr(cow, cow->start);
335         btrfs_set_header_generation(cow, trans->transid);
336         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
337         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
338                                      BTRFS_HEADER_FLAG_RELOC);
339         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
340                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
341         else
342                 btrfs_set_header_owner(cow, new_root_objectid);
343
344         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
345
346         WARN_ON(btrfs_header_generation(buf) > trans->transid);
347         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
348                 ret = btrfs_inc_ref(trans, root, cow, 1);
349         else
350                 ret = btrfs_inc_ref(trans, root, cow, 0);
351         if (ret) {
352                 btrfs_tree_unlock(cow);
353                 free_extent_buffer(cow);
354                 btrfs_abort_transaction(trans, ret);
355                 return ret;
356         }
357
358         btrfs_mark_buffer_dirty(cow);
359         *cow_ret = cow;
360         return 0;
361 }
362
363 /*
364  * check if the tree block can be shared by multiple trees
365  */
366 int btrfs_block_can_be_shared(struct btrfs_root *root,
367                               struct extent_buffer *buf)
368 {
369         /*
370          * Tree blocks not in shareable trees and tree roots are never shared.
371          * If a block was allocated after the last snapshot and the block was
372          * not allocated by tree relocation, we know the block is not shared.
373          */
374         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
375             buf != root->node && buf != root->commit_root &&
376             (btrfs_header_generation(buf) <=
377              btrfs_root_last_snapshot(&root->root_item) ||
378              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
379                 return 1;
380
381         return 0;
382 }
383
384 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
385                                        struct btrfs_root *root,
386                                        struct extent_buffer *buf,
387                                        struct extent_buffer *cow,
388                                        int *last_ref)
389 {
390         struct btrfs_fs_info *fs_info = root->fs_info;
391         u64 refs;
392         u64 owner;
393         u64 flags;
394         u64 new_flags = 0;
395         int ret;
396
397         /*
398          * Backrefs update rules:
399          *
400          * Always use full backrefs for extent pointers in tree block
401          * allocated by tree relocation.
402          *
403          * If a shared tree block is no longer referenced by its owner
404          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
405          * use full backrefs for extent pointers in tree block.
406          *
407          * If a tree block is been relocating
408          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
409          * use full backrefs for extent pointers in tree block.
410          * The reason for this is some operations (such as drop tree)
411          * are only allowed for blocks use full backrefs.
412          */
413
414         if (btrfs_block_can_be_shared(root, buf)) {
415                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
416                                                btrfs_header_level(buf), 1,
417                                                &refs, &flags);
418                 if (ret)
419                         return ret;
420                 if (refs == 0) {
421                         ret = -EROFS;
422                         btrfs_handle_fs_error(fs_info, ret, NULL);
423                         return ret;
424                 }
425         } else {
426                 refs = 1;
427                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
428                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
429                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
430                 else
431                         flags = 0;
432         }
433
434         owner = btrfs_header_owner(buf);
435         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
436                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
437
438         if (refs > 1) {
439                 if ((owner == root->root_key.objectid ||
440                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
441                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
442                         ret = btrfs_inc_ref(trans, root, buf, 1);
443                         if (ret)
444                                 return ret;
445
446                         if (root->root_key.objectid ==
447                             BTRFS_TREE_RELOC_OBJECTID) {
448                                 ret = btrfs_dec_ref(trans, root, buf, 0);
449                                 if (ret)
450                                         return ret;
451                                 ret = btrfs_inc_ref(trans, root, cow, 1);
452                                 if (ret)
453                                         return ret;
454                         }
455                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
456                 } else {
457
458                         if (root->root_key.objectid ==
459                             BTRFS_TREE_RELOC_OBJECTID)
460                                 ret = btrfs_inc_ref(trans, root, cow, 1);
461                         else
462                                 ret = btrfs_inc_ref(trans, root, cow, 0);
463                         if (ret)
464                                 return ret;
465                 }
466                 if (new_flags != 0) {
467                         int level = btrfs_header_level(buf);
468
469                         ret = btrfs_set_disk_extent_flags(trans, buf,
470                                                           new_flags, level);
471                         if (ret)
472                                 return ret;
473                 }
474         } else {
475                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
476                         if (root->root_key.objectid ==
477                             BTRFS_TREE_RELOC_OBJECTID)
478                                 ret = btrfs_inc_ref(trans, root, cow, 1);
479                         else
480                                 ret = btrfs_inc_ref(trans, root, cow, 0);
481                         if (ret)
482                                 return ret;
483                         ret = btrfs_dec_ref(trans, root, buf, 1);
484                         if (ret)
485                                 return ret;
486                 }
487                 btrfs_clear_buffer_dirty(trans, buf);
488                 *last_ref = 1;
489         }
490         return 0;
491 }
492
493 /*
494  * does the dirty work in cow of a single block.  The parent block (if
495  * supplied) is updated to point to the new cow copy.  The new buffer is marked
496  * dirty and returned locked.  If you modify the block it needs to be marked
497  * dirty again.
498  *
499  * search_start -- an allocation hint for the new block
500  *
501  * empty_size -- a hint that you plan on doing more cow.  This is the size in
502  * bytes the allocator should try to find free next to the block it returns.
503  * This is just a hint and may be ignored by the allocator.
504  */
505 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
506                              struct btrfs_root *root,
507                              struct extent_buffer *buf,
508                              struct extent_buffer *parent, int parent_slot,
509                              struct extent_buffer **cow_ret,
510                              u64 search_start, u64 empty_size,
511                              enum btrfs_lock_nesting nest)
512 {
513         struct btrfs_fs_info *fs_info = root->fs_info;
514         struct btrfs_disk_key disk_key;
515         struct extent_buffer *cow;
516         int level, ret;
517         int last_ref = 0;
518         int unlock_orig = 0;
519         u64 parent_start = 0;
520
521         if (*cow_ret == buf)
522                 unlock_orig = 1;
523
524         btrfs_assert_tree_write_locked(buf);
525
526         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
527                 trans->transid != fs_info->running_transaction->transid);
528         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
529                 trans->transid != root->last_trans);
530
531         level = btrfs_header_level(buf);
532
533         if (level == 0)
534                 btrfs_item_key(buf, &disk_key, 0);
535         else
536                 btrfs_node_key(buf, &disk_key, 0);
537
538         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
539                 parent_start = parent->start;
540
541         cow = btrfs_alloc_tree_block(trans, root, parent_start,
542                                      root->root_key.objectid, &disk_key, level,
543                                      search_start, empty_size, nest);
544         if (IS_ERR(cow))
545                 return PTR_ERR(cow);
546
547         /* cow is set to blocking by btrfs_init_new_buffer */
548
549         copy_extent_buffer_full(cow, buf);
550         btrfs_set_header_bytenr(cow, cow->start);
551         btrfs_set_header_generation(cow, trans->transid);
552         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
553         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
554                                      BTRFS_HEADER_FLAG_RELOC);
555         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
556                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
557         else
558                 btrfs_set_header_owner(cow, root->root_key.objectid);
559
560         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
561
562         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
563         if (ret) {
564                 btrfs_tree_unlock(cow);
565                 free_extent_buffer(cow);
566                 btrfs_abort_transaction(trans, ret);
567                 return ret;
568         }
569
570         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
571                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
572                 if (ret) {
573                         btrfs_tree_unlock(cow);
574                         free_extent_buffer(cow);
575                         btrfs_abort_transaction(trans, ret);
576                         return ret;
577                 }
578         }
579
580         if (buf == root->node) {
581                 WARN_ON(parent && parent != buf);
582                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
583                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
584                         parent_start = buf->start;
585
586                 atomic_inc(&cow->refs);
587                 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
588                 BUG_ON(ret < 0);
589                 rcu_assign_pointer(root->node, cow);
590
591                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
592                                       parent_start, last_ref);
593                 free_extent_buffer(buf);
594                 add_root_to_dirty_list(root);
595         } else {
596                 WARN_ON(trans->transid != btrfs_header_generation(parent));
597                 btrfs_tree_mod_log_insert_key(parent, parent_slot,
598                                               BTRFS_MOD_LOG_KEY_REPLACE);
599                 btrfs_set_node_blockptr(parent, parent_slot,
600                                         cow->start);
601                 btrfs_set_node_ptr_generation(parent, parent_slot,
602                                               trans->transid);
603                 btrfs_mark_buffer_dirty(parent);
604                 if (last_ref) {
605                         ret = btrfs_tree_mod_log_free_eb(buf);
606                         if (ret) {
607                                 btrfs_tree_unlock(cow);
608                                 free_extent_buffer(cow);
609                                 btrfs_abort_transaction(trans, ret);
610                                 return ret;
611                         }
612                 }
613                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
614                                       parent_start, last_ref);
615         }
616         if (unlock_orig)
617                 btrfs_tree_unlock(buf);
618         free_extent_buffer_stale(buf);
619         btrfs_mark_buffer_dirty(cow);
620         *cow_ret = cow;
621         return 0;
622 }
623
624 static inline int should_cow_block(struct btrfs_trans_handle *trans,
625                                    struct btrfs_root *root,
626                                    struct extent_buffer *buf)
627 {
628         if (btrfs_is_testing(root->fs_info))
629                 return 0;
630
631         /* Ensure we can see the FORCE_COW bit */
632         smp_mb__before_atomic();
633
634         /*
635          * We do not need to cow a block if
636          * 1) this block is not created or changed in this transaction;
637          * 2) this block does not belong to TREE_RELOC tree;
638          * 3) the root is not forced COW.
639          *
640          * What is forced COW:
641          *    when we create snapshot during committing the transaction,
642          *    after we've finished copying src root, we must COW the shared
643          *    block to ensure the metadata consistency.
644          */
645         if (btrfs_header_generation(buf) == trans->transid &&
646             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
647             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
648               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
649             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
650                 return 0;
651         return 1;
652 }
653
654 /*
655  * cows a single block, see __btrfs_cow_block for the real work.
656  * This version of it has extra checks so that a block isn't COWed more than
657  * once per transaction, as long as it hasn't been written yet
658  */
659 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
660                     struct btrfs_root *root, struct extent_buffer *buf,
661                     struct extent_buffer *parent, int parent_slot,
662                     struct extent_buffer **cow_ret,
663                     enum btrfs_lock_nesting nest)
664 {
665         struct btrfs_fs_info *fs_info = root->fs_info;
666         u64 search_start;
667         int ret;
668
669         if (test_bit(BTRFS_ROOT_DELETING, &root->state))
670                 btrfs_err(fs_info,
671                         "COW'ing blocks on a fs root that's being dropped");
672
673         if (trans->transaction != fs_info->running_transaction)
674                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
675                        trans->transid,
676                        fs_info->running_transaction->transid);
677
678         if (trans->transid != fs_info->generation)
679                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
680                        trans->transid, fs_info->generation);
681
682         if (!should_cow_block(trans, root, buf)) {
683                 *cow_ret = buf;
684                 return 0;
685         }
686
687         search_start = buf->start & ~((u64)SZ_1G - 1);
688
689         /*
690          * Before CoWing this block for later modification, check if it's
691          * the subtree root and do the delayed subtree trace if needed.
692          *
693          * Also We don't care about the error, as it's handled internally.
694          */
695         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
696         ret = __btrfs_cow_block(trans, root, buf, parent,
697                                  parent_slot, cow_ret, search_start, 0, nest);
698
699         trace_btrfs_cow_block(root, buf, *cow_ret);
700
701         return ret;
702 }
703 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
704
705 /*
706  * helper function for defrag to decide if two blocks pointed to by a
707  * node are actually close by
708  */
709 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
710 {
711         if (blocknr < other && other - (blocknr + blocksize) < 32768)
712                 return 1;
713         if (blocknr > other && blocknr - (other + blocksize) < 32768)
714                 return 1;
715         return 0;
716 }
717
718 #ifdef __LITTLE_ENDIAN
719
720 /*
721  * Compare two keys, on little-endian the disk order is same as CPU order and
722  * we can avoid the conversion.
723  */
724 static int comp_keys(const struct btrfs_disk_key *disk_key,
725                      const struct btrfs_key *k2)
726 {
727         const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
728
729         return btrfs_comp_cpu_keys(k1, k2);
730 }
731
732 #else
733
734 /*
735  * compare two keys in a memcmp fashion
736  */
737 static int comp_keys(const struct btrfs_disk_key *disk,
738                      const struct btrfs_key *k2)
739 {
740         struct btrfs_key k1;
741
742         btrfs_disk_key_to_cpu(&k1, disk);
743
744         return btrfs_comp_cpu_keys(&k1, k2);
745 }
746 #endif
747
748 /*
749  * same as comp_keys only with two btrfs_key's
750  */
751 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
752 {
753         if (k1->objectid > k2->objectid)
754                 return 1;
755         if (k1->objectid < k2->objectid)
756                 return -1;
757         if (k1->type > k2->type)
758                 return 1;
759         if (k1->type < k2->type)
760                 return -1;
761         if (k1->offset > k2->offset)
762                 return 1;
763         if (k1->offset < k2->offset)
764                 return -1;
765         return 0;
766 }
767
768 /*
769  * this is used by the defrag code to go through all the
770  * leaves pointed to by a node and reallocate them so that
771  * disk order is close to key order
772  */
773 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
774                        struct btrfs_root *root, struct extent_buffer *parent,
775                        int start_slot, u64 *last_ret,
776                        struct btrfs_key *progress)
777 {
778         struct btrfs_fs_info *fs_info = root->fs_info;
779         struct extent_buffer *cur;
780         u64 blocknr;
781         u64 search_start = *last_ret;
782         u64 last_block = 0;
783         u64 other;
784         u32 parent_nritems;
785         int end_slot;
786         int i;
787         int err = 0;
788         u32 blocksize;
789         int progress_passed = 0;
790         struct btrfs_disk_key disk_key;
791
792         WARN_ON(trans->transaction != fs_info->running_transaction);
793         WARN_ON(trans->transid != fs_info->generation);
794
795         parent_nritems = btrfs_header_nritems(parent);
796         blocksize = fs_info->nodesize;
797         end_slot = parent_nritems - 1;
798
799         if (parent_nritems <= 1)
800                 return 0;
801
802         for (i = start_slot; i <= end_slot; i++) {
803                 int close = 1;
804
805                 btrfs_node_key(parent, &disk_key, i);
806                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
807                         continue;
808
809                 progress_passed = 1;
810                 blocknr = btrfs_node_blockptr(parent, i);
811                 if (last_block == 0)
812                         last_block = blocknr;
813
814                 if (i > 0) {
815                         other = btrfs_node_blockptr(parent, i - 1);
816                         close = close_blocks(blocknr, other, blocksize);
817                 }
818                 if (!close && i < end_slot) {
819                         other = btrfs_node_blockptr(parent, i + 1);
820                         close = close_blocks(blocknr, other, blocksize);
821                 }
822                 if (close) {
823                         last_block = blocknr;
824                         continue;
825                 }
826
827                 cur = btrfs_read_node_slot(parent, i);
828                 if (IS_ERR(cur))
829                         return PTR_ERR(cur);
830                 if (search_start == 0)
831                         search_start = last_block;
832
833                 btrfs_tree_lock(cur);
834                 err = __btrfs_cow_block(trans, root, cur, parent, i,
835                                         &cur, search_start,
836                                         min(16 * blocksize,
837                                             (end_slot - i) * blocksize),
838                                         BTRFS_NESTING_COW);
839                 if (err) {
840                         btrfs_tree_unlock(cur);
841                         free_extent_buffer(cur);
842                         break;
843                 }
844                 search_start = cur->start;
845                 last_block = cur->start;
846                 *last_ret = search_start;
847                 btrfs_tree_unlock(cur);
848                 free_extent_buffer(cur);
849         }
850         return err;
851 }
852
853 /*
854  * Search for a key in the given extent_buffer.
855  *
856  * The lower boundary for the search is specified by the slot number @first_slot.
857  * Use a value of 0 to search over the whole extent buffer. Works for both
858  * leaves and nodes.
859  *
860  * The slot in the extent buffer is returned via @slot. If the key exists in the
861  * extent buffer, then @slot will point to the slot where the key is, otherwise
862  * it points to the slot where you would insert the key.
863  *
864  * Slot may point to the total number of items (i.e. one position beyond the last
865  * key) if the key is bigger than the last key in the extent buffer.
866  */
867 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
868                      const struct btrfs_key *key, int *slot)
869 {
870         unsigned long p;
871         int item_size;
872         /*
873          * Use unsigned types for the low and high slots, so that we get a more
874          * efficient division in the search loop below.
875          */
876         u32 low = first_slot;
877         u32 high = btrfs_header_nritems(eb);
878         int ret;
879         const int key_size = sizeof(struct btrfs_disk_key);
880
881         if (unlikely(low > high)) {
882                 btrfs_err(eb->fs_info,
883                  "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
884                           __func__, low, high, eb->start,
885                           btrfs_header_owner(eb), btrfs_header_level(eb));
886                 return -EINVAL;
887         }
888
889         if (btrfs_header_level(eb) == 0) {
890                 p = offsetof(struct btrfs_leaf, items);
891                 item_size = sizeof(struct btrfs_item);
892         } else {
893                 p = offsetof(struct btrfs_node, ptrs);
894                 item_size = sizeof(struct btrfs_key_ptr);
895         }
896
897         while (low < high) {
898                 unsigned long oip;
899                 unsigned long offset;
900                 struct btrfs_disk_key *tmp;
901                 struct btrfs_disk_key unaligned;
902                 int mid;
903
904                 mid = (low + high) / 2;
905                 offset = p + mid * item_size;
906                 oip = offset_in_page(offset);
907
908                 if (oip + key_size <= PAGE_SIZE) {
909                         const unsigned long idx = get_eb_page_index(offset);
910                         char *kaddr = page_address(eb->pages[idx]);
911
912                         oip = get_eb_offset_in_page(eb, offset);
913                         tmp = (struct btrfs_disk_key *)(kaddr + oip);
914                 } else {
915                         read_extent_buffer(eb, &unaligned, offset, key_size);
916                         tmp = &unaligned;
917                 }
918
919                 ret = comp_keys(tmp, key);
920
921                 if (ret < 0)
922                         low = mid + 1;
923                 else if (ret > 0)
924                         high = mid;
925                 else {
926                         *slot = mid;
927                         return 0;
928                 }
929         }
930         *slot = low;
931         return 1;
932 }
933
934 static void root_add_used(struct btrfs_root *root, u32 size)
935 {
936         spin_lock(&root->accounting_lock);
937         btrfs_set_root_used(&root->root_item,
938                             btrfs_root_used(&root->root_item) + size);
939         spin_unlock(&root->accounting_lock);
940 }
941
942 static void root_sub_used(struct btrfs_root *root, u32 size)
943 {
944         spin_lock(&root->accounting_lock);
945         btrfs_set_root_used(&root->root_item,
946                             btrfs_root_used(&root->root_item) - size);
947         spin_unlock(&root->accounting_lock);
948 }
949
950 /* given a node and slot number, this reads the blocks it points to.  The
951  * extent buffer is returned with a reference taken (but unlocked).
952  */
953 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
954                                            int slot)
955 {
956         int level = btrfs_header_level(parent);
957         struct btrfs_tree_parent_check check = { 0 };
958         struct extent_buffer *eb;
959
960         if (slot < 0 || slot >= btrfs_header_nritems(parent))
961                 return ERR_PTR(-ENOENT);
962
963         ASSERT(level);
964
965         check.level = level - 1;
966         check.transid = btrfs_node_ptr_generation(parent, slot);
967         check.owner_root = btrfs_header_owner(parent);
968         check.has_first_key = true;
969         btrfs_node_key_to_cpu(parent, &check.first_key, slot);
970
971         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
972                              &check);
973         if (IS_ERR(eb))
974                 return eb;
975         if (!extent_buffer_uptodate(eb)) {
976                 free_extent_buffer(eb);
977                 return ERR_PTR(-EIO);
978         }
979
980         return eb;
981 }
982
983 /*
984  * node level balancing, used to make sure nodes are in proper order for
985  * item deletion.  We balance from the top down, so we have to make sure
986  * that a deletion won't leave an node completely empty later on.
987  */
988 static noinline int balance_level(struct btrfs_trans_handle *trans,
989                          struct btrfs_root *root,
990                          struct btrfs_path *path, int level)
991 {
992         struct btrfs_fs_info *fs_info = root->fs_info;
993         struct extent_buffer *right = NULL;
994         struct extent_buffer *mid;
995         struct extent_buffer *left = NULL;
996         struct extent_buffer *parent = NULL;
997         int ret = 0;
998         int wret;
999         int pslot;
1000         int orig_slot = path->slots[level];
1001         u64 orig_ptr;
1002
1003         ASSERT(level > 0);
1004
1005         mid = path->nodes[level];
1006
1007         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1008         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1009
1010         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1011
1012         if (level < BTRFS_MAX_LEVEL - 1) {
1013                 parent = path->nodes[level + 1];
1014                 pslot = path->slots[level + 1];
1015         }
1016
1017         /*
1018          * deal with the case where there is only one pointer in the root
1019          * by promoting the node below to a root
1020          */
1021         if (!parent) {
1022                 struct extent_buffer *child;
1023
1024                 if (btrfs_header_nritems(mid) != 1)
1025                         return 0;
1026
1027                 /* promote the child to a root */
1028                 child = btrfs_read_node_slot(mid, 0);
1029                 if (IS_ERR(child)) {
1030                         ret = PTR_ERR(child);
1031                         btrfs_handle_fs_error(fs_info, ret, NULL);
1032                         goto enospc;
1033                 }
1034
1035                 btrfs_tree_lock(child);
1036                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1037                                       BTRFS_NESTING_COW);
1038                 if (ret) {
1039                         btrfs_tree_unlock(child);
1040                         free_extent_buffer(child);
1041                         goto enospc;
1042                 }
1043
1044                 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1045                 BUG_ON(ret < 0);
1046                 rcu_assign_pointer(root->node, child);
1047
1048                 add_root_to_dirty_list(root);
1049                 btrfs_tree_unlock(child);
1050
1051                 path->locks[level] = 0;
1052                 path->nodes[level] = NULL;
1053                 btrfs_clear_buffer_dirty(trans, mid);
1054                 btrfs_tree_unlock(mid);
1055                 /* once for the path */
1056                 free_extent_buffer(mid);
1057
1058                 root_sub_used(root, mid->len);
1059                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1060                 /* once for the root ptr */
1061                 free_extent_buffer_stale(mid);
1062                 return 0;
1063         }
1064         if (btrfs_header_nritems(mid) >
1065             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1066                 return 0;
1067
1068         if (pslot) {
1069                 left = btrfs_read_node_slot(parent, pslot - 1);
1070                 if (IS_ERR(left)) {
1071                         ret = PTR_ERR(left);
1072                         left = NULL;
1073                         goto enospc;
1074                 }
1075
1076                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1077                 wret = btrfs_cow_block(trans, root, left,
1078                                        parent, pslot - 1, &left,
1079                                        BTRFS_NESTING_LEFT_COW);
1080                 if (wret) {
1081                         ret = wret;
1082                         goto enospc;
1083                 }
1084         }
1085
1086         if (pslot + 1 < btrfs_header_nritems(parent)) {
1087                 right = btrfs_read_node_slot(parent, pslot + 1);
1088                 if (IS_ERR(right)) {
1089                         ret = PTR_ERR(right);
1090                         right = NULL;
1091                         goto enospc;
1092                 }
1093
1094                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1095                 wret = btrfs_cow_block(trans, root, right,
1096                                        parent, pslot + 1, &right,
1097                                        BTRFS_NESTING_RIGHT_COW);
1098                 if (wret) {
1099                         ret = wret;
1100                         goto enospc;
1101                 }
1102         }
1103
1104         /* first, try to make some room in the middle buffer */
1105         if (left) {
1106                 orig_slot += btrfs_header_nritems(left);
1107                 wret = push_node_left(trans, left, mid, 1);
1108                 if (wret < 0)
1109                         ret = wret;
1110         }
1111
1112         /*
1113          * then try to empty the right most buffer into the middle
1114          */
1115         if (right) {
1116                 wret = push_node_left(trans, mid, right, 1);
1117                 if (wret < 0 && wret != -ENOSPC)
1118                         ret = wret;
1119                 if (btrfs_header_nritems(right) == 0) {
1120                         btrfs_clear_buffer_dirty(trans, right);
1121                         btrfs_tree_unlock(right);
1122                         del_ptr(root, path, level + 1, pslot + 1);
1123                         root_sub_used(root, right->len);
1124                         btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1125                                               0, 1);
1126                         free_extent_buffer_stale(right);
1127                         right = NULL;
1128                 } else {
1129                         struct btrfs_disk_key right_key;
1130                         btrfs_node_key(right, &right_key, 0);
1131                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1132                                         BTRFS_MOD_LOG_KEY_REPLACE);
1133                         BUG_ON(ret < 0);
1134                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1135                         btrfs_mark_buffer_dirty(parent);
1136                 }
1137         }
1138         if (btrfs_header_nritems(mid) == 1) {
1139                 /*
1140                  * we're not allowed to leave a node with one item in the
1141                  * tree during a delete.  A deletion from lower in the tree
1142                  * could try to delete the only pointer in this node.
1143                  * So, pull some keys from the left.
1144                  * There has to be a left pointer at this point because
1145                  * otherwise we would have pulled some pointers from the
1146                  * right
1147                  */
1148                 if (!left) {
1149                         ret = -EROFS;
1150                         btrfs_handle_fs_error(fs_info, ret, NULL);
1151                         goto enospc;
1152                 }
1153                 wret = balance_node_right(trans, mid, left);
1154                 if (wret < 0) {
1155                         ret = wret;
1156                         goto enospc;
1157                 }
1158                 if (wret == 1) {
1159                         wret = push_node_left(trans, left, mid, 1);
1160                         if (wret < 0)
1161                                 ret = wret;
1162                 }
1163                 BUG_ON(wret == 1);
1164         }
1165         if (btrfs_header_nritems(mid) == 0) {
1166                 btrfs_clear_buffer_dirty(trans, mid);
1167                 btrfs_tree_unlock(mid);
1168                 del_ptr(root, path, level + 1, pslot);
1169                 root_sub_used(root, mid->len);
1170                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1171                 free_extent_buffer_stale(mid);
1172                 mid = NULL;
1173         } else {
1174                 /* update the parent key to reflect our changes */
1175                 struct btrfs_disk_key mid_key;
1176                 btrfs_node_key(mid, &mid_key, 0);
1177                 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1178                                                     BTRFS_MOD_LOG_KEY_REPLACE);
1179                 BUG_ON(ret < 0);
1180                 btrfs_set_node_key(parent, &mid_key, pslot);
1181                 btrfs_mark_buffer_dirty(parent);
1182         }
1183
1184         /* update the path */
1185         if (left) {
1186                 if (btrfs_header_nritems(left) > orig_slot) {
1187                         atomic_inc(&left->refs);
1188                         /* left was locked after cow */
1189                         path->nodes[level] = left;
1190                         path->slots[level + 1] -= 1;
1191                         path->slots[level] = orig_slot;
1192                         if (mid) {
1193                                 btrfs_tree_unlock(mid);
1194                                 free_extent_buffer(mid);
1195                         }
1196                 } else {
1197                         orig_slot -= btrfs_header_nritems(left);
1198                         path->slots[level] = orig_slot;
1199                 }
1200         }
1201         /* double check we haven't messed things up */
1202         if (orig_ptr !=
1203             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1204                 BUG();
1205 enospc:
1206         if (right) {
1207                 btrfs_tree_unlock(right);
1208                 free_extent_buffer(right);
1209         }
1210         if (left) {
1211                 if (path->nodes[level] != left)
1212                         btrfs_tree_unlock(left);
1213                 free_extent_buffer(left);
1214         }
1215         return ret;
1216 }
1217
1218 /* Node balancing for insertion.  Here we only split or push nodes around
1219  * when they are completely full.  This is also done top down, so we
1220  * have to be pessimistic.
1221  */
1222 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1223                                           struct btrfs_root *root,
1224                                           struct btrfs_path *path, int level)
1225 {
1226         struct btrfs_fs_info *fs_info = root->fs_info;
1227         struct extent_buffer *right = NULL;
1228         struct extent_buffer *mid;
1229         struct extent_buffer *left = NULL;
1230         struct extent_buffer *parent = NULL;
1231         int ret = 0;
1232         int wret;
1233         int pslot;
1234         int orig_slot = path->slots[level];
1235
1236         if (level == 0)
1237                 return 1;
1238
1239         mid = path->nodes[level];
1240         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1241
1242         if (level < BTRFS_MAX_LEVEL - 1) {
1243                 parent = path->nodes[level + 1];
1244                 pslot = path->slots[level + 1];
1245         }
1246
1247         if (!parent)
1248                 return 1;
1249
1250         /* first, try to make some room in the middle buffer */
1251         if (pslot) {
1252                 u32 left_nr;
1253
1254                 left = btrfs_read_node_slot(parent, pslot - 1);
1255                 if (IS_ERR(left))
1256                         return PTR_ERR(left);
1257
1258                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1259
1260                 left_nr = btrfs_header_nritems(left);
1261                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1262                         wret = 1;
1263                 } else {
1264                         ret = btrfs_cow_block(trans, root, left, parent,
1265                                               pslot - 1, &left,
1266                                               BTRFS_NESTING_LEFT_COW);
1267                         if (ret)
1268                                 wret = 1;
1269                         else {
1270                                 wret = push_node_left(trans, left, mid, 0);
1271                         }
1272                 }
1273                 if (wret < 0)
1274                         ret = wret;
1275                 if (wret == 0) {
1276                         struct btrfs_disk_key disk_key;
1277                         orig_slot += left_nr;
1278                         btrfs_node_key(mid, &disk_key, 0);
1279                         ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1280                                         BTRFS_MOD_LOG_KEY_REPLACE);
1281                         BUG_ON(ret < 0);
1282                         btrfs_set_node_key(parent, &disk_key, pslot);
1283                         btrfs_mark_buffer_dirty(parent);
1284                         if (btrfs_header_nritems(left) > orig_slot) {
1285                                 path->nodes[level] = left;
1286                                 path->slots[level + 1] -= 1;
1287                                 path->slots[level] = orig_slot;
1288                                 btrfs_tree_unlock(mid);
1289                                 free_extent_buffer(mid);
1290                         } else {
1291                                 orig_slot -=
1292                                         btrfs_header_nritems(left);
1293                                 path->slots[level] = orig_slot;
1294                                 btrfs_tree_unlock(left);
1295                                 free_extent_buffer(left);
1296                         }
1297                         return 0;
1298                 }
1299                 btrfs_tree_unlock(left);
1300                 free_extent_buffer(left);
1301         }
1302
1303         /*
1304          * then try to empty the right most buffer into the middle
1305          */
1306         if (pslot + 1 < btrfs_header_nritems(parent)) {
1307                 u32 right_nr;
1308
1309                 right = btrfs_read_node_slot(parent, pslot + 1);
1310                 if (IS_ERR(right))
1311                         return PTR_ERR(right);
1312
1313                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1314
1315                 right_nr = btrfs_header_nritems(right);
1316                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1317                         wret = 1;
1318                 } else {
1319                         ret = btrfs_cow_block(trans, root, right,
1320                                               parent, pslot + 1,
1321                                               &right, BTRFS_NESTING_RIGHT_COW);
1322                         if (ret)
1323                                 wret = 1;
1324                         else {
1325                                 wret = balance_node_right(trans, right, mid);
1326                         }
1327                 }
1328                 if (wret < 0)
1329                         ret = wret;
1330                 if (wret == 0) {
1331                         struct btrfs_disk_key disk_key;
1332
1333                         btrfs_node_key(right, &disk_key, 0);
1334                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1335                                         BTRFS_MOD_LOG_KEY_REPLACE);
1336                         BUG_ON(ret < 0);
1337                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1338                         btrfs_mark_buffer_dirty(parent);
1339
1340                         if (btrfs_header_nritems(mid) <= orig_slot) {
1341                                 path->nodes[level] = right;
1342                                 path->slots[level + 1] += 1;
1343                                 path->slots[level] = orig_slot -
1344                                         btrfs_header_nritems(mid);
1345                                 btrfs_tree_unlock(mid);
1346                                 free_extent_buffer(mid);
1347                         } else {
1348                                 btrfs_tree_unlock(right);
1349                                 free_extent_buffer(right);
1350                         }
1351                         return 0;
1352                 }
1353                 btrfs_tree_unlock(right);
1354                 free_extent_buffer(right);
1355         }
1356         return 1;
1357 }
1358
1359 /*
1360  * readahead one full node of leaves, finding things that are close
1361  * to the block in 'slot', and triggering ra on them.
1362  */
1363 static void reada_for_search(struct btrfs_fs_info *fs_info,
1364                              struct btrfs_path *path,
1365                              int level, int slot, u64 objectid)
1366 {
1367         struct extent_buffer *node;
1368         struct btrfs_disk_key disk_key;
1369         u32 nritems;
1370         u64 search;
1371         u64 target;
1372         u64 nread = 0;
1373         u64 nread_max;
1374         u32 nr;
1375         u32 blocksize;
1376         u32 nscan = 0;
1377
1378         if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1379                 return;
1380
1381         if (!path->nodes[level])
1382                 return;
1383
1384         node = path->nodes[level];
1385
1386         /*
1387          * Since the time between visiting leaves is much shorter than the time
1388          * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1389          * much IO at once (possibly random).
1390          */
1391         if (path->reada == READA_FORWARD_ALWAYS) {
1392                 if (level > 1)
1393                         nread_max = node->fs_info->nodesize;
1394                 else
1395                         nread_max = SZ_128K;
1396         } else {
1397                 nread_max = SZ_64K;
1398         }
1399
1400         search = btrfs_node_blockptr(node, slot);
1401         blocksize = fs_info->nodesize;
1402         if (path->reada != READA_FORWARD_ALWAYS) {
1403                 struct extent_buffer *eb;
1404
1405                 eb = find_extent_buffer(fs_info, search);
1406                 if (eb) {
1407                         free_extent_buffer(eb);
1408                         return;
1409                 }
1410         }
1411
1412         target = search;
1413
1414         nritems = btrfs_header_nritems(node);
1415         nr = slot;
1416
1417         while (1) {
1418                 if (path->reada == READA_BACK) {
1419                         if (nr == 0)
1420                                 break;
1421                         nr--;
1422                 } else if (path->reada == READA_FORWARD ||
1423                            path->reada == READA_FORWARD_ALWAYS) {
1424                         nr++;
1425                         if (nr >= nritems)
1426                                 break;
1427                 }
1428                 if (path->reada == READA_BACK && objectid) {
1429                         btrfs_node_key(node, &disk_key, nr);
1430                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1431                                 break;
1432                 }
1433                 search = btrfs_node_blockptr(node, nr);
1434                 if (path->reada == READA_FORWARD_ALWAYS ||
1435                     (search <= target && target - search <= 65536) ||
1436                     (search > target && search - target <= 65536)) {
1437                         btrfs_readahead_node_child(node, nr);
1438                         nread += blocksize;
1439                 }
1440                 nscan++;
1441                 if (nread > nread_max || nscan > 32)
1442                         break;
1443         }
1444 }
1445
1446 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1447 {
1448         struct extent_buffer *parent;
1449         int slot;
1450         int nritems;
1451
1452         parent = path->nodes[level + 1];
1453         if (!parent)
1454                 return;
1455
1456         nritems = btrfs_header_nritems(parent);
1457         slot = path->slots[level + 1];
1458
1459         if (slot > 0)
1460                 btrfs_readahead_node_child(parent, slot - 1);
1461         if (slot + 1 < nritems)
1462                 btrfs_readahead_node_child(parent, slot + 1);
1463 }
1464
1465
1466 /*
1467  * when we walk down the tree, it is usually safe to unlock the higher layers
1468  * in the tree.  The exceptions are when our path goes through slot 0, because
1469  * operations on the tree might require changing key pointers higher up in the
1470  * tree.
1471  *
1472  * callers might also have set path->keep_locks, which tells this code to keep
1473  * the lock if the path points to the last slot in the block.  This is part of
1474  * walking through the tree, and selecting the next slot in the higher block.
1475  *
1476  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1477  * if lowest_unlock is 1, level 0 won't be unlocked
1478  */
1479 static noinline void unlock_up(struct btrfs_path *path, int level,
1480                                int lowest_unlock, int min_write_lock_level,
1481                                int *write_lock_level)
1482 {
1483         int i;
1484         int skip_level = level;
1485         bool check_skip = true;
1486
1487         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1488                 if (!path->nodes[i])
1489                         break;
1490                 if (!path->locks[i])
1491                         break;
1492
1493                 if (check_skip) {
1494                         if (path->slots[i] == 0) {
1495                                 skip_level = i + 1;
1496                                 continue;
1497                         }
1498
1499                         if (path->keep_locks) {
1500                                 u32 nritems;
1501
1502                                 nritems = btrfs_header_nritems(path->nodes[i]);
1503                                 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1504                                         skip_level = i + 1;
1505                                         continue;
1506                                 }
1507                         }
1508                 }
1509
1510                 if (i >= lowest_unlock && i > skip_level) {
1511                         check_skip = false;
1512                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1513                         path->locks[i] = 0;
1514                         if (write_lock_level &&
1515                             i > min_write_lock_level &&
1516                             i <= *write_lock_level) {
1517                                 *write_lock_level = i - 1;
1518                         }
1519                 }
1520         }
1521 }
1522
1523 /*
1524  * Helper function for btrfs_search_slot() and other functions that do a search
1525  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1526  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1527  * its pages from disk.
1528  *
1529  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1530  * whole btree search, starting again from the current root node.
1531  */
1532 static int
1533 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1534                       struct extent_buffer **eb_ret, int level, int slot,
1535                       const struct btrfs_key *key)
1536 {
1537         struct btrfs_fs_info *fs_info = root->fs_info;
1538         struct btrfs_tree_parent_check check = { 0 };
1539         u64 blocknr;
1540         u64 gen;
1541         struct extent_buffer *tmp;
1542         int ret;
1543         int parent_level;
1544         bool unlock_up;
1545
1546         unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1547         blocknr = btrfs_node_blockptr(*eb_ret, slot);
1548         gen = btrfs_node_ptr_generation(*eb_ret, slot);
1549         parent_level = btrfs_header_level(*eb_ret);
1550         btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1551         check.has_first_key = true;
1552         check.level = parent_level - 1;
1553         check.transid = gen;
1554         check.owner_root = root->root_key.objectid;
1555
1556         /*
1557          * If we need to read an extent buffer from disk and we are holding locks
1558          * on upper level nodes, we unlock all the upper nodes before reading the
1559          * extent buffer, and then return -EAGAIN to the caller as it needs to
1560          * restart the search. We don't release the lock on the current level
1561          * because we need to walk this node to figure out which blocks to read.
1562          */
1563         tmp = find_extent_buffer(fs_info, blocknr);
1564         if (tmp) {
1565                 if (p->reada == READA_FORWARD_ALWAYS)
1566                         reada_for_search(fs_info, p, level, slot, key->objectid);
1567
1568                 /* first we do an atomic uptodate check */
1569                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1570                         /*
1571                          * Do extra check for first_key, eb can be stale due to
1572                          * being cached, read from scrub, or have multiple
1573                          * parents (shared tree blocks).
1574                          */
1575                         if (btrfs_verify_level_key(tmp,
1576                                         parent_level - 1, &check.first_key, gen)) {
1577                                 free_extent_buffer(tmp);
1578                                 return -EUCLEAN;
1579                         }
1580                         *eb_ret = tmp;
1581                         return 0;
1582                 }
1583
1584                 if (p->nowait) {
1585                         free_extent_buffer(tmp);
1586                         return -EAGAIN;
1587                 }
1588
1589                 if (unlock_up)
1590                         btrfs_unlock_up_safe(p, level + 1);
1591
1592                 /* now we're allowed to do a blocking uptodate check */
1593                 ret = btrfs_read_extent_buffer(tmp, &check);
1594                 if (ret) {
1595                         free_extent_buffer(tmp);
1596                         btrfs_release_path(p);
1597                         return -EIO;
1598                 }
1599                 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1600                         free_extent_buffer(tmp);
1601                         btrfs_release_path(p);
1602                         return -EUCLEAN;
1603                 }
1604
1605                 if (unlock_up)
1606                         ret = -EAGAIN;
1607
1608                 goto out;
1609         } else if (p->nowait) {
1610                 return -EAGAIN;
1611         }
1612
1613         if (unlock_up) {
1614                 btrfs_unlock_up_safe(p, level + 1);
1615                 ret = -EAGAIN;
1616         } else {
1617                 ret = 0;
1618         }
1619
1620         if (p->reada != READA_NONE)
1621                 reada_for_search(fs_info, p, level, slot, key->objectid);
1622
1623         tmp = read_tree_block(fs_info, blocknr, &check);
1624         if (IS_ERR(tmp)) {
1625                 btrfs_release_path(p);
1626                 return PTR_ERR(tmp);
1627         }
1628         /*
1629          * If the read above didn't mark this buffer up to date,
1630          * it will never end up being up to date.  Set ret to EIO now
1631          * and give up so that our caller doesn't loop forever
1632          * on our EAGAINs.
1633          */
1634         if (!extent_buffer_uptodate(tmp))
1635                 ret = -EIO;
1636
1637 out:
1638         if (ret == 0) {
1639                 *eb_ret = tmp;
1640         } else {
1641                 free_extent_buffer(tmp);
1642                 btrfs_release_path(p);
1643         }
1644
1645         return ret;
1646 }
1647
1648 /*
1649  * helper function for btrfs_search_slot.  This does all of the checks
1650  * for node-level blocks and does any balancing required based on
1651  * the ins_len.
1652  *
1653  * If no extra work was required, zero is returned.  If we had to
1654  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1655  * start over
1656  */
1657 static int
1658 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1659                        struct btrfs_root *root, struct btrfs_path *p,
1660                        struct extent_buffer *b, int level, int ins_len,
1661                        int *write_lock_level)
1662 {
1663         struct btrfs_fs_info *fs_info = root->fs_info;
1664         int ret = 0;
1665
1666         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1667             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1668
1669                 if (*write_lock_level < level + 1) {
1670                         *write_lock_level = level + 1;
1671                         btrfs_release_path(p);
1672                         return -EAGAIN;
1673                 }
1674
1675                 reada_for_balance(p, level);
1676                 ret = split_node(trans, root, p, level);
1677
1678                 b = p->nodes[level];
1679         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1680                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1681
1682                 if (*write_lock_level < level + 1) {
1683                         *write_lock_level = level + 1;
1684                         btrfs_release_path(p);
1685                         return -EAGAIN;
1686                 }
1687
1688                 reada_for_balance(p, level);
1689                 ret = balance_level(trans, root, p, level);
1690                 if (ret)
1691                         return ret;
1692
1693                 b = p->nodes[level];
1694                 if (!b) {
1695                         btrfs_release_path(p);
1696                         return -EAGAIN;
1697                 }
1698                 BUG_ON(btrfs_header_nritems(b) == 1);
1699         }
1700         return ret;
1701 }
1702
1703 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1704                 u64 iobjectid, u64 ioff, u8 key_type,
1705                 struct btrfs_key *found_key)
1706 {
1707         int ret;
1708         struct btrfs_key key;
1709         struct extent_buffer *eb;
1710
1711         ASSERT(path);
1712         ASSERT(found_key);
1713
1714         key.type = key_type;
1715         key.objectid = iobjectid;
1716         key.offset = ioff;
1717
1718         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1719         if (ret < 0)
1720                 return ret;
1721
1722         eb = path->nodes[0];
1723         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1724                 ret = btrfs_next_leaf(fs_root, path);
1725                 if (ret)
1726                         return ret;
1727                 eb = path->nodes[0];
1728         }
1729
1730         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1731         if (found_key->type != key.type ||
1732                         found_key->objectid != key.objectid)
1733                 return 1;
1734
1735         return 0;
1736 }
1737
1738 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1739                                                         struct btrfs_path *p,
1740                                                         int write_lock_level)
1741 {
1742         struct extent_buffer *b;
1743         int root_lock = 0;
1744         int level = 0;
1745
1746         if (p->search_commit_root) {
1747                 b = root->commit_root;
1748                 atomic_inc(&b->refs);
1749                 level = btrfs_header_level(b);
1750                 /*
1751                  * Ensure that all callers have set skip_locking when
1752                  * p->search_commit_root = 1.
1753                  */
1754                 ASSERT(p->skip_locking == 1);
1755
1756                 goto out;
1757         }
1758
1759         if (p->skip_locking) {
1760                 b = btrfs_root_node(root);
1761                 level = btrfs_header_level(b);
1762                 goto out;
1763         }
1764
1765         /* We try very hard to do read locks on the root */
1766         root_lock = BTRFS_READ_LOCK;
1767
1768         /*
1769          * If the level is set to maximum, we can skip trying to get the read
1770          * lock.
1771          */
1772         if (write_lock_level < BTRFS_MAX_LEVEL) {
1773                 /*
1774                  * We don't know the level of the root node until we actually
1775                  * have it read locked
1776                  */
1777                 if (p->nowait) {
1778                         b = btrfs_try_read_lock_root_node(root);
1779                         if (IS_ERR(b))
1780                                 return b;
1781                 } else {
1782                         b = btrfs_read_lock_root_node(root);
1783                 }
1784                 level = btrfs_header_level(b);
1785                 if (level > write_lock_level)
1786                         goto out;
1787
1788                 /* Whoops, must trade for write lock */
1789                 btrfs_tree_read_unlock(b);
1790                 free_extent_buffer(b);
1791         }
1792
1793         b = btrfs_lock_root_node(root);
1794         root_lock = BTRFS_WRITE_LOCK;
1795
1796         /* The level might have changed, check again */
1797         level = btrfs_header_level(b);
1798
1799 out:
1800         /*
1801          * The root may have failed to write out at some point, and thus is no
1802          * longer valid, return an error in this case.
1803          */
1804         if (!extent_buffer_uptodate(b)) {
1805                 if (root_lock)
1806                         btrfs_tree_unlock_rw(b, root_lock);
1807                 free_extent_buffer(b);
1808                 return ERR_PTR(-EIO);
1809         }
1810
1811         p->nodes[level] = b;
1812         if (!p->skip_locking)
1813                 p->locks[level] = root_lock;
1814         /*
1815          * Callers are responsible for dropping b's references.
1816          */
1817         return b;
1818 }
1819
1820 /*
1821  * Replace the extent buffer at the lowest level of the path with a cloned
1822  * version. The purpose is to be able to use it safely, after releasing the
1823  * commit root semaphore, even if relocation is happening in parallel, the
1824  * transaction used for relocation is committed and the extent buffer is
1825  * reallocated in the next transaction.
1826  *
1827  * This is used in a context where the caller does not prevent transaction
1828  * commits from happening, either by holding a transaction handle or holding
1829  * some lock, while it's doing searches through a commit root.
1830  * At the moment it's only used for send operations.
1831  */
1832 static int finish_need_commit_sem_search(struct btrfs_path *path)
1833 {
1834         const int i = path->lowest_level;
1835         const int slot = path->slots[i];
1836         struct extent_buffer *lowest = path->nodes[i];
1837         struct extent_buffer *clone;
1838
1839         ASSERT(path->need_commit_sem);
1840
1841         if (!lowest)
1842                 return 0;
1843
1844         lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1845
1846         clone = btrfs_clone_extent_buffer(lowest);
1847         if (!clone)
1848                 return -ENOMEM;
1849
1850         btrfs_release_path(path);
1851         path->nodes[i] = clone;
1852         path->slots[i] = slot;
1853
1854         return 0;
1855 }
1856
1857 static inline int search_for_key_slot(struct extent_buffer *eb,
1858                                       int search_low_slot,
1859                                       const struct btrfs_key *key,
1860                                       int prev_cmp,
1861                                       int *slot)
1862 {
1863         /*
1864          * If a previous call to btrfs_bin_search() on a parent node returned an
1865          * exact match (prev_cmp == 0), we can safely assume the target key will
1866          * always be at slot 0 on lower levels, since each key pointer
1867          * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1868          * subtree it points to. Thus we can skip searching lower levels.
1869          */
1870         if (prev_cmp == 0) {
1871                 *slot = 0;
1872                 return 0;
1873         }
1874
1875         return btrfs_bin_search(eb, search_low_slot, key, slot);
1876 }
1877
1878 static int search_leaf(struct btrfs_trans_handle *trans,
1879                        struct btrfs_root *root,
1880                        const struct btrfs_key *key,
1881                        struct btrfs_path *path,
1882                        int ins_len,
1883                        int prev_cmp)
1884 {
1885         struct extent_buffer *leaf = path->nodes[0];
1886         int leaf_free_space = -1;
1887         int search_low_slot = 0;
1888         int ret;
1889         bool do_bin_search = true;
1890
1891         /*
1892          * If we are doing an insertion, the leaf has enough free space and the
1893          * destination slot for the key is not slot 0, then we can unlock our
1894          * write lock on the parent, and any other upper nodes, before doing the
1895          * binary search on the leaf (with search_for_key_slot()), allowing other
1896          * tasks to lock the parent and any other upper nodes.
1897          */
1898         if (ins_len > 0) {
1899                 /*
1900                  * Cache the leaf free space, since we will need it later and it
1901                  * will not change until then.
1902                  */
1903                 leaf_free_space = btrfs_leaf_free_space(leaf);
1904
1905                 /*
1906                  * !path->locks[1] means we have a single node tree, the leaf is
1907                  * the root of the tree.
1908                  */
1909                 if (path->locks[1] && leaf_free_space >= ins_len) {
1910                         struct btrfs_disk_key first_key;
1911
1912                         ASSERT(btrfs_header_nritems(leaf) > 0);
1913                         btrfs_item_key(leaf, &first_key, 0);
1914
1915                         /*
1916                          * Doing the extra comparison with the first key is cheap,
1917                          * taking into account that the first key is very likely
1918                          * already in a cache line because it immediately follows
1919                          * the extent buffer's header and we have recently accessed
1920                          * the header's level field.
1921                          */
1922                         ret = comp_keys(&first_key, key);
1923                         if (ret < 0) {
1924                                 /*
1925                                  * The first key is smaller than the key we want
1926                                  * to insert, so we are safe to unlock all upper
1927                                  * nodes and we have to do the binary search.
1928                                  *
1929                                  * We do use btrfs_unlock_up_safe() and not
1930                                  * unlock_up() because the later does not unlock
1931                                  * nodes with a slot of 0 - we can safely unlock
1932                                  * any node even if its slot is 0 since in this
1933                                  * case the key does not end up at slot 0 of the
1934                                  * leaf and there's no need to split the leaf.
1935                                  */
1936                                 btrfs_unlock_up_safe(path, 1);
1937                                 search_low_slot = 1;
1938                         } else {
1939                                 /*
1940                                  * The first key is >= then the key we want to
1941                                  * insert, so we can skip the binary search as
1942                                  * the target key will be at slot 0.
1943                                  *
1944                                  * We can not unlock upper nodes when the key is
1945                                  * less than the first key, because we will need
1946                                  * to update the key at slot 0 of the parent node
1947                                  * and possibly of other upper nodes too.
1948                                  * If the key matches the first key, then we can
1949                                  * unlock all the upper nodes, using
1950                                  * btrfs_unlock_up_safe() instead of unlock_up()
1951                                  * as stated above.
1952                                  */
1953                                 if (ret == 0)
1954                                         btrfs_unlock_up_safe(path, 1);
1955                                 /*
1956                                  * ret is already 0 or 1, matching the result of
1957                                  * a btrfs_bin_search() call, so there is no need
1958                                  * to adjust it.
1959                                  */
1960                                 do_bin_search = false;
1961                                 path->slots[0] = 0;
1962                         }
1963                 }
1964         }
1965
1966         if (do_bin_search) {
1967                 ret = search_for_key_slot(leaf, search_low_slot, key,
1968                                           prev_cmp, &path->slots[0]);
1969                 if (ret < 0)
1970                         return ret;
1971         }
1972
1973         if (ins_len > 0) {
1974                 /*
1975                  * Item key already exists. In this case, if we are allowed to
1976                  * insert the item (for example, in dir_item case, item key
1977                  * collision is allowed), it will be merged with the original
1978                  * item. Only the item size grows, no new btrfs item will be
1979                  * added. If search_for_extension is not set, ins_len already
1980                  * accounts the size btrfs_item, deduct it here so leaf space
1981                  * check will be correct.
1982                  */
1983                 if (ret == 0 && !path->search_for_extension) {
1984                         ASSERT(ins_len >= sizeof(struct btrfs_item));
1985                         ins_len -= sizeof(struct btrfs_item);
1986                 }
1987
1988                 ASSERT(leaf_free_space >= 0);
1989
1990                 if (leaf_free_space < ins_len) {
1991                         int err;
1992
1993                         err = split_leaf(trans, root, key, path, ins_len,
1994                                          (ret == 0));
1995                         ASSERT(err <= 0);
1996                         if (WARN_ON(err > 0))
1997                                 err = -EUCLEAN;
1998                         if (err)
1999                                 ret = err;
2000                 }
2001         }
2002
2003         return ret;
2004 }
2005
2006 /*
2007  * btrfs_search_slot - look for a key in a tree and perform necessary
2008  * modifications to preserve tree invariants.
2009  *
2010  * @trans:      Handle of transaction, used when modifying the tree
2011  * @p:          Holds all btree nodes along the search path
2012  * @root:       The root node of the tree
2013  * @key:        The key we are looking for
2014  * @ins_len:    Indicates purpose of search:
2015  *              >0  for inserts it's size of item inserted (*)
2016  *              <0  for deletions
2017  *               0  for plain searches, not modifying the tree
2018  *
2019  *              (*) If size of item inserted doesn't include
2020  *              sizeof(struct btrfs_item), then p->search_for_extension must
2021  *              be set.
2022  * @cow:        boolean should CoW operations be performed. Must always be 1
2023  *              when modifying the tree.
2024  *
2025  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2026  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2027  *
2028  * If @key is found, 0 is returned and you can find the item in the leaf level
2029  * of the path (level 0)
2030  *
2031  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2032  * points to the slot where it should be inserted
2033  *
2034  * If an error is encountered while searching the tree a negative error number
2035  * is returned
2036  */
2037 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2038                       const struct btrfs_key *key, struct btrfs_path *p,
2039                       int ins_len, int cow)
2040 {
2041         struct btrfs_fs_info *fs_info = root->fs_info;
2042         struct extent_buffer *b;
2043         int slot;
2044         int ret;
2045         int err;
2046         int level;
2047         int lowest_unlock = 1;
2048         /* everything at write_lock_level or lower must be write locked */
2049         int write_lock_level = 0;
2050         u8 lowest_level = 0;
2051         int min_write_lock_level;
2052         int prev_cmp;
2053
2054         might_sleep();
2055
2056         lowest_level = p->lowest_level;
2057         WARN_ON(lowest_level && ins_len > 0);
2058         WARN_ON(p->nodes[0] != NULL);
2059         BUG_ON(!cow && ins_len);
2060
2061         /*
2062          * For now only allow nowait for read only operations.  There's no
2063          * strict reason why we can't, we just only need it for reads so it's
2064          * only implemented for reads.
2065          */
2066         ASSERT(!p->nowait || !cow);
2067
2068         if (ins_len < 0) {
2069                 lowest_unlock = 2;
2070
2071                 /* when we are removing items, we might have to go up to level
2072                  * two as we update tree pointers  Make sure we keep write
2073                  * for those levels as well
2074                  */
2075                 write_lock_level = 2;
2076         } else if (ins_len > 0) {
2077                 /*
2078                  * for inserting items, make sure we have a write lock on
2079                  * level 1 so we can update keys
2080                  */
2081                 write_lock_level = 1;
2082         }
2083
2084         if (!cow)
2085                 write_lock_level = -1;
2086
2087         if (cow && (p->keep_locks || p->lowest_level))
2088                 write_lock_level = BTRFS_MAX_LEVEL;
2089
2090         min_write_lock_level = write_lock_level;
2091
2092         if (p->need_commit_sem) {
2093                 ASSERT(p->search_commit_root);
2094                 if (p->nowait) {
2095                         if (!down_read_trylock(&fs_info->commit_root_sem))
2096                                 return -EAGAIN;
2097                 } else {
2098                         down_read(&fs_info->commit_root_sem);
2099                 }
2100         }
2101
2102 again:
2103         prev_cmp = -1;
2104         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2105         if (IS_ERR(b)) {
2106                 ret = PTR_ERR(b);
2107                 goto done;
2108         }
2109
2110         while (b) {
2111                 int dec = 0;
2112
2113                 level = btrfs_header_level(b);
2114
2115                 if (cow) {
2116                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2117
2118                         /*
2119                          * if we don't really need to cow this block
2120                          * then we don't want to set the path blocking,
2121                          * so we test it here
2122                          */
2123                         if (!should_cow_block(trans, root, b))
2124                                 goto cow_done;
2125
2126                         /*
2127                          * must have write locks on this node and the
2128                          * parent
2129                          */
2130                         if (level > write_lock_level ||
2131                             (level + 1 > write_lock_level &&
2132                             level + 1 < BTRFS_MAX_LEVEL &&
2133                             p->nodes[level + 1])) {
2134                                 write_lock_level = level + 1;
2135                                 btrfs_release_path(p);
2136                                 goto again;
2137                         }
2138
2139                         if (last_level)
2140                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2141                                                       &b,
2142                                                       BTRFS_NESTING_COW);
2143                         else
2144                                 err = btrfs_cow_block(trans, root, b,
2145                                                       p->nodes[level + 1],
2146                                                       p->slots[level + 1], &b,
2147                                                       BTRFS_NESTING_COW);
2148                         if (err) {
2149                                 ret = err;
2150                                 goto done;
2151                         }
2152                 }
2153 cow_done:
2154                 p->nodes[level] = b;
2155
2156                 /*
2157                  * we have a lock on b and as long as we aren't changing
2158                  * the tree, there is no way to for the items in b to change.
2159                  * It is safe to drop the lock on our parent before we
2160                  * go through the expensive btree search on b.
2161                  *
2162                  * If we're inserting or deleting (ins_len != 0), then we might
2163                  * be changing slot zero, which may require changing the parent.
2164                  * So, we can't drop the lock until after we know which slot
2165                  * we're operating on.
2166                  */
2167                 if (!ins_len && !p->keep_locks) {
2168                         int u = level + 1;
2169
2170                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2171                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2172                                 p->locks[u] = 0;
2173                         }
2174                 }
2175
2176                 if (level == 0) {
2177                         if (ins_len > 0)
2178                                 ASSERT(write_lock_level >= 1);
2179
2180                         ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2181                         if (!p->search_for_split)
2182                                 unlock_up(p, level, lowest_unlock,
2183                                           min_write_lock_level, NULL);
2184                         goto done;
2185                 }
2186
2187                 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2188                 if (ret < 0)
2189                         goto done;
2190                 prev_cmp = ret;
2191
2192                 if (ret && slot > 0) {
2193                         dec = 1;
2194                         slot--;
2195                 }
2196                 p->slots[level] = slot;
2197                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2198                                              &write_lock_level);
2199                 if (err == -EAGAIN)
2200                         goto again;
2201                 if (err) {
2202                         ret = err;
2203                         goto done;
2204                 }
2205                 b = p->nodes[level];
2206                 slot = p->slots[level];
2207
2208                 /*
2209                  * Slot 0 is special, if we change the key we have to update
2210                  * the parent pointer which means we must have a write lock on
2211                  * the parent
2212                  */
2213                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2214                         write_lock_level = level + 1;
2215                         btrfs_release_path(p);
2216                         goto again;
2217                 }
2218
2219                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2220                           &write_lock_level);
2221
2222                 if (level == lowest_level) {
2223                         if (dec)
2224                                 p->slots[level]++;
2225                         goto done;
2226                 }
2227
2228                 err = read_block_for_search(root, p, &b, level, slot, key);
2229                 if (err == -EAGAIN)
2230                         goto again;
2231                 if (err) {
2232                         ret = err;
2233                         goto done;
2234                 }
2235
2236                 if (!p->skip_locking) {
2237                         level = btrfs_header_level(b);
2238
2239                         btrfs_maybe_reset_lockdep_class(root, b);
2240
2241                         if (level <= write_lock_level) {
2242                                 btrfs_tree_lock(b);
2243                                 p->locks[level] = BTRFS_WRITE_LOCK;
2244                         } else {
2245                                 if (p->nowait) {
2246                                         if (!btrfs_try_tree_read_lock(b)) {
2247                                                 free_extent_buffer(b);
2248                                                 ret = -EAGAIN;
2249                                                 goto done;
2250                                         }
2251                                 } else {
2252                                         btrfs_tree_read_lock(b);
2253                                 }
2254                                 p->locks[level] = BTRFS_READ_LOCK;
2255                         }
2256                         p->nodes[level] = b;
2257                 }
2258         }
2259         ret = 1;
2260 done:
2261         if (ret < 0 && !p->skip_release_on_error)
2262                 btrfs_release_path(p);
2263
2264         if (p->need_commit_sem) {
2265                 int ret2;
2266
2267                 ret2 = finish_need_commit_sem_search(p);
2268                 up_read(&fs_info->commit_root_sem);
2269                 if (ret2)
2270                         ret = ret2;
2271         }
2272
2273         return ret;
2274 }
2275 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2276
2277 /*
2278  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2279  * current state of the tree together with the operations recorded in the tree
2280  * modification log to search for the key in a previous version of this tree, as
2281  * denoted by the time_seq parameter.
2282  *
2283  * Naturally, there is no support for insert, delete or cow operations.
2284  *
2285  * The resulting path and return value will be set up as if we called
2286  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2287  */
2288 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2289                           struct btrfs_path *p, u64 time_seq)
2290 {
2291         struct btrfs_fs_info *fs_info = root->fs_info;
2292         struct extent_buffer *b;
2293         int slot;
2294         int ret;
2295         int err;
2296         int level;
2297         int lowest_unlock = 1;
2298         u8 lowest_level = 0;
2299
2300         lowest_level = p->lowest_level;
2301         WARN_ON(p->nodes[0] != NULL);
2302         ASSERT(!p->nowait);
2303
2304         if (p->search_commit_root) {
2305                 BUG_ON(time_seq);
2306                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2307         }
2308
2309 again:
2310         b = btrfs_get_old_root(root, time_seq);
2311         if (!b) {
2312                 ret = -EIO;
2313                 goto done;
2314         }
2315         level = btrfs_header_level(b);
2316         p->locks[level] = BTRFS_READ_LOCK;
2317
2318         while (b) {
2319                 int dec = 0;
2320
2321                 level = btrfs_header_level(b);
2322                 p->nodes[level] = b;
2323
2324                 /*
2325                  * we have a lock on b and as long as we aren't changing
2326                  * the tree, there is no way to for the items in b to change.
2327                  * It is safe to drop the lock on our parent before we
2328                  * go through the expensive btree search on b.
2329                  */
2330                 btrfs_unlock_up_safe(p, level + 1);
2331
2332                 ret = btrfs_bin_search(b, 0, key, &slot);
2333                 if (ret < 0)
2334                         goto done;
2335
2336                 if (level == 0) {
2337                         p->slots[level] = slot;
2338                         unlock_up(p, level, lowest_unlock, 0, NULL);
2339                         goto done;
2340                 }
2341
2342                 if (ret && slot > 0) {
2343                         dec = 1;
2344                         slot--;
2345                 }
2346                 p->slots[level] = slot;
2347                 unlock_up(p, level, lowest_unlock, 0, NULL);
2348
2349                 if (level == lowest_level) {
2350                         if (dec)
2351                                 p->slots[level]++;
2352                         goto done;
2353                 }
2354
2355                 err = read_block_for_search(root, p, &b, level, slot, key);
2356                 if (err == -EAGAIN)
2357                         goto again;
2358                 if (err) {
2359                         ret = err;
2360                         goto done;
2361                 }
2362
2363                 level = btrfs_header_level(b);
2364                 btrfs_tree_read_lock(b);
2365                 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2366                 if (!b) {
2367                         ret = -ENOMEM;
2368                         goto done;
2369                 }
2370                 p->locks[level] = BTRFS_READ_LOCK;
2371                 p->nodes[level] = b;
2372         }
2373         ret = 1;
2374 done:
2375         if (ret < 0)
2376                 btrfs_release_path(p);
2377
2378         return ret;
2379 }
2380
2381 /*
2382  * helper to use instead of search slot if no exact match is needed but
2383  * instead the next or previous item should be returned.
2384  * When find_higher is true, the next higher item is returned, the next lower
2385  * otherwise.
2386  * When return_any and find_higher are both true, and no higher item is found,
2387  * return the next lower instead.
2388  * When return_any is true and find_higher is false, and no lower item is found,
2389  * return the next higher instead.
2390  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2391  * < 0 on error
2392  */
2393 int btrfs_search_slot_for_read(struct btrfs_root *root,
2394                                const struct btrfs_key *key,
2395                                struct btrfs_path *p, int find_higher,
2396                                int return_any)
2397 {
2398         int ret;
2399         struct extent_buffer *leaf;
2400
2401 again:
2402         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2403         if (ret <= 0)
2404                 return ret;
2405         /*
2406          * a return value of 1 means the path is at the position where the
2407          * item should be inserted. Normally this is the next bigger item,
2408          * but in case the previous item is the last in a leaf, path points
2409          * to the first free slot in the previous leaf, i.e. at an invalid
2410          * item.
2411          */
2412         leaf = p->nodes[0];
2413
2414         if (find_higher) {
2415                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2416                         ret = btrfs_next_leaf(root, p);
2417                         if (ret <= 0)
2418                                 return ret;
2419                         if (!return_any)
2420                                 return 1;
2421                         /*
2422                          * no higher item found, return the next
2423                          * lower instead
2424                          */
2425                         return_any = 0;
2426                         find_higher = 0;
2427                         btrfs_release_path(p);
2428                         goto again;
2429                 }
2430         } else {
2431                 if (p->slots[0] == 0) {
2432                         ret = btrfs_prev_leaf(root, p);
2433                         if (ret < 0)
2434                                 return ret;
2435                         if (!ret) {
2436                                 leaf = p->nodes[0];
2437                                 if (p->slots[0] == btrfs_header_nritems(leaf))
2438                                         p->slots[0]--;
2439                                 return 0;
2440                         }
2441                         if (!return_any)
2442                                 return 1;
2443                         /*
2444                          * no lower item found, return the next
2445                          * higher instead
2446                          */
2447                         return_any = 0;
2448                         find_higher = 1;
2449                         btrfs_release_path(p);
2450                         goto again;
2451                 } else {
2452                         --p->slots[0];
2453                 }
2454         }
2455         return 0;
2456 }
2457
2458 /*
2459  * Execute search and call btrfs_previous_item to traverse backwards if the item
2460  * was not found.
2461  *
2462  * Return 0 if found, 1 if not found and < 0 if error.
2463  */
2464 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2465                            struct btrfs_path *path)
2466 {
2467         int ret;
2468
2469         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2470         if (ret > 0)
2471                 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2472
2473         if (ret == 0)
2474                 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2475
2476         return ret;
2477 }
2478
2479 /*
2480  * Search for a valid slot for the given path.
2481  *
2482  * @root:       The root node of the tree.
2483  * @key:        Will contain a valid item if found.
2484  * @path:       The starting point to validate the slot.
2485  *
2486  * Return: 0  if the item is valid
2487  *         1  if not found
2488  *         <0 if error.
2489  */
2490 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2491                               struct btrfs_path *path)
2492 {
2493         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2494                 int ret;
2495
2496                 ret = btrfs_next_leaf(root, path);
2497                 if (ret)
2498                         return ret;
2499         }
2500
2501         btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2502         return 0;
2503 }
2504
2505 /*
2506  * adjust the pointers going up the tree, starting at level
2507  * making sure the right key of each node is points to 'key'.
2508  * This is used after shifting pointers to the left, so it stops
2509  * fixing up pointers when a given leaf/node is not in slot 0 of the
2510  * higher levels
2511  *
2512  */
2513 static void fixup_low_keys(struct btrfs_path *path,
2514                            struct btrfs_disk_key *key, int level)
2515 {
2516         int i;
2517         struct extent_buffer *t;
2518         int ret;
2519
2520         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2521                 int tslot = path->slots[i];
2522
2523                 if (!path->nodes[i])
2524                         break;
2525                 t = path->nodes[i];
2526                 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2527                                                     BTRFS_MOD_LOG_KEY_REPLACE);
2528                 BUG_ON(ret < 0);
2529                 btrfs_set_node_key(t, key, tslot);
2530                 btrfs_mark_buffer_dirty(path->nodes[i]);
2531                 if (tslot != 0)
2532                         break;
2533         }
2534 }
2535
2536 /*
2537  * update item key.
2538  *
2539  * This function isn't completely safe. It's the caller's responsibility
2540  * that the new key won't break the order
2541  */
2542 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2543                              struct btrfs_path *path,
2544                              const struct btrfs_key *new_key)
2545 {
2546         struct btrfs_disk_key disk_key;
2547         struct extent_buffer *eb;
2548         int slot;
2549
2550         eb = path->nodes[0];
2551         slot = path->slots[0];
2552         if (slot > 0) {
2553                 btrfs_item_key(eb, &disk_key, slot - 1);
2554                 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2555                         btrfs_crit(fs_info,
2556                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2557                                    slot, btrfs_disk_key_objectid(&disk_key),
2558                                    btrfs_disk_key_type(&disk_key),
2559                                    btrfs_disk_key_offset(&disk_key),
2560                                    new_key->objectid, new_key->type,
2561                                    new_key->offset);
2562                         btrfs_print_leaf(eb);
2563                         BUG();
2564                 }
2565         }
2566         if (slot < btrfs_header_nritems(eb) - 1) {
2567                 btrfs_item_key(eb, &disk_key, slot + 1);
2568                 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2569                         btrfs_crit(fs_info,
2570                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2571                                    slot, btrfs_disk_key_objectid(&disk_key),
2572                                    btrfs_disk_key_type(&disk_key),
2573                                    btrfs_disk_key_offset(&disk_key),
2574                                    new_key->objectid, new_key->type,
2575                                    new_key->offset);
2576                         btrfs_print_leaf(eb);
2577                         BUG();
2578                 }
2579         }
2580
2581         btrfs_cpu_key_to_disk(&disk_key, new_key);
2582         btrfs_set_item_key(eb, &disk_key, slot);
2583         btrfs_mark_buffer_dirty(eb);
2584         if (slot == 0)
2585                 fixup_low_keys(path, &disk_key, 1);
2586 }
2587
2588 /*
2589  * Check key order of two sibling extent buffers.
2590  *
2591  * Return true if something is wrong.
2592  * Return false if everything is fine.
2593  *
2594  * Tree-checker only works inside one tree block, thus the following
2595  * corruption can not be detected by tree-checker:
2596  *
2597  * Leaf @left                   | Leaf @right
2598  * --------------------------------------------------------------
2599  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2600  *
2601  * Key f6 in leaf @left itself is valid, but not valid when the next
2602  * key in leaf @right is 7.
2603  * This can only be checked at tree block merge time.
2604  * And since tree checker has ensured all key order in each tree block
2605  * is correct, we only need to bother the last key of @left and the first
2606  * key of @right.
2607  */
2608 static bool check_sibling_keys(struct extent_buffer *left,
2609                                struct extent_buffer *right)
2610 {
2611         struct btrfs_key left_last;
2612         struct btrfs_key right_first;
2613         int level = btrfs_header_level(left);
2614         int nr_left = btrfs_header_nritems(left);
2615         int nr_right = btrfs_header_nritems(right);
2616
2617         /* No key to check in one of the tree blocks */
2618         if (!nr_left || !nr_right)
2619                 return false;
2620
2621         if (level) {
2622                 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2623                 btrfs_node_key_to_cpu(right, &right_first, 0);
2624         } else {
2625                 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2626                 btrfs_item_key_to_cpu(right, &right_first, 0);
2627         }
2628
2629         if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2630                 btrfs_crit(left->fs_info, "left extent buffer:");
2631                 btrfs_print_tree(left, false);
2632                 btrfs_crit(left->fs_info, "right extent buffer:");
2633                 btrfs_print_tree(right, false);
2634                 btrfs_crit(left->fs_info,
2635 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2636                            left_last.objectid, left_last.type,
2637                            left_last.offset, right_first.objectid,
2638                            right_first.type, right_first.offset);
2639                 return true;
2640         }
2641         return false;
2642 }
2643
2644 /*
2645  * try to push data from one node into the next node left in the
2646  * tree.
2647  *
2648  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2649  * error, and > 0 if there was no room in the left hand block.
2650  */
2651 static int push_node_left(struct btrfs_trans_handle *trans,
2652                           struct extent_buffer *dst,
2653                           struct extent_buffer *src, int empty)
2654 {
2655         struct btrfs_fs_info *fs_info = trans->fs_info;
2656         int push_items = 0;
2657         int src_nritems;
2658         int dst_nritems;
2659         int ret = 0;
2660
2661         src_nritems = btrfs_header_nritems(src);
2662         dst_nritems = btrfs_header_nritems(dst);
2663         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2664         WARN_ON(btrfs_header_generation(src) != trans->transid);
2665         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2666
2667         if (!empty && src_nritems <= 8)
2668                 return 1;
2669
2670         if (push_items <= 0)
2671                 return 1;
2672
2673         if (empty) {
2674                 push_items = min(src_nritems, push_items);
2675                 if (push_items < src_nritems) {
2676                         /* leave at least 8 pointers in the node if
2677                          * we aren't going to empty it
2678                          */
2679                         if (src_nritems - push_items < 8) {
2680                                 if (push_items <= 8)
2681                                         return 1;
2682                                 push_items -= 8;
2683                         }
2684                 }
2685         } else
2686                 push_items = min(src_nritems - 8, push_items);
2687
2688         /* dst is the left eb, src is the middle eb */
2689         if (check_sibling_keys(dst, src)) {
2690                 ret = -EUCLEAN;
2691                 btrfs_abort_transaction(trans, ret);
2692                 return ret;
2693         }
2694         ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2695         if (ret) {
2696                 btrfs_abort_transaction(trans, ret);
2697                 return ret;
2698         }
2699         copy_extent_buffer(dst, src,
2700                            btrfs_node_key_ptr_offset(dst, dst_nritems),
2701                            btrfs_node_key_ptr_offset(src, 0),
2702                            push_items * sizeof(struct btrfs_key_ptr));
2703
2704         if (push_items < src_nritems) {
2705                 /*
2706                  * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2707                  * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2708                  */
2709                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2710                                       btrfs_node_key_ptr_offset(src, push_items),
2711                                       (src_nritems - push_items) *
2712                                       sizeof(struct btrfs_key_ptr));
2713         }
2714         btrfs_set_header_nritems(src, src_nritems - push_items);
2715         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2716         btrfs_mark_buffer_dirty(src);
2717         btrfs_mark_buffer_dirty(dst);
2718
2719         return ret;
2720 }
2721
2722 /*
2723  * try to push data from one node into the next node right in the
2724  * tree.
2725  *
2726  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2727  * error, and > 0 if there was no room in the right hand block.
2728  *
2729  * this will  only push up to 1/2 the contents of the left node over
2730  */
2731 static int balance_node_right(struct btrfs_trans_handle *trans,
2732                               struct extent_buffer *dst,
2733                               struct extent_buffer *src)
2734 {
2735         struct btrfs_fs_info *fs_info = trans->fs_info;
2736         int push_items = 0;
2737         int max_push;
2738         int src_nritems;
2739         int dst_nritems;
2740         int ret = 0;
2741
2742         WARN_ON(btrfs_header_generation(src) != trans->transid);
2743         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2744
2745         src_nritems = btrfs_header_nritems(src);
2746         dst_nritems = btrfs_header_nritems(dst);
2747         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2748         if (push_items <= 0)
2749                 return 1;
2750
2751         if (src_nritems < 4)
2752                 return 1;
2753
2754         max_push = src_nritems / 2 + 1;
2755         /* don't try to empty the node */
2756         if (max_push >= src_nritems)
2757                 return 1;
2758
2759         if (max_push < push_items)
2760                 push_items = max_push;
2761
2762         /* dst is the right eb, src is the middle eb */
2763         if (check_sibling_keys(src, dst)) {
2764                 ret = -EUCLEAN;
2765                 btrfs_abort_transaction(trans, ret);
2766                 return ret;
2767         }
2768         ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2769         BUG_ON(ret < 0);
2770         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2771                                       btrfs_node_key_ptr_offset(dst, 0),
2772                                       (dst_nritems) *
2773                                       sizeof(struct btrfs_key_ptr));
2774
2775         ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2776                                          push_items);
2777         if (ret) {
2778                 btrfs_abort_transaction(trans, ret);
2779                 return ret;
2780         }
2781         copy_extent_buffer(dst, src,
2782                            btrfs_node_key_ptr_offset(dst, 0),
2783                            btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2784                            push_items * sizeof(struct btrfs_key_ptr));
2785
2786         btrfs_set_header_nritems(src, src_nritems - push_items);
2787         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2788
2789         btrfs_mark_buffer_dirty(src);
2790         btrfs_mark_buffer_dirty(dst);
2791
2792         return ret;
2793 }
2794
2795 /*
2796  * helper function to insert a new root level in the tree.
2797  * A new node is allocated, and a single item is inserted to
2798  * point to the existing root
2799  *
2800  * returns zero on success or < 0 on failure.
2801  */
2802 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2803                            struct btrfs_root *root,
2804                            struct btrfs_path *path, int level)
2805 {
2806         struct btrfs_fs_info *fs_info = root->fs_info;
2807         u64 lower_gen;
2808         struct extent_buffer *lower;
2809         struct extent_buffer *c;
2810         struct extent_buffer *old;
2811         struct btrfs_disk_key lower_key;
2812         int ret;
2813
2814         BUG_ON(path->nodes[level]);
2815         BUG_ON(path->nodes[level-1] != root->node);
2816
2817         lower = path->nodes[level-1];
2818         if (level == 1)
2819                 btrfs_item_key(lower, &lower_key, 0);
2820         else
2821                 btrfs_node_key(lower, &lower_key, 0);
2822
2823         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2824                                    &lower_key, level, root->node->start, 0,
2825                                    BTRFS_NESTING_NEW_ROOT);
2826         if (IS_ERR(c))
2827                 return PTR_ERR(c);
2828
2829         root_add_used(root, fs_info->nodesize);
2830
2831         btrfs_set_header_nritems(c, 1);
2832         btrfs_set_node_key(c, &lower_key, 0);
2833         btrfs_set_node_blockptr(c, 0, lower->start);
2834         lower_gen = btrfs_header_generation(lower);
2835         WARN_ON(lower_gen != trans->transid);
2836
2837         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2838
2839         btrfs_mark_buffer_dirty(c);
2840
2841         old = root->node;
2842         ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2843         BUG_ON(ret < 0);
2844         rcu_assign_pointer(root->node, c);
2845
2846         /* the super has an extra ref to root->node */
2847         free_extent_buffer(old);
2848
2849         add_root_to_dirty_list(root);
2850         atomic_inc(&c->refs);
2851         path->nodes[level] = c;
2852         path->locks[level] = BTRFS_WRITE_LOCK;
2853         path->slots[level] = 0;
2854         return 0;
2855 }
2856
2857 /*
2858  * worker function to insert a single pointer in a node.
2859  * the node should have enough room for the pointer already
2860  *
2861  * slot and level indicate where you want the key to go, and
2862  * blocknr is the block the key points to.
2863  */
2864 static void insert_ptr(struct btrfs_trans_handle *trans,
2865                        struct btrfs_path *path,
2866                        struct btrfs_disk_key *key, u64 bytenr,
2867                        int slot, int level)
2868 {
2869         struct extent_buffer *lower;
2870         int nritems;
2871         int ret;
2872
2873         BUG_ON(!path->nodes[level]);
2874         btrfs_assert_tree_write_locked(path->nodes[level]);
2875         lower = path->nodes[level];
2876         nritems = btrfs_header_nritems(lower);
2877         BUG_ON(slot > nritems);
2878         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2879         if (slot != nritems) {
2880                 if (level) {
2881                         ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2882                                         slot, nritems - slot);
2883                         BUG_ON(ret < 0);
2884                 }
2885                 memmove_extent_buffer(lower,
2886                               btrfs_node_key_ptr_offset(lower, slot + 1),
2887                               btrfs_node_key_ptr_offset(lower, slot),
2888                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2889         }
2890         if (level) {
2891                 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2892                                                     BTRFS_MOD_LOG_KEY_ADD);
2893                 BUG_ON(ret < 0);
2894         }
2895         btrfs_set_node_key(lower, key, slot);
2896         btrfs_set_node_blockptr(lower, slot, bytenr);
2897         WARN_ON(trans->transid == 0);
2898         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2899         btrfs_set_header_nritems(lower, nritems + 1);
2900         btrfs_mark_buffer_dirty(lower);
2901 }
2902
2903 /*
2904  * split the node at the specified level in path in two.
2905  * The path is corrected to point to the appropriate node after the split
2906  *
2907  * Before splitting this tries to make some room in the node by pushing
2908  * left and right, if either one works, it returns right away.
2909  *
2910  * returns 0 on success and < 0 on failure
2911  */
2912 static noinline int split_node(struct btrfs_trans_handle *trans,
2913                                struct btrfs_root *root,
2914                                struct btrfs_path *path, int level)
2915 {
2916         struct btrfs_fs_info *fs_info = root->fs_info;
2917         struct extent_buffer *c;
2918         struct extent_buffer *split;
2919         struct btrfs_disk_key disk_key;
2920         int mid;
2921         int ret;
2922         u32 c_nritems;
2923
2924         c = path->nodes[level];
2925         WARN_ON(btrfs_header_generation(c) != trans->transid);
2926         if (c == root->node) {
2927                 /*
2928                  * trying to split the root, lets make a new one
2929                  *
2930                  * tree mod log: We don't log_removal old root in
2931                  * insert_new_root, because that root buffer will be kept as a
2932                  * normal node. We are going to log removal of half of the
2933                  * elements below with btrfs_tree_mod_log_eb_copy(). We're
2934                  * holding a tree lock on the buffer, which is why we cannot
2935                  * race with other tree_mod_log users.
2936                  */
2937                 ret = insert_new_root(trans, root, path, level + 1);
2938                 if (ret)
2939                         return ret;
2940         } else {
2941                 ret = push_nodes_for_insert(trans, root, path, level);
2942                 c = path->nodes[level];
2943                 if (!ret && btrfs_header_nritems(c) <
2944                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2945                         return 0;
2946                 if (ret < 0)
2947                         return ret;
2948         }
2949
2950         c_nritems = btrfs_header_nritems(c);
2951         mid = (c_nritems + 1) / 2;
2952         btrfs_node_key(c, &disk_key, mid);
2953
2954         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2955                                        &disk_key, level, c->start, 0,
2956                                        BTRFS_NESTING_SPLIT);
2957         if (IS_ERR(split))
2958                 return PTR_ERR(split);
2959
2960         root_add_used(root, fs_info->nodesize);
2961         ASSERT(btrfs_header_level(c) == level);
2962
2963         ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2964         if (ret) {
2965                 btrfs_abort_transaction(trans, ret);
2966                 return ret;
2967         }
2968         copy_extent_buffer(split, c,
2969                            btrfs_node_key_ptr_offset(split, 0),
2970                            btrfs_node_key_ptr_offset(c, mid),
2971                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2972         btrfs_set_header_nritems(split, c_nritems - mid);
2973         btrfs_set_header_nritems(c, mid);
2974
2975         btrfs_mark_buffer_dirty(c);
2976         btrfs_mark_buffer_dirty(split);
2977
2978         insert_ptr(trans, path, &disk_key, split->start,
2979                    path->slots[level + 1] + 1, level + 1);
2980
2981         if (path->slots[level] >= mid) {
2982                 path->slots[level] -= mid;
2983                 btrfs_tree_unlock(c);
2984                 free_extent_buffer(c);
2985                 path->nodes[level] = split;
2986                 path->slots[level + 1] += 1;
2987         } else {
2988                 btrfs_tree_unlock(split);
2989                 free_extent_buffer(split);
2990         }
2991         return 0;
2992 }
2993
2994 /*
2995  * how many bytes are required to store the items in a leaf.  start
2996  * and nr indicate which items in the leaf to check.  This totals up the
2997  * space used both by the item structs and the item data
2998  */
2999 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3000 {
3001         int data_len;
3002         int nritems = btrfs_header_nritems(l);
3003         int end = min(nritems, start + nr) - 1;
3004
3005         if (!nr)
3006                 return 0;
3007         data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3008         data_len = data_len - btrfs_item_offset(l, end);
3009         data_len += sizeof(struct btrfs_item) * nr;
3010         WARN_ON(data_len < 0);
3011         return data_len;
3012 }
3013
3014 /*
3015  * The space between the end of the leaf items and
3016  * the start of the leaf data.  IOW, how much room
3017  * the leaf has left for both items and data
3018  */
3019 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3020 {
3021         struct btrfs_fs_info *fs_info = leaf->fs_info;
3022         int nritems = btrfs_header_nritems(leaf);
3023         int ret;
3024
3025         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3026         if (ret < 0) {
3027                 btrfs_crit(fs_info,
3028                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3029                            ret,
3030                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3031                            leaf_space_used(leaf, 0, nritems), nritems);
3032         }
3033         return ret;
3034 }
3035
3036 /*
3037  * min slot controls the lowest index we're willing to push to the
3038  * right.  We'll push up to and including min_slot, but no lower
3039  */
3040 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3041                                       struct btrfs_path *path,
3042                                       int data_size, int empty,
3043                                       struct extent_buffer *right,
3044                                       int free_space, u32 left_nritems,
3045                                       u32 min_slot)
3046 {
3047         struct btrfs_fs_info *fs_info = right->fs_info;
3048         struct extent_buffer *left = path->nodes[0];
3049         struct extent_buffer *upper = path->nodes[1];
3050         struct btrfs_map_token token;
3051         struct btrfs_disk_key disk_key;
3052         int slot;
3053         u32 i;
3054         int push_space = 0;
3055         int push_items = 0;
3056         u32 nr;
3057         u32 right_nritems;
3058         u32 data_end;
3059         u32 this_item_size;
3060
3061         if (empty)
3062                 nr = 0;
3063         else
3064                 nr = max_t(u32, 1, min_slot);
3065
3066         if (path->slots[0] >= left_nritems)
3067                 push_space += data_size;
3068
3069         slot = path->slots[1];
3070         i = left_nritems - 1;
3071         while (i >= nr) {
3072                 if (!empty && push_items > 0) {
3073                         if (path->slots[0] > i)
3074                                 break;
3075                         if (path->slots[0] == i) {
3076                                 int space = btrfs_leaf_free_space(left);
3077
3078                                 if (space + push_space * 2 > free_space)
3079                                         break;
3080                         }
3081                 }
3082
3083                 if (path->slots[0] == i)
3084                         push_space += data_size;
3085
3086                 this_item_size = btrfs_item_size(left, i);
3087                 if (this_item_size + sizeof(struct btrfs_item) +
3088                     push_space > free_space)
3089                         break;
3090
3091                 push_items++;
3092                 push_space += this_item_size + sizeof(struct btrfs_item);
3093                 if (i == 0)
3094                         break;
3095                 i--;
3096         }
3097
3098         if (push_items == 0)
3099                 goto out_unlock;
3100
3101         WARN_ON(!empty && push_items == left_nritems);
3102
3103         /* push left to right */
3104         right_nritems = btrfs_header_nritems(right);
3105
3106         push_space = btrfs_item_data_end(left, left_nritems - push_items);
3107         push_space -= leaf_data_end(left);
3108
3109         /* make room in the right data area */
3110         data_end = leaf_data_end(right);
3111         memmove_leaf_data(right, data_end - push_space, data_end,
3112                           BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3113
3114         /* copy from the left data area */
3115         copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3116                        leaf_data_end(left), push_space);
3117
3118         memmove_leaf_items(right, push_items, 0, right_nritems);
3119
3120         /* copy the items from left to right */
3121         copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3122
3123         /* update the item pointers */
3124         btrfs_init_map_token(&token, right);
3125         right_nritems += push_items;
3126         btrfs_set_header_nritems(right, right_nritems);
3127         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3128         for (i = 0; i < right_nritems; i++) {
3129                 push_space -= btrfs_token_item_size(&token, i);
3130                 btrfs_set_token_item_offset(&token, i, push_space);
3131         }
3132
3133         left_nritems -= push_items;
3134         btrfs_set_header_nritems(left, left_nritems);
3135
3136         if (left_nritems)
3137                 btrfs_mark_buffer_dirty(left);
3138         else
3139                 btrfs_clear_buffer_dirty(trans, left);
3140
3141         btrfs_mark_buffer_dirty(right);
3142
3143         btrfs_item_key(right, &disk_key, 0);
3144         btrfs_set_node_key(upper, &disk_key, slot + 1);
3145         btrfs_mark_buffer_dirty(upper);
3146
3147         /* then fixup the leaf pointer in the path */
3148         if (path->slots[0] >= left_nritems) {
3149                 path->slots[0] -= left_nritems;
3150                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3151                         btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3152                 btrfs_tree_unlock(path->nodes[0]);
3153                 free_extent_buffer(path->nodes[0]);
3154                 path->nodes[0] = right;
3155                 path->slots[1] += 1;
3156         } else {
3157                 btrfs_tree_unlock(right);
3158                 free_extent_buffer(right);
3159         }
3160         return 0;
3161
3162 out_unlock:
3163         btrfs_tree_unlock(right);
3164         free_extent_buffer(right);
3165         return 1;
3166 }
3167
3168 /*
3169  * push some data in the path leaf to the right, trying to free up at
3170  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3171  *
3172  * returns 1 if the push failed because the other node didn't have enough
3173  * room, 0 if everything worked out and < 0 if there were major errors.
3174  *
3175  * this will push starting from min_slot to the end of the leaf.  It won't
3176  * push any slot lower than min_slot
3177  */
3178 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3179                            *root, struct btrfs_path *path,
3180                            int min_data_size, int data_size,
3181                            int empty, u32 min_slot)
3182 {
3183         struct extent_buffer *left = path->nodes[0];
3184         struct extent_buffer *right;
3185         struct extent_buffer *upper;
3186         int slot;
3187         int free_space;
3188         u32 left_nritems;
3189         int ret;
3190
3191         if (!path->nodes[1])
3192                 return 1;
3193
3194         slot = path->slots[1];
3195         upper = path->nodes[1];
3196         if (slot >= btrfs_header_nritems(upper) - 1)
3197                 return 1;
3198
3199         btrfs_assert_tree_write_locked(path->nodes[1]);
3200
3201         right = btrfs_read_node_slot(upper, slot + 1);
3202         if (IS_ERR(right))
3203                 return PTR_ERR(right);
3204
3205         __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3206
3207         free_space = btrfs_leaf_free_space(right);
3208         if (free_space < data_size)
3209                 goto out_unlock;
3210
3211         ret = btrfs_cow_block(trans, root, right, upper,
3212                               slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3213         if (ret)
3214                 goto out_unlock;
3215
3216         left_nritems = btrfs_header_nritems(left);
3217         if (left_nritems == 0)
3218                 goto out_unlock;
3219
3220         if (check_sibling_keys(left, right)) {
3221                 ret = -EUCLEAN;
3222                 btrfs_abort_transaction(trans, ret);
3223                 btrfs_tree_unlock(right);
3224                 free_extent_buffer(right);
3225                 return ret;
3226         }
3227         if (path->slots[0] == left_nritems && !empty) {
3228                 /* Key greater than all keys in the leaf, right neighbor has
3229                  * enough room for it and we're not emptying our leaf to delete
3230                  * it, therefore use right neighbor to insert the new item and
3231                  * no need to touch/dirty our left leaf. */
3232                 btrfs_tree_unlock(left);
3233                 free_extent_buffer(left);
3234                 path->nodes[0] = right;
3235                 path->slots[0] = 0;
3236                 path->slots[1]++;
3237                 return 0;
3238         }
3239
3240         return __push_leaf_right(trans, path, min_data_size, empty, right,
3241                                  free_space, left_nritems, min_slot);
3242 out_unlock:
3243         btrfs_tree_unlock(right);
3244         free_extent_buffer(right);
3245         return 1;
3246 }
3247
3248 /*
3249  * push some data in the path leaf to the left, trying to free up at
3250  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3251  *
3252  * max_slot can put a limit on how far into the leaf we'll push items.  The
3253  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3254  * items
3255  */
3256 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3257                                      struct btrfs_path *path, int data_size,
3258                                      int empty, struct extent_buffer *left,
3259                                      int free_space, u32 right_nritems,
3260                                      u32 max_slot)
3261 {
3262         struct btrfs_fs_info *fs_info = left->fs_info;
3263         struct btrfs_disk_key disk_key;
3264         struct extent_buffer *right = path->nodes[0];
3265         int i;
3266         int push_space = 0;
3267         int push_items = 0;
3268         u32 old_left_nritems;
3269         u32 nr;
3270         int ret = 0;
3271         u32 this_item_size;
3272         u32 old_left_item_size;
3273         struct btrfs_map_token token;
3274
3275         if (empty)
3276                 nr = min(right_nritems, max_slot);
3277         else
3278                 nr = min(right_nritems - 1, max_slot);
3279
3280         for (i = 0; i < nr; i++) {
3281                 if (!empty && push_items > 0) {
3282                         if (path->slots[0] < i)
3283                                 break;
3284                         if (path->slots[0] == i) {
3285                                 int space = btrfs_leaf_free_space(right);
3286
3287                                 if (space + push_space * 2 > free_space)
3288                                         break;
3289                         }
3290                 }
3291
3292                 if (path->slots[0] == i)
3293                         push_space += data_size;
3294
3295                 this_item_size = btrfs_item_size(right, i);
3296                 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3297                     free_space)
3298                         break;
3299
3300                 push_items++;
3301                 push_space += this_item_size + sizeof(struct btrfs_item);
3302         }
3303
3304         if (push_items == 0) {
3305                 ret = 1;
3306                 goto out;
3307         }
3308         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3309
3310         /* push data from right to left */
3311         copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3312
3313         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3314                      btrfs_item_offset(right, push_items - 1);
3315
3316         copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3317                        btrfs_item_offset(right, push_items - 1), push_space);
3318         old_left_nritems = btrfs_header_nritems(left);
3319         BUG_ON(old_left_nritems <= 0);
3320
3321         btrfs_init_map_token(&token, left);
3322         old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3323         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3324                 u32 ioff;
3325
3326                 ioff = btrfs_token_item_offset(&token, i);
3327                 btrfs_set_token_item_offset(&token, i,
3328                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3329         }
3330         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3331
3332         /* fixup right node */
3333         if (push_items > right_nritems)
3334                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3335                        right_nritems);
3336
3337         if (push_items < right_nritems) {
3338                 push_space = btrfs_item_offset(right, push_items - 1) -
3339                                                   leaf_data_end(right);
3340                 memmove_leaf_data(right,
3341                                   BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3342                                   leaf_data_end(right), push_space);
3343
3344                 memmove_leaf_items(right, 0, push_items,
3345                                    btrfs_header_nritems(right) - push_items);
3346         }
3347
3348         btrfs_init_map_token(&token, right);
3349         right_nritems -= push_items;
3350         btrfs_set_header_nritems(right, right_nritems);
3351         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3352         for (i = 0; i < right_nritems; i++) {
3353                 push_space = push_space - btrfs_token_item_size(&token, i);
3354                 btrfs_set_token_item_offset(&token, i, push_space);
3355         }
3356
3357         btrfs_mark_buffer_dirty(left);
3358         if (right_nritems)
3359                 btrfs_mark_buffer_dirty(right);
3360         else
3361                 btrfs_clear_buffer_dirty(trans, right);
3362
3363         btrfs_item_key(right, &disk_key, 0);
3364         fixup_low_keys(path, &disk_key, 1);
3365
3366         /* then fixup the leaf pointer in the path */
3367         if (path->slots[0] < push_items) {
3368                 path->slots[0] += old_left_nritems;
3369                 btrfs_tree_unlock(path->nodes[0]);
3370                 free_extent_buffer(path->nodes[0]);
3371                 path->nodes[0] = left;
3372                 path->slots[1] -= 1;
3373         } else {
3374                 btrfs_tree_unlock(left);
3375                 free_extent_buffer(left);
3376                 path->slots[0] -= push_items;
3377         }
3378         BUG_ON(path->slots[0] < 0);
3379         return ret;
3380 out:
3381         btrfs_tree_unlock(left);
3382         free_extent_buffer(left);
3383         return ret;
3384 }
3385
3386 /*
3387  * push some data in the path leaf to the left, trying to free up at
3388  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3389  *
3390  * max_slot can put a limit on how far into the leaf we'll push items.  The
3391  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3392  * items
3393  */
3394 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3395                           *root, struct btrfs_path *path, int min_data_size,
3396                           int data_size, int empty, u32 max_slot)
3397 {
3398         struct extent_buffer *right = path->nodes[0];
3399         struct extent_buffer *left;
3400         int slot;
3401         int free_space;
3402         u32 right_nritems;
3403         int ret = 0;
3404
3405         slot = path->slots[1];
3406         if (slot == 0)
3407                 return 1;
3408         if (!path->nodes[1])
3409                 return 1;
3410
3411         right_nritems = btrfs_header_nritems(right);
3412         if (right_nritems == 0)
3413                 return 1;
3414
3415         btrfs_assert_tree_write_locked(path->nodes[1]);
3416
3417         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3418         if (IS_ERR(left))
3419                 return PTR_ERR(left);
3420
3421         __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3422
3423         free_space = btrfs_leaf_free_space(left);
3424         if (free_space < data_size) {
3425                 ret = 1;
3426                 goto out;
3427         }
3428
3429         ret = btrfs_cow_block(trans, root, left,
3430                               path->nodes[1], slot - 1, &left,
3431                               BTRFS_NESTING_LEFT_COW);
3432         if (ret) {
3433                 /* we hit -ENOSPC, but it isn't fatal here */
3434                 if (ret == -ENOSPC)
3435                         ret = 1;
3436                 goto out;
3437         }
3438
3439         if (check_sibling_keys(left, right)) {
3440                 ret = -EUCLEAN;
3441                 btrfs_abort_transaction(trans, ret);
3442                 goto out;
3443         }
3444         return __push_leaf_left(trans, path, min_data_size, empty, left,
3445                                 free_space, right_nritems, max_slot);
3446 out:
3447         btrfs_tree_unlock(left);
3448         free_extent_buffer(left);
3449         return ret;
3450 }
3451
3452 /*
3453  * split the path's leaf in two, making sure there is at least data_size
3454  * available for the resulting leaf level of the path.
3455  */
3456 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3457                                     struct btrfs_path *path,
3458                                     struct extent_buffer *l,
3459                                     struct extent_buffer *right,
3460                                     int slot, int mid, int nritems)
3461 {
3462         struct btrfs_fs_info *fs_info = trans->fs_info;
3463         int data_copy_size;
3464         int rt_data_off;
3465         int i;
3466         struct btrfs_disk_key disk_key;
3467         struct btrfs_map_token token;
3468
3469         nritems = nritems - mid;
3470         btrfs_set_header_nritems(right, nritems);
3471         data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3472
3473         copy_leaf_items(right, l, 0, mid, nritems);
3474
3475         copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3476                        leaf_data_end(l), data_copy_size);
3477
3478         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3479
3480         btrfs_init_map_token(&token, right);
3481         for (i = 0; i < nritems; i++) {
3482                 u32 ioff;
3483
3484                 ioff = btrfs_token_item_offset(&token, i);
3485                 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3486         }
3487
3488         btrfs_set_header_nritems(l, mid);
3489         btrfs_item_key(right, &disk_key, 0);
3490         insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3491
3492         btrfs_mark_buffer_dirty(right);
3493         btrfs_mark_buffer_dirty(l);
3494         BUG_ON(path->slots[0] != slot);
3495
3496         if (mid <= slot) {
3497                 btrfs_tree_unlock(path->nodes[0]);
3498                 free_extent_buffer(path->nodes[0]);
3499                 path->nodes[0] = right;
3500                 path->slots[0] -= mid;
3501                 path->slots[1] += 1;
3502         } else {
3503                 btrfs_tree_unlock(right);
3504                 free_extent_buffer(right);
3505         }
3506
3507         BUG_ON(path->slots[0] < 0);
3508 }
3509
3510 /*
3511  * double splits happen when we need to insert a big item in the middle
3512  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3513  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3514  *          A                 B                 C
3515  *
3516  * We avoid this by trying to push the items on either side of our target
3517  * into the adjacent leaves.  If all goes well we can avoid the double split
3518  * completely.
3519  */
3520 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3521                                           struct btrfs_root *root,
3522                                           struct btrfs_path *path,
3523                                           int data_size)
3524 {
3525         int ret;
3526         int progress = 0;
3527         int slot;
3528         u32 nritems;
3529         int space_needed = data_size;
3530
3531         slot = path->slots[0];
3532         if (slot < btrfs_header_nritems(path->nodes[0]))
3533                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3534
3535         /*
3536          * try to push all the items after our slot into the
3537          * right leaf
3538          */
3539         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3540         if (ret < 0)
3541                 return ret;
3542
3543         if (ret == 0)
3544                 progress++;
3545
3546         nritems = btrfs_header_nritems(path->nodes[0]);
3547         /*
3548          * our goal is to get our slot at the start or end of a leaf.  If
3549          * we've done so we're done
3550          */
3551         if (path->slots[0] == 0 || path->slots[0] == nritems)
3552                 return 0;
3553
3554         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3555                 return 0;
3556
3557         /* try to push all the items before our slot into the next leaf */
3558         slot = path->slots[0];
3559         space_needed = data_size;
3560         if (slot > 0)
3561                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3562         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3563         if (ret < 0)
3564                 return ret;
3565
3566         if (ret == 0)
3567                 progress++;
3568
3569         if (progress)
3570                 return 0;
3571         return 1;
3572 }
3573
3574 /*
3575  * split the path's leaf in two, making sure there is at least data_size
3576  * available for the resulting leaf level of the path.
3577  *
3578  * returns 0 if all went well and < 0 on failure.
3579  */
3580 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3581                                struct btrfs_root *root,
3582                                const struct btrfs_key *ins_key,
3583                                struct btrfs_path *path, int data_size,
3584                                int extend)
3585 {
3586         struct btrfs_disk_key disk_key;
3587         struct extent_buffer *l;
3588         u32 nritems;
3589         int mid;
3590         int slot;
3591         struct extent_buffer *right;
3592         struct btrfs_fs_info *fs_info = root->fs_info;
3593         int ret = 0;
3594         int wret;
3595         int split;
3596         int num_doubles = 0;
3597         int tried_avoid_double = 0;
3598
3599         l = path->nodes[0];
3600         slot = path->slots[0];
3601         if (extend && data_size + btrfs_item_size(l, slot) +
3602             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3603                 return -EOVERFLOW;
3604
3605         /* first try to make some room by pushing left and right */
3606         if (data_size && path->nodes[1]) {
3607                 int space_needed = data_size;
3608
3609                 if (slot < btrfs_header_nritems(l))
3610                         space_needed -= btrfs_leaf_free_space(l);
3611
3612                 wret = push_leaf_right(trans, root, path, space_needed,
3613                                        space_needed, 0, 0);
3614                 if (wret < 0)
3615                         return wret;
3616                 if (wret) {
3617                         space_needed = data_size;
3618                         if (slot > 0)
3619                                 space_needed -= btrfs_leaf_free_space(l);
3620                         wret = push_leaf_left(trans, root, path, space_needed,
3621                                               space_needed, 0, (u32)-1);
3622                         if (wret < 0)
3623                                 return wret;
3624                 }
3625                 l = path->nodes[0];
3626
3627                 /* did the pushes work? */
3628                 if (btrfs_leaf_free_space(l) >= data_size)
3629                         return 0;
3630         }
3631
3632         if (!path->nodes[1]) {
3633                 ret = insert_new_root(trans, root, path, 1);
3634                 if (ret)
3635                         return ret;
3636         }
3637 again:
3638         split = 1;
3639         l = path->nodes[0];
3640         slot = path->slots[0];
3641         nritems = btrfs_header_nritems(l);
3642         mid = (nritems + 1) / 2;
3643
3644         if (mid <= slot) {
3645                 if (nritems == 1 ||
3646                     leaf_space_used(l, mid, nritems - mid) + data_size >
3647                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3648                         if (slot >= nritems) {
3649                                 split = 0;
3650                         } else {
3651                                 mid = slot;
3652                                 if (mid != nritems &&
3653                                     leaf_space_used(l, mid, nritems - mid) +
3654                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3655                                         if (data_size && !tried_avoid_double)
3656                                                 goto push_for_double;
3657                                         split = 2;
3658                                 }
3659                         }
3660                 }
3661         } else {
3662                 if (leaf_space_used(l, 0, mid) + data_size >
3663                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3664                         if (!extend && data_size && slot == 0) {
3665                                 split = 0;
3666                         } else if ((extend || !data_size) && slot == 0) {
3667                                 mid = 1;
3668                         } else {
3669                                 mid = slot;
3670                                 if (mid != nritems &&
3671                                     leaf_space_used(l, mid, nritems - mid) +
3672                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3673                                         if (data_size && !tried_avoid_double)
3674                                                 goto push_for_double;
3675                                         split = 2;
3676                                 }
3677                         }
3678                 }
3679         }
3680
3681         if (split == 0)
3682                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3683         else
3684                 btrfs_item_key(l, &disk_key, mid);
3685
3686         /*
3687          * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3688          * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3689          * subclasses, which is 8 at the time of this patch, and we've maxed it
3690          * out.  In the future we could add a
3691          * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3692          * use BTRFS_NESTING_NEW_ROOT.
3693          */
3694         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3695                                        &disk_key, 0, l->start, 0,
3696                                        num_doubles ? BTRFS_NESTING_NEW_ROOT :
3697                                        BTRFS_NESTING_SPLIT);
3698         if (IS_ERR(right))
3699                 return PTR_ERR(right);
3700
3701         root_add_used(root, fs_info->nodesize);
3702
3703         if (split == 0) {
3704                 if (mid <= slot) {
3705                         btrfs_set_header_nritems(right, 0);
3706                         insert_ptr(trans, path, &disk_key,
3707                                    right->start, path->slots[1] + 1, 1);
3708                         btrfs_tree_unlock(path->nodes[0]);
3709                         free_extent_buffer(path->nodes[0]);
3710                         path->nodes[0] = right;
3711                         path->slots[0] = 0;
3712                         path->slots[1] += 1;
3713                 } else {
3714                         btrfs_set_header_nritems(right, 0);
3715                         insert_ptr(trans, path, &disk_key,
3716                                    right->start, path->slots[1], 1);
3717                         btrfs_tree_unlock(path->nodes[0]);
3718                         free_extent_buffer(path->nodes[0]);
3719                         path->nodes[0] = right;
3720                         path->slots[0] = 0;
3721                         if (path->slots[1] == 0)
3722                                 fixup_low_keys(path, &disk_key, 1);
3723                 }
3724                 /*
3725                  * We create a new leaf 'right' for the required ins_len and
3726                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3727                  * the content of ins_len to 'right'.
3728                  */
3729                 return ret;
3730         }
3731
3732         copy_for_split(trans, path, l, right, slot, mid, nritems);
3733
3734         if (split == 2) {
3735                 BUG_ON(num_doubles != 0);
3736                 num_doubles++;
3737                 goto again;
3738         }
3739
3740         return 0;
3741
3742 push_for_double:
3743         push_for_double_split(trans, root, path, data_size);
3744         tried_avoid_double = 1;
3745         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3746                 return 0;
3747         goto again;
3748 }
3749
3750 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3751                                          struct btrfs_root *root,
3752                                          struct btrfs_path *path, int ins_len)
3753 {
3754         struct btrfs_key key;
3755         struct extent_buffer *leaf;
3756         struct btrfs_file_extent_item *fi;
3757         u64 extent_len = 0;
3758         u32 item_size;
3759         int ret;
3760
3761         leaf = path->nodes[0];
3762         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3763
3764         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3765                key.type != BTRFS_EXTENT_CSUM_KEY);
3766
3767         if (btrfs_leaf_free_space(leaf) >= ins_len)
3768                 return 0;
3769
3770         item_size = btrfs_item_size(leaf, path->slots[0]);
3771         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3772                 fi = btrfs_item_ptr(leaf, path->slots[0],
3773                                     struct btrfs_file_extent_item);
3774                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3775         }
3776         btrfs_release_path(path);
3777
3778         path->keep_locks = 1;
3779         path->search_for_split = 1;
3780         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3781         path->search_for_split = 0;
3782         if (ret > 0)
3783                 ret = -EAGAIN;
3784         if (ret < 0)
3785                 goto err;
3786
3787         ret = -EAGAIN;
3788         leaf = path->nodes[0];
3789         /* if our item isn't there, return now */
3790         if (item_size != btrfs_item_size(leaf, path->slots[0]))
3791                 goto err;
3792
3793         /* the leaf has  changed, it now has room.  return now */
3794         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3795                 goto err;
3796
3797         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3798                 fi = btrfs_item_ptr(leaf, path->slots[0],
3799                                     struct btrfs_file_extent_item);
3800                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3801                         goto err;
3802         }
3803
3804         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3805         if (ret)
3806                 goto err;
3807
3808         path->keep_locks = 0;
3809         btrfs_unlock_up_safe(path, 1);
3810         return 0;
3811 err:
3812         path->keep_locks = 0;
3813         return ret;
3814 }
3815
3816 static noinline int split_item(struct btrfs_path *path,
3817                                const struct btrfs_key *new_key,
3818                                unsigned long split_offset)
3819 {
3820         struct extent_buffer *leaf;
3821         int orig_slot, slot;
3822         char *buf;
3823         u32 nritems;
3824         u32 item_size;
3825         u32 orig_offset;
3826         struct btrfs_disk_key disk_key;
3827
3828         leaf = path->nodes[0];
3829         BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3830
3831         orig_slot = path->slots[0];
3832         orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3833         item_size = btrfs_item_size(leaf, path->slots[0]);
3834
3835         buf = kmalloc(item_size, GFP_NOFS);
3836         if (!buf)
3837                 return -ENOMEM;
3838
3839         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3840                             path->slots[0]), item_size);
3841
3842         slot = path->slots[0] + 1;
3843         nritems = btrfs_header_nritems(leaf);
3844         if (slot != nritems) {
3845                 /* shift the items */
3846                 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3847         }
3848
3849         btrfs_cpu_key_to_disk(&disk_key, new_key);
3850         btrfs_set_item_key(leaf, &disk_key, slot);
3851
3852         btrfs_set_item_offset(leaf, slot, orig_offset);
3853         btrfs_set_item_size(leaf, slot, item_size - split_offset);
3854
3855         btrfs_set_item_offset(leaf, orig_slot,
3856                                  orig_offset + item_size - split_offset);
3857         btrfs_set_item_size(leaf, orig_slot, split_offset);
3858
3859         btrfs_set_header_nritems(leaf, nritems + 1);
3860
3861         /* write the data for the start of the original item */
3862         write_extent_buffer(leaf, buf,
3863                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3864                             split_offset);
3865
3866         /* write the data for the new item */
3867         write_extent_buffer(leaf, buf + split_offset,
3868                             btrfs_item_ptr_offset(leaf, slot),
3869                             item_size - split_offset);
3870         btrfs_mark_buffer_dirty(leaf);
3871
3872         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3873         kfree(buf);
3874         return 0;
3875 }
3876
3877 /*
3878  * This function splits a single item into two items,
3879  * giving 'new_key' to the new item and splitting the
3880  * old one at split_offset (from the start of the item).
3881  *
3882  * The path may be released by this operation.  After
3883  * the split, the path is pointing to the old item.  The
3884  * new item is going to be in the same node as the old one.
3885  *
3886  * Note, the item being split must be smaller enough to live alone on
3887  * a tree block with room for one extra struct btrfs_item
3888  *
3889  * This allows us to split the item in place, keeping a lock on the
3890  * leaf the entire time.
3891  */
3892 int btrfs_split_item(struct btrfs_trans_handle *trans,
3893                      struct btrfs_root *root,
3894                      struct btrfs_path *path,
3895                      const struct btrfs_key *new_key,
3896                      unsigned long split_offset)
3897 {
3898         int ret;
3899         ret = setup_leaf_for_split(trans, root, path,
3900                                    sizeof(struct btrfs_item));
3901         if (ret)
3902                 return ret;
3903
3904         ret = split_item(path, new_key, split_offset);
3905         return ret;
3906 }
3907
3908 /*
3909  * make the item pointed to by the path smaller.  new_size indicates
3910  * how small to make it, and from_end tells us if we just chop bytes
3911  * off the end of the item or if we shift the item to chop bytes off
3912  * the front.
3913  */
3914 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3915 {
3916         int slot;
3917         struct extent_buffer *leaf;
3918         u32 nritems;
3919         unsigned int data_end;
3920         unsigned int old_data_start;
3921         unsigned int old_size;
3922         unsigned int size_diff;
3923         int i;
3924         struct btrfs_map_token token;
3925
3926         leaf = path->nodes[0];
3927         slot = path->slots[0];
3928
3929         old_size = btrfs_item_size(leaf, slot);
3930         if (old_size == new_size)
3931                 return;
3932
3933         nritems = btrfs_header_nritems(leaf);
3934         data_end = leaf_data_end(leaf);
3935
3936         old_data_start = btrfs_item_offset(leaf, slot);
3937
3938         size_diff = old_size - new_size;
3939
3940         BUG_ON(slot < 0);
3941         BUG_ON(slot >= nritems);
3942
3943         /*
3944          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3945          */
3946         /* first correct the data pointers */
3947         btrfs_init_map_token(&token, leaf);
3948         for (i = slot; i < nritems; i++) {
3949                 u32 ioff;
3950
3951                 ioff = btrfs_token_item_offset(&token, i);
3952                 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3953         }
3954
3955         /* shift the data */
3956         if (from_end) {
3957                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
3958                                   old_data_start + new_size - data_end);
3959         } else {
3960                 struct btrfs_disk_key disk_key;
3961                 u64 offset;
3962
3963                 btrfs_item_key(leaf, &disk_key, slot);
3964
3965                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3966                         unsigned long ptr;
3967                         struct btrfs_file_extent_item *fi;
3968
3969                         fi = btrfs_item_ptr(leaf, slot,
3970                                             struct btrfs_file_extent_item);
3971                         fi = (struct btrfs_file_extent_item *)(
3972                              (unsigned long)fi - size_diff);
3973
3974                         if (btrfs_file_extent_type(leaf, fi) ==
3975                             BTRFS_FILE_EXTENT_INLINE) {
3976                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3977                                 memmove_extent_buffer(leaf, ptr,
3978                                       (unsigned long)fi,
3979                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
3980                         }
3981                 }
3982
3983                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
3984                                   old_data_start - data_end);
3985
3986                 offset = btrfs_disk_key_offset(&disk_key);
3987                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3988                 btrfs_set_item_key(leaf, &disk_key, slot);
3989                 if (slot == 0)
3990                         fixup_low_keys(path, &disk_key, 1);
3991         }
3992
3993         btrfs_set_item_size(leaf, slot, new_size);
3994         btrfs_mark_buffer_dirty(leaf);
3995
3996         if (btrfs_leaf_free_space(leaf) < 0) {
3997                 btrfs_print_leaf(leaf);
3998                 BUG();
3999         }
4000 }
4001
4002 /*
4003  * make the item pointed to by the path bigger, data_size is the added size.
4004  */
4005 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4006 {
4007         int slot;
4008         struct extent_buffer *leaf;
4009         u32 nritems;
4010         unsigned int data_end;
4011         unsigned int old_data;
4012         unsigned int old_size;
4013         int i;
4014         struct btrfs_map_token token;
4015
4016         leaf = path->nodes[0];
4017
4018         nritems = btrfs_header_nritems(leaf);
4019         data_end = leaf_data_end(leaf);
4020
4021         if (btrfs_leaf_free_space(leaf) < data_size) {
4022                 btrfs_print_leaf(leaf);
4023                 BUG();
4024         }
4025         slot = path->slots[0];
4026         old_data = btrfs_item_data_end(leaf, slot);
4027
4028         BUG_ON(slot < 0);
4029         if (slot >= nritems) {
4030                 btrfs_print_leaf(leaf);
4031                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4032                            slot, nritems);
4033                 BUG();
4034         }
4035
4036         /*
4037          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4038          */
4039         /* first correct the data pointers */
4040         btrfs_init_map_token(&token, leaf);
4041         for (i = slot; i < nritems; i++) {
4042                 u32 ioff;
4043
4044                 ioff = btrfs_token_item_offset(&token, i);
4045                 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4046         }
4047
4048         /* shift the data */
4049         memmove_leaf_data(leaf, data_end - data_size, data_end,
4050                           old_data - data_end);
4051
4052         data_end = old_data;
4053         old_size = btrfs_item_size(leaf, slot);
4054         btrfs_set_item_size(leaf, slot, old_size + data_size);
4055         btrfs_mark_buffer_dirty(leaf);
4056
4057         if (btrfs_leaf_free_space(leaf) < 0) {
4058                 btrfs_print_leaf(leaf);
4059                 BUG();
4060         }
4061 }
4062
4063 /*
4064  * Make space in the node before inserting one or more items.
4065  *
4066  * @root:       root we are inserting items to
4067  * @path:       points to the leaf/slot where we are going to insert new items
4068  * @batch:      information about the batch of items to insert
4069  *
4070  * Main purpose is to save stack depth by doing the bulk of the work in a
4071  * function that doesn't call btrfs_search_slot
4072  */
4073 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4074                                    const struct btrfs_item_batch *batch)
4075 {
4076         struct btrfs_fs_info *fs_info = root->fs_info;
4077         int i;
4078         u32 nritems;
4079         unsigned int data_end;
4080         struct btrfs_disk_key disk_key;
4081         struct extent_buffer *leaf;
4082         int slot;
4083         struct btrfs_map_token token;
4084         u32 total_size;
4085
4086         /*
4087          * Before anything else, update keys in the parent and other ancestors
4088          * if needed, then release the write locks on them, so that other tasks
4089          * can use them while we modify the leaf.
4090          */
4091         if (path->slots[0] == 0) {
4092                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4093                 fixup_low_keys(path, &disk_key, 1);
4094         }
4095         btrfs_unlock_up_safe(path, 1);
4096
4097         leaf = path->nodes[0];
4098         slot = path->slots[0];
4099
4100         nritems = btrfs_header_nritems(leaf);
4101         data_end = leaf_data_end(leaf);
4102         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4103
4104         if (btrfs_leaf_free_space(leaf) < total_size) {
4105                 btrfs_print_leaf(leaf);
4106                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4107                            total_size, btrfs_leaf_free_space(leaf));
4108                 BUG();
4109         }
4110
4111         btrfs_init_map_token(&token, leaf);
4112         if (slot != nritems) {
4113                 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4114
4115                 if (old_data < data_end) {
4116                         btrfs_print_leaf(leaf);
4117                         btrfs_crit(fs_info,
4118                 "item at slot %d with data offset %u beyond data end of leaf %u",
4119                                    slot, old_data, data_end);
4120                         BUG();
4121                 }
4122                 /*
4123                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4124                  */
4125                 /* first correct the data pointers */
4126                 for (i = slot; i < nritems; i++) {
4127                         u32 ioff;
4128
4129                         ioff = btrfs_token_item_offset(&token, i);
4130                         btrfs_set_token_item_offset(&token, i,
4131                                                        ioff - batch->total_data_size);
4132                 }
4133                 /* shift the items */
4134                 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4135
4136                 /* shift the data */
4137                 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4138                                   data_end, old_data - data_end);
4139                 data_end = old_data;
4140         }
4141
4142         /* setup the item for the new data */
4143         for (i = 0; i < batch->nr; i++) {
4144                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4145                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4146                 data_end -= batch->data_sizes[i];
4147                 btrfs_set_token_item_offset(&token, slot + i, data_end);
4148                 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4149         }
4150
4151         btrfs_set_header_nritems(leaf, nritems + batch->nr);
4152         btrfs_mark_buffer_dirty(leaf);
4153
4154         if (btrfs_leaf_free_space(leaf) < 0) {
4155                 btrfs_print_leaf(leaf);
4156                 BUG();
4157         }
4158 }
4159
4160 /*
4161  * Insert a new item into a leaf.
4162  *
4163  * @root:      The root of the btree.
4164  * @path:      A path pointing to the target leaf and slot.
4165  * @key:       The key of the new item.
4166  * @data_size: The size of the data associated with the new key.
4167  */
4168 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4169                                  struct btrfs_path *path,
4170                                  const struct btrfs_key *key,
4171                                  u32 data_size)
4172 {
4173         struct btrfs_item_batch batch;
4174
4175         batch.keys = key;
4176         batch.data_sizes = &data_size;
4177         batch.total_data_size = data_size;
4178         batch.nr = 1;
4179
4180         setup_items_for_insert(root, path, &batch);
4181 }
4182
4183 /*
4184  * Given a key and some data, insert items into the tree.
4185  * This does all the path init required, making room in the tree if needed.
4186  */
4187 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4188                             struct btrfs_root *root,
4189                             struct btrfs_path *path,
4190                             const struct btrfs_item_batch *batch)
4191 {
4192         int ret = 0;
4193         int slot;
4194         u32 total_size;
4195
4196         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4197         ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4198         if (ret == 0)
4199                 return -EEXIST;
4200         if (ret < 0)
4201                 return ret;
4202
4203         slot = path->slots[0];
4204         BUG_ON(slot < 0);
4205
4206         setup_items_for_insert(root, path, batch);
4207         return 0;
4208 }
4209
4210 /*
4211  * Given a key and some data, insert an item into the tree.
4212  * This does all the path init required, making room in the tree if needed.
4213  */
4214 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4215                       const struct btrfs_key *cpu_key, void *data,
4216                       u32 data_size)
4217 {
4218         int ret = 0;
4219         struct btrfs_path *path;
4220         struct extent_buffer *leaf;
4221         unsigned long ptr;
4222
4223         path = btrfs_alloc_path();
4224         if (!path)
4225                 return -ENOMEM;
4226         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4227         if (!ret) {
4228                 leaf = path->nodes[0];
4229                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4230                 write_extent_buffer(leaf, data, ptr, data_size);
4231                 btrfs_mark_buffer_dirty(leaf);
4232         }
4233         btrfs_free_path(path);
4234         return ret;
4235 }
4236
4237 /*
4238  * This function duplicates an item, giving 'new_key' to the new item.
4239  * It guarantees both items live in the same tree leaf and the new item is
4240  * contiguous with the original item.
4241  *
4242  * This allows us to split a file extent in place, keeping a lock on the leaf
4243  * the entire time.
4244  */
4245 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4246                          struct btrfs_root *root,
4247                          struct btrfs_path *path,
4248                          const struct btrfs_key *new_key)
4249 {
4250         struct extent_buffer *leaf;
4251         int ret;
4252         u32 item_size;
4253
4254         leaf = path->nodes[0];
4255         item_size = btrfs_item_size(leaf, path->slots[0]);
4256         ret = setup_leaf_for_split(trans, root, path,
4257                                    item_size + sizeof(struct btrfs_item));
4258         if (ret)
4259                 return ret;
4260
4261         path->slots[0]++;
4262         btrfs_setup_item_for_insert(root, path, new_key, item_size);
4263         leaf = path->nodes[0];
4264         memcpy_extent_buffer(leaf,
4265                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4266                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4267                              item_size);
4268         return 0;
4269 }
4270
4271 /*
4272  * delete the pointer from a given node.
4273  *
4274  * the tree should have been previously balanced so the deletion does not
4275  * empty a node.
4276  */
4277 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4278                     int level, int slot)
4279 {
4280         struct extent_buffer *parent = path->nodes[level];
4281         u32 nritems;
4282         int ret;
4283
4284         nritems = btrfs_header_nritems(parent);
4285         if (slot != nritems - 1) {
4286                 if (level) {
4287                         ret = btrfs_tree_mod_log_insert_move(parent, slot,
4288                                         slot + 1, nritems - slot - 1);
4289                         BUG_ON(ret < 0);
4290                 }
4291                 memmove_extent_buffer(parent,
4292                               btrfs_node_key_ptr_offset(parent, slot),
4293                               btrfs_node_key_ptr_offset(parent, slot + 1),
4294                               sizeof(struct btrfs_key_ptr) *
4295                               (nritems - slot - 1));
4296         } else if (level) {
4297                 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4298                                                     BTRFS_MOD_LOG_KEY_REMOVE);
4299                 BUG_ON(ret < 0);
4300         }
4301
4302         nritems--;
4303         btrfs_set_header_nritems(parent, nritems);
4304         if (nritems == 0 && parent == root->node) {
4305                 BUG_ON(btrfs_header_level(root->node) != 1);
4306                 /* just turn the root into a leaf and break */
4307                 btrfs_set_header_level(root->node, 0);
4308         } else if (slot == 0) {
4309                 struct btrfs_disk_key disk_key;
4310
4311                 btrfs_node_key(parent, &disk_key, 0);
4312                 fixup_low_keys(path, &disk_key, level + 1);
4313         }
4314         btrfs_mark_buffer_dirty(parent);
4315 }
4316
4317 /*
4318  * a helper function to delete the leaf pointed to by path->slots[1] and
4319  * path->nodes[1].
4320  *
4321  * This deletes the pointer in path->nodes[1] and frees the leaf
4322  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4323  *
4324  * The path must have already been setup for deleting the leaf, including
4325  * all the proper balancing.  path->nodes[1] must be locked.
4326  */
4327 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4328                                     struct btrfs_root *root,
4329                                     struct btrfs_path *path,
4330                                     struct extent_buffer *leaf)
4331 {
4332         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4333         del_ptr(root, path, 1, path->slots[1]);
4334
4335         /*
4336          * btrfs_free_extent is expensive, we want to make sure we
4337          * aren't holding any locks when we call it
4338          */
4339         btrfs_unlock_up_safe(path, 0);
4340
4341         root_sub_used(root, leaf->len);
4342
4343         atomic_inc(&leaf->refs);
4344         btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4345         free_extent_buffer_stale(leaf);
4346 }
4347 /*
4348  * delete the item at the leaf level in path.  If that empties
4349  * the leaf, remove it from the tree
4350  */
4351 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4352                     struct btrfs_path *path, int slot, int nr)
4353 {
4354         struct btrfs_fs_info *fs_info = root->fs_info;
4355         struct extent_buffer *leaf;
4356         int ret = 0;
4357         int wret;
4358         u32 nritems;
4359
4360         leaf = path->nodes[0];
4361         nritems = btrfs_header_nritems(leaf);
4362
4363         if (slot + nr != nritems) {
4364                 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4365                 const int data_end = leaf_data_end(leaf);
4366                 struct btrfs_map_token token;
4367                 u32 dsize = 0;
4368                 int i;
4369
4370                 for (i = 0; i < nr; i++)
4371                         dsize += btrfs_item_size(leaf, slot + i);
4372
4373                 memmove_leaf_data(leaf, data_end + dsize, data_end,
4374                                   last_off - data_end);
4375
4376                 btrfs_init_map_token(&token, leaf);
4377                 for (i = slot + nr; i < nritems; i++) {
4378                         u32 ioff;
4379
4380                         ioff = btrfs_token_item_offset(&token, i);
4381                         btrfs_set_token_item_offset(&token, i, ioff + dsize);
4382                 }
4383
4384                 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4385         }
4386         btrfs_set_header_nritems(leaf, nritems - nr);
4387         nritems -= nr;
4388
4389         /* delete the leaf if we've emptied it */
4390         if (nritems == 0) {
4391                 if (leaf == root->node) {
4392                         btrfs_set_header_level(leaf, 0);
4393                 } else {
4394                         btrfs_clear_buffer_dirty(trans, leaf);
4395                         btrfs_del_leaf(trans, root, path, leaf);
4396                 }
4397         } else {
4398                 int used = leaf_space_used(leaf, 0, nritems);
4399                 if (slot == 0) {
4400                         struct btrfs_disk_key disk_key;
4401
4402                         btrfs_item_key(leaf, &disk_key, 0);
4403                         fixup_low_keys(path, &disk_key, 1);
4404                 }
4405
4406                 /*
4407                  * Try to delete the leaf if it is mostly empty. We do this by
4408                  * trying to move all its items into its left and right neighbours.
4409                  * If we can't move all the items, then we don't delete it - it's
4410                  * not ideal, but future insertions might fill the leaf with more
4411                  * items, or items from other leaves might be moved later into our
4412                  * leaf due to deletions on those leaves.
4413                  */
4414                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4415                         u32 min_push_space;
4416
4417                         /* push_leaf_left fixes the path.
4418                          * make sure the path still points to our leaf
4419                          * for possible call to del_ptr below
4420                          */
4421                         slot = path->slots[1];
4422                         atomic_inc(&leaf->refs);
4423                         /*
4424                          * We want to be able to at least push one item to the
4425                          * left neighbour leaf, and that's the first item.
4426                          */
4427                         min_push_space = sizeof(struct btrfs_item) +
4428                                 btrfs_item_size(leaf, 0);
4429                         wret = push_leaf_left(trans, root, path, 0,
4430                                               min_push_space, 1, (u32)-1);
4431                         if (wret < 0 && wret != -ENOSPC)
4432                                 ret = wret;
4433
4434                         if (path->nodes[0] == leaf &&
4435                             btrfs_header_nritems(leaf)) {
4436                                 /*
4437                                  * If we were not able to push all items from our
4438                                  * leaf to its left neighbour, then attempt to
4439                                  * either push all the remaining items to the
4440                                  * right neighbour or none. There's no advantage
4441                                  * in pushing only some items, instead of all, as
4442                                  * it's pointless to end up with a leaf having
4443                                  * too few items while the neighbours can be full
4444                                  * or nearly full.
4445                                  */
4446                                 nritems = btrfs_header_nritems(leaf);
4447                                 min_push_space = leaf_space_used(leaf, 0, nritems);
4448                                 wret = push_leaf_right(trans, root, path, 0,
4449                                                        min_push_space, 1, 0);
4450                                 if (wret < 0 && wret != -ENOSPC)
4451                                         ret = wret;
4452                         }
4453
4454                         if (btrfs_header_nritems(leaf) == 0) {
4455                                 path->slots[1] = slot;
4456                                 btrfs_del_leaf(trans, root, path, leaf);
4457                                 free_extent_buffer(leaf);
4458                                 ret = 0;
4459                         } else {
4460                                 /* if we're still in the path, make sure
4461                                  * we're dirty.  Otherwise, one of the
4462                                  * push_leaf functions must have already
4463                                  * dirtied this buffer
4464                                  */
4465                                 if (path->nodes[0] == leaf)
4466                                         btrfs_mark_buffer_dirty(leaf);
4467                                 free_extent_buffer(leaf);
4468                         }
4469                 } else {
4470                         btrfs_mark_buffer_dirty(leaf);
4471                 }
4472         }
4473         return ret;
4474 }
4475
4476 /*
4477  * search the tree again to find a leaf with lesser keys
4478  * returns 0 if it found something or 1 if there are no lesser leaves.
4479  * returns < 0 on io errors.
4480  *
4481  * This may release the path, and so you may lose any locks held at the
4482  * time you call it.
4483  */
4484 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4485 {
4486         struct btrfs_key key;
4487         struct btrfs_key orig_key;
4488         struct btrfs_disk_key found_key;
4489         int ret;
4490
4491         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4492         orig_key = key;
4493
4494         if (key.offset > 0) {
4495                 key.offset--;
4496         } else if (key.type > 0) {
4497                 key.type--;
4498                 key.offset = (u64)-1;
4499         } else if (key.objectid > 0) {
4500                 key.objectid--;
4501                 key.type = (u8)-1;
4502                 key.offset = (u64)-1;
4503         } else {
4504                 return 1;
4505         }
4506
4507         btrfs_release_path(path);
4508         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4509         if (ret <= 0)
4510                 return ret;
4511
4512         /*
4513          * Previous key not found. Even if we were at slot 0 of the leaf we had
4514          * before releasing the path and calling btrfs_search_slot(), we now may
4515          * be in a slot pointing to the same original key - this can happen if
4516          * after we released the path, one of more items were moved from a
4517          * sibling leaf into the front of the leaf we had due to an insertion
4518          * (see push_leaf_right()).
4519          * If we hit this case and our slot is > 0 and just decrement the slot
4520          * so that the caller does not process the same key again, which may or
4521          * may not break the caller, depending on its logic.
4522          */
4523         if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
4524                 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
4525                 ret = comp_keys(&found_key, &orig_key);
4526                 if (ret == 0) {
4527                         if (path->slots[0] > 0) {
4528                                 path->slots[0]--;
4529                                 return 0;
4530                         }
4531                         /*
4532                          * At slot 0, same key as before, it means orig_key is
4533                          * the lowest, leftmost, key in the tree. We're done.
4534                          */
4535                         return 1;
4536                 }
4537         }
4538
4539         btrfs_item_key(path->nodes[0], &found_key, 0);
4540         ret = comp_keys(&found_key, &key);
4541         /*
4542          * We might have had an item with the previous key in the tree right
4543          * before we released our path. And after we released our path, that
4544          * item might have been pushed to the first slot (0) of the leaf we
4545          * were holding due to a tree balance. Alternatively, an item with the
4546          * previous key can exist as the only element of a leaf (big fat item).
4547          * Therefore account for these 2 cases, so that our callers (like
4548          * btrfs_previous_item) don't miss an existing item with a key matching
4549          * the previous key we computed above.
4550          */
4551         if (ret <= 0)
4552                 return 0;
4553         return 1;
4554 }
4555
4556 /*
4557  * A helper function to walk down the tree starting at min_key, and looking
4558  * for nodes or leaves that are have a minimum transaction id.
4559  * This is used by the btree defrag code, and tree logging
4560  *
4561  * This does not cow, but it does stuff the starting key it finds back
4562  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4563  * key and get a writable path.
4564  *
4565  * This honors path->lowest_level to prevent descent past a given level
4566  * of the tree.
4567  *
4568  * min_trans indicates the oldest transaction that you are interested
4569  * in walking through.  Any nodes or leaves older than min_trans are
4570  * skipped over (without reading them).
4571  *
4572  * returns zero if something useful was found, < 0 on error and 1 if there
4573  * was nothing in the tree that matched the search criteria.
4574  */
4575 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4576                          struct btrfs_path *path,
4577                          u64 min_trans)
4578 {
4579         struct extent_buffer *cur;
4580         struct btrfs_key found_key;
4581         int slot;
4582         int sret;
4583         u32 nritems;
4584         int level;
4585         int ret = 1;
4586         int keep_locks = path->keep_locks;
4587
4588         ASSERT(!path->nowait);
4589         path->keep_locks = 1;
4590 again:
4591         cur = btrfs_read_lock_root_node(root);
4592         level = btrfs_header_level(cur);
4593         WARN_ON(path->nodes[level]);
4594         path->nodes[level] = cur;
4595         path->locks[level] = BTRFS_READ_LOCK;
4596
4597         if (btrfs_header_generation(cur) < min_trans) {
4598                 ret = 1;
4599                 goto out;
4600         }
4601         while (1) {
4602                 nritems = btrfs_header_nritems(cur);
4603                 level = btrfs_header_level(cur);
4604                 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4605                 if (sret < 0) {
4606                         ret = sret;
4607                         goto out;
4608                 }
4609
4610                 /* at the lowest level, we're done, setup the path and exit */
4611                 if (level == path->lowest_level) {
4612                         if (slot >= nritems)
4613                                 goto find_next_key;
4614                         ret = 0;
4615                         path->slots[level] = slot;
4616                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4617                         goto out;
4618                 }
4619                 if (sret && slot > 0)
4620                         slot--;
4621                 /*
4622                  * check this node pointer against the min_trans parameters.
4623                  * If it is too old, skip to the next one.
4624                  */
4625                 while (slot < nritems) {
4626                         u64 gen;
4627
4628                         gen = btrfs_node_ptr_generation(cur, slot);
4629                         if (gen < min_trans) {
4630                                 slot++;
4631                                 continue;
4632                         }
4633                         break;
4634                 }
4635 find_next_key:
4636                 /*
4637                  * we didn't find a candidate key in this node, walk forward
4638                  * and find another one
4639                  */
4640                 if (slot >= nritems) {
4641                         path->slots[level] = slot;
4642                         sret = btrfs_find_next_key(root, path, min_key, level,
4643                                                   min_trans);
4644                         if (sret == 0) {
4645                                 btrfs_release_path(path);
4646                                 goto again;
4647                         } else {
4648                                 goto out;
4649                         }
4650                 }
4651                 /* save our key for returning back */
4652                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4653                 path->slots[level] = slot;
4654                 if (level == path->lowest_level) {
4655                         ret = 0;
4656                         goto out;
4657                 }
4658                 cur = btrfs_read_node_slot(cur, slot);
4659                 if (IS_ERR(cur)) {
4660                         ret = PTR_ERR(cur);
4661                         goto out;
4662                 }
4663
4664                 btrfs_tree_read_lock(cur);
4665
4666                 path->locks[level - 1] = BTRFS_READ_LOCK;
4667                 path->nodes[level - 1] = cur;
4668                 unlock_up(path, level, 1, 0, NULL);
4669         }
4670 out:
4671         path->keep_locks = keep_locks;
4672         if (ret == 0) {
4673                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4674                 memcpy(min_key, &found_key, sizeof(found_key));
4675         }
4676         return ret;
4677 }
4678
4679 /*
4680  * this is similar to btrfs_next_leaf, but does not try to preserve
4681  * and fixup the path.  It looks for and returns the next key in the
4682  * tree based on the current path and the min_trans parameters.
4683  *
4684  * 0 is returned if another key is found, < 0 if there are any errors
4685  * and 1 is returned if there are no higher keys in the tree
4686  *
4687  * path->keep_locks should be set to 1 on the search made before
4688  * calling this function.
4689  */
4690 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4691                         struct btrfs_key *key, int level, u64 min_trans)
4692 {
4693         int slot;
4694         struct extent_buffer *c;
4695
4696         WARN_ON(!path->keep_locks && !path->skip_locking);
4697         while (level < BTRFS_MAX_LEVEL) {
4698                 if (!path->nodes[level])
4699                         return 1;
4700
4701                 slot = path->slots[level] + 1;
4702                 c = path->nodes[level];
4703 next:
4704                 if (slot >= btrfs_header_nritems(c)) {
4705                         int ret;
4706                         int orig_lowest;
4707                         struct btrfs_key cur_key;
4708                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4709                             !path->nodes[level + 1])
4710                                 return 1;
4711
4712                         if (path->locks[level + 1] || path->skip_locking) {
4713                                 level++;
4714                                 continue;
4715                         }
4716
4717                         slot = btrfs_header_nritems(c) - 1;
4718                         if (level == 0)
4719                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4720                         else
4721                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4722
4723                         orig_lowest = path->lowest_level;
4724                         btrfs_release_path(path);
4725                         path->lowest_level = level;
4726                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4727                                                 0, 0);
4728                         path->lowest_level = orig_lowest;
4729                         if (ret < 0)
4730                                 return ret;
4731
4732                         c = path->nodes[level];
4733                         slot = path->slots[level];
4734                         if (ret == 0)
4735                                 slot++;
4736                         goto next;
4737                 }
4738
4739                 if (level == 0)
4740                         btrfs_item_key_to_cpu(c, key, slot);
4741                 else {
4742                         u64 gen = btrfs_node_ptr_generation(c, slot);
4743
4744                         if (gen < min_trans) {
4745                                 slot++;
4746                                 goto next;
4747                         }
4748                         btrfs_node_key_to_cpu(c, key, slot);
4749                 }
4750                 return 0;
4751         }
4752         return 1;
4753 }
4754
4755 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4756                         u64 time_seq)
4757 {
4758         int slot;
4759         int level;
4760         struct extent_buffer *c;
4761         struct extent_buffer *next;
4762         struct btrfs_fs_info *fs_info = root->fs_info;
4763         struct btrfs_key key;
4764         bool need_commit_sem = false;
4765         u32 nritems;
4766         int ret;
4767         int i;
4768
4769         /*
4770          * The nowait semantics are used only for write paths, where we don't
4771          * use the tree mod log and sequence numbers.
4772          */
4773         if (time_seq)
4774                 ASSERT(!path->nowait);
4775
4776         nritems = btrfs_header_nritems(path->nodes[0]);
4777         if (nritems == 0)
4778                 return 1;
4779
4780         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4781 again:
4782         level = 1;
4783         next = NULL;
4784         btrfs_release_path(path);
4785
4786         path->keep_locks = 1;
4787
4788         if (time_seq) {
4789                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4790         } else {
4791                 if (path->need_commit_sem) {
4792                         path->need_commit_sem = 0;
4793                         need_commit_sem = true;
4794                         if (path->nowait) {
4795                                 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4796                                         ret = -EAGAIN;
4797                                         goto done;
4798                                 }
4799                         } else {
4800                                 down_read(&fs_info->commit_root_sem);
4801                         }
4802                 }
4803                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4804         }
4805         path->keep_locks = 0;
4806
4807         if (ret < 0)
4808                 goto done;
4809
4810         nritems = btrfs_header_nritems(path->nodes[0]);
4811         /*
4812          * by releasing the path above we dropped all our locks.  A balance
4813          * could have added more items next to the key that used to be
4814          * at the very end of the block.  So, check again here and
4815          * advance the path if there are now more items available.
4816          */
4817         if (nritems > 0 && path->slots[0] < nritems - 1) {
4818                 if (ret == 0)
4819                         path->slots[0]++;
4820                 ret = 0;
4821                 goto done;
4822         }
4823         /*
4824          * So the above check misses one case:
4825          * - after releasing the path above, someone has removed the item that
4826          *   used to be at the very end of the block, and balance between leafs
4827          *   gets another one with bigger key.offset to replace it.
4828          *
4829          * This one should be returned as well, or we can get leaf corruption
4830          * later(esp. in __btrfs_drop_extents()).
4831          *
4832          * And a bit more explanation about this check,
4833          * with ret > 0, the key isn't found, the path points to the slot
4834          * where it should be inserted, so the path->slots[0] item must be the
4835          * bigger one.
4836          */
4837         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4838                 ret = 0;
4839                 goto done;
4840         }
4841
4842         while (level < BTRFS_MAX_LEVEL) {
4843                 if (!path->nodes[level]) {
4844                         ret = 1;
4845                         goto done;
4846                 }
4847
4848                 slot = path->slots[level] + 1;
4849                 c = path->nodes[level];
4850                 if (slot >= btrfs_header_nritems(c)) {
4851                         level++;
4852                         if (level == BTRFS_MAX_LEVEL) {
4853                                 ret = 1;
4854                                 goto done;
4855                         }
4856                         continue;
4857                 }
4858
4859
4860                 /*
4861                  * Our current level is where we're going to start from, and to
4862                  * make sure lockdep doesn't complain we need to drop our locks
4863                  * and nodes from 0 to our current level.
4864                  */
4865                 for (i = 0; i < level; i++) {
4866                         if (path->locks[level]) {
4867                                 btrfs_tree_read_unlock(path->nodes[i]);
4868                                 path->locks[i] = 0;
4869                         }
4870                         free_extent_buffer(path->nodes[i]);
4871                         path->nodes[i] = NULL;
4872                 }
4873
4874                 next = c;
4875                 ret = read_block_for_search(root, path, &next, level,
4876                                             slot, &key);
4877                 if (ret == -EAGAIN && !path->nowait)
4878                         goto again;
4879
4880                 if (ret < 0) {
4881                         btrfs_release_path(path);
4882                         goto done;
4883                 }
4884
4885                 if (!path->skip_locking) {
4886                         ret = btrfs_try_tree_read_lock(next);
4887                         if (!ret && path->nowait) {
4888                                 ret = -EAGAIN;
4889                                 goto done;
4890                         }
4891                         if (!ret && time_seq) {
4892                                 /*
4893                                  * If we don't get the lock, we may be racing
4894                                  * with push_leaf_left, holding that lock while
4895                                  * itself waiting for the leaf we've currently
4896                                  * locked. To solve this situation, we give up
4897                                  * on our lock and cycle.
4898                                  */
4899                                 free_extent_buffer(next);
4900                                 btrfs_release_path(path);
4901                                 cond_resched();
4902                                 goto again;
4903                         }
4904                         if (!ret)
4905                                 btrfs_tree_read_lock(next);
4906                 }
4907                 break;
4908         }
4909         path->slots[level] = slot;
4910         while (1) {
4911                 level--;
4912                 path->nodes[level] = next;
4913                 path->slots[level] = 0;
4914                 if (!path->skip_locking)
4915                         path->locks[level] = BTRFS_READ_LOCK;
4916                 if (!level)
4917                         break;
4918
4919                 ret = read_block_for_search(root, path, &next, level,
4920                                             0, &key);
4921                 if (ret == -EAGAIN && !path->nowait)
4922                         goto again;
4923
4924                 if (ret < 0) {
4925                         btrfs_release_path(path);
4926                         goto done;
4927                 }
4928
4929                 if (!path->skip_locking) {
4930                         if (path->nowait) {
4931                                 if (!btrfs_try_tree_read_lock(next)) {
4932                                         ret = -EAGAIN;
4933                                         goto done;
4934                                 }
4935                         } else {
4936                                 btrfs_tree_read_lock(next);
4937                         }
4938                 }
4939         }
4940         ret = 0;
4941 done:
4942         unlock_up(path, 0, 1, 0, NULL);
4943         if (need_commit_sem) {
4944                 int ret2;
4945
4946                 path->need_commit_sem = 1;
4947                 ret2 = finish_need_commit_sem_search(path);
4948                 up_read(&fs_info->commit_root_sem);
4949                 if (ret2)
4950                         ret = ret2;
4951         }
4952
4953         return ret;
4954 }
4955
4956 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4957 {
4958         path->slots[0]++;
4959         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4960                 return btrfs_next_old_leaf(root, path, time_seq);
4961         return 0;
4962 }
4963
4964 /*
4965  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4966  * searching until it gets past min_objectid or finds an item of 'type'
4967  *
4968  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4969  */
4970 int btrfs_previous_item(struct btrfs_root *root,
4971                         struct btrfs_path *path, u64 min_objectid,
4972                         int type)
4973 {
4974         struct btrfs_key found_key;
4975         struct extent_buffer *leaf;
4976         u32 nritems;
4977         int ret;
4978
4979         while (1) {
4980                 if (path->slots[0] == 0) {
4981                         ret = btrfs_prev_leaf(root, path);
4982                         if (ret != 0)
4983                                 return ret;
4984                 } else {
4985                         path->slots[0]--;
4986                 }
4987                 leaf = path->nodes[0];
4988                 nritems = btrfs_header_nritems(leaf);
4989                 if (nritems == 0)
4990                         return 1;
4991                 if (path->slots[0] == nritems)
4992                         path->slots[0]--;
4993
4994                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4995                 if (found_key.objectid < min_objectid)
4996                         break;
4997                 if (found_key.type == type)
4998                         return 0;
4999                 if (found_key.objectid == min_objectid &&
5000                     found_key.type < type)
5001                         break;
5002         }
5003         return 1;
5004 }
5005
5006 /*
5007  * search in extent tree to find a previous Metadata/Data extent item with
5008  * min objecitd.
5009  *
5010  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5011  */
5012 int btrfs_previous_extent_item(struct btrfs_root *root,
5013                         struct btrfs_path *path, u64 min_objectid)
5014 {
5015         struct btrfs_key found_key;
5016         struct extent_buffer *leaf;
5017         u32 nritems;
5018         int ret;
5019
5020         while (1) {
5021                 if (path->slots[0] == 0) {
5022                         ret = btrfs_prev_leaf(root, path);
5023                         if (ret != 0)
5024                                 return ret;
5025                 } else {
5026                         path->slots[0]--;
5027                 }
5028                 leaf = path->nodes[0];
5029                 nritems = btrfs_header_nritems(leaf);
5030                 if (nritems == 0)
5031                         return 1;
5032                 if (path->slots[0] == nritems)
5033                         path->slots[0]--;
5034
5035                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5036                 if (found_key.objectid < min_objectid)
5037                         break;
5038                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5039                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5040                         return 0;
5041                 if (found_key.objectid == min_objectid &&
5042                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5043                         break;
5044         }
5045         return 1;
5046 }
5047
5048 int __init btrfs_ctree_init(void)
5049 {
5050         btrfs_path_cachep = kmem_cache_create("btrfs_path",
5051                         sizeof(struct btrfs_path), 0,
5052                         SLAB_MEM_SPREAD, NULL);
5053         if (!btrfs_path_cachep)
5054                 return -ENOMEM;
5055         return 0;
5056 }
5057
5058 void __cold btrfs_ctree_exit(void)
5059 {
5060         kmem_cache_destroy(btrfs_path_cachep);
5061 }
This page took 0.308162 seconds and 4 git commands to generate.