1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida);
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
46 static DEFINE_MUTEX(input_mutex);
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
50 static const unsigned int input_max_code[EV_CNT] = {
61 static inline int is_event_supported(unsigned int code,
62 unsigned long *bm, unsigned int max)
64 return code <= max && test_bit(code, bm);
67 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
70 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
73 if (value > old_val - fuzz && value < old_val + fuzz)
74 return (old_val * 3 + value) / 4;
76 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
77 return (old_val + value) / 2;
83 static void input_start_autorepeat(struct input_dev *dev, int code)
85 if (test_bit(EV_REP, dev->evbit) &&
86 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
87 dev->timer.function) {
88 dev->repeat_key = code;
89 mod_timer(&dev->timer,
90 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 static void input_stop_autorepeat(struct input_dev *dev)
96 del_timer(&dev->timer);
100 * Pass event first through all filters and then, if event has not been
101 * filtered out, through all open handles. This function is called with
102 * dev->event_lock held and interrupts disabled.
104 static unsigned int input_to_handler(struct input_handle *handle,
105 struct input_value *vals, unsigned int count)
107 struct input_handler *handler = handle->handler;
108 struct input_value *end = vals;
109 struct input_value *v;
111 if (handler->filter) {
112 for (v = vals; v != vals + count; v++) {
113 if (handler->filter(handle, v->type, v->code, v->value))
126 handler->events(handle, vals, count);
127 else if (handler->event)
128 for (v = vals; v != vals + count; v++)
129 handler->event(handle, v->type, v->code, v->value);
135 * Pass values first through all filters and then, if event has not been
136 * filtered out, through all open handles. This function is called with
137 * dev->event_lock held and interrupts disabled.
139 static void input_pass_values(struct input_dev *dev,
140 struct input_value *vals, unsigned int count)
142 struct input_handle *handle;
143 struct input_value *v;
150 handle = rcu_dereference(dev->grab);
152 count = input_to_handler(handle, vals, count);
154 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
156 count = input_to_handler(handle, vals, count);
164 /* trigger auto repeat for key events */
165 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
166 for (v = vals; v != vals + count; v++) {
167 if (v->type == EV_KEY && v->value != 2) {
169 input_start_autorepeat(dev, v->code);
171 input_stop_autorepeat(dev);
177 static void input_pass_event(struct input_dev *dev,
178 unsigned int type, unsigned int code, int value)
180 struct input_value vals[] = { { type, code, value } };
182 input_pass_values(dev, vals, ARRAY_SIZE(vals));
186 * Generate software autorepeat event. Note that we take
187 * dev->event_lock here to avoid racing with input_event
188 * which may cause keys get "stuck".
190 static void input_repeat_key(struct timer_list *t)
192 struct input_dev *dev = from_timer(dev, t, timer);
195 spin_lock_irqsave(&dev->event_lock, flags);
197 if (test_bit(dev->repeat_key, dev->key) &&
198 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
199 struct input_value vals[] = {
200 { EV_KEY, dev->repeat_key, 2 },
204 input_set_timestamp(dev, ktime_get());
205 input_pass_values(dev, vals, ARRAY_SIZE(vals));
207 if (dev->rep[REP_PERIOD])
208 mod_timer(&dev->timer, jiffies +
209 msecs_to_jiffies(dev->rep[REP_PERIOD]));
212 spin_unlock_irqrestore(&dev->event_lock, flags);
215 #define INPUT_IGNORE_EVENT 0
216 #define INPUT_PASS_TO_HANDLERS 1
217 #define INPUT_PASS_TO_DEVICE 2
219 #define INPUT_FLUSH 8
220 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
222 static int input_handle_abs_event(struct input_dev *dev,
223 unsigned int code, int *pval)
225 struct input_mt *mt = dev->mt;
229 if (code == ABS_MT_SLOT) {
231 * "Stage" the event; we'll flush it later, when we
232 * get actual touch data.
234 if (mt && *pval >= 0 && *pval < mt->num_slots)
237 return INPUT_IGNORE_EVENT;
240 is_mt_event = input_is_mt_value(code);
243 pold = &dev->absinfo[code].value;
245 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
248 * Bypass filtering for multi-touch events when
249 * not employing slots.
255 *pval = input_defuzz_abs_event(*pval, *pold,
256 dev->absinfo[code].fuzz);
258 return INPUT_IGNORE_EVENT;
263 /* Flush pending "slot" event */
264 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
265 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
266 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
269 return INPUT_PASS_TO_HANDLERS;
272 static int input_get_disposition(struct input_dev *dev,
273 unsigned int type, unsigned int code, int *pval)
275 int disposition = INPUT_IGNORE_EVENT;
283 disposition = INPUT_PASS_TO_ALL;
287 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
290 disposition = INPUT_PASS_TO_HANDLERS;
296 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
298 /* auto-repeat bypasses state updates */
300 disposition = INPUT_PASS_TO_HANDLERS;
304 if (!!test_bit(code, dev->key) != !!value) {
306 __change_bit(code, dev->key);
307 disposition = INPUT_PASS_TO_HANDLERS;
313 if (is_event_supported(code, dev->swbit, SW_MAX) &&
314 !!test_bit(code, dev->sw) != !!value) {
316 __change_bit(code, dev->sw);
317 disposition = INPUT_PASS_TO_HANDLERS;
322 if (is_event_supported(code, dev->absbit, ABS_MAX))
323 disposition = input_handle_abs_event(dev, code, &value);
328 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
329 disposition = INPUT_PASS_TO_HANDLERS;
334 if (is_event_supported(code, dev->mscbit, MSC_MAX))
335 disposition = INPUT_PASS_TO_ALL;
340 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
341 !!test_bit(code, dev->led) != !!value) {
343 __change_bit(code, dev->led);
344 disposition = INPUT_PASS_TO_ALL;
349 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
351 if (!!test_bit(code, dev->snd) != !!value)
352 __change_bit(code, dev->snd);
353 disposition = INPUT_PASS_TO_ALL;
358 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
359 dev->rep[code] = value;
360 disposition = INPUT_PASS_TO_ALL;
366 disposition = INPUT_PASS_TO_ALL;
370 disposition = INPUT_PASS_TO_ALL;
378 static void input_handle_event(struct input_dev *dev,
379 unsigned int type, unsigned int code, int value)
383 /* filter-out events from inhibited devices */
387 disposition = input_get_disposition(dev, type, code, &value);
388 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
389 add_input_randomness(type, code, value);
391 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
392 dev->event(dev, type, code, value);
397 if (disposition & INPUT_PASS_TO_HANDLERS) {
398 struct input_value *v;
400 if (disposition & INPUT_SLOT) {
401 v = &dev->vals[dev->num_vals++];
403 v->code = ABS_MT_SLOT;
404 v->value = dev->mt->slot;
407 v = &dev->vals[dev->num_vals++];
413 if (disposition & INPUT_FLUSH) {
414 if (dev->num_vals >= 2)
415 input_pass_values(dev, dev->vals, dev->num_vals);
418 * Reset the timestamp on flush so we won't end up
419 * with a stale one. Note we only need to reset the
420 * monolithic one as we use its presence when deciding
421 * whether to generate a synthetic timestamp.
423 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
424 } else if (dev->num_vals >= dev->max_vals - 2) {
425 dev->vals[dev->num_vals++] = input_value_sync;
426 input_pass_values(dev, dev->vals, dev->num_vals);
433 * input_event() - report new input event
434 * @dev: device that generated the event
435 * @type: type of the event
437 * @value: value of the event
439 * This function should be used by drivers implementing various input
440 * devices to report input events. See also input_inject_event().
442 * NOTE: input_event() may be safely used right after input device was
443 * allocated with input_allocate_device(), even before it is registered
444 * with input_register_device(), but the event will not reach any of the
445 * input handlers. Such early invocation of input_event() may be used
446 * to 'seed' initial state of a switch or initial position of absolute
449 void input_event(struct input_dev *dev,
450 unsigned int type, unsigned int code, int value)
454 if (is_event_supported(type, dev->evbit, EV_MAX)) {
456 spin_lock_irqsave(&dev->event_lock, flags);
457 input_handle_event(dev, type, code, value);
458 spin_unlock_irqrestore(&dev->event_lock, flags);
461 EXPORT_SYMBOL(input_event);
464 * input_inject_event() - send input event from input handler
465 * @handle: input handle to send event through
466 * @type: type of the event
468 * @value: value of the event
470 * Similar to input_event() but will ignore event if device is
471 * "grabbed" and handle injecting event is not the one that owns
474 void input_inject_event(struct input_handle *handle,
475 unsigned int type, unsigned int code, int value)
477 struct input_dev *dev = handle->dev;
478 struct input_handle *grab;
481 if (is_event_supported(type, dev->evbit, EV_MAX)) {
482 spin_lock_irqsave(&dev->event_lock, flags);
485 grab = rcu_dereference(dev->grab);
486 if (!grab || grab == handle)
487 input_handle_event(dev, type, code, value);
490 spin_unlock_irqrestore(&dev->event_lock, flags);
493 EXPORT_SYMBOL(input_inject_event);
496 * input_alloc_absinfo - allocates array of input_absinfo structs
497 * @dev: the input device emitting absolute events
499 * If the absinfo struct the caller asked for is already allocated, this
500 * functions will not do anything.
502 void input_alloc_absinfo(struct input_dev *dev)
507 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
509 dev_err(dev->dev.parent ?: &dev->dev,
510 "%s: unable to allocate memory\n", __func__);
512 * We will handle this allocation failure in
513 * input_register_device() when we refuse to register input
514 * device with ABS bits but without absinfo.
518 EXPORT_SYMBOL(input_alloc_absinfo);
520 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
521 int min, int max, int fuzz, int flat)
523 struct input_absinfo *absinfo;
525 __set_bit(EV_ABS, dev->evbit);
526 __set_bit(axis, dev->absbit);
528 input_alloc_absinfo(dev);
532 absinfo = &dev->absinfo[axis];
533 absinfo->minimum = min;
534 absinfo->maximum = max;
535 absinfo->fuzz = fuzz;
536 absinfo->flat = flat;
538 EXPORT_SYMBOL(input_set_abs_params);
541 * input_copy_abs - Copy absinfo from one input_dev to another
542 * @dst: Destination input device to copy the abs settings to
543 * @dst_axis: ABS_* value selecting the destination axis
544 * @src: Source input device to copy the abs settings from
545 * @src_axis: ABS_* value selecting the source axis
547 * Set absinfo for the selected destination axis by copying it from
548 * the specified source input device's source axis.
549 * This is useful to e.g. setup a pen/stylus input-device for combined
550 * touchscreen/pen hardware where the pen uses the same coordinates as
553 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
554 const struct input_dev *src, unsigned int src_axis)
556 /* src must have EV_ABS and src_axis set */
557 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
558 test_bit(src_axis, src->absbit))))
562 * input_alloc_absinfo() may have failed for the source. Our caller is
563 * expected to catch this when registering the input devices, which may
564 * happen after the input_copy_abs() call.
569 input_set_capability(dst, EV_ABS, dst_axis);
573 dst->absinfo[dst_axis] = src->absinfo[src_axis];
575 EXPORT_SYMBOL(input_copy_abs);
578 * input_grab_device - grabs device for exclusive use
579 * @handle: input handle that wants to own the device
581 * When a device is grabbed by an input handle all events generated by
582 * the device are delivered only to this handle. Also events injected
583 * by other input handles are ignored while device is grabbed.
585 int input_grab_device(struct input_handle *handle)
587 struct input_dev *dev = handle->dev;
590 retval = mutex_lock_interruptible(&dev->mutex);
599 rcu_assign_pointer(dev->grab, handle);
602 mutex_unlock(&dev->mutex);
605 EXPORT_SYMBOL(input_grab_device);
607 static void __input_release_device(struct input_handle *handle)
609 struct input_dev *dev = handle->dev;
610 struct input_handle *grabber;
612 grabber = rcu_dereference_protected(dev->grab,
613 lockdep_is_held(&dev->mutex));
614 if (grabber == handle) {
615 rcu_assign_pointer(dev->grab, NULL);
616 /* Make sure input_pass_event() notices that grab is gone */
619 list_for_each_entry(handle, &dev->h_list, d_node)
620 if (handle->open && handle->handler->start)
621 handle->handler->start(handle);
626 * input_release_device - release previously grabbed device
627 * @handle: input handle that owns the device
629 * Releases previously grabbed device so that other input handles can
630 * start receiving input events. Upon release all handlers attached
631 * to the device have their start() method called so they have a change
632 * to synchronize device state with the rest of the system.
634 void input_release_device(struct input_handle *handle)
636 struct input_dev *dev = handle->dev;
638 mutex_lock(&dev->mutex);
639 __input_release_device(handle);
640 mutex_unlock(&dev->mutex);
642 EXPORT_SYMBOL(input_release_device);
645 * input_open_device - open input device
646 * @handle: handle through which device is being accessed
648 * This function should be called by input handlers when they
649 * want to start receive events from given input device.
651 int input_open_device(struct input_handle *handle)
653 struct input_dev *dev = handle->dev;
656 retval = mutex_lock_interruptible(&dev->mutex);
660 if (dev->going_away) {
667 if (dev->users++ || dev->inhibited) {
669 * Device is already opened and/or inhibited,
670 * so we can exit immediately and report success.
676 retval = dev->open(dev);
681 * Make sure we are not delivering any more events
682 * through this handle
690 input_dev_poller_start(dev->poller);
693 mutex_unlock(&dev->mutex);
696 EXPORT_SYMBOL(input_open_device);
698 int input_flush_device(struct input_handle *handle, struct file *file)
700 struct input_dev *dev = handle->dev;
703 retval = mutex_lock_interruptible(&dev->mutex);
708 retval = dev->flush(dev, file);
710 mutex_unlock(&dev->mutex);
713 EXPORT_SYMBOL(input_flush_device);
716 * input_close_device - close input device
717 * @handle: handle through which device is being accessed
719 * This function should be called by input handlers when they
720 * want to stop receive events from given input device.
722 void input_close_device(struct input_handle *handle)
724 struct input_dev *dev = handle->dev;
726 mutex_lock(&dev->mutex);
728 __input_release_device(handle);
730 if (!dev->inhibited && !--dev->users) {
732 input_dev_poller_stop(dev->poller);
737 if (!--handle->open) {
739 * synchronize_rcu() makes sure that input_pass_event()
740 * completed and that no more input events are delivered
741 * through this handle
746 mutex_unlock(&dev->mutex);
748 EXPORT_SYMBOL(input_close_device);
751 * Simulate keyup events for all keys that are marked as pressed.
752 * The function must be called with dev->event_lock held.
754 static void input_dev_release_keys(struct input_dev *dev)
756 bool need_sync = false;
759 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
760 for_each_set_bit(code, dev->key, KEY_CNT) {
761 input_pass_event(dev, EV_KEY, code, 0);
766 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
768 memset(dev->key, 0, sizeof(dev->key));
773 * Prepare device for unregistering
775 static void input_disconnect_device(struct input_dev *dev)
777 struct input_handle *handle;
780 * Mark device as going away. Note that we take dev->mutex here
781 * not to protect access to dev->going_away but rather to ensure
782 * that there are no threads in the middle of input_open_device()
784 mutex_lock(&dev->mutex);
785 dev->going_away = true;
786 mutex_unlock(&dev->mutex);
788 spin_lock_irq(&dev->event_lock);
791 * Simulate keyup events for all pressed keys so that handlers
792 * are not left with "stuck" keys. The driver may continue
793 * generate events even after we done here but they will not
794 * reach any handlers.
796 input_dev_release_keys(dev);
798 list_for_each_entry(handle, &dev->h_list, d_node)
801 spin_unlock_irq(&dev->event_lock);
805 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
806 * @ke: keymap entry containing scancode to be converted.
807 * @scancode: pointer to the location where converted scancode should
810 * This function is used to convert scancode stored in &struct keymap_entry
811 * into scalar form understood by legacy keymap handling methods. These
812 * methods expect scancodes to be represented as 'unsigned int'.
814 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
815 unsigned int *scancode)
819 *scancode = *((u8 *)ke->scancode);
823 *scancode = *((u16 *)ke->scancode);
827 *scancode = *((u32 *)ke->scancode);
836 EXPORT_SYMBOL(input_scancode_to_scalar);
839 * Those routines handle the default case where no [gs]etkeycode() is
840 * defined. In this case, an array indexed by the scancode is used.
843 static unsigned int input_fetch_keycode(struct input_dev *dev,
846 switch (dev->keycodesize) {
848 return ((u8 *)dev->keycode)[index];
851 return ((u16 *)dev->keycode)[index];
854 return ((u32 *)dev->keycode)[index];
858 static int input_default_getkeycode(struct input_dev *dev,
859 struct input_keymap_entry *ke)
864 if (!dev->keycodesize)
867 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
870 error = input_scancode_to_scalar(ke, &index);
875 if (index >= dev->keycodemax)
878 ke->keycode = input_fetch_keycode(dev, index);
880 ke->len = sizeof(index);
881 memcpy(ke->scancode, &index, sizeof(index));
886 static int input_default_setkeycode(struct input_dev *dev,
887 const struct input_keymap_entry *ke,
888 unsigned int *old_keycode)
894 if (!dev->keycodesize)
897 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
900 error = input_scancode_to_scalar(ke, &index);
905 if (index >= dev->keycodemax)
908 if (dev->keycodesize < sizeof(ke->keycode) &&
909 (ke->keycode >> (dev->keycodesize * 8)))
912 switch (dev->keycodesize) {
914 u8 *k = (u8 *)dev->keycode;
915 *old_keycode = k[index];
916 k[index] = ke->keycode;
920 u16 *k = (u16 *)dev->keycode;
921 *old_keycode = k[index];
922 k[index] = ke->keycode;
926 u32 *k = (u32 *)dev->keycode;
927 *old_keycode = k[index];
928 k[index] = ke->keycode;
933 if (*old_keycode <= KEY_MAX) {
934 __clear_bit(*old_keycode, dev->keybit);
935 for (i = 0; i < dev->keycodemax; i++) {
936 if (input_fetch_keycode(dev, i) == *old_keycode) {
937 __set_bit(*old_keycode, dev->keybit);
938 /* Setting the bit twice is useless, so break */
944 __set_bit(ke->keycode, dev->keybit);
949 * input_get_keycode - retrieve keycode currently mapped to a given scancode
950 * @dev: input device which keymap is being queried
953 * This function should be called by anyone interested in retrieving current
954 * keymap. Presently evdev handlers use it.
956 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
961 spin_lock_irqsave(&dev->event_lock, flags);
962 retval = dev->getkeycode(dev, ke);
963 spin_unlock_irqrestore(&dev->event_lock, flags);
967 EXPORT_SYMBOL(input_get_keycode);
970 * input_set_keycode - attribute a keycode to a given scancode
971 * @dev: input device which keymap is being updated
972 * @ke: new keymap entry
974 * This function should be called by anyone needing to update current
975 * keymap. Presently keyboard and evdev handlers use it.
977 int input_set_keycode(struct input_dev *dev,
978 const struct input_keymap_entry *ke)
981 unsigned int old_keycode;
984 if (ke->keycode > KEY_MAX)
987 spin_lock_irqsave(&dev->event_lock, flags);
989 retval = dev->setkeycode(dev, ke, &old_keycode);
993 /* Make sure KEY_RESERVED did not get enabled. */
994 __clear_bit(KEY_RESERVED, dev->keybit);
997 * Simulate keyup event if keycode is not present
998 * in the keymap anymore
1000 if (old_keycode > KEY_MAX) {
1001 dev_warn(dev->dev.parent ?: &dev->dev,
1002 "%s: got too big old keycode %#x\n",
1003 __func__, old_keycode);
1004 } else if (test_bit(EV_KEY, dev->evbit) &&
1005 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
1006 __test_and_clear_bit(old_keycode, dev->key)) {
1007 struct input_value vals[] = {
1008 { EV_KEY, old_keycode, 0 },
1012 input_pass_values(dev, vals, ARRAY_SIZE(vals));
1016 spin_unlock_irqrestore(&dev->event_lock, flags);
1020 EXPORT_SYMBOL(input_set_keycode);
1022 bool input_match_device_id(const struct input_dev *dev,
1023 const struct input_device_id *id)
1025 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1026 if (id->bustype != dev->id.bustype)
1029 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1030 if (id->vendor != dev->id.vendor)
1033 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1034 if (id->product != dev->id.product)
1037 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1038 if (id->version != dev->id.version)
1041 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1042 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1043 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1044 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1045 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1046 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1047 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1048 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1049 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1050 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1056 EXPORT_SYMBOL(input_match_device_id);
1058 static const struct input_device_id *input_match_device(struct input_handler *handler,
1059 struct input_dev *dev)
1061 const struct input_device_id *id;
1063 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1064 if (input_match_device_id(dev, id) &&
1065 (!handler->match || handler->match(handler, dev))) {
1073 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1075 const struct input_device_id *id;
1078 id = input_match_device(handler, dev);
1082 error = handler->connect(handler, dev, id);
1083 if (error && error != -ENODEV)
1084 pr_err("failed to attach handler %s to device %s, error: %d\n",
1085 handler->name, kobject_name(&dev->dev.kobj), error);
1090 #ifdef CONFIG_COMPAT
1092 static int input_bits_to_string(char *buf, int buf_size,
1093 unsigned long bits, bool skip_empty)
1097 if (in_compat_syscall()) {
1098 u32 dword = bits >> 32;
1099 if (dword || !skip_empty)
1100 len += snprintf(buf, buf_size, "%x ", dword);
1102 dword = bits & 0xffffffffUL;
1103 if (dword || !skip_empty || len)
1104 len += snprintf(buf + len, max(buf_size - len, 0),
1107 if (bits || !skip_empty)
1108 len += snprintf(buf, buf_size, "%lx", bits);
1114 #else /* !CONFIG_COMPAT */
1116 static int input_bits_to_string(char *buf, int buf_size,
1117 unsigned long bits, bool skip_empty)
1119 return bits || !skip_empty ?
1120 snprintf(buf, buf_size, "%lx", bits) : 0;
1125 #ifdef CONFIG_PROC_FS
1127 static struct proc_dir_entry *proc_bus_input_dir;
1128 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1129 static int input_devices_state;
1131 static inline void input_wakeup_procfs_readers(void)
1133 input_devices_state++;
1134 wake_up(&input_devices_poll_wait);
1137 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1139 poll_wait(file, &input_devices_poll_wait, wait);
1140 if (file->f_version != input_devices_state) {
1141 file->f_version = input_devices_state;
1142 return EPOLLIN | EPOLLRDNORM;
1148 union input_seq_state {
1151 bool mutex_acquired;
1156 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1158 union input_seq_state *state = (union input_seq_state *)&seq->private;
1161 /* We need to fit into seq->private pointer */
1162 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1164 error = mutex_lock_interruptible(&input_mutex);
1166 state->mutex_acquired = false;
1167 return ERR_PTR(error);
1170 state->mutex_acquired = true;
1172 return seq_list_start(&input_dev_list, *pos);
1175 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1177 return seq_list_next(v, &input_dev_list, pos);
1180 static void input_seq_stop(struct seq_file *seq, void *v)
1182 union input_seq_state *state = (union input_seq_state *)&seq->private;
1184 if (state->mutex_acquired)
1185 mutex_unlock(&input_mutex);
1188 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1189 unsigned long *bitmap, int max)
1192 bool skip_empty = true;
1195 seq_printf(seq, "B: %s=", name);
1197 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1198 if (input_bits_to_string(buf, sizeof(buf),
1199 bitmap[i], skip_empty)) {
1201 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1206 * If no output was produced print a single 0.
1211 seq_putc(seq, '\n');
1214 static int input_devices_seq_show(struct seq_file *seq, void *v)
1216 struct input_dev *dev = container_of(v, struct input_dev, node);
1217 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1218 struct input_handle *handle;
1220 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1221 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1223 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1224 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1225 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1226 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1227 seq_puts(seq, "H: Handlers=");
1229 list_for_each_entry(handle, &dev->h_list, d_node)
1230 seq_printf(seq, "%s ", handle->name);
1231 seq_putc(seq, '\n');
1233 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1235 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1236 if (test_bit(EV_KEY, dev->evbit))
1237 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1238 if (test_bit(EV_REL, dev->evbit))
1239 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1240 if (test_bit(EV_ABS, dev->evbit))
1241 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1242 if (test_bit(EV_MSC, dev->evbit))
1243 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1244 if (test_bit(EV_LED, dev->evbit))
1245 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1246 if (test_bit(EV_SND, dev->evbit))
1247 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1248 if (test_bit(EV_FF, dev->evbit))
1249 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1250 if (test_bit(EV_SW, dev->evbit))
1251 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1253 seq_putc(seq, '\n');
1259 static const struct seq_operations input_devices_seq_ops = {
1260 .start = input_devices_seq_start,
1261 .next = input_devices_seq_next,
1262 .stop = input_seq_stop,
1263 .show = input_devices_seq_show,
1266 static int input_proc_devices_open(struct inode *inode, struct file *file)
1268 return seq_open(file, &input_devices_seq_ops);
1271 static const struct proc_ops input_devices_proc_ops = {
1272 .proc_open = input_proc_devices_open,
1273 .proc_poll = input_proc_devices_poll,
1274 .proc_read = seq_read,
1275 .proc_lseek = seq_lseek,
1276 .proc_release = seq_release,
1279 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1281 union input_seq_state *state = (union input_seq_state *)&seq->private;
1284 /* We need to fit into seq->private pointer */
1285 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1287 error = mutex_lock_interruptible(&input_mutex);
1289 state->mutex_acquired = false;
1290 return ERR_PTR(error);
1293 state->mutex_acquired = true;
1296 return seq_list_start(&input_handler_list, *pos);
1299 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1301 union input_seq_state *state = (union input_seq_state *)&seq->private;
1303 state->pos = *pos + 1;
1304 return seq_list_next(v, &input_handler_list, pos);
1307 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1309 struct input_handler *handler = container_of(v, struct input_handler, node);
1310 union input_seq_state *state = (union input_seq_state *)&seq->private;
1312 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1313 if (handler->filter)
1314 seq_puts(seq, " (filter)");
1315 if (handler->legacy_minors)
1316 seq_printf(seq, " Minor=%d", handler->minor);
1317 seq_putc(seq, '\n');
1322 static const struct seq_operations input_handlers_seq_ops = {
1323 .start = input_handlers_seq_start,
1324 .next = input_handlers_seq_next,
1325 .stop = input_seq_stop,
1326 .show = input_handlers_seq_show,
1329 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1331 return seq_open(file, &input_handlers_seq_ops);
1334 static const struct proc_ops input_handlers_proc_ops = {
1335 .proc_open = input_proc_handlers_open,
1336 .proc_read = seq_read,
1337 .proc_lseek = seq_lseek,
1338 .proc_release = seq_release,
1341 static int __init input_proc_init(void)
1343 struct proc_dir_entry *entry;
1345 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1346 if (!proc_bus_input_dir)
1349 entry = proc_create("devices", 0, proc_bus_input_dir,
1350 &input_devices_proc_ops);
1354 entry = proc_create("handlers", 0, proc_bus_input_dir,
1355 &input_handlers_proc_ops);
1361 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1362 fail1: remove_proc_entry("bus/input", NULL);
1366 static void input_proc_exit(void)
1368 remove_proc_entry("devices", proc_bus_input_dir);
1369 remove_proc_entry("handlers", proc_bus_input_dir);
1370 remove_proc_entry("bus/input", NULL);
1373 #else /* !CONFIG_PROC_FS */
1374 static inline void input_wakeup_procfs_readers(void) { }
1375 static inline int input_proc_init(void) { return 0; }
1376 static inline void input_proc_exit(void) { }
1379 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1380 static ssize_t input_dev_show_##name(struct device *dev, \
1381 struct device_attribute *attr, \
1384 struct input_dev *input_dev = to_input_dev(dev); \
1386 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1387 input_dev->name ? input_dev->name : ""); \
1389 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1391 INPUT_DEV_STRING_ATTR_SHOW(name);
1392 INPUT_DEV_STRING_ATTR_SHOW(phys);
1393 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1395 static int input_print_modalias_bits(char *buf, int size,
1396 char name, unsigned long *bm,
1397 unsigned int min_bit, unsigned int max_bit)
1401 len += snprintf(buf, max(size, 0), "%c", name);
1402 for (i = min_bit; i < max_bit; i++)
1403 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1404 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1408 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1413 len = snprintf(buf, max(size, 0),
1414 "input:b%04Xv%04Xp%04Xe%04X-",
1415 id->id.bustype, id->id.vendor,
1416 id->id.product, id->id.version);
1418 len += input_print_modalias_bits(buf + len, size - len,
1419 'e', id->evbit, 0, EV_MAX);
1420 len += input_print_modalias_bits(buf + len, size - len,
1421 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1422 len += input_print_modalias_bits(buf + len, size - len,
1423 'r', id->relbit, 0, REL_MAX);
1424 len += input_print_modalias_bits(buf + len, size - len,
1425 'a', id->absbit, 0, ABS_MAX);
1426 len += input_print_modalias_bits(buf + len, size - len,
1427 'm', id->mscbit, 0, MSC_MAX);
1428 len += input_print_modalias_bits(buf + len, size - len,
1429 'l', id->ledbit, 0, LED_MAX);
1430 len += input_print_modalias_bits(buf + len, size - len,
1431 's', id->sndbit, 0, SND_MAX);
1432 len += input_print_modalias_bits(buf + len, size - len,
1433 'f', id->ffbit, 0, FF_MAX);
1434 len += input_print_modalias_bits(buf + len, size - len,
1435 'w', id->swbit, 0, SW_MAX);
1438 len += snprintf(buf + len, max(size - len, 0), "\n");
1443 static ssize_t input_dev_show_modalias(struct device *dev,
1444 struct device_attribute *attr,
1447 struct input_dev *id = to_input_dev(dev);
1450 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1452 return min_t(int, len, PAGE_SIZE);
1454 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1456 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1457 int max, int add_cr);
1459 static ssize_t input_dev_show_properties(struct device *dev,
1460 struct device_attribute *attr,
1463 struct input_dev *input_dev = to_input_dev(dev);
1464 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1465 INPUT_PROP_MAX, true);
1466 return min_t(int, len, PAGE_SIZE);
1468 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1470 static int input_inhibit_device(struct input_dev *dev);
1471 static int input_uninhibit_device(struct input_dev *dev);
1473 static ssize_t inhibited_show(struct device *dev,
1474 struct device_attribute *attr,
1477 struct input_dev *input_dev = to_input_dev(dev);
1479 return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1482 static ssize_t inhibited_store(struct device *dev,
1483 struct device_attribute *attr, const char *buf,
1486 struct input_dev *input_dev = to_input_dev(dev);
1490 if (strtobool(buf, &inhibited))
1494 rv = input_inhibit_device(input_dev);
1496 rv = input_uninhibit_device(input_dev);
1504 static DEVICE_ATTR_RW(inhibited);
1506 static struct attribute *input_dev_attrs[] = {
1507 &dev_attr_name.attr,
1508 &dev_attr_phys.attr,
1509 &dev_attr_uniq.attr,
1510 &dev_attr_modalias.attr,
1511 &dev_attr_properties.attr,
1512 &dev_attr_inhibited.attr,
1516 static const struct attribute_group input_dev_attr_group = {
1517 .attrs = input_dev_attrs,
1520 #define INPUT_DEV_ID_ATTR(name) \
1521 static ssize_t input_dev_show_id_##name(struct device *dev, \
1522 struct device_attribute *attr, \
1525 struct input_dev *input_dev = to_input_dev(dev); \
1526 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1528 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1530 INPUT_DEV_ID_ATTR(bustype);
1531 INPUT_DEV_ID_ATTR(vendor);
1532 INPUT_DEV_ID_ATTR(product);
1533 INPUT_DEV_ID_ATTR(version);
1535 static struct attribute *input_dev_id_attrs[] = {
1536 &dev_attr_bustype.attr,
1537 &dev_attr_vendor.attr,
1538 &dev_attr_product.attr,
1539 &dev_attr_version.attr,
1543 static const struct attribute_group input_dev_id_attr_group = {
1545 .attrs = input_dev_id_attrs,
1548 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1549 int max, int add_cr)
1553 bool skip_empty = true;
1555 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1556 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1557 bitmap[i], skip_empty);
1561 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1566 * If no output was produced print a single 0.
1569 len = snprintf(buf, buf_size, "%d", 0);
1572 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1577 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1578 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1579 struct device_attribute *attr, \
1582 struct input_dev *input_dev = to_input_dev(dev); \
1583 int len = input_print_bitmap(buf, PAGE_SIZE, \
1584 input_dev->bm##bit, ev##_MAX, \
1586 return min_t(int, len, PAGE_SIZE); \
1588 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1590 INPUT_DEV_CAP_ATTR(EV, ev);
1591 INPUT_DEV_CAP_ATTR(KEY, key);
1592 INPUT_DEV_CAP_ATTR(REL, rel);
1593 INPUT_DEV_CAP_ATTR(ABS, abs);
1594 INPUT_DEV_CAP_ATTR(MSC, msc);
1595 INPUT_DEV_CAP_ATTR(LED, led);
1596 INPUT_DEV_CAP_ATTR(SND, snd);
1597 INPUT_DEV_CAP_ATTR(FF, ff);
1598 INPUT_DEV_CAP_ATTR(SW, sw);
1600 static struct attribute *input_dev_caps_attrs[] = {
1613 static const struct attribute_group input_dev_caps_attr_group = {
1614 .name = "capabilities",
1615 .attrs = input_dev_caps_attrs,
1618 static const struct attribute_group *input_dev_attr_groups[] = {
1619 &input_dev_attr_group,
1620 &input_dev_id_attr_group,
1621 &input_dev_caps_attr_group,
1622 &input_poller_attribute_group,
1626 static void input_dev_release(struct device *device)
1628 struct input_dev *dev = to_input_dev(device);
1630 input_ff_destroy(dev);
1631 input_mt_destroy_slots(dev);
1633 kfree(dev->absinfo);
1637 module_put(THIS_MODULE);
1641 * Input uevent interface - loading event handlers based on
1644 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1645 const char *name, unsigned long *bitmap, int max)
1649 if (add_uevent_var(env, "%s", name))
1652 len = input_print_bitmap(&env->buf[env->buflen - 1],
1653 sizeof(env->buf) - env->buflen,
1654 bitmap, max, false);
1655 if (len >= (sizeof(env->buf) - env->buflen))
1662 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1663 struct input_dev *dev)
1667 if (add_uevent_var(env, "MODALIAS="))
1670 len = input_print_modalias(&env->buf[env->buflen - 1],
1671 sizeof(env->buf) - env->buflen,
1673 if (len >= (sizeof(env->buf) - env->buflen))
1680 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1682 int err = add_uevent_var(env, fmt, val); \
1687 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1689 int err = input_add_uevent_bm_var(env, name, bm, max); \
1694 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1696 int err = input_add_uevent_modalias_var(env, dev); \
1701 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1703 struct input_dev *dev = to_input_dev(device);
1705 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1706 dev->id.bustype, dev->id.vendor,
1707 dev->id.product, dev->id.version);
1709 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1711 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1713 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1715 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1717 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1718 if (test_bit(EV_KEY, dev->evbit))
1719 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1720 if (test_bit(EV_REL, dev->evbit))
1721 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1722 if (test_bit(EV_ABS, dev->evbit))
1723 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1724 if (test_bit(EV_MSC, dev->evbit))
1725 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1726 if (test_bit(EV_LED, dev->evbit))
1727 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1728 if (test_bit(EV_SND, dev->evbit))
1729 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1730 if (test_bit(EV_FF, dev->evbit))
1731 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1732 if (test_bit(EV_SW, dev->evbit))
1733 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1735 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1740 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1745 if (!test_bit(EV_##type, dev->evbit)) \
1748 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1749 active = test_bit(i, dev->bits); \
1750 if (!active && !on) \
1753 dev->event(dev, EV_##type, i, on ? active : 0); \
1757 static void input_dev_toggle(struct input_dev *dev, bool activate)
1762 INPUT_DO_TOGGLE(dev, LED, led, activate);
1763 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1765 if (activate && test_bit(EV_REP, dev->evbit)) {
1766 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1767 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1772 * input_reset_device() - reset/restore the state of input device
1773 * @dev: input device whose state needs to be reset
1775 * This function tries to reset the state of an opened input device and
1776 * bring internal state and state if the hardware in sync with each other.
1777 * We mark all keys as released, restore LED state, repeat rate, etc.
1779 void input_reset_device(struct input_dev *dev)
1781 unsigned long flags;
1783 mutex_lock(&dev->mutex);
1784 spin_lock_irqsave(&dev->event_lock, flags);
1786 input_dev_toggle(dev, true);
1787 input_dev_release_keys(dev);
1789 spin_unlock_irqrestore(&dev->event_lock, flags);
1790 mutex_unlock(&dev->mutex);
1792 EXPORT_SYMBOL(input_reset_device);
1794 static int input_inhibit_device(struct input_dev *dev)
1796 mutex_lock(&dev->mutex);
1805 input_dev_poller_stop(dev->poller);
1808 spin_lock_irq(&dev->event_lock);
1809 input_dev_release_keys(dev);
1810 input_dev_toggle(dev, false);
1811 spin_unlock_irq(&dev->event_lock);
1813 dev->inhibited = true;
1816 mutex_unlock(&dev->mutex);
1820 static int input_uninhibit_device(struct input_dev *dev)
1824 mutex_lock(&dev->mutex);
1826 if (!dev->inhibited)
1831 ret = dev->open(dev);
1836 input_dev_poller_start(dev->poller);
1839 dev->inhibited = false;
1840 spin_lock_irq(&dev->event_lock);
1841 input_dev_toggle(dev, true);
1842 spin_unlock_irq(&dev->event_lock);
1845 mutex_unlock(&dev->mutex);
1849 #ifdef CONFIG_PM_SLEEP
1850 static int input_dev_suspend(struct device *dev)
1852 struct input_dev *input_dev = to_input_dev(dev);
1854 spin_lock_irq(&input_dev->event_lock);
1857 * Keys that are pressed now are unlikely to be
1858 * still pressed when we resume.
1860 input_dev_release_keys(input_dev);
1862 /* Turn off LEDs and sounds, if any are active. */
1863 input_dev_toggle(input_dev, false);
1865 spin_unlock_irq(&input_dev->event_lock);
1870 static int input_dev_resume(struct device *dev)
1872 struct input_dev *input_dev = to_input_dev(dev);
1874 spin_lock_irq(&input_dev->event_lock);
1876 /* Restore state of LEDs and sounds, if any were active. */
1877 input_dev_toggle(input_dev, true);
1879 spin_unlock_irq(&input_dev->event_lock);
1884 static int input_dev_freeze(struct device *dev)
1886 struct input_dev *input_dev = to_input_dev(dev);
1888 spin_lock_irq(&input_dev->event_lock);
1891 * Keys that are pressed now are unlikely to be
1892 * still pressed when we resume.
1894 input_dev_release_keys(input_dev);
1896 spin_unlock_irq(&input_dev->event_lock);
1901 static int input_dev_poweroff(struct device *dev)
1903 struct input_dev *input_dev = to_input_dev(dev);
1905 spin_lock_irq(&input_dev->event_lock);
1907 /* Turn off LEDs and sounds, if any are active. */
1908 input_dev_toggle(input_dev, false);
1910 spin_unlock_irq(&input_dev->event_lock);
1915 static const struct dev_pm_ops input_dev_pm_ops = {
1916 .suspend = input_dev_suspend,
1917 .resume = input_dev_resume,
1918 .freeze = input_dev_freeze,
1919 .poweroff = input_dev_poweroff,
1920 .restore = input_dev_resume,
1922 #endif /* CONFIG_PM */
1924 static const struct device_type input_dev_type = {
1925 .groups = input_dev_attr_groups,
1926 .release = input_dev_release,
1927 .uevent = input_dev_uevent,
1928 #ifdef CONFIG_PM_SLEEP
1929 .pm = &input_dev_pm_ops,
1933 static char *input_devnode(struct device *dev, umode_t *mode)
1935 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1938 struct class input_class = {
1940 .devnode = input_devnode,
1942 EXPORT_SYMBOL_GPL(input_class);
1945 * input_allocate_device - allocate memory for new input device
1947 * Returns prepared struct input_dev or %NULL.
1949 * NOTE: Use input_free_device() to free devices that have not been
1950 * registered; input_unregister_device() should be used for already
1951 * registered devices.
1953 struct input_dev *input_allocate_device(void)
1955 static atomic_t input_no = ATOMIC_INIT(-1);
1956 struct input_dev *dev;
1958 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1960 dev->dev.type = &input_dev_type;
1961 dev->dev.class = &input_class;
1962 device_initialize(&dev->dev);
1963 mutex_init(&dev->mutex);
1964 spin_lock_init(&dev->event_lock);
1965 timer_setup(&dev->timer, NULL, 0);
1966 INIT_LIST_HEAD(&dev->h_list);
1967 INIT_LIST_HEAD(&dev->node);
1969 dev_set_name(&dev->dev, "input%lu",
1970 (unsigned long)atomic_inc_return(&input_no));
1972 __module_get(THIS_MODULE);
1977 EXPORT_SYMBOL(input_allocate_device);
1979 struct input_devres {
1980 struct input_dev *input;
1983 static int devm_input_device_match(struct device *dev, void *res, void *data)
1985 struct input_devres *devres = res;
1987 return devres->input == data;
1990 static void devm_input_device_release(struct device *dev, void *res)
1992 struct input_devres *devres = res;
1993 struct input_dev *input = devres->input;
1995 dev_dbg(dev, "%s: dropping reference to %s\n",
1996 __func__, dev_name(&input->dev));
1997 input_put_device(input);
2001 * devm_input_allocate_device - allocate managed input device
2002 * @dev: device owning the input device being created
2004 * Returns prepared struct input_dev or %NULL.
2006 * Managed input devices do not need to be explicitly unregistered or
2007 * freed as it will be done automatically when owner device unbinds from
2008 * its driver (or binding fails). Once managed input device is allocated,
2009 * it is ready to be set up and registered in the same fashion as regular
2010 * input device. There are no special devm_input_device_[un]register()
2011 * variants, regular ones work with both managed and unmanaged devices,
2012 * should you need them. In most cases however, managed input device need
2013 * not be explicitly unregistered or freed.
2015 * NOTE: the owner device is set up as parent of input device and users
2016 * should not override it.
2018 struct input_dev *devm_input_allocate_device(struct device *dev)
2020 struct input_dev *input;
2021 struct input_devres *devres;
2023 devres = devres_alloc(devm_input_device_release,
2024 sizeof(*devres), GFP_KERNEL);
2028 input = input_allocate_device();
2030 devres_free(devres);
2034 input->dev.parent = dev;
2035 input->devres_managed = true;
2037 devres->input = input;
2038 devres_add(dev, devres);
2042 EXPORT_SYMBOL(devm_input_allocate_device);
2045 * input_free_device - free memory occupied by input_dev structure
2046 * @dev: input device to free
2048 * This function should only be used if input_register_device()
2049 * was not called yet or if it failed. Once device was registered
2050 * use input_unregister_device() and memory will be freed once last
2051 * reference to the device is dropped.
2053 * Device should be allocated by input_allocate_device().
2055 * NOTE: If there are references to the input device then memory
2056 * will not be freed until last reference is dropped.
2058 void input_free_device(struct input_dev *dev)
2061 if (dev->devres_managed)
2062 WARN_ON(devres_destroy(dev->dev.parent,
2063 devm_input_device_release,
2064 devm_input_device_match,
2066 input_put_device(dev);
2069 EXPORT_SYMBOL(input_free_device);
2072 * input_set_timestamp - set timestamp for input events
2073 * @dev: input device to set timestamp for
2074 * @timestamp: the time at which the event has occurred
2075 * in CLOCK_MONOTONIC
2077 * This function is intended to provide to the input system a more
2078 * accurate time of when an event actually occurred. The driver should
2079 * call this function as soon as a timestamp is acquired ensuring
2080 * clock conversions in input_set_timestamp are done correctly.
2082 * The system entering suspend state between timestamp acquisition and
2083 * calling input_set_timestamp can result in inaccurate conversions.
2085 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2087 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2088 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2089 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2092 EXPORT_SYMBOL(input_set_timestamp);
2095 * input_get_timestamp - get timestamp for input events
2096 * @dev: input device to get timestamp from
2098 * A valid timestamp is a timestamp of non-zero value.
2100 ktime_t *input_get_timestamp(struct input_dev *dev)
2102 const ktime_t invalid_timestamp = ktime_set(0, 0);
2104 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2105 input_set_timestamp(dev, ktime_get());
2107 return dev->timestamp;
2109 EXPORT_SYMBOL(input_get_timestamp);
2112 * input_set_capability - mark device as capable of a certain event
2113 * @dev: device that is capable of emitting or accepting event
2114 * @type: type of the event (EV_KEY, EV_REL, etc...)
2117 * In addition to setting up corresponding bit in appropriate capability
2118 * bitmap the function also adjusts dev->evbit.
2120 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2122 if (type < EV_CNT && input_max_code[type] &&
2123 code > input_max_code[type]) {
2124 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2132 __set_bit(code, dev->keybit);
2136 __set_bit(code, dev->relbit);
2140 input_alloc_absinfo(dev);
2141 __set_bit(code, dev->absbit);
2145 __set_bit(code, dev->mscbit);
2149 __set_bit(code, dev->swbit);
2153 __set_bit(code, dev->ledbit);
2157 __set_bit(code, dev->sndbit);
2161 __set_bit(code, dev->ffbit);
2169 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2174 __set_bit(type, dev->evbit);
2176 EXPORT_SYMBOL(input_set_capability);
2178 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2182 unsigned int events;
2185 mt_slots = dev->mt->num_slots;
2186 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2187 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2188 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2189 mt_slots = clamp(mt_slots, 2, 32);
2190 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2196 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2198 if (test_bit(EV_ABS, dev->evbit))
2199 for_each_set_bit(i, dev->absbit, ABS_CNT)
2200 events += input_is_mt_axis(i) ? mt_slots : 1;
2202 if (test_bit(EV_REL, dev->evbit))
2203 events += bitmap_weight(dev->relbit, REL_CNT);
2205 /* Make room for KEY and MSC events */
2211 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2213 if (!test_bit(EV_##type, dev->evbit)) \
2214 memset(dev->bits##bit, 0, \
2215 sizeof(dev->bits##bit)); \
2218 static void input_cleanse_bitmasks(struct input_dev *dev)
2220 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2221 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2222 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2223 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2224 INPUT_CLEANSE_BITMASK(dev, LED, led);
2225 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2226 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2227 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2230 static void __input_unregister_device(struct input_dev *dev)
2232 struct input_handle *handle, *next;
2234 input_disconnect_device(dev);
2236 mutex_lock(&input_mutex);
2238 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2239 handle->handler->disconnect(handle);
2240 WARN_ON(!list_empty(&dev->h_list));
2242 del_timer_sync(&dev->timer);
2243 list_del_init(&dev->node);
2245 input_wakeup_procfs_readers();
2247 mutex_unlock(&input_mutex);
2249 device_del(&dev->dev);
2252 static void devm_input_device_unregister(struct device *dev, void *res)
2254 struct input_devres *devres = res;
2255 struct input_dev *input = devres->input;
2257 dev_dbg(dev, "%s: unregistering device %s\n",
2258 __func__, dev_name(&input->dev));
2259 __input_unregister_device(input);
2263 * input_enable_softrepeat - enable software autorepeat
2264 * @dev: input device
2265 * @delay: repeat delay
2266 * @period: repeat period
2268 * Enable software autorepeat on the input device.
2270 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2272 dev->timer.function = input_repeat_key;
2273 dev->rep[REP_DELAY] = delay;
2274 dev->rep[REP_PERIOD] = period;
2276 EXPORT_SYMBOL(input_enable_softrepeat);
2278 bool input_device_enabled(struct input_dev *dev)
2280 lockdep_assert_held(&dev->mutex);
2282 return !dev->inhibited && dev->users > 0;
2284 EXPORT_SYMBOL_GPL(input_device_enabled);
2287 * input_register_device - register device with input core
2288 * @dev: device to be registered
2290 * This function registers device with input core. The device must be
2291 * allocated with input_allocate_device() and all it's capabilities
2292 * set up before registering.
2293 * If function fails the device must be freed with input_free_device().
2294 * Once device has been successfully registered it can be unregistered
2295 * with input_unregister_device(); input_free_device() should not be
2296 * called in this case.
2298 * Note that this function is also used to register managed input devices
2299 * (ones allocated with devm_input_allocate_device()). Such managed input
2300 * devices need not be explicitly unregistered or freed, their tear down
2301 * is controlled by the devres infrastructure. It is also worth noting
2302 * that tear down of managed input devices is internally a 2-step process:
2303 * registered managed input device is first unregistered, but stays in
2304 * memory and can still handle input_event() calls (although events will
2305 * not be delivered anywhere). The freeing of managed input device will
2306 * happen later, when devres stack is unwound to the point where device
2307 * allocation was made.
2309 int input_register_device(struct input_dev *dev)
2311 struct input_devres *devres = NULL;
2312 struct input_handler *handler;
2313 unsigned int packet_size;
2317 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2319 "Absolute device without dev->absinfo, refusing to register\n");
2323 if (dev->devres_managed) {
2324 devres = devres_alloc(devm_input_device_unregister,
2325 sizeof(*devres), GFP_KERNEL);
2329 devres->input = dev;
2332 /* Every input device generates EV_SYN/SYN_REPORT events. */
2333 __set_bit(EV_SYN, dev->evbit);
2335 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2336 __clear_bit(KEY_RESERVED, dev->keybit);
2338 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2339 input_cleanse_bitmasks(dev);
2341 packet_size = input_estimate_events_per_packet(dev);
2342 if (dev->hint_events_per_packet < packet_size)
2343 dev->hint_events_per_packet = packet_size;
2345 dev->max_vals = dev->hint_events_per_packet + 2;
2346 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2349 goto err_devres_free;
2353 * If delay and period are pre-set by the driver, then autorepeating
2354 * is handled by the driver itself and we don't do it in input.c.
2356 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2357 input_enable_softrepeat(dev, 250, 33);
2359 if (!dev->getkeycode)
2360 dev->getkeycode = input_default_getkeycode;
2362 if (!dev->setkeycode)
2363 dev->setkeycode = input_default_setkeycode;
2366 input_dev_poller_finalize(dev->poller);
2368 error = device_add(&dev->dev);
2372 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2373 pr_info("%s as %s\n",
2374 dev->name ? dev->name : "Unspecified device",
2375 path ? path : "N/A");
2378 error = mutex_lock_interruptible(&input_mutex);
2380 goto err_device_del;
2382 list_add_tail(&dev->node, &input_dev_list);
2384 list_for_each_entry(handler, &input_handler_list, node)
2385 input_attach_handler(dev, handler);
2387 input_wakeup_procfs_readers();
2389 mutex_unlock(&input_mutex);
2391 if (dev->devres_managed) {
2392 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2393 __func__, dev_name(&dev->dev));
2394 devres_add(dev->dev.parent, devres);
2399 device_del(&dev->dev);
2404 devres_free(devres);
2407 EXPORT_SYMBOL(input_register_device);
2410 * input_unregister_device - unregister previously registered device
2411 * @dev: device to be unregistered
2413 * This function unregisters an input device. Once device is unregistered
2414 * the caller should not try to access it as it may get freed at any moment.
2416 void input_unregister_device(struct input_dev *dev)
2418 if (dev->devres_managed) {
2419 WARN_ON(devres_destroy(dev->dev.parent,
2420 devm_input_device_unregister,
2421 devm_input_device_match,
2423 __input_unregister_device(dev);
2425 * We do not do input_put_device() here because it will be done
2426 * when 2nd devres fires up.
2429 __input_unregister_device(dev);
2430 input_put_device(dev);
2433 EXPORT_SYMBOL(input_unregister_device);
2436 * input_register_handler - register a new input handler
2437 * @handler: handler to be registered
2439 * This function registers a new input handler (interface) for input
2440 * devices in the system and attaches it to all input devices that
2441 * are compatible with the handler.
2443 int input_register_handler(struct input_handler *handler)
2445 struct input_dev *dev;
2448 error = mutex_lock_interruptible(&input_mutex);
2452 INIT_LIST_HEAD(&handler->h_list);
2454 list_add_tail(&handler->node, &input_handler_list);
2456 list_for_each_entry(dev, &input_dev_list, node)
2457 input_attach_handler(dev, handler);
2459 input_wakeup_procfs_readers();
2461 mutex_unlock(&input_mutex);
2464 EXPORT_SYMBOL(input_register_handler);
2467 * input_unregister_handler - unregisters an input handler
2468 * @handler: handler to be unregistered
2470 * This function disconnects a handler from its input devices and
2471 * removes it from lists of known handlers.
2473 void input_unregister_handler(struct input_handler *handler)
2475 struct input_handle *handle, *next;
2477 mutex_lock(&input_mutex);
2479 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2480 handler->disconnect(handle);
2481 WARN_ON(!list_empty(&handler->h_list));
2483 list_del_init(&handler->node);
2485 input_wakeup_procfs_readers();
2487 mutex_unlock(&input_mutex);
2489 EXPORT_SYMBOL(input_unregister_handler);
2492 * input_handler_for_each_handle - handle iterator
2493 * @handler: input handler to iterate
2494 * @data: data for the callback
2495 * @fn: function to be called for each handle
2497 * Iterate over @bus's list of devices, and call @fn for each, passing
2498 * it @data and stop when @fn returns a non-zero value. The function is
2499 * using RCU to traverse the list and therefore may be using in atomic
2500 * contexts. The @fn callback is invoked from RCU critical section and
2501 * thus must not sleep.
2503 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2504 int (*fn)(struct input_handle *, void *))
2506 struct input_handle *handle;
2511 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2512 retval = fn(handle, data);
2521 EXPORT_SYMBOL(input_handler_for_each_handle);
2524 * input_register_handle - register a new input handle
2525 * @handle: handle to register
2527 * This function puts a new input handle onto device's
2528 * and handler's lists so that events can flow through
2529 * it once it is opened using input_open_device().
2531 * This function is supposed to be called from handler's
2534 int input_register_handle(struct input_handle *handle)
2536 struct input_handler *handler = handle->handler;
2537 struct input_dev *dev = handle->dev;
2541 * We take dev->mutex here to prevent race with
2542 * input_release_device().
2544 error = mutex_lock_interruptible(&dev->mutex);
2549 * Filters go to the head of the list, normal handlers
2552 if (handler->filter)
2553 list_add_rcu(&handle->d_node, &dev->h_list);
2555 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2557 mutex_unlock(&dev->mutex);
2560 * Since we are supposed to be called from ->connect()
2561 * which is mutually exclusive with ->disconnect()
2562 * we can't be racing with input_unregister_handle()
2563 * and so separate lock is not needed here.
2565 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2568 handler->start(handle);
2572 EXPORT_SYMBOL(input_register_handle);
2575 * input_unregister_handle - unregister an input handle
2576 * @handle: handle to unregister
2578 * This function removes input handle from device's
2579 * and handler's lists.
2581 * This function is supposed to be called from handler's
2582 * disconnect() method.
2584 void input_unregister_handle(struct input_handle *handle)
2586 struct input_dev *dev = handle->dev;
2588 list_del_rcu(&handle->h_node);
2591 * Take dev->mutex to prevent race with input_release_device().
2593 mutex_lock(&dev->mutex);
2594 list_del_rcu(&handle->d_node);
2595 mutex_unlock(&dev->mutex);
2599 EXPORT_SYMBOL(input_unregister_handle);
2602 * input_get_new_minor - allocates a new input minor number
2603 * @legacy_base: beginning or the legacy range to be searched
2604 * @legacy_num: size of legacy range
2605 * @allow_dynamic: whether we can also take ID from the dynamic range
2607 * This function allocates a new device minor for from input major namespace.
2608 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2609 * parameters and whether ID can be allocated from dynamic range if there are
2610 * no free IDs in legacy range.
2612 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2616 * This function should be called from input handler's ->connect()
2617 * methods, which are serialized with input_mutex, so no additional
2618 * locking is needed here.
2620 if (legacy_base >= 0) {
2621 int minor = ida_simple_get(&input_ida,
2623 legacy_base + legacy_num,
2625 if (minor >= 0 || !allow_dynamic)
2629 return ida_simple_get(&input_ida,
2630 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2633 EXPORT_SYMBOL(input_get_new_minor);
2636 * input_free_minor - release previously allocated minor
2637 * @minor: minor to be released
2639 * This function releases previously allocated input minor so that it can be
2642 void input_free_minor(unsigned int minor)
2644 ida_simple_remove(&input_ida, minor);
2646 EXPORT_SYMBOL(input_free_minor);
2648 static int __init input_init(void)
2652 err = class_register(&input_class);
2654 pr_err("unable to register input_dev class\n");
2658 err = input_proc_init();
2662 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2663 INPUT_MAX_CHAR_DEVICES, "input");
2665 pr_err("unable to register char major %d", INPUT_MAJOR);
2671 fail2: input_proc_exit();
2672 fail1: class_unregister(&input_class);
2676 static void __exit input_exit(void)
2679 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2680 INPUT_MAX_CHAR_DEVICES);
2681 class_unregister(&input_class);
2684 subsys_initcall(input_init);
2685 module_exit(input_exit);