2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
37 intel_ring_initialized(struct intel_engine_cs *ring)
39 struct drm_device *dev = ring->dev;
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
50 return ring->buffer && ring->buffer->obj;
53 int __intel_ring_space(int head, int tail, int size)
55 int space = head - (tail + I915_RING_FREE_SPACE);
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
63 return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 ringbuf->tail, ringbuf->size);
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
69 struct drm_i915_private *dev_priv = ring->dev->dev_private;
70 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
73 void __intel_ring_advance(struct intel_engine_cs *ring)
75 struct intel_ringbuffer *ringbuf = ring->buffer;
76 ringbuf->tail &= ringbuf->size - 1;
77 if (intel_ring_stopped(ring))
79 ring->write_tail(ring, ringbuf->tail);
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84 u32 invalidate_domains,
91 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92 cmd |= MI_NO_WRITE_FLUSH;
94 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
97 ret = intel_ring_begin(ring, 2);
101 intel_ring_emit(ring, cmd);
102 intel_ring_emit(ring, MI_NOOP);
103 intel_ring_advance(ring);
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110 u32 invalidate_domains,
113 struct drm_device *dev = ring->dev;
120 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
122 * also flushed at 2d versus 3d pipeline switches.
126 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 * MI_READ_FLUSH is set, and is always flushed on 965.
129 * I915_GEM_DOMAIN_COMMAND may not exist?
131 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 * invalidated when MI_EXE_FLUSH is set.
134 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 * invalidated with every MI_FLUSH.
139 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 * are flushed at any MI_FLUSH.
145 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147 cmd &= ~MI_NO_WRITE_FLUSH;
148 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
151 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 (IS_G4X(dev) || IS_GEN5(dev)))
153 cmd |= MI_INVALIDATE_ISP;
155 ret = intel_ring_begin(ring, 2);
159 intel_ring_emit(ring, cmd);
160 intel_ring_emit(ring, MI_NOOP);
161 intel_ring_advance(ring);
167 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168 * implementing two workarounds on gen6. From section 1.4.7.1
169 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
171 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172 * produced by non-pipelined state commands), software needs to first
173 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
176 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
179 * And the workaround for these two requires this workaround first:
181 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182 * BEFORE the pipe-control with a post-sync op and no write-cache
185 * And this last workaround is tricky because of the requirements on
186 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
189 * "1 of the following must also be set:
190 * - Render Target Cache Flush Enable ([12] of DW1)
191 * - Depth Cache Flush Enable ([0] of DW1)
192 * - Stall at Pixel Scoreboard ([1] of DW1)
193 * - Depth Stall ([13] of DW1)
194 * - Post-Sync Operation ([13] of DW1)
195 * - Notify Enable ([8] of DW1)"
197 * The cache flushes require the workaround flush that triggered this
198 * one, so we can't use it. Depth stall would trigger the same.
199 * Post-sync nonzero is what triggered this second workaround, so we
200 * can't use that one either. Notify enable is IRQs, which aren't
201 * really our business. That leaves only stall at scoreboard.
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
206 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
210 ret = intel_ring_begin(ring, 6);
214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0); /* low dword */
219 intel_ring_emit(ring, 0); /* high dword */
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
223 ret = intel_ring_begin(ring, 6);
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 intel_ring_emit(ring, 0);
231 intel_ring_emit(ring, 0);
232 intel_ring_emit(ring, MI_NOOP);
233 intel_ring_advance(ring);
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240 u32 invalidate_domains, u32 flush_domains)
243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
246 /* Force SNB workarounds for PIPE_CONTROL flushes */
247 ret = intel_emit_post_sync_nonzero_flush(ring);
251 /* Just flush everything. Experiments have shown that reducing the
252 * number of bits based on the write domains has little performance
256 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
259 * Ensure that any following seqno writes only happen
260 * when the render cache is indeed flushed.
262 flags |= PIPE_CONTROL_CS_STALL;
264 if (invalidate_domains) {
265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
272 * TLB invalidate requires a post-sync write.
274 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
277 ret = intel_ring_begin(ring, 4);
281 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282 intel_ring_emit(ring, flags);
283 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284 intel_ring_emit(ring, 0);
285 intel_ring_advance(ring);
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
295 ret = intel_ring_begin(ring, 4);
299 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 intel_ring_emit(ring, 0);
303 intel_ring_emit(ring, 0);
304 intel_ring_advance(ring);
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
313 if (!ring->fbc_dirty)
316 ret = intel_ring_begin(ring, 6);
319 /* WaFbcNukeOn3DBlt:ivb/hsw */
320 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 intel_ring_emit(ring, value);
323 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326 intel_ring_advance(ring);
328 ring->fbc_dirty = false;
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334 u32 invalidate_domains, u32 flush_domains)
337 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
341 * Ensure that any following seqno writes only happen when the render
342 * cache is indeed flushed.
344 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 * don't try to be clever and just set it unconditionally.
348 flags |= PIPE_CONTROL_CS_STALL;
350 /* Just flush everything. Experiments have shown that reducing the
351 * number of bits based on the write domains has little performance
355 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
358 if (invalidate_domains) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
366 * TLB invalidate requires a post-sync write.
368 flags |= PIPE_CONTROL_QW_WRITE;
369 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
371 /* Workaround: we must issue a pipe_control with CS-stall bit
372 * set before a pipe_control command that has the state cache
373 * invalidate bit set. */
374 gen7_render_ring_cs_stall_wa(ring);
377 ret = intel_ring_begin(ring, 4);
381 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382 intel_ring_emit(ring, flags);
383 intel_ring_emit(ring, scratch_addr);
384 intel_ring_emit(ring, 0);
385 intel_ring_advance(ring);
387 if (!invalidate_domains && flush_domains)
388 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395 u32 flags, u32 scratch_addr)
399 ret = intel_ring_begin(ring, 6);
403 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404 intel_ring_emit(ring, flags);
405 intel_ring_emit(ring, scratch_addr);
406 intel_ring_emit(ring, 0);
407 intel_ring_emit(ring, 0);
408 intel_ring_emit(ring, 0);
409 intel_ring_advance(ring);
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416 u32 invalidate_domains, u32 flush_domains)
419 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
422 flags |= PIPE_CONTROL_CS_STALL;
425 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
428 if (invalidate_domains) {
429 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435 flags |= PIPE_CONTROL_QW_WRITE;
436 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
438 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439 ret = gen8_emit_pipe_control(ring,
440 PIPE_CONTROL_CS_STALL |
441 PIPE_CONTROL_STALL_AT_SCOREBOARD,
447 return gen8_emit_pipe_control(ring, flags, scratch_addr);
450 static void ring_write_tail(struct intel_engine_cs *ring,
453 struct drm_i915_private *dev_priv = ring->dev->dev_private;
454 I915_WRITE_TAIL(ring, value);
457 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
459 struct drm_i915_private *dev_priv = ring->dev->dev_private;
462 if (INTEL_INFO(ring->dev)->gen >= 8)
463 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
464 RING_ACTHD_UDW(ring->mmio_base));
465 else if (INTEL_INFO(ring->dev)->gen >= 4)
466 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
468 acthd = I915_READ(ACTHD);
473 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
475 struct drm_i915_private *dev_priv = ring->dev->dev_private;
478 addr = dev_priv->status_page_dmah->busaddr;
479 if (INTEL_INFO(ring->dev)->gen >= 4)
480 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
481 I915_WRITE(HWS_PGA, addr);
484 static bool stop_ring(struct intel_engine_cs *ring)
486 struct drm_i915_private *dev_priv = to_i915(ring->dev);
488 if (!IS_GEN2(ring->dev)) {
489 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
490 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
491 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
492 /* Sometimes we observe that the idle flag is not
493 * set even though the ring is empty. So double
494 * check before giving up.
496 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
501 I915_WRITE_CTL(ring, 0);
502 I915_WRITE_HEAD(ring, 0);
503 ring->write_tail(ring, 0);
505 if (!IS_GEN2(ring->dev)) {
506 (void)I915_READ_CTL(ring);
507 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
510 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
513 static int init_ring_common(struct intel_engine_cs *ring)
515 struct drm_device *dev = ring->dev;
516 struct drm_i915_private *dev_priv = dev->dev_private;
517 struct intel_ringbuffer *ringbuf = ring->buffer;
518 struct drm_i915_gem_object *obj = ringbuf->obj;
521 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
523 if (!stop_ring(ring)) {
524 /* G45 ring initialization often fails to reset head to zero */
525 DRM_DEBUG_KMS("%s head not reset to zero "
526 "ctl %08x head %08x tail %08x start %08x\n",
529 I915_READ_HEAD(ring),
530 I915_READ_TAIL(ring),
531 I915_READ_START(ring));
533 if (!stop_ring(ring)) {
534 DRM_ERROR("failed to set %s head to zero "
535 "ctl %08x head %08x tail %08x start %08x\n",
538 I915_READ_HEAD(ring),
539 I915_READ_TAIL(ring),
540 I915_READ_START(ring));
546 if (I915_NEED_GFX_HWS(dev))
547 intel_ring_setup_status_page(ring);
549 ring_setup_phys_status_page(ring);
551 /* Enforce ordering by reading HEAD register back */
552 I915_READ_HEAD(ring);
554 /* Initialize the ring. This must happen _after_ we've cleared the ring
555 * registers with the above sequence (the readback of the HEAD registers
556 * also enforces ordering), otherwise the hw might lose the new ring
557 * register values. */
558 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
560 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
563 /* If the head is still not zero, the ring is dead */
564 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
565 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
566 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
567 DRM_ERROR("%s initialization failed "
568 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
570 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
571 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
572 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
577 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
578 i915_kernel_lost_context(ring->dev);
580 ringbuf->head = I915_READ_HEAD(ring);
581 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
582 ringbuf->space = intel_ring_space(ringbuf);
583 ringbuf->last_retired_head = -1;
586 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
589 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
595 intel_fini_pipe_control(struct intel_engine_cs *ring)
597 struct drm_device *dev = ring->dev;
599 if (ring->scratch.obj == NULL)
602 if (INTEL_INFO(dev)->gen >= 5) {
603 kunmap(sg_page(ring->scratch.obj->pages->sgl));
604 i915_gem_object_ggtt_unpin(ring->scratch.obj);
607 drm_gem_object_unreference(&ring->scratch.obj->base);
608 ring->scratch.obj = NULL;
612 intel_init_pipe_control(struct intel_engine_cs *ring)
616 if (ring->scratch.obj)
619 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
620 if (ring->scratch.obj == NULL) {
621 DRM_ERROR("Failed to allocate seqno page\n");
626 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
630 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
634 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
635 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
636 if (ring->scratch.cpu_page == NULL) {
641 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
642 ring->name, ring->scratch.gtt_offset);
646 i915_gem_object_ggtt_unpin(ring->scratch.obj);
648 drm_gem_object_unreference(&ring->scratch.obj->base);
653 static int init_render_ring(struct intel_engine_cs *ring)
655 struct drm_device *dev = ring->dev;
656 struct drm_i915_private *dev_priv = dev->dev_private;
657 int ret = init_ring_common(ring);
661 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
662 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
663 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
665 /* We need to disable the AsyncFlip performance optimisations in order
666 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
667 * programmed to '1' on all products.
669 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
671 if (INTEL_INFO(dev)->gen >= 6)
672 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
674 /* Required for the hardware to program scanline values for waiting */
675 /* WaEnableFlushTlbInvalidationMode:snb */
676 if (INTEL_INFO(dev)->gen == 6)
678 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
680 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
682 I915_WRITE(GFX_MODE_GEN7,
683 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
684 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
686 if (INTEL_INFO(dev)->gen >= 5) {
687 ret = intel_init_pipe_control(ring);
693 /* From the Sandybridge PRM, volume 1 part 3, page 24:
694 * "If this bit is set, STCunit will have LRA as replacement
695 * policy. [...] This bit must be reset. LRA replacement
696 * policy is not supported."
698 I915_WRITE(CACHE_MODE_0,
699 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
702 if (INTEL_INFO(dev)->gen >= 6)
703 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
706 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
711 static void render_ring_cleanup(struct intel_engine_cs *ring)
713 struct drm_device *dev = ring->dev;
714 struct drm_i915_private *dev_priv = dev->dev_private;
716 if (dev_priv->semaphore_obj) {
717 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
718 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
719 dev_priv->semaphore_obj = NULL;
722 intel_fini_pipe_control(ring);
725 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
726 unsigned int num_dwords)
728 #define MBOX_UPDATE_DWORDS 8
729 struct drm_device *dev = signaller->dev;
730 struct drm_i915_private *dev_priv = dev->dev_private;
731 struct intel_engine_cs *waiter;
732 int i, ret, num_rings;
734 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
735 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
736 #undef MBOX_UPDATE_DWORDS
738 ret = intel_ring_begin(signaller, num_dwords);
742 for_each_ring(waiter, dev_priv, i) {
743 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
744 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
747 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
748 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
749 PIPE_CONTROL_QW_WRITE |
750 PIPE_CONTROL_FLUSH_ENABLE);
751 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
752 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
753 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
754 intel_ring_emit(signaller, 0);
755 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
756 MI_SEMAPHORE_TARGET(waiter->id));
757 intel_ring_emit(signaller, 0);
763 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
764 unsigned int num_dwords)
766 #define MBOX_UPDATE_DWORDS 6
767 struct drm_device *dev = signaller->dev;
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 struct intel_engine_cs *waiter;
770 int i, ret, num_rings;
772 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
773 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
774 #undef MBOX_UPDATE_DWORDS
776 ret = intel_ring_begin(signaller, num_dwords);
780 for_each_ring(waiter, dev_priv, i) {
781 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
782 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
785 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
786 MI_FLUSH_DW_OP_STOREDW);
787 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
788 MI_FLUSH_DW_USE_GTT);
789 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
790 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
791 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
792 MI_SEMAPHORE_TARGET(waiter->id));
793 intel_ring_emit(signaller, 0);
799 static int gen6_signal(struct intel_engine_cs *signaller,
800 unsigned int num_dwords)
802 struct drm_device *dev = signaller->dev;
803 struct drm_i915_private *dev_priv = dev->dev_private;
804 struct intel_engine_cs *useless;
805 int i, ret, num_rings;
807 #define MBOX_UPDATE_DWORDS 3
808 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
809 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
810 #undef MBOX_UPDATE_DWORDS
812 ret = intel_ring_begin(signaller, num_dwords);
816 for_each_ring(useless, dev_priv, i) {
817 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
818 if (mbox_reg != GEN6_NOSYNC) {
819 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
820 intel_ring_emit(signaller, mbox_reg);
821 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
825 /* If num_dwords was rounded, make sure the tail pointer is correct */
826 if (num_rings % 2 == 0)
827 intel_ring_emit(signaller, MI_NOOP);
833 * gen6_add_request - Update the semaphore mailbox registers
835 * @ring - ring that is adding a request
836 * @seqno - return seqno stuck into the ring
838 * Update the mailbox registers in the *other* rings with the current seqno.
839 * This acts like a signal in the canonical semaphore.
842 gen6_add_request(struct intel_engine_cs *ring)
846 if (ring->semaphore.signal)
847 ret = ring->semaphore.signal(ring, 4);
849 ret = intel_ring_begin(ring, 4);
854 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
855 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
856 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
857 intel_ring_emit(ring, MI_USER_INTERRUPT);
858 __intel_ring_advance(ring);
863 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
866 struct drm_i915_private *dev_priv = dev->dev_private;
867 return dev_priv->last_seqno < seqno;
871 * intel_ring_sync - sync the waiter to the signaller on seqno
873 * @waiter - ring that is waiting
874 * @signaller - ring which has, or will signal
875 * @seqno - seqno which the waiter will block on
879 gen8_ring_sync(struct intel_engine_cs *waiter,
880 struct intel_engine_cs *signaller,
883 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
886 ret = intel_ring_begin(waiter, 4);
890 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
891 MI_SEMAPHORE_GLOBAL_GTT |
893 MI_SEMAPHORE_SAD_GTE_SDD);
894 intel_ring_emit(waiter, seqno);
895 intel_ring_emit(waiter,
896 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
897 intel_ring_emit(waiter,
898 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
899 intel_ring_advance(waiter);
904 gen6_ring_sync(struct intel_engine_cs *waiter,
905 struct intel_engine_cs *signaller,
908 u32 dw1 = MI_SEMAPHORE_MBOX |
909 MI_SEMAPHORE_COMPARE |
910 MI_SEMAPHORE_REGISTER;
911 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
914 /* Throughout all of the GEM code, seqno passed implies our current
915 * seqno is >= the last seqno executed. However for hardware the
916 * comparison is strictly greater than.
920 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
922 ret = intel_ring_begin(waiter, 4);
926 /* If seqno wrap happened, omit the wait with no-ops */
927 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
928 intel_ring_emit(waiter, dw1 | wait_mbox);
929 intel_ring_emit(waiter, seqno);
930 intel_ring_emit(waiter, 0);
931 intel_ring_emit(waiter, MI_NOOP);
933 intel_ring_emit(waiter, MI_NOOP);
934 intel_ring_emit(waiter, MI_NOOP);
935 intel_ring_emit(waiter, MI_NOOP);
936 intel_ring_emit(waiter, MI_NOOP);
938 intel_ring_advance(waiter);
943 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
945 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
946 PIPE_CONTROL_DEPTH_STALL); \
947 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
948 intel_ring_emit(ring__, 0); \
949 intel_ring_emit(ring__, 0); \
953 pc_render_add_request(struct intel_engine_cs *ring)
955 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
958 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
959 * incoherent with writes to memory, i.e. completely fubar,
960 * so we need to use PIPE_NOTIFY instead.
962 * However, we also need to workaround the qword write
963 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
964 * memory before requesting an interrupt.
966 ret = intel_ring_begin(ring, 32);
970 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
971 PIPE_CONTROL_WRITE_FLUSH |
972 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
973 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
974 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
975 intel_ring_emit(ring, 0);
976 PIPE_CONTROL_FLUSH(ring, scratch_addr);
977 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
978 PIPE_CONTROL_FLUSH(ring, scratch_addr);
979 scratch_addr += 2 * CACHELINE_BYTES;
980 PIPE_CONTROL_FLUSH(ring, scratch_addr);
981 scratch_addr += 2 * CACHELINE_BYTES;
982 PIPE_CONTROL_FLUSH(ring, scratch_addr);
983 scratch_addr += 2 * CACHELINE_BYTES;
984 PIPE_CONTROL_FLUSH(ring, scratch_addr);
985 scratch_addr += 2 * CACHELINE_BYTES;
986 PIPE_CONTROL_FLUSH(ring, scratch_addr);
988 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
989 PIPE_CONTROL_WRITE_FLUSH |
990 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
991 PIPE_CONTROL_NOTIFY);
992 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
993 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
994 intel_ring_emit(ring, 0);
995 __intel_ring_advance(ring);
1001 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1003 /* Workaround to force correct ordering between irq and seqno writes on
1004 * ivb (and maybe also on snb) by reading from a CS register (like
1005 * ACTHD) before reading the status page. */
1006 if (!lazy_coherency) {
1007 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1008 POSTING_READ(RING_ACTHD(ring->mmio_base));
1011 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1015 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1017 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1021 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1023 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1027 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1029 return ring->scratch.cpu_page[0];
1033 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1035 ring->scratch.cpu_page[0] = seqno;
1039 gen5_ring_get_irq(struct intel_engine_cs *ring)
1041 struct drm_device *dev = ring->dev;
1042 struct drm_i915_private *dev_priv = dev->dev_private;
1043 unsigned long flags;
1045 if (!dev->irq_enabled)
1048 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1049 if (ring->irq_refcount++ == 0)
1050 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1051 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1057 gen5_ring_put_irq(struct intel_engine_cs *ring)
1059 struct drm_device *dev = ring->dev;
1060 struct drm_i915_private *dev_priv = dev->dev_private;
1061 unsigned long flags;
1063 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1064 if (--ring->irq_refcount == 0)
1065 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1066 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1070 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1072 struct drm_device *dev = ring->dev;
1073 struct drm_i915_private *dev_priv = dev->dev_private;
1074 unsigned long flags;
1076 if (!dev->irq_enabled)
1079 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1080 if (ring->irq_refcount++ == 0) {
1081 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1082 I915_WRITE(IMR, dev_priv->irq_mask);
1085 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1091 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1093 struct drm_device *dev = ring->dev;
1094 struct drm_i915_private *dev_priv = dev->dev_private;
1095 unsigned long flags;
1097 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1098 if (--ring->irq_refcount == 0) {
1099 dev_priv->irq_mask |= ring->irq_enable_mask;
1100 I915_WRITE(IMR, dev_priv->irq_mask);
1103 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1107 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1109 struct drm_device *dev = ring->dev;
1110 struct drm_i915_private *dev_priv = dev->dev_private;
1111 unsigned long flags;
1113 if (!dev->irq_enabled)
1116 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1117 if (ring->irq_refcount++ == 0) {
1118 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1119 I915_WRITE16(IMR, dev_priv->irq_mask);
1120 POSTING_READ16(IMR);
1122 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1128 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1130 struct drm_device *dev = ring->dev;
1131 struct drm_i915_private *dev_priv = dev->dev_private;
1132 unsigned long flags;
1134 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1135 if (--ring->irq_refcount == 0) {
1136 dev_priv->irq_mask |= ring->irq_enable_mask;
1137 I915_WRITE16(IMR, dev_priv->irq_mask);
1138 POSTING_READ16(IMR);
1140 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1143 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1145 struct drm_device *dev = ring->dev;
1146 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1149 /* The ring status page addresses are no longer next to the rest of
1150 * the ring registers as of gen7.
1155 mmio = RENDER_HWS_PGA_GEN7;
1158 mmio = BLT_HWS_PGA_GEN7;
1161 * VCS2 actually doesn't exist on Gen7. Only shut up
1162 * gcc switch check warning
1166 mmio = BSD_HWS_PGA_GEN7;
1169 mmio = VEBOX_HWS_PGA_GEN7;
1172 } else if (IS_GEN6(ring->dev)) {
1173 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1175 /* XXX: gen8 returns to sanity */
1176 mmio = RING_HWS_PGA(ring->mmio_base);
1179 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1183 * Flush the TLB for this page
1185 * FIXME: These two bits have disappeared on gen8, so a question
1186 * arises: do we still need this and if so how should we go about
1187 * invalidating the TLB?
1189 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1190 u32 reg = RING_INSTPM(ring->mmio_base);
1192 /* ring should be idle before issuing a sync flush*/
1193 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1196 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1197 INSTPM_SYNC_FLUSH));
1198 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1200 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1206 bsd_ring_flush(struct intel_engine_cs *ring,
1207 u32 invalidate_domains,
1212 ret = intel_ring_begin(ring, 2);
1216 intel_ring_emit(ring, MI_FLUSH);
1217 intel_ring_emit(ring, MI_NOOP);
1218 intel_ring_advance(ring);
1223 i9xx_add_request(struct intel_engine_cs *ring)
1227 ret = intel_ring_begin(ring, 4);
1231 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1232 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1233 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1234 intel_ring_emit(ring, MI_USER_INTERRUPT);
1235 __intel_ring_advance(ring);
1241 gen6_ring_get_irq(struct intel_engine_cs *ring)
1243 struct drm_device *dev = ring->dev;
1244 struct drm_i915_private *dev_priv = dev->dev_private;
1245 unsigned long flags;
1247 if (!dev->irq_enabled)
1250 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1251 if (ring->irq_refcount++ == 0) {
1252 if (HAS_L3_DPF(dev) && ring->id == RCS)
1253 I915_WRITE_IMR(ring,
1254 ~(ring->irq_enable_mask |
1255 GT_PARITY_ERROR(dev)));
1257 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1258 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1260 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1266 gen6_ring_put_irq(struct intel_engine_cs *ring)
1268 struct drm_device *dev = ring->dev;
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270 unsigned long flags;
1272 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1273 if (--ring->irq_refcount == 0) {
1274 if (HAS_L3_DPF(dev) && ring->id == RCS)
1275 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1277 I915_WRITE_IMR(ring, ~0);
1278 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1280 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1284 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1286 struct drm_device *dev = ring->dev;
1287 struct drm_i915_private *dev_priv = dev->dev_private;
1288 unsigned long flags;
1290 if (!dev->irq_enabled)
1293 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1294 if (ring->irq_refcount++ == 0) {
1295 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1296 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1298 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1304 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1306 struct drm_device *dev = ring->dev;
1307 struct drm_i915_private *dev_priv = dev->dev_private;
1308 unsigned long flags;
1310 if (!dev->irq_enabled)
1313 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1314 if (--ring->irq_refcount == 0) {
1315 I915_WRITE_IMR(ring, ~0);
1316 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1318 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1322 gen8_ring_get_irq(struct intel_engine_cs *ring)
1324 struct drm_device *dev = ring->dev;
1325 struct drm_i915_private *dev_priv = dev->dev_private;
1326 unsigned long flags;
1328 if (!dev->irq_enabled)
1331 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1332 if (ring->irq_refcount++ == 0) {
1333 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1334 I915_WRITE_IMR(ring,
1335 ~(ring->irq_enable_mask |
1336 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1338 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1340 POSTING_READ(RING_IMR(ring->mmio_base));
1342 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1348 gen8_ring_put_irq(struct intel_engine_cs *ring)
1350 struct drm_device *dev = ring->dev;
1351 struct drm_i915_private *dev_priv = dev->dev_private;
1352 unsigned long flags;
1354 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1355 if (--ring->irq_refcount == 0) {
1356 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1357 I915_WRITE_IMR(ring,
1358 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1360 I915_WRITE_IMR(ring, ~0);
1362 POSTING_READ(RING_IMR(ring->mmio_base));
1364 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1368 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1369 u64 offset, u32 length,
1374 ret = intel_ring_begin(ring, 2);
1378 intel_ring_emit(ring,
1379 MI_BATCH_BUFFER_START |
1381 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1382 intel_ring_emit(ring, offset);
1383 intel_ring_advance(ring);
1388 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1389 #define I830_BATCH_LIMIT (256*1024)
1391 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1392 u64 offset, u32 len,
1397 if (flags & I915_DISPATCH_PINNED) {
1398 ret = intel_ring_begin(ring, 4);
1402 intel_ring_emit(ring, MI_BATCH_BUFFER);
1403 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1404 intel_ring_emit(ring, offset + len - 8);
1405 intel_ring_emit(ring, MI_NOOP);
1406 intel_ring_advance(ring);
1408 u32 cs_offset = ring->scratch.gtt_offset;
1410 if (len > I830_BATCH_LIMIT)
1413 ret = intel_ring_begin(ring, 9+3);
1416 /* Blit the batch (which has now all relocs applied) to the stable batch
1417 * scratch bo area (so that the CS never stumbles over its tlb
1418 * invalidation bug) ... */
1419 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1420 XY_SRC_COPY_BLT_WRITE_ALPHA |
1421 XY_SRC_COPY_BLT_WRITE_RGB);
1422 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1423 intel_ring_emit(ring, 0);
1424 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1425 intel_ring_emit(ring, cs_offset);
1426 intel_ring_emit(ring, 0);
1427 intel_ring_emit(ring, 4096);
1428 intel_ring_emit(ring, offset);
1429 intel_ring_emit(ring, MI_FLUSH);
1431 /* ... and execute it. */
1432 intel_ring_emit(ring, MI_BATCH_BUFFER);
1433 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1434 intel_ring_emit(ring, cs_offset + len - 8);
1435 intel_ring_advance(ring);
1442 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1443 u64 offset, u32 len,
1448 ret = intel_ring_begin(ring, 2);
1452 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1453 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1454 intel_ring_advance(ring);
1459 static void cleanup_status_page(struct intel_engine_cs *ring)
1461 struct drm_i915_gem_object *obj;
1463 obj = ring->status_page.obj;
1467 kunmap(sg_page(obj->pages->sgl));
1468 i915_gem_object_ggtt_unpin(obj);
1469 drm_gem_object_unreference(&obj->base);
1470 ring->status_page.obj = NULL;
1473 static int init_status_page(struct intel_engine_cs *ring)
1475 struct drm_i915_gem_object *obj;
1477 if ((obj = ring->status_page.obj) == NULL) {
1481 obj = i915_gem_alloc_object(ring->dev, 4096);
1483 DRM_ERROR("Failed to allocate status page\n");
1487 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1492 if (!HAS_LLC(ring->dev))
1493 /* On g33, we cannot place HWS above 256MiB, so
1494 * restrict its pinning to the low mappable arena.
1495 * Though this restriction is not documented for
1496 * gen4, gen5, or byt, they also behave similarly
1497 * and hang if the HWS is placed at the top of the
1498 * GTT. To generalise, it appears that all !llc
1499 * platforms have issues with us placing the HWS
1500 * above the mappable region (even though we never
1503 flags |= PIN_MAPPABLE;
1504 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1507 drm_gem_object_unreference(&obj->base);
1511 ring->status_page.obj = obj;
1514 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1515 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1516 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1518 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1519 ring->name, ring->status_page.gfx_addr);
1524 static int init_phys_status_page(struct intel_engine_cs *ring)
1526 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1528 if (!dev_priv->status_page_dmah) {
1529 dev_priv->status_page_dmah =
1530 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1531 if (!dev_priv->status_page_dmah)
1535 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1536 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1541 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1546 iounmap(ringbuf->virtual_start);
1547 i915_gem_object_ggtt_unpin(ringbuf->obj);
1548 drm_gem_object_unreference(&ringbuf->obj->base);
1549 ringbuf->obj = NULL;
1552 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1553 struct intel_ringbuffer *ringbuf)
1555 struct drm_i915_private *dev_priv = to_i915(dev);
1556 struct drm_i915_gem_object *obj;
1564 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1566 obj = i915_gem_alloc_object(dev, ringbuf->size);
1570 /* mark ring buffers as read-only from GPU side by default */
1573 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1577 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1581 ringbuf->virtual_start =
1582 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1584 if (ringbuf->virtual_start == NULL) {
1593 i915_gem_object_ggtt_unpin(obj);
1595 drm_gem_object_unreference(&obj->base);
1599 static int intel_init_ring_buffer(struct drm_device *dev,
1600 struct intel_engine_cs *ring)
1602 struct intel_ringbuffer *ringbuf = ring->buffer;
1605 if (ringbuf == NULL) {
1606 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1609 ring->buffer = ringbuf;
1613 INIT_LIST_HEAD(&ring->active_list);
1614 INIT_LIST_HEAD(&ring->request_list);
1615 INIT_LIST_HEAD(&ring->execlist_queue);
1616 ringbuf->size = 32 * PAGE_SIZE;
1617 ringbuf->ring = ring;
1618 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1620 init_waitqueue_head(&ring->irq_queue);
1622 if (I915_NEED_GFX_HWS(dev)) {
1623 ret = init_status_page(ring);
1627 BUG_ON(ring->id != RCS);
1628 ret = init_phys_status_page(ring);
1633 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1635 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1639 /* Workaround an erratum on the i830 which causes a hang if
1640 * the TAIL pointer points to within the last 2 cachelines
1643 ringbuf->effective_size = ringbuf->size;
1644 if (IS_I830(dev) || IS_845G(dev))
1645 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1647 ret = i915_cmd_parser_init_ring(ring);
1651 ret = ring->init(ring);
1659 ring->buffer = NULL;
1663 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1665 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1666 struct intel_ringbuffer *ringbuf = ring->buffer;
1668 if (!intel_ring_initialized(ring))
1671 intel_stop_ring_buffer(ring);
1672 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1674 intel_destroy_ringbuffer_obj(ringbuf);
1675 ring->preallocated_lazy_request = NULL;
1676 ring->outstanding_lazy_seqno = 0;
1679 ring->cleanup(ring);
1681 cleanup_status_page(ring);
1683 i915_cmd_parser_fini_ring(ring);
1686 ring->buffer = NULL;
1689 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1691 struct intel_ringbuffer *ringbuf = ring->buffer;
1692 struct drm_i915_gem_request *request;
1696 if (ringbuf->last_retired_head != -1) {
1697 ringbuf->head = ringbuf->last_retired_head;
1698 ringbuf->last_retired_head = -1;
1700 ringbuf->space = intel_ring_space(ringbuf);
1701 if (ringbuf->space >= n)
1705 list_for_each_entry(request, &ring->request_list, list) {
1706 if (__intel_ring_space(request->tail, ringbuf->tail,
1707 ringbuf->size) >= n) {
1708 seqno = request->seqno;
1716 ret = i915_wait_seqno(ring, seqno);
1720 i915_gem_retire_requests_ring(ring);
1721 ringbuf->head = ringbuf->last_retired_head;
1722 ringbuf->last_retired_head = -1;
1724 ringbuf->space = intel_ring_space(ringbuf);
1728 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1730 struct drm_device *dev = ring->dev;
1731 struct drm_i915_private *dev_priv = dev->dev_private;
1732 struct intel_ringbuffer *ringbuf = ring->buffer;
1736 ret = intel_ring_wait_request(ring, n);
1740 /* force the tail write in case we have been skipping them */
1741 __intel_ring_advance(ring);
1743 /* With GEM the hangcheck timer should kick us out of the loop,
1744 * leaving it early runs the risk of corrupting GEM state (due
1745 * to running on almost untested codepaths). But on resume
1746 * timers don't work yet, so prevent a complete hang in that
1747 * case by choosing an insanely large timeout. */
1748 end = jiffies + 60 * HZ;
1750 trace_i915_ring_wait_begin(ring);
1752 ringbuf->head = I915_READ_HEAD(ring);
1753 ringbuf->space = intel_ring_space(ringbuf);
1754 if (ringbuf->space >= n) {
1759 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1760 dev->primary->master) {
1761 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1762 if (master_priv->sarea_priv)
1763 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1768 if (dev_priv->mm.interruptible && signal_pending(current)) {
1773 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1774 dev_priv->mm.interruptible);
1778 if (time_after(jiffies, end)) {
1783 trace_i915_ring_wait_end(ring);
1787 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1789 uint32_t __iomem *virt;
1790 struct intel_ringbuffer *ringbuf = ring->buffer;
1791 int rem = ringbuf->size - ringbuf->tail;
1793 if (ringbuf->space < rem) {
1794 int ret = ring_wait_for_space(ring, rem);
1799 virt = ringbuf->virtual_start + ringbuf->tail;
1802 iowrite32(MI_NOOP, virt++);
1805 ringbuf->space = intel_ring_space(ringbuf);
1810 int intel_ring_idle(struct intel_engine_cs *ring)
1815 /* We need to add any requests required to flush the objects and ring */
1816 if (ring->outstanding_lazy_seqno) {
1817 ret = i915_add_request(ring, NULL);
1822 /* Wait upon the last request to be completed */
1823 if (list_empty(&ring->request_list))
1826 seqno = list_entry(ring->request_list.prev,
1827 struct drm_i915_gem_request,
1830 return i915_wait_seqno(ring, seqno);
1834 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1836 if (ring->outstanding_lazy_seqno)
1839 if (ring->preallocated_lazy_request == NULL) {
1840 struct drm_i915_gem_request *request;
1842 request = kmalloc(sizeof(*request), GFP_KERNEL);
1843 if (request == NULL)
1846 ring->preallocated_lazy_request = request;
1849 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1852 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1855 struct intel_ringbuffer *ringbuf = ring->buffer;
1858 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1859 ret = intel_wrap_ring_buffer(ring);
1864 if (unlikely(ringbuf->space < bytes)) {
1865 ret = ring_wait_for_space(ring, bytes);
1873 int intel_ring_begin(struct intel_engine_cs *ring,
1876 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1879 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1880 dev_priv->mm.interruptible);
1884 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1888 /* Preallocate the olr before touching the ring */
1889 ret = intel_ring_alloc_seqno(ring);
1893 ring->buffer->space -= num_dwords * sizeof(uint32_t);
1897 /* Align the ring tail to a cacheline boundary */
1898 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1900 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1903 if (num_dwords == 0)
1906 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1907 ret = intel_ring_begin(ring, num_dwords);
1911 while (num_dwords--)
1912 intel_ring_emit(ring, MI_NOOP);
1914 intel_ring_advance(ring);
1919 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1921 struct drm_device *dev = ring->dev;
1922 struct drm_i915_private *dev_priv = dev->dev_private;
1924 BUG_ON(ring->outstanding_lazy_seqno);
1926 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
1927 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1928 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1930 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1933 ring->set_seqno(ring, seqno);
1934 ring->hangcheck.seqno = seqno;
1937 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1940 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1942 /* Every tail move must follow the sequence below */
1944 /* Disable notification that the ring is IDLE. The GT
1945 * will then assume that it is busy and bring it out of rc6.
1947 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1948 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1950 /* Clear the context id. Here be magic! */
1951 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1953 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1954 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1955 GEN6_BSD_SLEEP_INDICATOR) == 0,
1957 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1959 /* Now that the ring is fully powered up, update the tail */
1960 I915_WRITE_TAIL(ring, value);
1961 POSTING_READ(RING_TAIL(ring->mmio_base));
1963 /* Let the ring send IDLE messages to the GT again,
1964 * and so let it sleep to conserve power when idle.
1966 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1967 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1970 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1971 u32 invalidate, u32 flush)
1976 ret = intel_ring_begin(ring, 4);
1981 if (INTEL_INFO(ring->dev)->gen >= 8)
1984 * Bspec vol 1c.5 - video engine command streamer:
1985 * "If ENABLED, all TLBs will be invalidated once the flush
1986 * operation is complete. This bit is only valid when the
1987 * Post-Sync Operation field is a value of 1h or 3h."
1989 if (invalidate & I915_GEM_GPU_DOMAINS)
1990 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1991 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1992 intel_ring_emit(ring, cmd);
1993 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1994 if (INTEL_INFO(ring->dev)->gen >= 8) {
1995 intel_ring_emit(ring, 0); /* upper addr */
1996 intel_ring_emit(ring, 0); /* value */
1998 intel_ring_emit(ring, 0);
1999 intel_ring_emit(ring, MI_NOOP);
2001 intel_ring_advance(ring);
2006 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2007 u64 offset, u32 len,
2010 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2013 ret = intel_ring_begin(ring, 4);
2017 /* FIXME(BDW): Address space and security selectors. */
2018 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2019 intel_ring_emit(ring, lower_32_bits(offset));
2020 intel_ring_emit(ring, upper_32_bits(offset));
2021 intel_ring_emit(ring, MI_NOOP);
2022 intel_ring_advance(ring);
2028 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2029 u64 offset, u32 len,
2034 ret = intel_ring_begin(ring, 2);
2038 intel_ring_emit(ring,
2039 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2040 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2041 /* bit0-7 is the length on GEN6+ */
2042 intel_ring_emit(ring, offset);
2043 intel_ring_advance(ring);
2049 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2050 u64 offset, u32 len,
2055 ret = intel_ring_begin(ring, 2);
2059 intel_ring_emit(ring,
2060 MI_BATCH_BUFFER_START |
2061 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2062 /* bit0-7 is the length on GEN6+ */
2063 intel_ring_emit(ring, offset);
2064 intel_ring_advance(ring);
2069 /* Blitter support (SandyBridge+) */
2071 static int gen6_ring_flush(struct intel_engine_cs *ring,
2072 u32 invalidate, u32 flush)
2074 struct drm_device *dev = ring->dev;
2078 ret = intel_ring_begin(ring, 4);
2083 if (INTEL_INFO(ring->dev)->gen >= 8)
2086 * Bspec vol 1c.3 - blitter engine command streamer:
2087 * "If ENABLED, all TLBs will be invalidated once the flush
2088 * operation is complete. This bit is only valid when the
2089 * Post-Sync Operation field is a value of 1h or 3h."
2091 if (invalidate & I915_GEM_DOMAIN_RENDER)
2092 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2093 MI_FLUSH_DW_OP_STOREDW;
2094 intel_ring_emit(ring, cmd);
2095 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2096 if (INTEL_INFO(ring->dev)->gen >= 8) {
2097 intel_ring_emit(ring, 0); /* upper addr */
2098 intel_ring_emit(ring, 0); /* value */
2100 intel_ring_emit(ring, 0);
2101 intel_ring_emit(ring, MI_NOOP);
2103 intel_ring_advance(ring);
2105 if (IS_GEN7(dev) && !invalidate && flush)
2106 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2111 int intel_init_render_ring_buffer(struct drm_device *dev)
2113 struct drm_i915_private *dev_priv = dev->dev_private;
2114 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2115 struct drm_i915_gem_object *obj;
2118 ring->name = "render ring";
2120 ring->mmio_base = RENDER_RING_BASE;
2122 if (INTEL_INFO(dev)->gen >= 8) {
2123 if (i915_semaphore_is_enabled(dev)) {
2124 obj = i915_gem_alloc_object(dev, 4096);
2126 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2127 i915.semaphores = 0;
2129 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2130 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2132 drm_gem_object_unreference(&obj->base);
2133 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2134 i915.semaphores = 0;
2136 dev_priv->semaphore_obj = obj;
2139 ring->add_request = gen6_add_request;
2140 ring->flush = gen8_render_ring_flush;
2141 ring->irq_get = gen8_ring_get_irq;
2142 ring->irq_put = gen8_ring_put_irq;
2143 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2144 ring->get_seqno = gen6_ring_get_seqno;
2145 ring->set_seqno = ring_set_seqno;
2146 if (i915_semaphore_is_enabled(dev)) {
2147 WARN_ON(!dev_priv->semaphore_obj);
2148 ring->semaphore.sync_to = gen8_ring_sync;
2149 ring->semaphore.signal = gen8_rcs_signal;
2150 GEN8_RING_SEMAPHORE_INIT;
2152 } else if (INTEL_INFO(dev)->gen >= 6) {
2153 ring->add_request = gen6_add_request;
2154 ring->flush = gen7_render_ring_flush;
2155 if (INTEL_INFO(dev)->gen == 6)
2156 ring->flush = gen6_render_ring_flush;
2157 ring->irq_get = gen6_ring_get_irq;
2158 ring->irq_put = gen6_ring_put_irq;
2159 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2160 ring->get_seqno = gen6_ring_get_seqno;
2161 ring->set_seqno = ring_set_seqno;
2162 if (i915_semaphore_is_enabled(dev)) {
2163 ring->semaphore.sync_to = gen6_ring_sync;
2164 ring->semaphore.signal = gen6_signal;
2166 * The current semaphore is only applied on pre-gen8
2167 * platform. And there is no VCS2 ring on the pre-gen8
2168 * platform. So the semaphore between RCS and VCS2 is
2169 * initialized as INVALID. Gen8 will initialize the
2170 * sema between VCS2 and RCS later.
2172 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2173 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2174 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2175 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2176 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2177 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2178 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2179 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2180 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2181 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2183 } else if (IS_GEN5(dev)) {
2184 ring->add_request = pc_render_add_request;
2185 ring->flush = gen4_render_ring_flush;
2186 ring->get_seqno = pc_render_get_seqno;
2187 ring->set_seqno = pc_render_set_seqno;
2188 ring->irq_get = gen5_ring_get_irq;
2189 ring->irq_put = gen5_ring_put_irq;
2190 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2191 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2193 ring->add_request = i9xx_add_request;
2194 if (INTEL_INFO(dev)->gen < 4)
2195 ring->flush = gen2_render_ring_flush;
2197 ring->flush = gen4_render_ring_flush;
2198 ring->get_seqno = ring_get_seqno;
2199 ring->set_seqno = ring_set_seqno;
2201 ring->irq_get = i8xx_ring_get_irq;
2202 ring->irq_put = i8xx_ring_put_irq;
2204 ring->irq_get = i9xx_ring_get_irq;
2205 ring->irq_put = i9xx_ring_put_irq;
2207 ring->irq_enable_mask = I915_USER_INTERRUPT;
2209 ring->write_tail = ring_write_tail;
2211 if (IS_HASWELL(dev))
2212 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2213 else if (IS_GEN8(dev))
2214 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2215 else if (INTEL_INFO(dev)->gen >= 6)
2216 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2217 else if (INTEL_INFO(dev)->gen >= 4)
2218 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2219 else if (IS_I830(dev) || IS_845G(dev))
2220 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2222 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2223 ring->init = init_render_ring;
2224 ring->cleanup = render_ring_cleanup;
2226 /* Workaround batchbuffer to combat CS tlb bug. */
2227 if (HAS_BROKEN_CS_TLB(dev)) {
2228 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2230 DRM_ERROR("Failed to allocate batch bo\n");
2234 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2236 drm_gem_object_unreference(&obj->base);
2237 DRM_ERROR("Failed to ping batch bo\n");
2241 ring->scratch.obj = obj;
2242 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2245 return intel_init_ring_buffer(dev, ring);
2248 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2250 struct drm_i915_private *dev_priv = dev->dev_private;
2251 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2252 struct intel_ringbuffer *ringbuf = ring->buffer;
2255 if (ringbuf == NULL) {
2256 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2259 ring->buffer = ringbuf;
2262 ring->name = "render ring";
2264 ring->mmio_base = RENDER_RING_BASE;
2266 if (INTEL_INFO(dev)->gen >= 6) {
2267 /* non-kms not supported on gen6+ */
2272 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2273 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2274 * the special gen5 functions. */
2275 ring->add_request = i9xx_add_request;
2276 if (INTEL_INFO(dev)->gen < 4)
2277 ring->flush = gen2_render_ring_flush;
2279 ring->flush = gen4_render_ring_flush;
2280 ring->get_seqno = ring_get_seqno;
2281 ring->set_seqno = ring_set_seqno;
2283 ring->irq_get = i8xx_ring_get_irq;
2284 ring->irq_put = i8xx_ring_put_irq;
2286 ring->irq_get = i9xx_ring_get_irq;
2287 ring->irq_put = i9xx_ring_put_irq;
2289 ring->irq_enable_mask = I915_USER_INTERRUPT;
2290 ring->write_tail = ring_write_tail;
2291 if (INTEL_INFO(dev)->gen >= 4)
2292 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2293 else if (IS_I830(dev) || IS_845G(dev))
2294 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2296 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2297 ring->init = init_render_ring;
2298 ring->cleanup = render_ring_cleanup;
2301 INIT_LIST_HEAD(&ring->active_list);
2302 INIT_LIST_HEAD(&ring->request_list);
2304 ringbuf->size = size;
2305 ringbuf->effective_size = ringbuf->size;
2306 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2307 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2309 ringbuf->virtual_start = ioremap_wc(start, size);
2310 if (ringbuf->virtual_start == NULL) {
2311 DRM_ERROR("can not ioremap virtual address for"
2317 if (!I915_NEED_GFX_HWS(dev)) {
2318 ret = init_phys_status_page(ring);
2326 iounmap(ringbuf->virtual_start);
2329 ring->buffer = NULL;
2333 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2335 struct drm_i915_private *dev_priv = dev->dev_private;
2336 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2338 ring->name = "bsd ring";
2341 ring->write_tail = ring_write_tail;
2342 if (INTEL_INFO(dev)->gen >= 6) {
2343 ring->mmio_base = GEN6_BSD_RING_BASE;
2344 /* gen6 bsd needs a special wa for tail updates */
2346 ring->write_tail = gen6_bsd_ring_write_tail;
2347 ring->flush = gen6_bsd_ring_flush;
2348 ring->add_request = gen6_add_request;
2349 ring->get_seqno = gen6_ring_get_seqno;
2350 ring->set_seqno = ring_set_seqno;
2351 if (INTEL_INFO(dev)->gen >= 8) {
2352 ring->irq_enable_mask =
2353 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2354 ring->irq_get = gen8_ring_get_irq;
2355 ring->irq_put = gen8_ring_put_irq;
2356 ring->dispatch_execbuffer =
2357 gen8_ring_dispatch_execbuffer;
2358 if (i915_semaphore_is_enabled(dev)) {
2359 ring->semaphore.sync_to = gen8_ring_sync;
2360 ring->semaphore.signal = gen8_xcs_signal;
2361 GEN8_RING_SEMAPHORE_INIT;
2364 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2365 ring->irq_get = gen6_ring_get_irq;
2366 ring->irq_put = gen6_ring_put_irq;
2367 ring->dispatch_execbuffer =
2368 gen6_ring_dispatch_execbuffer;
2369 if (i915_semaphore_is_enabled(dev)) {
2370 ring->semaphore.sync_to = gen6_ring_sync;
2371 ring->semaphore.signal = gen6_signal;
2372 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2373 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2374 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2375 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2376 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2377 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2378 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2379 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2380 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2381 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2385 ring->mmio_base = BSD_RING_BASE;
2386 ring->flush = bsd_ring_flush;
2387 ring->add_request = i9xx_add_request;
2388 ring->get_seqno = ring_get_seqno;
2389 ring->set_seqno = ring_set_seqno;
2391 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2392 ring->irq_get = gen5_ring_get_irq;
2393 ring->irq_put = gen5_ring_put_irq;
2395 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2396 ring->irq_get = i9xx_ring_get_irq;
2397 ring->irq_put = i9xx_ring_put_irq;
2399 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2401 ring->init = init_ring_common;
2403 return intel_init_ring_buffer(dev, ring);
2407 * Initialize the second BSD ring for Broadwell GT3.
2408 * It is noted that this only exists on Broadwell GT3.
2410 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2412 struct drm_i915_private *dev_priv = dev->dev_private;
2413 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2415 if ((INTEL_INFO(dev)->gen != 8)) {
2416 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2420 ring->name = "bsd2 ring";
2423 ring->write_tail = ring_write_tail;
2424 ring->mmio_base = GEN8_BSD2_RING_BASE;
2425 ring->flush = gen6_bsd_ring_flush;
2426 ring->add_request = gen6_add_request;
2427 ring->get_seqno = gen6_ring_get_seqno;
2428 ring->set_seqno = ring_set_seqno;
2429 ring->irq_enable_mask =
2430 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2431 ring->irq_get = gen8_ring_get_irq;
2432 ring->irq_put = gen8_ring_put_irq;
2433 ring->dispatch_execbuffer =
2434 gen8_ring_dispatch_execbuffer;
2435 if (i915_semaphore_is_enabled(dev)) {
2436 ring->semaphore.sync_to = gen8_ring_sync;
2437 ring->semaphore.signal = gen8_xcs_signal;
2438 GEN8_RING_SEMAPHORE_INIT;
2440 ring->init = init_ring_common;
2442 return intel_init_ring_buffer(dev, ring);
2445 int intel_init_blt_ring_buffer(struct drm_device *dev)
2447 struct drm_i915_private *dev_priv = dev->dev_private;
2448 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2450 ring->name = "blitter ring";
2453 ring->mmio_base = BLT_RING_BASE;
2454 ring->write_tail = ring_write_tail;
2455 ring->flush = gen6_ring_flush;
2456 ring->add_request = gen6_add_request;
2457 ring->get_seqno = gen6_ring_get_seqno;
2458 ring->set_seqno = ring_set_seqno;
2459 if (INTEL_INFO(dev)->gen >= 8) {
2460 ring->irq_enable_mask =
2461 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2462 ring->irq_get = gen8_ring_get_irq;
2463 ring->irq_put = gen8_ring_put_irq;
2464 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2465 if (i915_semaphore_is_enabled(dev)) {
2466 ring->semaphore.sync_to = gen8_ring_sync;
2467 ring->semaphore.signal = gen8_xcs_signal;
2468 GEN8_RING_SEMAPHORE_INIT;
2471 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2472 ring->irq_get = gen6_ring_get_irq;
2473 ring->irq_put = gen6_ring_put_irq;
2474 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2475 if (i915_semaphore_is_enabled(dev)) {
2476 ring->semaphore.signal = gen6_signal;
2477 ring->semaphore.sync_to = gen6_ring_sync;
2479 * The current semaphore is only applied on pre-gen8
2480 * platform. And there is no VCS2 ring on the pre-gen8
2481 * platform. So the semaphore between BCS and VCS2 is
2482 * initialized as INVALID. Gen8 will initialize the
2483 * sema between BCS and VCS2 later.
2485 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2486 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2487 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2488 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2489 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2490 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2491 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2492 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2493 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2494 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2497 ring->init = init_ring_common;
2499 return intel_init_ring_buffer(dev, ring);
2502 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2504 struct drm_i915_private *dev_priv = dev->dev_private;
2505 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2507 ring->name = "video enhancement ring";
2510 ring->mmio_base = VEBOX_RING_BASE;
2511 ring->write_tail = ring_write_tail;
2512 ring->flush = gen6_ring_flush;
2513 ring->add_request = gen6_add_request;
2514 ring->get_seqno = gen6_ring_get_seqno;
2515 ring->set_seqno = ring_set_seqno;
2517 if (INTEL_INFO(dev)->gen >= 8) {
2518 ring->irq_enable_mask =
2519 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2520 ring->irq_get = gen8_ring_get_irq;
2521 ring->irq_put = gen8_ring_put_irq;
2522 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2523 if (i915_semaphore_is_enabled(dev)) {
2524 ring->semaphore.sync_to = gen8_ring_sync;
2525 ring->semaphore.signal = gen8_xcs_signal;
2526 GEN8_RING_SEMAPHORE_INIT;
2529 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2530 ring->irq_get = hsw_vebox_get_irq;
2531 ring->irq_put = hsw_vebox_put_irq;
2532 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2533 if (i915_semaphore_is_enabled(dev)) {
2534 ring->semaphore.sync_to = gen6_ring_sync;
2535 ring->semaphore.signal = gen6_signal;
2536 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2537 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2538 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2539 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2540 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2541 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2542 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2543 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2544 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2545 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2548 ring->init = init_ring_common;
2550 return intel_init_ring_buffer(dev, ring);
2554 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2558 if (!ring->gpu_caches_dirty)
2561 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2565 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2567 ring->gpu_caches_dirty = false;
2572 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2574 uint32_t flush_domains;
2578 if (ring->gpu_caches_dirty)
2579 flush_domains = I915_GEM_GPU_DOMAINS;
2581 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2585 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2587 ring->gpu_caches_dirty = false;
2592 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2596 if (!intel_ring_initialized(ring))
2599 ret = intel_ring_idle(ring);
2600 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2601 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",