2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
77 return obj->pin_display;
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 i915_gem_release_mmap(obj);
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
88 obj->fence_dirty = false;
89 obj->fence_reg = I915_FENCE_REG_NONE;
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 spin_lock(&dev_priv->mm.object_stat_lock);
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
99 spin_unlock(&dev_priv->mm.object_stat_lock);
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
105 spin_lock(&dev_priv->mm.object_stat_lock);
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
108 spin_unlock(&dev_priv->mm.object_stat_lock);
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
126 ret = wait_event_interruptible_timeout(error->reset_queue,
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
132 } else if (ret < 0) {
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
142 struct drm_i915_private *dev_priv = dev->dev_private;
145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
153 WARN_ON(i915_verify_lists(dev));
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
160 return i915_gem_obj_bound_any(obj) && !obj->active;
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_init *args = data;
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
181 mutex_lock(&dev->struct_mutex);
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
184 dev_priv->gtt.mappable_end = args->gtt_end;
185 mutex_unlock(&dev->struct_mutex);
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192 struct drm_file *file)
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct drm_i915_gem_get_aperture *args = data;
196 struct drm_i915_gem_object *obj;
200 mutex_lock(&dev->struct_mutex);
201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202 if (i915_gem_obj_is_pinned(obj))
203 pinned += i915_gem_obj_ggtt_size(obj);
204 mutex_unlock(&dev->struct_mutex);
206 args->aper_size = dev_priv->gtt.base.total;
207 args->aper_available_size = args->aper_size - pinned;
212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
214 drm_dma_handle_t *phys = obj->phys_handle;
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
238 i915_gem_chipset_flush(obj->base.dev);
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
264 if (obj->madv != I915_MADV_WILLNEED)
267 if (obj->base.filp == NULL)
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
284 page = shmem_read_mapping_page(mapping, i);
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
297 mark_page_accessed(page);
298 page_cache_release(page);
303 obj->phys_handle = phys;
308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
330 i915_gem_chipset_flush(dev);
334 void *i915_gem_object_alloc(struct drm_device *dev)
336 struct drm_i915_private *dev_priv = dev->dev_private;
337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
340 void i915_gem_object_free(struct drm_i915_gem_object *obj)
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
347 i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
352 struct drm_i915_gem_object *obj;
356 size = roundup(size, PAGE_SIZE);
360 /* Allocate the new object */
361 obj = i915_gem_alloc_object(dev, size);
365 ret = drm_gem_handle_create(file, &obj->base, &handle);
366 /* drop reference from allocate - handle holds it now */
367 drm_gem_object_unreference_unlocked(&obj->base);
376 i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
380 /* have to work out size/pitch and return them */
381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
388 * Creates a new mm object and returns a handle to it.
391 i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
394 struct drm_i915_gem_create *args = data;
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
401 __copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
405 int ret, cpu_offset = 0;
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
431 int ret, cpu_offset = 0;
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
474 ret = i915_gem_object_wait_rendering(obj, true);
478 i915_gem_object_retire(obj);
481 ret = i915_gem_object_get_pages(obj);
485 i915_gem_object_pin_pages(obj);
490 /* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
501 if (unlikely(page_do_bit17_swizzling))
504 vaddr = kmap_atomic(page);
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
511 kunmap_atomic(vaddr);
513 return ret ? -EFAULT : 0;
517 shmem_clflush_swizzled_range(char *addr, unsigned long length,
520 if (unlikely(swizzled)) {
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
531 drm_clflush_virt_range((void *)start, end - start);
533 drm_clflush_virt_range(addr, length);
538 /* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
552 page_do_bit17_swizzling);
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
564 return ret ? - EFAULT : 0;
568 i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
573 char __user *user_data;
576 int shmem_page_offset, page_length, ret = 0;
577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
579 int needs_clflush = 0;
580 struct sg_page_iter sg_iter;
582 user_data = to_user_ptr(args->data_ptr);
585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
591 offset = args->offset;
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
595 struct page *page = sg_page_iter_page(&sg_iter);
600 /* Operation in this page
602 * shmem_page_offset = offset within page in shmem file
603 * page_length = bytes to copy for this page
605 shmem_page_offset = offset_in_page(offset);
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
619 mutex_unlock(&dev->struct_mutex);
621 if (likely(!i915.prefault_disable) && !prefaulted) {
622 ret = fault_in_multipages_writeable(user_data, remain);
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
635 mutex_lock(&dev->struct_mutex);
641 remain -= page_length;
642 user_data += page_length;
643 offset += page_length;
647 i915_gem_object_unpin_pages(obj);
653 * Reads data from the object referenced by handle.
655 * On error, the contents of *data are undefined.
658 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659 struct drm_file *file)
661 struct drm_i915_gem_pread *args = data;
662 struct drm_i915_gem_object *obj;
668 if (!access_ok(VERIFY_WRITE,
669 to_user_ptr(args->data_ptr),
673 ret = i915_mutex_lock_interruptible(dev);
677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678 if (&obj->base == NULL) {
683 /* Bounds check source. */
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
690 /* prime objects have no backing filp to GEM pread/pwrite
693 if (!obj->base.filp) {
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
700 ret = i915_gem_shmem_pread(dev, obj, args, file);
703 drm_gem_object_unreference(&obj->base);
705 mutex_unlock(&dev->struct_mutex);
709 /* This is the fast write path which cannot handle
710 * page faults in the source data
714 fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
719 void __iomem *vaddr_atomic;
721 unsigned long unwritten;
723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
728 io_mapping_unmap_atomic(vaddr_atomic);
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
737 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
739 struct drm_i915_gem_pwrite *args,
740 struct drm_file *file)
742 struct drm_i915_private *dev_priv = dev->dev_private;
744 loff_t offset, page_base;
745 char __user *user_data;
746 int page_offset, page_length, ret;
748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
756 ret = i915_gem_object_put_fence(obj);
760 user_data = to_user_ptr(args->data_ptr);
763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
766 /* Operation in this page
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
778 /* If we get a fault while copying data, then (presumably) our
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
783 page_offset, user_data, page_length)) {
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
794 i915_gem_object_ggtt_unpin(obj);
799 /* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
813 if (unlikely(page_do_bit17_swizzling))
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
825 kunmap_atomic(vaddr);
827 return ret ? -EFAULT : 0;
830 /* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
846 page_do_bit17_swizzling);
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
852 ret = __copy_from_user(vaddr + shmem_page_offset,
855 if (needs_clflush_after)
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
858 page_do_bit17_swizzling);
861 return ret ? -EFAULT : 0;
865 i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
872 char __user *user_data;
873 int shmem_page_offset, page_length, ret = 0;
874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875 int hit_slowpath = 0;
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
878 struct sg_page_iter sg_iter;
880 user_data = to_user_ptr(args->data_ptr);
883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
890 needs_clflush_after = cpu_write_needs_clflush(obj);
891 ret = i915_gem_object_wait_rendering(obj, false);
895 i915_gem_object_retire(obj);
897 /* Same trick applies to invalidate partially written cachelines read
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
903 ret = i915_gem_object_get_pages(obj);
907 i915_gem_object_pin_pages(obj);
909 offset = args->offset;
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
914 struct page *page = sg_page_iter_page(&sg_iter);
915 int partial_cacheline_write;
920 /* Operation in this page
922 * shmem_page_offset = offset within page in shmem file
923 * page_length = bytes to copy for this page
925 shmem_page_offset = offset_in_page(offset);
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
949 mutex_unlock(&dev->struct_mutex);
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
955 mutex_lock(&dev->struct_mutex);
961 remain -= page_length;
962 user_data += page_length;
963 offset += page_length;
967 i915_gem_object_unpin_pages(obj);
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
982 if (needs_clflush_after)
983 i915_gem_chipset_flush(dev);
989 * Writes data to the object referenced by handle.
991 * On error, the contents of the buffer that were to be modified are undefined.
994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995 struct drm_file *file)
997 struct drm_i915_gem_pwrite *args = data;
998 struct drm_i915_gem_object *obj;
1001 if (args->size == 0)
1004 if (!access_ok(VERIFY_READ,
1005 to_user_ptr(args->data_ptr),
1009 if (likely(!i915.prefault_disable)) {
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1016 ret = i915_mutex_lock_interruptible(dev);
1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021 if (&obj->base == NULL) {
1026 /* Bounds check destination. */
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
1033 /* prime objects have no backing filp to GEM pread/pwrite
1036 if (!obj->base.filp) {
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
1064 if (ret == -EFAULT || ret == -ENOSPC)
1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1068 drm_gem_object_unreference(&obj->base);
1070 mutex_unlock(&dev->struct_mutex);
1075 i915_gem_check_wedge(struct i915_gpu_error *error,
1078 if (i915_reset_in_progress(error)) {
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
1095 * Compare seqno against outstanding lazy request. Emit a request if they are
1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1106 if (seqno == ring->outstanding_lazy_seqno)
1107 ret = i915_add_request(ring, NULL);
1112 static void fake_irq(unsigned long data)
1114 wake_up_process((struct task_struct *)data);
1117 static bool missed_irq(struct drm_i915_private *dev_priv,
1118 struct intel_engine_cs *ring)
1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1125 if (file_priv == NULL)
1128 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1132 * __wait_seqno - wait until execution of seqno has finished
1133 * @ring: the ring expected to report seqno
1135 * @reset_counter: reset sequence associated with the given seqno
1136 * @interruptible: do an interruptible wait (normally yes)
1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1139 * Note: It is of utmost importance that the passed in seqno and reset_counter
1140 * values have been read by the caller in an smp safe manner. Where read-side
1141 * locks are involved, it is sufficient to read the reset_counter before
1142 * unlocking the lock that protects the seqno. For lockless tricks, the
1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1146 * Returns 0 if the seqno was found within the alloted time. Else returns the
1147 * errno with remaining time filled in timeout argument.
1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150 unsigned reset_counter,
1153 struct drm_i915_file_private *file_priv)
1155 struct drm_device *dev = ring->dev;
1156 struct drm_i915_private *dev_priv = dev->dev_private;
1157 const bool irq_test_in_progress =
1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1160 unsigned long timeout_expire;
1164 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1169 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1171 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1172 gen6_rps_boost(dev_priv);
1174 mod_delayed_work(dev_priv->wq,
1175 &file_priv->mm.idle_work,
1176 msecs_to_jiffies(100));
1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1182 /* Record current time in case interrupted by signal, or wedged */
1183 trace_i915_gem_request_wait_begin(ring, seqno);
1184 before = ktime_get_raw_ns();
1186 struct timer_list timer;
1188 prepare_to_wait(&ring->irq_queue, &wait,
1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1191 /* We need to check whether any gpu reset happened in between
1192 * the caller grabbing the seqno and now ... */
1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 * is truely gone. */
1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1207 if (interruptible && signal_pending(current)) {
1212 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1217 timer.function = NULL;
1218 if (timeout || missed_irq(dev_priv, ring)) {
1219 unsigned long expire;
1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223 mod_timer(&timer, expire);
1228 if (timer.function) {
1229 del_singleshot_timer_sync(&timer);
1230 destroy_timer_on_stack(&timer);
1233 now = ktime_get_raw_ns();
1234 trace_i915_gem_request_wait_end(ring, seqno);
1236 if (!irq_test_in_progress)
1237 ring->irq_put(ring);
1239 finish_wait(&ring->irq_queue, &wait);
1242 s64 tres = *timeout - (now - before);
1244 *timeout = tres < 0 ? 0 : tres;
1251 * Waits for a sequence number to be signaled, and cleans up the
1252 * request and object lists appropriately for that event.
1255 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1257 struct drm_device *dev = ring->dev;
1258 struct drm_i915_private *dev_priv = dev->dev_private;
1259 bool interruptible = dev_priv->mm.interruptible;
1262 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1265 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1269 ret = i915_gem_check_olr(ring, seqno);
1273 return __wait_seqno(ring, seqno,
1274 atomic_read(&dev_priv->gpu_error.reset_counter),
1275 interruptible, NULL, NULL);
1279 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1280 struct intel_engine_cs *ring)
1285 /* Manually manage the write flush as we may have not yet
1286 * retired the buffer.
1288 * Note that the last_write_seqno is always the earlier of
1289 * the two (read/write) seqno, so if we haved successfully waited,
1290 * we know we have passed the last write.
1292 obj->last_write_seqno = 0;
1298 * Ensures that all rendering to the object has completed and the object is
1299 * safe to unbind from the GTT or access from the CPU.
1301 static __must_check int
1302 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1305 struct intel_engine_cs *ring = obj->ring;
1309 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1313 ret = i915_wait_seqno(ring, seqno);
1317 return i915_gem_object_wait_rendering__tail(obj, ring);
1320 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1321 * as the object state may change during this call.
1323 static __must_check int
1324 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1325 struct drm_i915_file_private *file_priv,
1328 struct drm_device *dev = obj->base.dev;
1329 struct drm_i915_private *dev_priv = dev->dev_private;
1330 struct intel_engine_cs *ring = obj->ring;
1331 unsigned reset_counter;
1335 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1336 BUG_ON(!dev_priv->mm.interruptible);
1338 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1342 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1346 ret = i915_gem_check_olr(ring, seqno);
1350 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1351 mutex_unlock(&dev->struct_mutex);
1352 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1353 mutex_lock(&dev->struct_mutex);
1357 return i915_gem_object_wait_rendering__tail(obj, ring);
1361 * Called when user space prepares to use an object with the CPU, either
1362 * through the mmap ioctl's mapping or a GTT mapping.
1365 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1366 struct drm_file *file)
1368 struct drm_i915_gem_set_domain *args = data;
1369 struct drm_i915_gem_object *obj;
1370 uint32_t read_domains = args->read_domains;
1371 uint32_t write_domain = args->write_domain;
1374 /* Only handle setting domains to types used by the CPU. */
1375 if (write_domain & I915_GEM_GPU_DOMAINS)
1378 if (read_domains & I915_GEM_GPU_DOMAINS)
1381 /* Having something in the write domain implies it's in the read
1382 * domain, and only that read domain. Enforce that in the request.
1384 if (write_domain != 0 && read_domains != write_domain)
1387 ret = i915_mutex_lock_interruptible(dev);
1391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1392 if (&obj->base == NULL) {
1397 /* Try to flush the object off the GPU without holding the lock.
1398 * We will repeat the flush holding the lock in the normal manner
1399 * to catch cases where we are gazumped.
1401 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1407 if (read_domains & I915_GEM_DOMAIN_GTT) {
1408 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1410 /* Silently promote "you're not bound, there was nothing to do"
1411 * to success, since the client was just asking us to
1412 * make sure everything was done.
1417 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1421 drm_gem_object_unreference(&obj->base);
1423 mutex_unlock(&dev->struct_mutex);
1428 * Called when user space has done writes to this buffer
1431 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1432 struct drm_file *file)
1434 struct drm_i915_gem_sw_finish *args = data;
1435 struct drm_i915_gem_object *obj;
1438 ret = i915_mutex_lock_interruptible(dev);
1442 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1443 if (&obj->base == NULL) {
1448 /* Pinned buffers may be scanout, so flush the cache */
1449 if (obj->pin_display)
1450 i915_gem_object_flush_cpu_write_domain(obj, true);
1452 drm_gem_object_unreference(&obj->base);
1454 mutex_unlock(&dev->struct_mutex);
1459 * Maps the contents of an object, returning the address it is mapped
1462 * While the mapping holds a reference on the contents of the object, it doesn't
1463 * imply a ref on the object itself.
1466 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file)
1469 struct drm_i915_gem_mmap *args = data;
1470 struct drm_gem_object *obj;
1473 obj = drm_gem_object_lookup(dev, file, args->handle);
1477 /* prime objects have no backing filp to GEM mmap
1481 drm_gem_object_unreference_unlocked(obj);
1485 addr = vm_mmap(obj->filp, 0, args->size,
1486 PROT_READ | PROT_WRITE, MAP_SHARED,
1488 drm_gem_object_unreference_unlocked(obj);
1489 if (IS_ERR((void *)addr))
1492 args->addr_ptr = (uint64_t) addr;
1498 * i915_gem_fault - fault a page into the GTT
1499 * vma: VMA in question
1502 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1503 * from userspace. The fault handler takes care of binding the object to
1504 * the GTT (if needed), allocating and programming a fence register (again,
1505 * only if needed based on whether the old reg is still valid or the object
1506 * is tiled) and inserting a new PTE into the faulting process.
1508 * Note that the faulting process may involve evicting existing objects
1509 * from the GTT and/or fence registers to make room. So performance may
1510 * suffer if the GTT working set is large or there are few fence registers
1513 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1515 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1516 struct drm_device *dev = obj->base.dev;
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518 pgoff_t page_offset;
1521 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1523 intel_runtime_pm_get(dev_priv);
1525 /* We don't use vmf->pgoff since that has the fake offset */
1526 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1529 ret = i915_mutex_lock_interruptible(dev);
1533 trace_i915_gem_object_fault(obj, page_offset, true, write);
1535 /* Try to flush the object off the GPU first without holding the lock.
1536 * Upon reacquiring the lock, we will perform our sanity checks and then
1537 * repeat the flush holding the lock in the normal manner to catch cases
1538 * where we are gazumped.
1540 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1544 /* Access to snoopable pages through the GTT is incoherent. */
1545 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1550 /* Now bind it into the GTT if needed */
1551 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1555 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1559 ret = i915_gem_object_get_fence(obj);
1563 /* Finally, remap it using the new GTT offset */
1564 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1567 if (!obj->fault_mappable) {
1568 unsigned long size = min_t(unsigned long,
1569 vma->vm_end - vma->vm_start,
1573 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1574 ret = vm_insert_pfn(vma,
1575 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1581 obj->fault_mappable = true;
1583 ret = vm_insert_pfn(vma,
1584 (unsigned long)vmf->virtual_address,
1587 i915_gem_object_ggtt_unpin(obj);
1589 mutex_unlock(&dev->struct_mutex);
1593 /* If this -EIO is due to a gpu hang, give the reset code a
1594 * chance to clean up the mess. Otherwise return the proper
1596 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1597 ret = VM_FAULT_SIGBUS;
1602 * EAGAIN means the gpu is hung and we'll wait for the error
1603 * handler to reset everything when re-faulting in
1604 * i915_mutex_lock_interruptible.
1611 * EBUSY is ok: this just means that another thread
1612 * already did the job.
1614 ret = VM_FAULT_NOPAGE;
1621 ret = VM_FAULT_SIGBUS;
1624 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1625 ret = VM_FAULT_SIGBUS;
1629 intel_runtime_pm_put(dev_priv);
1634 * i915_gem_release_mmap - remove physical page mappings
1635 * @obj: obj in question
1637 * Preserve the reservation of the mmapping with the DRM core code, but
1638 * relinquish ownership of the pages back to the system.
1640 * It is vital that we remove the page mapping if we have mapped a tiled
1641 * object through the GTT and then lose the fence register due to
1642 * resource pressure. Similarly if the object has been moved out of the
1643 * aperture, than pages mapped into userspace must be revoked. Removing the
1644 * mapping will then trigger a page fault on the next user access, allowing
1645 * fixup by i915_gem_fault().
1648 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1650 if (!obj->fault_mappable)
1653 drm_vma_node_unmap(&obj->base.vma_node,
1654 obj->base.dev->anon_inode->i_mapping);
1655 obj->fault_mappable = false;
1659 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1661 struct drm_i915_gem_object *obj;
1663 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1664 i915_gem_release_mmap(obj);
1668 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1672 if (INTEL_INFO(dev)->gen >= 4 ||
1673 tiling_mode == I915_TILING_NONE)
1676 /* Previous chips need a power-of-two fence region when tiling */
1677 if (INTEL_INFO(dev)->gen == 3)
1678 gtt_size = 1024*1024;
1680 gtt_size = 512*1024;
1682 while (gtt_size < size)
1689 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1690 * @obj: object to check
1692 * Return the required GTT alignment for an object, taking into account
1693 * potential fence register mapping.
1696 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1697 int tiling_mode, bool fenced)
1700 * Minimum alignment is 4k (GTT page size), but might be greater
1701 * if a fence register is needed for the object.
1703 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1704 tiling_mode == I915_TILING_NONE)
1708 * Previous chips need to be aligned to the size of the smallest
1709 * fence register that can contain the object.
1711 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1714 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1716 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1719 if (drm_vma_node_has_offset(&obj->base.vma_node))
1722 dev_priv->mm.shrinker_no_lock_stealing = true;
1724 ret = drm_gem_create_mmap_offset(&obj->base);
1728 /* Badly fragmented mmap space? The only way we can recover
1729 * space is by destroying unwanted objects. We can't randomly release
1730 * mmap_offsets as userspace expects them to be persistent for the
1731 * lifetime of the objects. The closest we can is to release the
1732 * offsets on purgeable objects by truncating it and marking it purged,
1733 * which prevents userspace from ever using that object again.
1735 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1736 ret = drm_gem_create_mmap_offset(&obj->base);
1740 i915_gem_shrink_all(dev_priv);
1741 ret = drm_gem_create_mmap_offset(&obj->base);
1743 dev_priv->mm.shrinker_no_lock_stealing = false;
1748 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1750 drm_gem_free_mmap_offset(&obj->base);
1754 i915_gem_mmap_gtt(struct drm_file *file,
1755 struct drm_device *dev,
1759 struct drm_i915_private *dev_priv = dev->dev_private;
1760 struct drm_i915_gem_object *obj;
1763 ret = i915_mutex_lock_interruptible(dev);
1767 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1768 if (&obj->base == NULL) {
1773 if (obj->base.size > dev_priv->gtt.mappable_end) {
1778 if (obj->madv != I915_MADV_WILLNEED) {
1779 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1784 ret = i915_gem_object_create_mmap_offset(obj);
1788 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1791 drm_gem_object_unreference(&obj->base);
1793 mutex_unlock(&dev->struct_mutex);
1798 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1800 * @data: GTT mapping ioctl data
1801 * @file: GEM object info
1803 * Simply returns the fake offset to userspace so it can mmap it.
1804 * The mmap call will end up in drm_gem_mmap(), which will set things
1805 * up so we can get faults in the handler above.
1807 * The fault handler will take care of binding the object into the GTT
1808 * (since it may have been evicted to make room for something), allocating
1809 * a fence register, and mapping the appropriate aperture address into
1813 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1814 struct drm_file *file)
1816 struct drm_i915_gem_mmap_gtt *args = data;
1818 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1822 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1824 return obj->madv == I915_MADV_DONTNEED;
1827 /* Immediately discard the backing storage */
1829 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1831 i915_gem_object_free_mmap_offset(obj);
1833 if (obj->base.filp == NULL)
1836 /* Our goal here is to return as much of the memory as
1837 * is possible back to the system as we are called from OOM.
1838 * To do this we must instruct the shmfs to drop all of its
1839 * backing pages, *now*.
1841 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1842 obj->madv = __I915_MADV_PURGED;
1845 /* Try to discard unwanted pages */
1847 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1849 struct address_space *mapping;
1851 switch (obj->madv) {
1852 case I915_MADV_DONTNEED:
1853 i915_gem_object_truncate(obj);
1854 case __I915_MADV_PURGED:
1858 if (obj->base.filp == NULL)
1861 mapping = file_inode(obj->base.filp)->i_mapping,
1862 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1866 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1868 struct sg_page_iter sg_iter;
1871 BUG_ON(obj->madv == __I915_MADV_PURGED);
1873 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1875 /* In the event of a disaster, abandon all caches and
1876 * hope for the best.
1878 WARN_ON(ret != -EIO);
1879 i915_gem_clflush_object(obj, true);
1880 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1883 if (i915_gem_object_needs_bit17_swizzle(obj))
1884 i915_gem_object_save_bit_17_swizzle(obj);
1886 if (obj->madv == I915_MADV_DONTNEED)
1889 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1890 struct page *page = sg_page_iter_page(&sg_iter);
1893 set_page_dirty(page);
1895 if (obj->madv == I915_MADV_WILLNEED)
1896 mark_page_accessed(page);
1898 page_cache_release(page);
1902 sg_free_table(obj->pages);
1907 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1909 const struct drm_i915_gem_object_ops *ops = obj->ops;
1911 if (obj->pages == NULL)
1914 if (obj->pages_pin_count)
1917 BUG_ON(i915_gem_obj_bound_any(obj));
1919 /* ->put_pages might need to allocate memory for the bit17 swizzle
1920 * array, hence protect them from being reaped by removing them from gtt
1922 list_del(&obj->global_list);
1924 ops->put_pages(obj);
1927 i915_gem_object_invalidate(obj);
1932 static unsigned long
1933 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1934 bool purgeable_only)
1936 struct list_head still_in_list;
1937 struct drm_i915_gem_object *obj;
1938 unsigned long count = 0;
1941 * As we may completely rewrite the (un)bound list whilst unbinding
1942 * (due to retiring requests) we have to strictly process only
1943 * one element of the list at the time, and recheck the list
1944 * on every iteration.
1946 * In particular, we must hold a reference whilst removing the
1947 * object as we may end up waiting for and/or retiring the objects.
1948 * This might release the final reference (held by the active list)
1949 * and result in the object being freed from under us. This is
1950 * similar to the precautions the eviction code must take whilst
1953 * Also note that although these lists do not hold a reference to
1954 * the object we can safely grab one here: The final object
1955 * unreferencing and the bound_list are both protected by the
1956 * dev->struct_mutex and so we won't ever be able to observe an
1957 * object on the bound_list with a reference count equals 0.
1959 INIT_LIST_HEAD(&still_in_list);
1960 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1961 obj = list_first_entry(&dev_priv->mm.unbound_list,
1962 typeof(*obj), global_list);
1963 list_move_tail(&obj->global_list, &still_in_list);
1965 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1968 drm_gem_object_reference(&obj->base);
1970 if (i915_gem_object_put_pages(obj) == 0)
1971 count += obj->base.size >> PAGE_SHIFT;
1973 drm_gem_object_unreference(&obj->base);
1975 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1977 INIT_LIST_HEAD(&still_in_list);
1978 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1979 struct i915_vma *vma, *v;
1981 obj = list_first_entry(&dev_priv->mm.bound_list,
1982 typeof(*obj), global_list);
1983 list_move_tail(&obj->global_list, &still_in_list);
1985 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1988 drm_gem_object_reference(&obj->base);
1990 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1991 if (i915_vma_unbind(vma))
1994 if (i915_gem_object_put_pages(obj) == 0)
1995 count += obj->base.size >> PAGE_SHIFT;
1997 drm_gem_object_unreference(&obj->base);
1999 list_splice(&still_in_list, &dev_priv->mm.bound_list);
2004 static unsigned long
2005 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2007 return __i915_gem_shrink(dev_priv, target, true);
2010 static unsigned long
2011 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2013 i915_gem_evict_everything(dev_priv->dev);
2014 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2018 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2020 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2022 struct address_space *mapping;
2023 struct sg_table *st;
2024 struct scatterlist *sg;
2025 struct sg_page_iter sg_iter;
2027 unsigned long last_pfn = 0; /* suppress gcc warning */
2030 /* Assert that the object is not currently in any GPU domain. As it
2031 * wasn't in the GTT, there shouldn't be any way it could have been in
2034 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2035 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2037 st = kmalloc(sizeof(*st), GFP_KERNEL);
2041 page_count = obj->base.size / PAGE_SIZE;
2042 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2047 /* Get the list of pages out of our struct file. They'll be pinned
2048 * at this point until we release them.
2050 * Fail silently without starting the shrinker
2052 mapping = file_inode(obj->base.filp)->i_mapping;
2053 gfp = mapping_gfp_mask(mapping);
2054 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2055 gfp &= ~(__GFP_IO | __GFP_WAIT);
2058 for (i = 0; i < page_count; i++) {
2059 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2061 i915_gem_purge(dev_priv, page_count);
2062 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2065 /* We've tried hard to allocate the memory by reaping
2066 * our own buffer, now let the real VM do its job and
2067 * go down in flames if truly OOM.
2069 i915_gem_shrink_all(dev_priv);
2070 page = shmem_read_mapping_page(mapping, i);
2074 #ifdef CONFIG_SWIOTLB
2075 if (swiotlb_nr_tbl()) {
2077 sg_set_page(sg, page, PAGE_SIZE, 0);
2082 if (!i || page_to_pfn(page) != last_pfn + 1) {
2086 sg_set_page(sg, page, PAGE_SIZE, 0);
2088 sg->length += PAGE_SIZE;
2090 last_pfn = page_to_pfn(page);
2092 /* Check that the i965g/gm workaround works. */
2093 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2095 #ifdef CONFIG_SWIOTLB
2096 if (!swiotlb_nr_tbl())
2101 if (i915_gem_object_needs_bit17_swizzle(obj))
2102 i915_gem_object_do_bit_17_swizzle(obj);
2108 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2109 page_cache_release(sg_page_iter_page(&sg_iter));
2113 /* shmemfs first checks if there is enough memory to allocate the page
2114 * and reports ENOSPC should there be insufficient, along with the usual
2115 * ENOMEM for a genuine allocation failure.
2117 * We use ENOSPC in our driver to mean that we have run out of aperture
2118 * space and so want to translate the error from shmemfs back to our
2119 * usual understanding of ENOMEM.
2121 if (PTR_ERR(page) == -ENOSPC)
2124 return PTR_ERR(page);
2127 /* Ensure that the associated pages are gathered from the backing storage
2128 * and pinned into our object. i915_gem_object_get_pages() may be called
2129 * multiple times before they are released by a single call to
2130 * i915_gem_object_put_pages() - once the pages are no longer referenced
2131 * either as a result of memory pressure (reaping pages under the shrinker)
2132 * or as the object is itself released.
2135 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2137 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2138 const struct drm_i915_gem_object_ops *ops = obj->ops;
2144 if (obj->madv != I915_MADV_WILLNEED) {
2145 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2149 BUG_ON(obj->pages_pin_count);
2151 ret = ops->get_pages(obj);
2155 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2160 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2161 struct intel_engine_cs *ring)
2163 u32 seqno = intel_ring_get_seqno(ring);
2165 BUG_ON(ring == NULL);
2166 if (obj->ring != ring && obj->last_write_seqno) {
2167 /* Keep the seqno relative to the current ring */
2168 obj->last_write_seqno = seqno;
2172 /* Add a reference if we're newly entering the active list. */
2174 drm_gem_object_reference(&obj->base);
2178 list_move_tail(&obj->ring_list, &ring->active_list);
2180 obj->last_read_seqno = seqno;
2183 void i915_vma_move_to_active(struct i915_vma *vma,
2184 struct intel_engine_cs *ring)
2186 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2187 return i915_gem_object_move_to_active(vma->obj, ring);
2191 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2193 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2194 struct i915_address_space *vm;
2195 struct i915_vma *vma;
2197 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2198 BUG_ON(!obj->active);
2200 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2201 vma = i915_gem_obj_to_vma(obj, vm);
2202 if (vma && !list_empty(&vma->mm_list))
2203 list_move_tail(&vma->mm_list, &vm->inactive_list);
2206 intel_fb_obj_flush(obj, true);
2208 list_del_init(&obj->ring_list);
2211 obj->last_read_seqno = 0;
2212 obj->last_write_seqno = 0;
2213 obj->base.write_domain = 0;
2215 obj->last_fenced_seqno = 0;
2218 drm_gem_object_unreference(&obj->base);
2220 WARN_ON(i915_verify_lists(dev));
2224 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2226 struct intel_engine_cs *ring = obj->ring;
2231 if (i915_seqno_passed(ring->get_seqno(ring, true),
2232 obj->last_read_seqno))
2233 i915_gem_object_move_to_inactive(obj);
2237 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2239 struct drm_i915_private *dev_priv = dev->dev_private;
2240 struct intel_engine_cs *ring;
2243 /* Carefully retire all requests without writing to the rings */
2244 for_each_ring(ring, dev_priv, i) {
2245 ret = intel_ring_idle(ring);
2249 i915_gem_retire_requests(dev);
2251 /* Finally reset hw state */
2252 for_each_ring(ring, dev_priv, i) {
2253 intel_ring_init_seqno(ring, seqno);
2255 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2256 ring->semaphore.sync_seqno[j] = 0;
2262 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2264 struct drm_i915_private *dev_priv = dev->dev_private;
2270 /* HWS page needs to be set less than what we
2271 * will inject to ring
2273 ret = i915_gem_init_seqno(dev, seqno - 1);
2277 /* Carefully set the last_seqno value so that wrap
2278 * detection still works
2280 dev_priv->next_seqno = seqno;
2281 dev_priv->last_seqno = seqno - 1;
2282 if (dev_priv->last_seqno == 0)
2283 dev_priv->last_seqno--;
2289 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2291 struct drm_i915_private *dev_priv = dev->dev_private;
2293 /* reserve 0 for non-seqno */
2294 if (dev_priv->next_seqno == 0) {
2295 int ret = i915_gem_init_seqno(dev, 0);
2299 dev_priv->next_seqno = 1;
2302 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2306 int __i915_add_request(struct intel_engine_cs *ring,
2307 struct drm_file *file,
2308 struct drm_i915_gem_object *obj,
2311 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2312 struct drm_i915_gem_request *request;
2313 struct intel_ringbuffer *ringbuf;
2314 u32 request_ring_position, request_start;
2317 request = ring->preallocated_lazy_request;
2318 if (WARN_ON(request == NULL))
2321 if (i915.enable_execlists) {
2322 struct intel_context *ctx = request->ctx;
2323 ringbuf = ctx->engine[ring->id].ringbuf;
2325 ringbuf = ring->buffer;
2327 request_start = intel_ring_get_tail(ringbuf);
2329 * Emit any outstanding flushes - execbuf can fail to emit the flush
2330 * after having emitted the batchbuffer command. Hence we need to fix
2331 * things up similar to emitting the lazy request. The difference here
2332 * is that the flush _must_ happen before the next request, no matter
2335 if (i915.enable_execlists) {
2336 ret = logical_ring_flush_all_caches(ringbuf);
2340 ret = intel_ring_flush_all_caches(ring);
2345 /* Record the position of the start of the request so that
2346 * should we detect the updated seqno part-way through the
2347 * GPU processing the request, we never over-estimate the
2348 * position of the head.
2350 request_ring_position = intel_ring_get_tail(ringbuf);
2352 if (i915.enable_execlists) {
2353 ret = ring->emit_request(ringbuf);
2357 ret = ring->add_request(ring);
2362 request->seqno = intel_ring_get_seqno(ring);
2363 request->ring = ring;
2364 request->head = request_start;
2365 request->tail = request_ring_position;
2367 /* Whilst this request exists, batch_obj will be on the
2368 * active_list, and so will hold the active reference. Only when this
2369 * request is retired will the the batch_obj be moved onto the
2370 * inactive_list and lose its active reference. Hence we do not need
2371 * to explicitly hold another reference here.
2373 request->batch_obj = obj;
2375 if (!i915.enable_execlists) {
2376 /* Hold a reference to the current context so that we can inspect
2377 * it later in case a hangcheck error event fires.
2379 request->ctx = ring->last_context;
2381 i915_gem_context_reference(request->ctx);
2384 request->emitted_jiffies = jiffies;
2385 list_add_tail(&request->list, &ring->request_list);
2386 request->file_priv = NULL;
2389 struct drm_i915_file_private *file_priv = file->driver_priv;
2391 spin_lock(&file_priv->mm.lock);
2392 request->file_priv = file_priv;
2393 list_add_tail(&request->client_list,
2394 &file_priv->mm.request_list);
2395 spin_unlock(&file_priv->mm.lock);
2398 trace_i915_gem_request_add(ring, request->seqno);
2399 ring->outstanding_lazy_seqno = 0;
2400 ring->preallocated_lazy_request = NULL;
2402 if (!dev_priv->ums.mm_suspended) {
2403 i915_queue_hangcheck(ring->dev);
2405 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2406 queue_delayed_work(dev_priv->wq,
2407 &dev_priv->mm.retire_work,
2408 round_jiffies_up_relative(HZ));
2409 intel_mark_busy(dev_priv->dev);
2413 *out_seqno = request->seqno;
2418 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2420 struct drm_i915_file_private *file_priv = request->file_priv;
2425 spin_lock(&file_priv->mm.lock);
2426 list_del(&request->client_list);
2427 request->file_priv = NULL;
2428 spin_unlock(&file_priv->mm.lock);
2431 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2432 const struct intel_context *ctx)
2434 unsigned long elapsed;
2436 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2438 if (ctx->hang_stats.banned)
2441 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2442 if (!i915_gem_context_is_default(ctx)) {
2443 DRM_DEBUG("context hanging too fast, banning!\n");
2445 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2446 if (i915_stop_ring_allow_warn(dev_priv))
2447 DRM_ERROR("gpu hanging too fast, banning!\n");
2455 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2456 struct intel_context *ctx,
2459 struct i915_ctx_hang_stats *hs;
2464 hs = &ctx->hang_stats;
2467 hs->banned = i915_context_is_banned(dev_priv, ctx);
2469 hs->guilty_ts = get_seconds();
2471 hs->batch_pending++;
2475 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2477 list_del(&request->list);
2478 i915_gem_request_remove_from_client(request);
2481 i915_gem_context_unreference(request->ctx);
2486 struct drm_i915_gem_request *
2487 i915_gem_find_active_request(struct intel_engine_cs *ring)
2489 struct drm_i915_gem_request *request;
2490 u32 completed_seqno;
2492 completed_seqno = ring->get_seqno(ring, false);
2494 list_for_each_entry(request, &ring->request_list, list) {
2495 if (i915_seqno_passed(completed_seqno, request->seqno))
2504 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2505 struct intel_engine_cs *ring)
2507 struct drm_i915_gem_request *request;
2510 request = i915_gem_find_active_request(ring);
2512 if (request == NULL)
2515 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2517 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2519 list_for_each_entry_continue(request, &ring->request_list, list)
2520 i915_set_reset_status(dev_priv, request->ctx, false);
2523 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2524 struct intel_engine_cs *ring)
2526 while (!list_empty(&ring->active_list)) {
2527 struct drm_i915_gem_object *obj;
2529 obj = list_first_entry(&ring->active_list,
2530 struct drm_i915_gem_object,
2533 i915_gem_object_move_to_inactive(obj);
2537 * We must free the requests after all the corresponding objects have
2538 * been moved off active lists. Which is the same order as the normal
2539 * retire_requests function does. This is important if object hold
2540 * implicit references on things like e.g. ppgtt address spaces through
2543 while (!list_empty(&ring->request_list)) {
2544 struct drm_i915_gem_request *request;
2546 request = list_first_entry(&ring->request_list,
2547 struct drm_i915_gem_request,
2550 i915_gem_free_request(request);
2553 while (!list_empty(&ring->execlist_queue)) {
2554 struct intel_ctx_submit_request *submit_req;
2556 submit_req = list_first_entry(&ring->execlist_queue,
2557 struct intel_ctx_submit_request,
2559 list_del(&submit_req->execlist_link);
2560 intel_runtime_pm_put(dev_priv);
2561 i915_gem_context_unreference(submit_req->ctx);
2565 /* These may not have been flush before the reset, do so now */
2566 kfree(ring->preallocated_lazy_request);
2567 ring->preallocated_lazy_request = NULL;
2568 ring->outstanding_lazy_seqno = 0;
2571 void i915_gem_restore_fences(struct drm_device *dev)
2573 struct drm_i915_private *dev_priv = dev->dev_private;
2576 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2577 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2580 * Commit delayed tiling changes if we have an object still
2581 * attached to the fence, otherwise just clear the fence.
2584 i915_gem_object_update_fence(reg->obj, reg,
2585 reg->obj->tiling_mode);
2587 i915_gem_write_fence(dev, i, NULL);
2592 void i915_gem_reset(struct drm_device *dev)
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 struct intel_engine_cs *ring;
2599 * Before we free the objects from the requests, we need to inspect
2600 * them for finding the guilty party. As the requests only borrow
2601 * their reference to the objects, the inspection must be done first.
2603 for_each_ring(ring, dev_priv, i)
2604 i915_gem_reset_ring_status(dev_priv, ring);
2606 for_each_ring(ring, dev_priv, i)
2607 i915_gem_reset_ring_cleanup(dev_priv, ring);
2609 i915_gem_context_reset(dev);
2611 i915_gem_restore_fences(dev);
2615 * This function clears the request list as sequence numbers are passed.
2618 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2622 if (list_empty(&ring->request_list))
2625 WARN_ON(i915_verify_lists(ring->dev));
2627 seqno = ring->get_seqno(ring, true);
2629 /* Move any buffers on the active list that are no longer referenced
2630 * by the ringbuffer to the flushing/inactive lists as appropriate,
2631 * before we free the context associated with the requests.
2633 while (!list_empty(&ring->active_list)) {
2634 struct drm_i915_gem_object *obj;
2636 obj = list_first_entry(&ring->active_list,
2637 struct drm_i915_gem_object,
2640 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2643 i915_gem_object_move_to_inactive(obj);
2647 while (!list_empty(&ring->request_list)) {
2648 struct drm_i915_gem_request *request;
2649 struct intel_ringbuffer *ringbuf;
2651 request = list_first_entry(&ring->request_list,
2652 struct drm_i915_gem_request,
2655 if (!i915_seqno_passed(seqno, request->seqno))
2658 trace_i915_gem_request_retire(ring, request->seqno);
2660 /* This is one of the few common intersection points
2661 * between legacy ringbuffer submission and execlists:
2662 * we need to tell them apart in order to find the correct
2663 * ringbuffer to which the request belongs to.
2665 if (i915.enable_execlists) {
2666 struct intel_context *ctx = request->ctx;
2667 ringbuf = ctx->engine[ring->id].ringbuf;
2669 ringbuf = ring->buffer;
2671 /* We know the GPU must have read the request to have
2672 * sent us the seqno + interrupt, so use the position
2673 * of tail of the request to update the last known position
2676 ringbuf->last_retired_head = request->tail;
2678 i915_gem_free_request(request);
2681 if (unlikely(ring->trace_irq_seqno &&
2682 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2683 ring->irq_put(ring);
2684 ring->trace_irq_seqno = 0;
2687 WARN_ON(i915_verify_lists(ring->dev));
2691 i915_gem_retire_requests(struct drm_device *dev)
2693 struct drm_i915_private *dev_priv = dev->dev_private;
2694 struct intel_engine_cs *ring;
2698 for_each_ring(ring, dev_priv, i) {
2699 i915_gem_retire_requests_ring(ring);
2700 idle &= list_empty(&ring->request_list);
2704 mod_delayed_work(dev_priv->wq,
2705 &dev_priv->mm.idle_work,
2706 msecs_to_jiffies(100));
2712 i915_gem_retire_work_handler(struct work_struct *work)
2714 struct drm_i915_private *dev_priv =
2715 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2716 struct drm_device *dev = dev_priv->dev;
2719 /* Come back later if the device is busy... */
2721 if (mutex_trylock(&dev->struct_mutex)) {
2722 idle = i915_gem_retire_requests(dev);
2723 mutex_unlock(&dev->struct_mutex);
2726 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2727 round_jiffies_up_relative(HZ));
2731 i915_gem_idle_work_handler(struct work_struct *work)
2733 struct drm_i915_private *dev_priv =
2734 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2736 intel_mark_idle(dev_priv->dev);
2740 * Ensures that an object will eventually get non-busy by flushing any required
2741 * write domains, emitting any outstanding lazy request and retiring and
2742 * completed requests.
2745 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2750 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2754 i915_gem_retire_requests_ring(obj->ring);
2761 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2762 * @DRM_IOCTL_ARGS: standard ioctl arguments
2764 * Returns 0 if successful, else an error is returned with the remaining time in
2765 * the timeout parameter.
2766 * -ETIME: object is still busy after timeout
2767 * -ERESTARTSYS: signal interrupted the wait
2768 * -ENONENT: object doesn't exist
2769 * Also possible, but rare:
2770 * -EAGAIN: GPU wedged
2772 * -ENODEV: Internal IRQ fail
2773 * -E?: The add request failed
2775 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2776 * non-zero timeout parameter the wait ioctl will wait for the given number of
2777 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2778 * without holding struct_mutex the object may become re-busied before this
2779 * function completes. A similar but shorter * race condition exists in the busy
2783 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2785 struct drm_i915_private *dev_priv = dev->dev_private;
2786 struct drm_i915_gem_wait *args = data;
2787 struct drm_i915_gem_object *obj;
2788 struct intel_engine_cs *ring = NULL;
2789 unsigned reset_counter;
2793 ret = i915_mutex_lock_interruptible(dev);
2797 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2798 if (&obj->base == NULL) {
2799 mutex_unlock(&dev->struct_mutex);
2803 /* Need to make sure the object gets inactive eventually. */
2804 ret = i915_gem_object_flush_active(obj);
2809 seqno = obj->last_read_seqno;
2816 /* Do this after OLR check to make sure we make forward progress polling
2817 * on this IOCTL with a timeout <=0 (like busy ioctl)
2819 if (args->timeout_ns <= 0) {
2824 drm_gem_object_unreference(&obj->base);
2825 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2826 mutex_unlock(&dev->struct_mutex);
2828 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2832 drm_gem_object_unreference(&obj->base);
2833 mutex_unlock(&dev->struct_mutex);
2838 * i915_gem_object_sync - sync an object to a ring.
2840 * @obj: object which may be in use on another ring.
2841 * @to: ring we wish to use the object on. May be NULL.
2843 * This code is meant to abstract object synchronization with the GPU.
2844 * Calling with NULL implies synchronizing the object with the CPU
2845 * rather than a particular GPU ring.
2847 * Returns 0 if successful, else propagates up the lower layer error.
2850 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2851 struct intel_engine_cs *to)
2853 struct intel_engine_cs *from = obj->ring;
2857 if (from == NULL || to == from)
2860 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2861 return i915_gem_object_wait_rendering(obj, false);
2863 idx = intel_ring_sync_index(from, to);
2865 seqno = obj->last_read_seqno;
2866 /* Optimization: Avoid semaphore sync when we are sure we already
2867 * waited for an object with higher seqno */
2868 if (seqno <= from->semaphore.sync_seqno[idx])
2871 ret = i915_gem_check_olr(obj->ring, seqno);
2875 trace_i915_gem_ring_sync_to(from, to, seqno);
2876 ret = to->semaphore.sync_to(to, from, seqno);
2878 /* We use last_read_seqno because sync_to()
2879 * might have just caused seqno wrap under
2882 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2887 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2889 u32 old_write_domain, old_read_domains;
2891 /* Force a pagefault for domain tracking on next user access */
2892 i915_gem_release_mmap(obj);
2894 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2897 /* Wait for any direct GTT access to complete */
2900 old_read_domains = obj->base.read_domains;
2901 old_write_domain = obj->base.write_domain;
2903 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2904 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2906 trace_i915_gem_object_change_domain(obj,
2911 int i915_vma_unbind(struct i915_vma *vma)
2913 struct drm_i915_gem_object *obj = vma->obj;
2914 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2917 if (list_empty(&vma->vma_link))
2920 if (!drm_mm_node_allocated(&vma->node)) {
2921 i915_gem_vma_destroy(vma);
2928 BUG_ON(obj->pages == NULL);
2930 ret = i915_gem_object_finish_gpu(obj);
2933 /* Continue on if we fail due to EIO, the GPU is hung so we
2934 * should be safe and we need to cleanup or else we might
2935 * cause memory corruption through use-after-free.
2938 if (i915_is_ggtt(vma->vm)) {
2939 i915_gem_object_finish_gtt(obj);
2941 /* release the fence reg _after_ flushing */
2942 ret = i915_gem_object_put_fence(obj);
2947 trace_i915_vma_unbind(vma);
2949 vma->unbind_vma(vma);
2951 list_del_init(&vma->mm_list);
2952 if (i915_is_ggtt(vma->vm))
2953 obj->map_and_fenceable = false;
2955 drm_mm_remove_node(&vma->node);
2956 i915_gem_vma_destroy(vma);
2958 /* Since the unbound list is global, only move to that list if
2959 * no more VMAs exist. */
2960 if (list_empty(&obj->vma_list)) {
2961 i915_gem_gtt_finish_object(obj);
2962 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2965 /* And finally now the object is completely decoupled from this vma,
2966 * we can drop its hold on the backing storage and allow it to be
2967 * reaped by the shrinker.
2969 i915_gem_object_unpin_pages(obj);
2974 int i915_gpu_idle(struct drm_device *dev)
2976 struct drm_i915_private *dev_priv = dev->dev_private;
2977 struct intel_engine_cs *ring;
2980 /* Flush everything onto the inactive list. */
2981 for_each_ring(ring, dev_priv, i) {
2982 ret = i915_switch_context(ring, ring->default_context);
2986 ret = intel_ring_idle(ring);
2994 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2995 struct drm_i915_gem_object *obj)
2997 struct drm_i915_private *dev_priv = dev->dev_private;
2999 int fence_pitch_shift;
3001 if (INTEL_INFO(dev)->gen >= 6) {
3002 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3003 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3005 fence_reg = FENCE_REG_965_0;
3006 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3009 fence_reg += reg * 8;
3011 /* To w/a incoherency with non-atomic 64-bit register updates,
3012 * we split the 64-bit update into two 32-bit writes. In order
3013 * for a partial fence not to be evaluated between writes, we
3014 * precede the update with write to turn off the fence register,
3015 * and only enable the fence as the last step.
3017 * For extra levels of paranoia, we make sure each step lands
3018 * before applying the next step.
3020 I915_WRITE(fence_reg, 0);
3021 POSTING_READ(fence_reg);
3024 u32 size = i915_gem_obj_ggtt_size(obj);
3027 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3029 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3030 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 if (obj->tiling_mode == I915_TILING_Y)
3032 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3033 val |= I965_FENCE_REG_VALID;
3035 I915_WRITE(fence_reg + 4, val >> 32);
3036 POSTING_READ(fence_reg + 4);
3038 I915_WRITE(fence_reg + 0, val);
3039 POSTING_READ(fence_reg);
3041 I915_WRITE(fence_reg + 4, 0);
3042 POSTING_READ(fence_reg + 4);
3046 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3047 struct drm_i915_gem_object *obj)
3049 struct drm_i915_private *dev_priv = dev->dev_private;
3053 u32 size = i915_gem_obj_ggtt_size(obj);
3057 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3058 (size & -size) != size ||
3059 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3060 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3061 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3063 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3068 /* Note: pitch better be a power of two tile widths */
3069 pitch_val = obj->stride / tile_width;
3070 pitch_val = ffs(pitch_val) - 1;
3072 val = i915_gem_obj_ggtt_offset(obj);
3073 if (obj->tiling_mode == I915_TILING_Y)
3074 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3075 val |= I915_FENCE_SIZE_BITS(size);
3076 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3077 val |= I830_FENCE_REG_VALID;
3082 reg = FENCE_REG_830_0 + reg * 4;
3084 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3086 I915_WRITE(reg, val);
3090 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3091 struct drm_i915_gem_object *obj)
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3097 u32 size = i915_gem_obj_ggtt_size(obj);
3100 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3101 (size & -size) != size ||
3102 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3103 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3104 i915_gem_obj_ggtt_offset(obj), size);
3106 pitch_val = obj->stride / 128;
3107 pitch_val = ffs(pitch_val) - 1;
3109 val = i915_gem_obj_ggtt_offset(obj);
3110 if (obj->tiling_mode == I915_TILING_Y)
3111 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3112 val |= I830_FENCE_SIZE_BITS(size);
3113 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3114 val |= I830_FENCE_REG_VALID;
3118 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3119 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3122 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3124 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3127 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3128 struct drm_i915_gem_object *obj)
3130 struct drm_i915_private *dev_priv = dev->dev_private;
3132 /* Ensure that all CPU reads are completed before installing a fence
3133 * and all writes before removing the fence.
3135 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3138 WARN(obj && (!obj->stride || !obj->tiling_mode),
3139 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3140 obj->stride, obj->tiling_mode);
3142 switch (INTEL_INFO(dev)->gen) {
3147 case 4: i965_write_fence_reg(dev, reg, obj); break;
3148 case 3: i915_write_fence_reg(dev, reg, obj); break;
3149 case 2: i830_write_fence_reg(dev, reg, obj); break;
3153 /* And similarly be paranoid that no direct access to this region
3154 * is reordered to before the fence is installed.
3156 if (i915_gem_object_needs_mb(obj))
3160 static inline int fence_number(struct drm_i915_private *dev_priv,
3161 struct drm_i915_fence_reg *fence)
3163 return fence - dev_priv->fence_regs;
3166 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3167 struct drm_i915_fence_reg *fence,
3170 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3171 int reg = fence_number(dev_priv, fence);
3173 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3176 obj->fence_reg = reg;
3178 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3180 obj->fence_reg = I915_FENCE_REG_NONE;
3182 list_del_init(&fence->lru_list);
3184 obj->fence_dirty = false;
3188 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3190 if (obj->last_fenced_seqno) {
3191 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3195 obj->last_fenced_seqno = 0;
3202 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3204 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3205 struct drm_i915_fence_reg *fence;
3208 ret = i915_gem_object_wait_fence(obj);
3212 if (obj->fence_reg == I915_FENCE_REG_NONE)
3215 fence = &dev_priv->fence_regs[obj->fence_reg];
3217 if (WARN_ON(fence->pin_count))
3220 i915_gem_object_fence_lost(obj);
3221 i915_gem_object_update_fence(obj, fence, false);
3226 static struct drm_i915_fence_reg *
3227 i915_find_fence_reg(struct drm_device *dev)
3229 struct drm_i915_private *dev_priv = dev->dev_private;
3230 struct drm_i915_fence_reg *reg, *avail;
3233 /* First try to find a free reg */
3235 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3236 reg = &dev_priv->fence_regs[i];
3240 if (!reg->pin_count)
3247 /* None available, try to steal one or wait for a user to finish */
3248 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3256 /* Wait for completion of pending flips which consume fences */
3257 if (intel_has_pending_fb_unpin(dev))
3258 return ERR_PTR(-EAGAIN);
3260 return ERR_PTR(-EDEADLK);
3264 * i915_gem_object_get_fence - set up fencing for an object
3265 * @obj: object to map through a fence reg
3267 * When mapping objects through the GTT, userspace wants to be able to write
3268 * to them without having to worry about swizzling if the object is tiled.
3269 * This function walks the fence regs looking for a free one for @obj,
3270 * stealing one if it can't find any.
3272 * It then sets up the reg based on the object's properties: address, pitch
3273 * and tiling format.
3275 * For an untiled surface, this removes any existing fence.
3278 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3280 struct drm_device *dev = obj->base.dev;
3281 struct drm_i915_private *dev_priv = dev->dev_private;
3282 bool enable = obj->tiling_mode != I915_TILING_NONE;
3283 struct drm_i915_fence_reg *reg;
3286 /* Have we updated the tiling parameters upon the object and so
3287 * will need to serialise the write to the associated fence register?
3289 if (obj->fence_dirty) {
3290 ret = i915_gem_object_wait_fence(obj);
3295 /* Just update our place in the LRU if our fence is getting reused. */
3296 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3297 reg = &dev_priv->fence_regs[obj->fence_reg];
3298 if (!obj->fence_dirty) {
3299 list_move_tail(®->lru_list,
3300 &dev_priv->mm.fence_list);
3303 } else if (enable) {
3304 if (WARN_ON(!obj->map_and_fenceable))
3307 reg = i915_find_fence_reg(dev);
3309 return PTR_ERR(reg);
3312 struct drm_i915_gem_object *old = reg->obj;
3314 ret = i915_gem_object_wait_fence(old);
3318 i915_gem_object_fence_lost(old);
3323 i915_gem_object_update_fence(obj, reg, enable);
3328 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3329 struct drm_mm_node *gtt_space,
3330 unsigned long cache_level)
3332 struct drm_mm_node *other;
3334 /* On non-LLC machines we have to be careful when putting differing
3335 * types of snoopable memory together to avoid the prefetcher
3336 * crossing memory domains and dying.
3341 if (!drm_mm_node_allocated(gtt_space))
3344 if (list_empty(>t_space->node_list))
3347 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3348 if (other->allocated && !other->hole_follows && other->color != cache_level)
3351 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3352 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3358 static void i915_gem_verify_gtt(struct drm_device *dev)
3361 struct drm_i915_private *dev_priv = dev->dev_private;
3362 struct drm_i915_gem_object *obj;
3365 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3366 if (obj->gtt_space == NULL) {
3367 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3372 if (obj->cache_level != obj->gtt_space->color) {
3373 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3374 i915_gem_obj_ggtt_offset(obj),
3375 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3377 obj->gtt_space->color);
3382 if (!i915_gem_valid_gtt_space(dev,
3384 obj->cache_level)) {
3385 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3386 i915_gem_obj_ggtt_offset(obj),
3387 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3399 * Finds free space in the GTT aperture and binds the object there.
3401 static struct i915_vma *
3402 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3403 struct i915_address_space *vm,
3407 struct drm_device *dev = obj->base.dev;
3408 struct drm_i915_private *dev_priv = dev->dev_private;
3409 u32 size, fence_size, fence_alignment, unfenced_alignment;
3410 unsigned long start =
3411 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3413 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3414 struct i915_vma *vma;
3417 fence_size = i915_gem_get_gtt_size(dev,
3420 fence_alignment = i915_gem_get_gtt_alignment(dev,
3422 obj->tiling_mode, true);
3423 unfenced_alignment =
3424 i915_gem_get_gtt_alignment(dev,
3426 obj->tiling_mode, false);
3429 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3431 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3432 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3433 return ERR_PTR(-EINVAL);
3436 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3438 /* If the object is bigger than the entire aperture, reject it early
3439 * before evicting everything in a vain attempt to find space.
3441 if (obj->base.size > end) {
3442 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3444 flags & PIN_MAPPABLE ? "mappable" : "total",
3446 return ERR_PTR(-E2BIG);
3449 ret = i915_gem_object_get_pages(obj);
3451 return ERR_PTR(ret);
3453 i915_gem_object_pin_pages(obj);
3455 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3460 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3464 DRM_MM_SEARCH_DEFAULT,
3465 DRM_MM_CREATE_DEFAULT);
3467 ret = i915_gem_evict_something(dev, vm, size, alignment,
3476 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3477 obj->cache_level))) {
3479 goto err_remove_node;
3482 ret = i915_gem_gtt_prepare_object(obj);
3484 goto err_remove_node;
3486 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3487 list_add_tail(&vma->mm_list, &vm->inactive_list);
3489 if (i915_is_ggtt(vm)) {
3490 bool mappable, fenceable;
3492 fenceable = (vma->node.size == fence_size &&
3493 (vma->node.start & (fence_alignment - 1)) == 0);
3495 mappable = (vma->node.start + obj->base.size <=
3496 dev_priv->gtt.mappable_end);
3498 obj->map_and_fenceable = mappable && fenceable;
3501 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3503 trace_i915_vma_bind(vma, flags);
3504 vma->bind_vma(vma, obj->cache_level,
3505 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3507 i915_gem_verify_gtt(dev);
3511 drm_mm_remove_node(&vma->node);
3513 i915_gem_vma_destroy(vma);
3516 i915_gem_object_unpin_pages(obj);
3521 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3524 /* If we don't have a page list set up, then we're not pinned
3525 * to GPU, and we can ignore the cache flush because it'll happen
3526 * again at bind time.
3528 if (obj->pages == NULL)
3532 * Stolen memory is always coherent with the GPU as it is explicitly
3533 * marked as wc by the system, or the system is cache-coherent.
3538 /* If the GPU is snooping the contents of the CPU cache,
3539 * we do not need to manually clear the CPU cache lines. However,
3540 * the caches are only snooped when the render cache is
3541 * flushed/invalidated. As we always have to emit invalidations
3542 * and flushes when moving into and out of the RENDER domain, correct
3543 * snooping behaviour occurs naturally as the result of our domain
3546 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3549 trace_i915_gem_object_clflush(obj);
3550 drm_clflush_sg(obj->pages);
3555 /** Flushes the GTT write domain for the object if it's dirty. */
3557 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3559 uint32_t old_write_domain;
3561 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3564 /* No actual flushing is required for the GTT write domain. Writes
3565 * to it immediately go to main memory as far as we know, so there's
3566 * no chipset flush. It also doesn't land in render cache.
3568 * However, we do have to enforce the order so that all writes through
3569 * the GTT land before any writes to the device, such as updates to
3574 old_write_domain = obj->base.write_domain;
3575 obj->base.write_domain = 0;
3577 intel_fb_obj_flush(obj, false);
3579 trace_i915_gem_object_change_domain(obj,
3580 obj->base.read_domains,
3584 /** Flushes the CPU write domain for the object if it's dirty. */
3586 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3589 uint32_t old_write_domain;
3591 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3594 if (i915_gem_clflush_object(obj, force))
3595 i915_gem_chipset_flush(obj->base.dev);
3597 old_write_domain = obj->base.write_domain;
3598 obj->base.write_domain = 0;
3600 intel_fb_obj_flush(obj, false);
3602 trace_i915_gem_object_change_domain(obj,
3603 obj->base.read_domains,
3608 * Moves a single object to the GTT read, and possibly write domain.
3610 * This function returns when the move is complete, including waiting on
3614 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3616 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3617 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3618 uint32_t old_write_domain, old_read_domains;
3621 /* Not valid to be called on unbound objects. */
3625 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3628 ret = i915_gem_object_wait_rendering(obj, !write);
3632 i915_gem_object_retire(obj);
3633 i915_gem_object_flush_cpu_write_domain(obj, false);
3635 /* Serialise direct access to this object with the barriers for
3636 * coherent writes from the GPU, by effectively invalidating the
3637 * GTT domain upon first access.
3639 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3642 old_write_domain = obj->base.write_domain;
3643 old_read_domains = obj->base.read_domains;
3645 /* It should now be out of any other write domains, and we can update
3646 * the domain values for our changes.
3648 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3649 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3651 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3652 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3657 intel_fb_obj_invalidate(obj, NULL);
3659 trace_i915_gem_object_change_domain(obj,
3663 /* And bump the LRU for this access */
3664 if (i915_gem_object_is_inactive(obj))
3665 list_move_tail(&vma->mm_list,
3666 &dev_priv->gtt.base.inactive_list);
3671 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3672 enum i915_cache_level cache_level)
3674 struct drm_device *dev = obj->base.dev;
3675 struct i915_vma *vma, *next;
3678 if (obj->cache_level == cache_level)
3681 if (i915_gem_obj_is_pinned(obj)) {
3682 DRM_DEBUG("can not change the cache level of pinned objects\n");
3686 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3687 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3688 ret = i915_vma_unbind(vma);
3694 if (i915_gem_obj_bound_any(obj)) {
3695 ret = i915_gem_object_finish_gpu(obj);
3699 i915_gem_object_finish_gtt(obj);
3701 /* Before SandyBridge, you could not use tiling or fence
3702 * registers with snooped memory, so relinquish any fences
3703 * currently pointing to our region in the aperture.
3705 if (INTEL_INFO(dev)->gen < 6) {
3706 ret = i915_gem_object_put_fence(obj);
3711 list_for_each_entry(vma, &obj->vma_list, vma_link)
3712 if (drm_mm_node_allocated(&vma->node))
3713 vma->bind_vma(vma, cache_level,
3714 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3717 list_for_each_entry(vma, &obj->vma_list, vma_link)
3718 vma->node.color = cache_level;
3719 obj->cache_level = cache_level;
3721 if (cpu_write_needs_clflush(obj)) {
3722 u32 old_read_domains, old_write_domain;
3724 /* If we're coming from LLC cached, then we haven't
3725 * actually been tracking whether the data is in the
3726 * CPU cache or not, since we only allow one bit set
3727 * in obj->write_domain and have been skipping the clflushes.
3728 * Just set it to the CPU cache for now.
3730 i915_gem_object_retire(obj);
3731 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3733 old_read_domains = obj->base.read_domains;
3734 old_write_domain = obj->base.write_domain;
3736 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3737 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3739 trace_i915_gem_object_change_domain(obj,
3744 i915_gem_verify_gtt(dev);
3748 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3749 struct drm_file *file)
3751 struct drm_i915_gem_caching *args = data;
3752 struct drm_i915_gem_object *obj;
3755 ret = i915_mutex_lock_interruptible(dev);
3759 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3760 if (&obj->base == NULL) {
3765 switch (obj->cache_level) {
3766 case I915_CACHE_LLC:
3767 case I915_CACHE_L3_LLC:
3768 args->caching = I915_CACHING_CACHED;
3772 args->caching = I915_CACHING_DISPLAY;
3776 args->caching = I915_CACHING_NONE;
3780 drm_gem_object_unreference(&obj->base);
3782 mutex_unlock(&dev->struct_mutex);
3786 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3787 struct drm_file *file)
3789 struct drm_i915_gem_caching *args = data;
3790 struct drm_i915_gem_object *obj;
3791 enum i915_cache_level level;
3794 switch (args->caching) {
3795 case I915_CACHING_NONE:
3796 level = I915_CACHE_NONE;
3798 case I915_CACHING_CACHED:
3799 level = I915_CACHE_LLC;
3801 case I915_CACHING_DISPLAY:
3802 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3808 ret = i915_mutex_lock_interruptible(dev);
3812 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3813 if (&obj->base == NULL) {
3818 ret = i915_gem_object_set_cache_level(obj, level);
3820 drm_gem_object_unreference(&obj->base);
3822 mutex_unlock(&dev->struct_mutex);
3826 static bool is_pin_display(struct drm_i915_gem_object *obj)
3828 struct i915_vma *vma;
3830 vma = i915_gem_obj_to_ggtt(obj);
3834 /* There are 3 sources that pin objects:
3835 * 1. The display engine (scanouts, sprites, cursors);
3836 * 2. Reservations for execbuffer;
3839 * We can ignore reservations as we hold the struct_mutex and
3840 * are only called outside of the reservation path. The user
3841 * can only increment pin_count once, and so if after
3842 * subtracting the potential reference by the user, any pin_count
3843 * remains, it must be due to another use by the display engine.
3845 return vma->pin_count - !!obj->user_pin_count;
3849 * Prepare buffer for display plane (scanout, cursors, etc).
3850 * Can be called from an uninterruptible phase (modesetting) and allows
3851 * any flushes to be pipelined (for pageflips).
3854 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3856 struct intel_engine_cs *pipelined)
3858 u32 old_read_domains, old_write_domain;
3859 bool was_pin_display;
3862 if (pipelined != obj->ring) {
3863 ret = i915_gem_object_sync(obj, pipelined);
3868 /* Mark the pin_display early so that we account for the
3869 * display coherency whilst setting up the cache domains.
3871 was_pin_display = obj->pin_display;
3872 obj->pin_display = true;
3874 /* The display engine is not coherent with the LLC cache on gen6. As
3875 * a result, we make sure that the pinning that is about to occur is
3876 * done with uncached PTEs. This is lowest common denominator for all
3879 * However for gen6+, we could do better by using the GFDT bit instead
3880 * of uncaching, which would allow us to flush all the LLC-cached data
3881 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3883 ret = i915_gem_object_set_cache_level(obj,
3884 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3886 goto err_unpin_display;
3888 /* As the user may map the buffer once pinned in the display plane
3889 * (e.g. libkms for the bootup splash), we have to ensure that we
3890 * always use map_and_fenceable for all scanout buffers.
3892 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3894 goto err_unpin_display;
3896 i915_gem_object_flush_cpu_write_domain(obj, true);
3898 old_write_domain = obj->base.write_domain;
3899 old_read_domains = obj->base.read_domains;
3901 /* It should now be out of any other write domains, and we can update
3902 * the domain values for our changes.
3904 obj->base.write_domain = 0;
3905 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3907 trace_i915_gem_object_change_domain(obj,
3914 WARN_ON(was_pin_display != is_pin_display(obj));
3915 obj->pin_display = was_pin_display;
3920 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3922 i915_gem_object_ggtt_unpin(obj);
3923 obj->pin_display = is_pin_display(obj);
3927 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3931 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3934 ret = i915_gem_object_wait_rendering(obj, false);
3938 /* Ensure that we invalidate the GPU's caches and TLBs. */
3939 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3944 * Moves a single object to the CPU read, and possibly write domain.
3946 * This function returns when the move is complete, including waiting on
3950 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3952 uint32_t old_write_domain, old_read_domains;
3955 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3958 ret = i915_gem_object_wait_rendering(obj, !write);
3962 i915_gem_object_retire(obj);
3963 i915_gem_object_flush_gtt_write_domain(obj);
3965 old_write_domain = obj->base.write_domain;
3966 old_read_domains = obj->base.read_domains;
3968 /* Flush the CPU cache if it's still invalid. */
3969 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3970 i915_gem_clflush_object(obj, false);
3972 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3975 /* It should now be out of any other write domains, and we can update
3976 * the domain values for our changes.
3978 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3980 /* If we're writing through the CPU, then the GPU read domains will
3981 * need to be invalidated at next use.
3984 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3985 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3989 intel_fb_obj_invalidate(obj, NULL);
3991 trace_i915_gem_object_change_domain(obj,
3998 /* Throttle our rendering by waiting until the ring has completed our requests
3999 * emitted over 20 msec ago.
4001 * Note that if we were to use the current jiffies each time around the loop,
4002 * we wouldn't escape the function with any frames outstanding if the time to
4003 * render a frame was over 20ms.
4005 * This should get us reasonable parallelism between CPU and GPU but also
4006 * relatively low latency when blocking on a particular request to finish.
4009 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4011 struct drm_i915_private *dev_priv = dev->dev_private;
4012 struct drm_i915_file_private *file_priv = file->driver_priv;
4013 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4014 struct drm_i915_gem_request *request;
4015 struct intel_engine_cs *ring = NULL;
4016 unsigned reset_counter;
4020 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4024 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4028 spin_lock(&file_priv->mm.lock);
4029 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4030 if (time_after_eq(request->emitted_jiffies, recent_enough))
4033 ring = request->ring;
4034 seqno = request->seqno;
4036 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4037 spin_unlock(&file_priv->mm.lock);
4042 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4044 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4050 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4052 struct drm_i915_gem_object *obj = vma->obj;
4055 vma->node.start & (alignment - 1))
4058 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4061 if (flags & PIN_OFFSET_BIAS &&
4062 vma->node.start < (flags & PIN_OFFSET_MASK))
4069 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4070 struct i915_address_space *vm,
4074 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4075 struct i915_vma *vma;
4078 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4081 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4084 vma = i915_gem_obj_to_vma(obj, vm);
4086 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4089 if (i915_vma_misplaced(vma, alignment, flags)) {
4090 WARN(vma->pin_count,
4091 "bo is already pinned with incorrect alignment:"
4092 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4093 " obj->map_and_fenceable=%d\n",
4094 i915_gem_obj_offset(obj, vm), alignment,
4095 !!(flags & PIN_MAPPABLE),
4096 obj->map_and_fenceable);
4097 ret = i915_vma_unbind(vma);
4105 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4106 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4108 return PTR_ERR(vma);
4111 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4112 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4115 if (flags & PIN_MAPPABLE)
4116 obj->pin_mappable |= true;
4122 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4124 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4127 BUG_ON(vma->pin_count == 0);
4128 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4130 if (--vma->pin_count == 0)
4131 obj->pin_mappable = false;
4135 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4137 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4138 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4139 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4141 WARN_ON(!ggtt_vma ||
4142 dev_priv->fence_regs[obj->fence_reg].pin_count >
4143 ggtt_vma->pin_count);
4144 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4151 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4153 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4154 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4155 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4156 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4161 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4162 struct drm_file *file)
4164 struct drm_i915_gem_pin *args = data;
4165 struct drm_i915_gem_object *obj;
4168 if (INTEL_INFO(dev)->gen >= 6)
4171 ret = i915_mutex_lock_interruptible(dev);
4175 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4176 if (&obj->base == NULL) {
4181 if (obj->madv != I915_MADV_WILLNEED) {
4182 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4187 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4188 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4194 if (obj->user_pin_count == ULONG_MAX) {
4199 if (obj->user_pin_count == 0) {
4200 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4205 obj->user_pin_count++;
4206 obj->pin_filp = file;
4208 args->offset = i915_gem_obj_ggtt_offset(obj);
4210 drm_gem_object_unreference(&obj->base);
4212 mutex_unlock(&dev->struct_mutex);
4217 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4218 struct drm_file *file)
4220 struct drm_i915_gem_pin *args = data;
4221 struct drm_i915_gem_object *obj;
4224 ret = i915_mutex_lock_interruptible(dev);
4228 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4229 if (&obj->base == NULL) {
4234 if (obj->pin_filp != file) {
4235 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4240 obj->user_pin_count--;
4241 if (obj->user_pin_count == 0) {
4242 obj->pin_filp = NULL;
4243 i915_gem_object_ggtt_unpin(obj);
4247 drm_gem_object_unreference(&obj->base);
4249 mutex_unlock(&dev->struct_mutex);
4254 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4255 struct drm_file *file)
4257 struct drm_i915_gem_busy *args = data;
4258 struct drm_i915_gem_object *obj;
4261 ret = i915_mutex_lock_interruptible(dev);
4265 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4266 if (&obj->base == NULL) {
4271 /* Count all active objects as busy, even if they are currently not used
4272 * by the gpu. Users of this interface expect objects to eventually
4273 * become non-busy without any further actions, therefore emit any
4274 * necessary flushes here.
4276 ret = i915_gem_object_flush_active(obj);
4278 args->busy = obj->active;
4280 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4281 args->busy |= intel_ring_flag(obj->ring) << 16;
4284 drm_gem_object_unreference(&obj->base);
4286 mutex_unlock(&dev->struct_mutex);
4291 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4292 struct drm_file *file_priv)
4294 return i915_gem_ring_throttle(dev, file_priv);
4298 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4299 struct drm_file *file_priv)
4301 struct drm_i915_gem_madvise *args = data;
4302 struct drm_i915_gem_object *obj;
4305 switch (args->madv) {
4306 case I915_MADV_DONTNEED:
4307 case I915_MADV_WILLNEED:
4313 ret = i915_mutex_lock_interruptible(dev);
4317 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4318 if (&obj->base == NULL) {
4323 if (i915_gem_obj_is_pinned(obj)) {
4328 if (obj->madv != __I915_MADV_PURGED)
4329 obj->madv = args->madv;
4331 /* if the object is no longer attached, discard its backing storage */
4332 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4333 i915_gem_object_truncate(obj);
4335 args->retained = obj->madv != __I915_MADV_PURGED;
4338 drm_gem_object_unreference(&obj->base);
4340 mutex_unlock(&dev->struct_mutex);
4344 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4345 const struct drm_i915_gem_object_ops *ops)
4347 INIT_LIST_HEAD(&obj->global_list);
4348 INIT_LIST_HEAD(&obj->ring_list);
4349 INIT_LIST_HEAD(&obj->obj_exec_link);
4350 INIT_LIST_HEAD(&obj->vma_list);
4354 obj->fence_reg = I915_FENCE_REG_NONE;
4355 obj->madv = I915_MADV_WILLNEED;
4357 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4360 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4361 .get_pages = i915_gem_object_get_pages_gtt,
4362 .put_pages = i915_gem_object_put_pages_gtt,
4365 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4368 struct drm_i915_gem_object *obj;
4369 struct address_space *mapping;
4372 obj = i915_gem_object_alloc(dev);
4376 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4377 i915_gem_object_free(obj);
4381 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4382 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4383 /* 965gm cannot relocate objects above 4GiB. */
4384 mask &= ~__GFP_HIGHMEM;
4385 mask |= __GFP_DMA32;
4388 mapping = file_inode(obj->base.filp)->i_mapping;
4389 mapping_set_gfp_mask(mapping, mask);
4391 i915_gem_object_init(obj, &i915_gem_object_ops);
4393 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4394 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4397 /* On some devices, we can have the GPU use the LLC (the CPU
4398 * cache) for about a 10% performance improvement
4399 * compared to uncached. Graphics requests other than
4400 * display scanout are coherent with the CPU in
4401 * accessing this cache. This means in this mode we
4402 * don't need to clflush on the CPU side, and on the
4403 * GPU side we only need to flush internal caches to
4404 * get data visible to the CPU.
4406 * However, we maintain the display planes as UC, and so
4407 * need to rebind when first used as such.
4409 obj->cache_level = I915_CACHE_LLC;
4411 obj->cache_level = I915_CACHE_NONE;
4413 trace_i915_gem_object_create(obj);
4418 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4420 /* If we are the last user of the backing storage (be it shmemfs
4421 * pages or stolen etc), we know that the pages are going to be
4422 * immediately released. In this case, we can then skip copying
4423 * back the contents from the GPU.
4426 if (obj->madv != I915_MADV_WILLNEED)
4429 if (obj->base.filp == NULL)
4432 /* At first glance, this looks racy, but then again so would be
4433 * userspace racing mmap against close. However, the first external
4434 * reference to the filp can only be obtained through the
4435 * i915_gem_mmap_ioctl() which safeguards us against the user
4436 * acquiring such a reference whilst we are in the middle of
4437 * freeing the object.
4439 return atomic_long_read(&obj->base.filp->f_count) == 1;
4442 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4444 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4445 struct drm_device *dev = obj->base.dev;
4446 struct drm_i915_private *dev_priv = dev->dev_private;
4447 struct i915_vma *vma, *next;
4449 intel_runtime_pm_get(dev_priv);
4451 trace_i915_gem_object_destroy(obj);
4453 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4457 ret = i915_vma_unbind(vma);
4458 if (WARN_ON(ret == -ERESTARTSYS)) {
4459 bool was_interruptible;
4461 was_interruptible = dev_priv->mm.interruptible;
4462 dev_priv->mm.interruptible = false;
4464 WARN_ON(i915_vma_unbind(vma));
4466 dev_priv->mm.interruptible = was_interruptible;
4470 i915_gem_object_detach_phys(obj);
4472 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4473 * before progressing. */
4475 i915_gem_object_unpin_pages(obj);
4477 WARN_ON(obj->frontbuffer_bits);
4479 if (WARN_ON(obj->pages_pin_count))
4480 obj->pages_pin_count = 0;
4481 if (discard_backing_storage(obj))
4482 obj->madv = I915_MADV_DONTNEED;
4483 i915_gem_object_put_pages(obj);
4484 i915_gem_object_free_mmap_offset(obj);
4488 if (obj->base.import_attach)
4489 drm_prime_gem_destroy(&obj->base, NULL);
4491 if (obj->ops->release)
4492 obj->ops->release(obj);
4494 drm_gem_object_release(&obj->base);
4495 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4498 i915_gem_object_free(obj);
4500 intel_runtime_pm_put(dev_priv);
4503 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4504 struct i915_address_space *vm)
4506 struct i915_vma *vma;
4507 list_for_each_entry(vma, &obj->vma_list, vma_link)
4514 void i915_gem_vma_destroy(struct i915_vma *vma)
4516 struct i915_address_space *vm = NULL;
4517 WARN_ON(vma->node.allocated);
4519 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4520 if (!list_empty(&vma->exec_list))
4525 if (!i915_is_ggtt(vm))
4526 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4528 list_del(&vma->vma_link);
4534 i915_gem_stop_ringbuffers(struct drm_device *dev)
4536 struct drm_i915_private *dev_priv = dev->dev_private;
4537 struct intel_engine_cs *ring;
4540 for_each_ring(ring, dev_priv, i)
4541 dev_priv->gt.stop_ring(ring);
4545 i915_gem_suspend(struct drm_device *dev)
4547 struct drm_i915_private *dev_priv = dev->dev_private;
4550 mutex_lock(&dev->struct_mutex);
4551 if (dev_priv->ums.mm_suspended)
4554 ret = i915_gpu_idle(dev);
4558 i915_gem_retire_requests(dev);
4560 /* Under UMS, be paranoid and evict. */
4561 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4562 i915_gem_evict_everything(dev);
4564 i915_kernel_lost_context(dev);
4565 i915_gem_stop_ringbuffers(dev);
4567 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4568 * We need to replace this with a semaphore, or something.
4569 * And not confound ums.mm_suspended!
4571 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4573 mutex_unlock(&dev->struct_mutex);
4575 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4576 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4577 flush_delayed_work(&dev_priv->mm.idle_work);
4582 mutex_unlock(&dev->struct_mutex);
4586 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4588 struct drm_device *dev = ring->dev;
4589 struct drm_i915_private *dev_priv = dev->dev_private;
4590 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4591 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4594 if (!HAS_L3_DPF(dev) || !remap_info)
4597 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4602 * Note: We do not worry about the concurrent register cacheline hang
4603 * here because no other code should access these registers other than
4604 * at initialization time.
4606 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4607 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4608 intel_ring_emit(ring, reg_base + i);
4609 intel_ring_emit(ring, remap_info[i/4]);
4612 intel_ring_advance(ring);
4617 void i915_gem_init_swizzling(struct drm_device *dev)
4619 struct drm_i915_private *dev_priv = dev->dev_private;
4621 if (INTEL_INFO(dev)->gen < 5 ||
4622 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4625 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4626 DISP_TILE_SURFACE_SWIZZLING);
4631 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4633 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4634 else if (IS_GEN7(dev))
4635 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4636 else if (IS_GEN8(dev))
4637 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4643 intel_enable_blt(struct drm_device *dev)
4648 /* The blitter was dysfunctional on early prototypes */
4649 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4650 DRM_INFO("BLT not supported on this pre-production hardware;"
4651 " graphics performance will be degraded.\n");
4658 int i915_gem_init_rings(struct drm_device *dev)
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4663 ret = intel_init_render_ring_buffer(dev);
4668 ret = intel_init_bsd_ring_buffer(dev);
4670 goto cleanup_render_ring;
4673 if (intel_enable_blt(dev)) {
4674 ret = intel_init_blt_ring_buffer(dev);
4676 goto cleanup_bsd_ring;
4679 if (HAS_VEBOX(dev)) {
4680 ret = intel_init_vebox_ring_buffer(dev);
4682 goto cleanup_blt_ring;
4685 if (HAS_BSD2(dev)) {
4686 ret = intel_init_bsd2_ring_buffer(dev);
4688 goto cleanup_vebox_ring;
4691 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4693 goto cleanup_bsd2_ring;
4698 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4700 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4702 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4704 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4705 cleanup_render_ring:
4706 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4712 i915_gem_init_hw(struct drm_device *dev)
4714 struct drm_i915_private *dev_priv = dev->dev_private;
4717 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4720 if (dev_priv->ellc_size)
4721 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4723 if (IS_HASWELL(dev))
4724 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4725 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4727 if (HAS_PCH_NOP(dev)) {
4728 if (IS_IVYBRIDGE(dev)) {
4729 u32 temp = I915_READ(GEN7_MSG_CTL);
4730 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4731 I915_WRITE(GEN7_MSG_CTL, temp);
4732 } else if (INTEL_INFO(dev)->gen >= 7) {
4733 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4734 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4735 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4739 i915_gem_init_swizzling(dev);
4741 ret = dev_priv->gt.init_rings(dev);
4745 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4746 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4749 * XXX: Contexts should only be initialized once. Doing a switch to the
4750 * default context switch however is something we'd like to do after
4751 * reset or thaw (the latter may not actually be necessary for HW, but
4752 * goes with our code better). Context switching requires rings (for
4753 * the do_switch), but before enabling PPGTT. So don't move this.
4755 ret = i915_gem_context_enable(dev_priv);
4756 if (ret && ret != -EIO) {
4757 DRM_ERROR("Context enable failed %d\n", ret);
4758 i915_gem_cleanup_ringbuffer(dev);
4763 ret = i915_ppgtt_init_hw(dev);
4764 if (ret && ret != -EIO) {
4765 DRM_ERROR("PPGTT enable failed %d\n", ret);
4766 i915_gem_cleanup_ringbuffer(dev);
4772 int i915_gem_init(struct drm_device *dev)
4774 struct drm_i915_private *dev_priv = dev->dev_private;
4777 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4778 i915.enable_execlists);
4780 mutex_lock(&dev->struct_mutex);
4782 if (IS_VALLEYVIEW(dev)) {
4783 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4784 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4785 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4786 VLV_GTLC_ALLOWWAKEACK), 10))
4787 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4790 if (!i915.enable_execlists) {
4791 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4792 dev_priv->gt.init_rings = i915_gem_init_rings;
4793 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4794 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4796 dev_priv->gt.do_execbuf = intel_execlists_submission;
4797 dev_priv->gt.init_rings = intel_logical_rings_init;
4798 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4799 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4802 ret = i915_gem_init_userptr(dev);
4804 mutex_unlock(&dev->struct_mutex);
4808 i915_gem_init_global_gtt(dev);
4810 ret = i915_gem_context_init(dev);
4812 mutex_unlock(&dev->struct_mutex);
4816 ret = i915_gem_init_hw(dev);
4818 /* Allow ring initialisation to fail by marking the GPU as
4819 * wedged. But we only want to do this where the GPU is angry,
4820 * for all other failure, such as an allocation failure, bail.
4822 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4823 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4826 mutex_unlock(&dev->struct_mutex);
4828 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4829 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4830 dev_priv->dri1.allow_batchbuffer = 1;
4835 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4837 struct drm_i915_private *dev_priv = dev->dev_private;
4838 struct intel_engine_cs *ring;
4841 for_each_ring(ring, dev_priv, i)
4842 dev_priv->gt.cleanup_ring(ring);
4846 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4847 struct drm_file *file_priv)
4849 struct drm_i915_private *dev_priv = dev->dev_private;
4852 if (drm_core_check_feature(dev, DRIVER_MODESET))
4855 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4856 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4857 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4860 mutex_lock(&dev->struct_mutex);
4861 dev_priv->ums.mm_suspended = 0;
4863 ret = i915_gem_init_hw(dev);
4865 mutex_unlock(&dev->struct_mutex);
4869 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4871 ret = drm_irq_install(dev, dev->pdev->irq);
4873 goto cleanup_ringbuffer;
4874 mutex_unlock(&dev->struct_mutex);
4879 i915_gem_cleanup_ringbuffer(dev);
4880 dev_priv->ums.mm_suspended = 1;
4881 mutex_unlock(&dev->struct_mutex);
4887 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4888 struct drm_file *file_priv)
4890 if (drm_core_check_feature(dev, DRIVER_MODESET))
4893 mutex_lock(&dev->struct_mutex);
4894 drm_irq_uninstall(dev);
4895 mutex_unlock(&dev->struct_mutex);
4897 return i915_gem_suspend(dev);
4901 i915_gem_lastclose(struct drm_device *dev)
4905 if (drm_core_check_feature(dev, DRIVER_MODESET))
4908 ret = i915_gem_suspend(dev);
4910 DRM_ERROR("failed to idle hardware: %d\n", ret);
4914 init_ring_lists(struct intel_engine_cs *ring)
4916 INIT_LIST_HEAD(&ring->active_list);
4917 INIT_LIST_HEAD(&ring->request_list);
4920 void i915_init_vm(struct drm_i915_private *dev_priv,
4921 struct i915_address_space *vm)
4923 if (!i915_is_ggtt(vm))
4924 drm_mm_init(&vm->mm, vm->start, vm->total);
4925 vm->dev = dev_priv->dev;
4926 INIT_LIST_HEAD(&vm->active_list);
4927 INIT_LIST_HEAD(&vm->inactive_list);
4928 INIT_LIST_HEAD(&vm->global_link);
4929 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4933 i915_gem_load(struct drm_device *dev)
4935 struct drm_i915_private *dev_priv = dev->dev_private;
4939 kmem_cache_create("i915_gem_object",
4940 sizeof(struct drm_i915_gem_object), 0,
4944 INIT_LIST_HEAD(&dev_priv->vm_list);
4945 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4947 INIT_LIST_HEAD(&dev_priv->context_list);
4948 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4949 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4950 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4951 for (i = 0; i < I915_NUM_RINGS; i++)
4952 init_ring_lists(&dev_priv->ring[i]);
4953 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4954 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4955 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4956 i915_gem_retire_work_handler);
4957 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4958 i915_gem_idle_work_handler);
4959 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4961 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4962 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4963 I915_WRITE(MI_ARB_STATE,
4964 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4967 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4969 /* Old X drivers will take 0-2 for front, back, depth buffers */
4970 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4971 dev_priv->fence_reg_start = 3;
4973 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4974 dev_priv->num_fence_regs = 32;
4975 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4976 dev_priv->num_fence_regs = 16;
4978 dev_priv->num_fence_regs = 8;
4980 /* Initialize fence registers to zero */
4981 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4982 i915_gem_restore_fences(dev);
4984 i915_gem_detect_bit_6_swizzle(dev);
4985 init_waitqueue_head(&dev_priv->pending_flip_queue);
4987 dev_priv->mm.interruptible = true;
4989 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4990 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4991 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4992 register_shrinker(&dev_priv->mm.shrinker);
4994 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4995 register_oom_notifier(&dev_priv->mm.oom_notifier);
4997 mutex_init(&dev_priv->fb_tracking.lock);
5000 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5002 struct drm_i915_file_private *file_priv = file->driver_priv;
5004 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5006 /* Clean up our request list when the client is going away, so that
5007 * later retire_requests won't dereference our soon-to-be-gone
5010 spin_lock(&file_priv->mm.lock);
5011 while (!list_empty(&file_priv->mm.request_list)) {
5012 struct drm_i915_gem_request *request;
5014 request = list_first_entry(&file_priv->mm.request_list,
5015 struct drm_i915_gem_request,
5017 list_del(&request->client_list);
5018 request->file_priv = NULL;
5020 spin_unlock(&file_priv->mm.lock);
5024 i915_gem_file_idle_work_handler(struct work_struct *work)
5026 struct drm_i915_file_private *file_priv =
5027 container_of(work, typeof(*file_priv), mm.idle_work.work);
5029 atomic_set(&file_priv->rps_wait_boost, false);
5032 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5034 struct drm_i915_file_private *file_priv;
5037 DRM_DEBUG_DRIVER("\n");
5039 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5043 file->driver_priv = file_priv;
5044 file_priv->dev_priv = dev->dev_private;
5045 file_priv->file = file;
5047 spin_lock_init(&file_priv->mm.lock);
5048 INIT_LIST_HEAD(&file_priv->mm.request_list);
5049 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5050 i915_gem_file_idle_work_handler);
5052 ret = i915_gem_context_open(dev, file);
5059 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5060 struct drm_i915_gem_object *new,
5061 unsigned frontbuffer_bits)
5064 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5065 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5066 old->frontbuffer_bits &= ~frontbuffer_bits;
5070 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5071 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5072 new->frontbuffer_bits |= frontbuffer_bits;
5076 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5078 if (!mutex_is_locked(mutex))
5081 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5082 return mutex->owner == task;
5084 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5089 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5091 if (!mutex_trylock(&dev->struct_mutex)) {
5092 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5095 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5105 static int num_vma_bound(struct drm_i915_gem_object *obj)
5107 struct i915_vma *vma;
5110 list_for_each_entry(vma, &obj->vma_list, vma_link)
5111 if (drm_mm_node_allocated(&vma->node))
5117 static unsigned long
5118 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5120 struct drm_i915_private *dev_priv =
5121 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5122 struct drm_device *dev = dev_priv->dev;
5123 struct drm_i915_gem_object *obj;
5124 unsigned long count;
5127 if (!i915_gem_shrinker_lock(dev, &unlock))
5131 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5132 if (obj->pages_pin_count == 0)
5133 count += obj->base.size >> PAGE_SHIFT;
5135 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5136 if (!i915_gem_obj_is_pinned(obj) &&
5137 obj->pages_pin_count == num_vma_bound(obj))
5138 count += obj->base.size >> PAGE_SHIFT;
5142 mutex_unlock(&dev->struct_mutex);
5147 /* All the new VM stuff */
5148 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5149 struct i915_address_space *vm)
5151 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5152 struct i915_vma *vma;
5154 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5156 list_for_each_entry(vma, &o->vma_list, vma_link) {
5158 return vma->node.start;
5161 WARN(1, "%s vma for this object not found.\n",
5162 i915_is_ggtt(vm) ? "global" : "ppgtt");
5166 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5167 struct i915_address_space *vm)
5169 struct i915_vma *vma;
5171 list_for_each_entry(vma, &o->vma_list, vma_link)
5172 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5178 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5180 struct i915_vma *vma;
5182 list_for_each_entry(vma, &o->vma_list, vma_link)
5183 if (drm_mm_node_allocated(&vma->node))
5189 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5190 struct i915_address_space *vm)
5192 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5193 struct i915_vma *vma;
5195 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5197 BUG_ON(list_empty(&o->vma_list));
5199 list_for_each_entry(vma, &o->vma_list, vma_link)
5201 return vma->node.size;
5206 static unsigned long
5207 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5209 struct drm_i915_private *dev_priv =
5210 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5211 struct drm_device *dev = dev_priv->dev;
5212 unsigned long freed;
5215 if (!i915_gem_shrinker_lock(dev, &unlock))
5218 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5219 if (freed < sc->nr_to_scan)
5220 freed += __i915_gem_shrink(dev_priv,
5221 sc->nr_to_scan - freed,
5224 mutex_unlock(&dev->struct_mutex);
5230 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5232 struct drm_i915_private *dev_priv =
5233 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5234 struct drm_device *dev = dev_priv->dev;
5235 struct drm_i915_gem_object *obj;
5236 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5237 unsigned long pinned, bound, unbound, freed;
5238 bool was_interruptible;
5241 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5242 schedule_timeout_killable(1);
5243 if (fatal_signal_pending(current))
5247 pr_err("Unable to purge GPU memory due lock contention.\n");
5251 was_interruptible = dev_priv->mm.interruptible;
5252 dev_priv->mm.interruptible = false;
5254 freed = i915_gem_shrink_all(dev_priv);
5256 dev_priv->mm.interruptible = was_interruptible;
5258 /* Because we may be allocating inside our own driver, we cannot
5259 * assert that there are no objects with pinned pages that are not
5260 * being pointed to by hardware.
5262 unbound = bound = pinned = 0;
5263 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5264 if (!obj->base.filp) /* not backed by a freeable object */
5267 if (obj->pages_pin_count)
5268 pinned += obj->base.size;
5270 unbound += obj->base.size;
5272 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5273 if (!obj->base.filp)
5276 if (obj->pages_pin_count)
5277 pinned += obj->base.size;
5279 bound += obj->base.size;
5283 mutex_unlock(&dev->struct_mutex);
5285 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5287 if (unbound || bound)
5288 pr_err("%lu and %lu bytes still available in the "
5289 "bound and unbound GPU page lists.\n",
5292 *(unsigned long *)ptr += freed;
5296 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5298 struct i915_vma *vma;
5300 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5301 if (vma->vm != i915_obj_to_ggtt(obj))