1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
34 * when auto defrag is enabled we
35 * queue up these defrag structs to remember which
36 * inodes need defragging passes
39 struct rb_node rb_node;
43 * transid where the defrag was added, we search for
44 * extents newer than this
51 /* last offset we were able to defrag */
54 /* if we've wrapped around back to zero once already */
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 struct inode_defrag *defrag2)
61 if (defrag1->root > defrag2->root)
63 else if (defrag1->root < defrag2->root)
65 else if (defrag1->ino > defrag2->ino)
67 else if (defrag1->ino < defrag2->ino)
73 /* pop a record for an inode into the defrag tree. The lock
74 * must be held already
76 * If you're inserting a record for an older transid than an
77 * existing record, the transid already in the tree is lowered
79 * If an existing record is found the defrag item you
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 struct inode_defrag *defrag)
85 struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 struct inode_defrag *entry;
88 struct rb_node *parent = NULL;
91 p = &fs_info->defrag_inodes.rb_node;
94 entry = rb_entry(parent, struct inode_defrag, rb_node);
96 ret = __compare_inode_defrag(defrag, entry);
100 p = &parent->rb_right;
102 /* if we're reinserting an entry for
103 * an old defrag run, make sure to
104 * lower the transid of our existing record
106 if (defrag->transid < entry->transid)
107 entry->transid = defrag->transid;
108 if (defrag->last_offset > entry->last_offset)
109 entry->last_offset = defrag->last_offset;
113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 rb_link_node(&defrag->rb_node, parent, p);
115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
124 if (btrfs_fs_closing(fs_info))
131 * insert a defrag record for this inode if auto defrag is
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 struct btrfs_inode *inode)
137 struct btrfs_root *root = inode->root;
138 struct btrfs_fs_info *fs_info = root->fs_info;
139 struct inode_defrag *defrag;
143 if (!__need_auto_defrag(fs_info))
146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
150 transid = trans->transid;
152 transid = inode->root->last_trans;
154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
158 defrag->ino = btrfs_ino(inode);
159 defrag->transid = transid;
160 defrag->root = root->root_key.objectid;
162 spin_lock(&fs_info->defrag_inodes_lock);
163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
165 * If we set IN_DEFRAG flag and evict the inode from memory,
166 * and then re-read this inode, this new inode doesn't have
167 * IN_DEFRAG flag. At the case, we may find the existed defrag.
169 ret = __btrfs_add_inode_defrag(inode, defrag);
171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
175 spin_unlock(&fs_info->defrag_inodes_lock);
180 * Requeue the defrag object. If there is a defrag object that points to
181 * the same inode in the tree, we will merge them together (by
182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 struct inode_defrag *defrag)
187 struct btrfs_fs_info *fs_info = inode->root->fs_info;
190 if (!__need_auto_defrag(fs_info))
194 * Here we don't check the IN_DEFRAG flag, because we need merge
197 spin_lock(&fs_info->defrag_inodes_lock);
198 ret = __btrfs_add_inode_defrag(inode, defrag);
199 spin_unlock(&fs_info->defrag_inodes_lock);
204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
208 * pick the defragable inode that we want, if it doesn't exist, we will get
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
214 struct inode_defrag *entry = NULL;
215 struct inode_defrag tmp;
217 struct rb_node *parent = NULL;
223 spin_lock(&fs_info->defrag_inodes_lock);
224 p = fs_info->defrag_inodes.rb_node;
227 entry = rb_entry(parent, struct inode_defrag, rb_node);
229 ret = __compare_inode_defrag(&tmp, entry);
233 p = parent->rb_right;
238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 parent = rb_next(parent);
241 entry = rb_entry(parent, struct inode_defrag, rb_node);
247 rb_erase(parent, &fs_info->defrag_inodes);
248 spin_unlock(&fs_info->defrag_inodes_lock);
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
254 struct inode_defrag *defrag;
255 struct rb_node *node;
257 spin_lock(&fs_info->defrag_inodes_lock);
258 node = rb_first(&fs_info->defrag_inodes);
260 rb_erase(node, &fs_info->defrag_inodes);
261 defrag = rb_entry(node, struct inode_defrag, rb_node);
262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
264 cond_resched_lock(&fs_info->defrag_inodes_lock);
266 node = rb_first(&fs_info->defrag_inodes);
268 spin_unlock(&fs_info->defrag_inodes_lock);
271 #define BTRFS_DEFRAG_BATCH 1024
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 struct inode_defrag *defrag)
276 struct btrfs_root *inode_root;
278 struct btrfs_ioctl_defrag_range_args range;
283 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284 if (IS_ERR(inode_root)) {
285 ret = PTR_ERR(inode_root);
289 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290 btrfs_put_root(inode_root);
292 ret = PTR_ERR(inode);
296 /* do a chunk of defrag */
297 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298 memset(&range, 0, sizeof(range));
300 range.start = defrag->last_offset;
302 sb_start_write(fs_info->sb);
303 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
305 sb_end_write(fs_info->sb);
307 * if we filled the whole defrag batch, there
308 * must be more work to do. Queue this defrag
311 if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 defrag->last_offset = range.start;
313 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314 } else if (defrag->last_offset && !defrag->cycled) {
316 * we didn't fill our defrag batch, but
317 * we didn't start at zero. Make sure we loop
318 * around to the start of the file.
320 defrag->last_offset = 0;
322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
324 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
330 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
335 * run through the list of inodes in the FS that need
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
340 struct inode_defrag *defrag;
342 u64 root_objectid = 0;
344 atomic_inc(&fs_info->defrag_running);
346 /* Pause the auto defragger. */
347 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
351 if (!__need_auto_defrag(fs_info))
354 /* find an inode to defrag */
355 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
358 if (root_objectid || first_ino) {
367 first_ino = defrag->ino + 1;
368 root_objectid = defrag->root;
370 __btrfs_run_defrag_inode(fs_info, defrag);
372 atomic_dec(&fs_info->defrag_running);
375 * during unmount, we use the transaction_wait queue to
376 * wait for the defragger to stop
378 wake_up(&fs_info->transaction_wait);
382 /* simple helper to fault in pages and copy. This should go away
383 * and be replaced with calls into generic code.
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386 struct page **prepared_pages,
390 size_t total_copied = 0;
392 int offset = offset_in_page(pos);
394 while (write_bytes > 0) {
395 size_t count = min_t(size_t,
396 PAGE_SIZE - offset, write_bytes);
397 struct page *page = prepared_pages[pg];
399 * Copy data from userspace to the current page
401 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
403 /* Flush processor's dcache for this page */
404 flush_dcache_page(page);
407 * if we get a partial write, we can end up with
408 * partially up to date pages. These add
409 * a lot of complexity, so make sure they don't
410 * happen by forcing this copy to be retried.
412 * The rest of the btrfs_file_write code will fall
413 * back to page at a time copies after we return 0.
415 if (!PageUptodate(page) && copied < count)
418 iov_iter_advance(i, copied);
419 write_bytes -= copied;
420 total_copied += copied;
422 /* Return to btrfs_file_write_iter to fault page */
423 if (unlikely(copied == 0))
426 if (copied < PAGE_SIZE - offset) {
437 * unlocks pages after btrfs_file_write is done with them
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
442 for (i = 0; i < num_pages; i++) {
443 /* page checked is some magic around finding pages that
444 * have been modified without going through btrfs_set_page_dirty
445 * clear it here. There should be no need to mark the pages
446 * accessed as prepare_pages should have marked them accessed
447 * in prepare_pages via find_or_create_page()
449 ClearPageChecked(pages[i]);
450 unlock_page(pages[i]);
456 * After btrfs_copy_from_user(), update the following things for delalloc:
457 * - Mark newly dirtied pages as DELALLOC in the io tree.
458 * Used to advise which range is to be written back.
459 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
460 * - Update inode size for past EOF write
462 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
463 size_t num_pages, loff_t pos, size_t write_bytes,
464 struct extent_state **cached, bool noreserve)
466 struct btrfs_fs_info *fs_info = inode->root->fs_info;
471 u64 end_of_last_block;
472 u64 end_pos = pos + write_bytes;
473 loff_t isize = i_size_read(&inode->vfs_inode);
474 unsigned int extra_bits = 0;
476 if (write_bytes == 0)
480 extra_bits |= EXTENT_NORESERVE;
482 start_pos = round_down(pos, fs_info->sectorsize);
483 num_bytes = round_up(write_bytes + pos - start_pos,
484 fs_info->sectorsize);
486 end_of_last_block = start_pos + num_bytes - 1;
489 * The pages may have already been dirty, clear out old accounting so
490 * we can set things up properly
492 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
493 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
496 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
501 for (i = 0; i < num_pages; i++) {
502 struct page *p = pages[i];
509 * we've only changed i_size in ram, and we haven't updated
510 * the disk i_size. There is no need to log the inode
514 i_size_write(&inode->vfs_inode, end_pos);
519 * this drops all the extents in the cache that intersect the range
520 * [start, end]. Existing extents are split as required.
522 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
525 struct extent_map *em;
526 struct extent_map *split = NULL;
527 struct extent_map *split2 = NULL;
528 struct extent_map_tree *em_tree = &inode->extent_tree;
529 u64 len = end - start + 1;
537 WARN_ON(end < start);
538 if (end == (u64)-1) {
547 split = alloc_extent_map();
549 split2 = alloc_extent_map();
550 if (!split || !split2)
553 write_lock(&em_tree->lock);
554 em = lookup_extent_mapping(em_tree, start, len);
556 write_unlock(&em_tree->lock);
560 gen = em->generation;
561 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
562 if (testend && em->start + em->len >= start + len) {
564 write_unlock(&em_tree->lock);
567 start = em->start + em->len;
569 len = start + len - (em->start + em->len);
571 write_unlock(&em_tree->lock);
574 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
575 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
576 clear_bit(EXTENT_FLAG_LOGGING, &flags);
577 modified = !list_empty(&em->list);
581 if (em->start < start) {
582 split->start = em->start;
583 split->len = start - em->start;
585 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
586 split->orig_start = em->orig_start;
587 split->block_start = em->block_start;
590 split->block_len = em->block_len;
592 split->block_len = split->len;
593 split->orig_block_len = max(split->block_len,
595 split->ram_bytes = em->ram_bytes;
597 split->orig_start = split->start;
598 split->block_len = 0;
599 split->block_start = em->block_start;
600 split->orig_block_len = 0;
601 split->ram_bytes = split->len;
604 split->generation = gen;
605 split->flags = flags;
606 split->compress_type = em->compress_type;
607 replace_extent_mapping(em_tree, em, split, modified);
608 free_extent_map(split);
612 if (testend && em->start + em->len > start + len) {
613 u64 diff = start + len - em->start;
615 split->start = start + len;
616 split->len = em->start + em->len - (start + len);
617 split->flags = flags;
618 split->compress_type = em->compress_type;
619 split->generation = gen;
621 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
622 split->orig_block_len = max(em->block_len,
625 split->ram_bytes = em->ram_bytes;
627 split->block_len = em->block_len;
628 split->block_start = em->block_start;
629 split->orig_start = em->orig_start;
631 split->block_len = split->len;
632 split->block_start = em->block_start
634 split->orig_start = em->orig_start;
637 split->ram_bytes = split->len;
638 split->orig_start = split->start;
639 split->block_len = 0;
640 split->block_start = em->block_start;
641 split->orig_block_len = 0;
644 if (extent_map_in_tree(em)) {
645 replace_extent_mapping(em_tree, em, split,
648 ret = add_extent_mapping(em_tree, split,
650 ASSERT(ret == 0); /* Logic error */
652 free_extent_map(split);
656 if (extent_map_in_tree(em))
657 remove_extent_mapping(em_tree, em);
658 write_unlock(&em_tree->lock);
662 /* once for the tree*/
666 free_extent_map(split);
668 free_extent_map(split2);
672 * this is very complex, but the basic idea is to drop all extents
673 * in the range start - end. hint_block is filled in with a block number
674 * that would be a good hint to the block allocator for this file.
676 * If an extent intersects the range but is not entirely inside the range
677 * it is either truncated or split. Anything entirely inside the range
678 * is deleted from the tree.
680 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
681 * to deal with that. We set the field 'bytes_found' of the arguments structure
682 * with the number of allocated bytes found in the target range, so that the
683 * caller can update the inode's number of bytes in an atomic way when
684 * replacing extents in a range to avoid races with stat(2).
686 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
687 struct btrfs_root *root, struct btrfs_inode *inode,
688 struct btrfs_drop_extents_args *args)
690 struct btrfs_fs_info *fs_info = root->fs_info;
691 struct extent_buffer *leaf;
692 struct btrfs_file_extent_item *fi;
693 struct btrfs_ref ref = { 0 };
694 struct btrfs_key key;
695 struct btrfs_key new_key;
696 u64 ino = btrfs_ino(inode);
697 u64 search_start = args->start;
700 u64 extent_offset = 0;
702 u64 last_end = args->start;
708 int modify_tree = -1;
711 int leafs_visited = 0;
712 struct btrfs_path *path = args->path;
714 args->bytes_found = 0;
715 args->extent_inserted = false;
717 /* Must always have a path if ->replace_extent is true */
718 ASSERT(!(args->replace_extent && !args->path));
721 path = btrfs_alloc_path();
728 if (args->drop_cache)
729 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
731 if (args->start >= inode->disk_i_size && !args->replace_extent)
734 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
735 root == fs_info->tree_root);
738 ret = btrfs_lookup_file_extent(trans, root, path, ino,
739 search_start, modify_tree);
742 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
743 leaf = path->nodes[0];
744 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
745 if (key.objectid == ino &&
746 key.type == BTRFS_EXTENT_DATA_KEY)
752 leaf = path->nodes[0];
753 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
755 ret = btrfs_next_leaf(root, path);
763 leaf = path->nodes[0];
767 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
769 if (key.objectid > ino)
771 if (WARN_ON_ONCE(key.objectid < ino) ||
772 key.type < BTRFS_EXTENT_DATA_KEY) {
777 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
780 fi = btrfs_item_ptr(leaf, path->slots[0],
781 struct btrfs_file_extent_item);
782 extent_type = btrfs_file_extent_type(leaf, fi);
784 if (extent_type == BTRFS_FILE_EXTENT_REG ||
785 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
786 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
787 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
788 extent_offset = btrfs_file_extent_offset(leaf, fi);
789 extent_end = key.offset +
790 btrfs_file_extent_num_bytes(leaf, fi);
791 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
792 extent_end = key.offset +
793 btrfs_file_extent_ram_bytes(leaf, fi);
800 * Don't skip extent items representing 0 byte lengths. They
801 * used to be created (bug) if while punching holes we hit
802 * -ENOSPC condition. So if we find one here, just ensure we
803 * delete it, otherwise we would insert a new file extent item
804 * with the same key (offset) as that 0 bytes length file
805 * extent item in the call to setup_items_for_insert() later
808 if (extent_end == key.offset && extent_end >= search_start) {
809 last_end = extent_end;
810 goto delete_extent_item;
813 if (extent_end <= search_start) {
819 search_start = max(key.offset, args->start);
820 if (recow || !modify_tree) {
822 btrfs_release_path(path);
827 * | - range to drop - |
828 * | -------- extent -------- |
830 if (args->start > key.offset && args->end < extent_end) {
832 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
837 memcpy(&new_key, &key, sizeof(new_key));
838 new_key.offset = args->start;
839 ret = btrfs_duplicate_item(trans, root, path,
841 if (ret == -EAGAIN) {
842 btrfs_release_path(path);
848 leaf = path->nodes[0];
849 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
850 struct btrfs_file_extent_item);
851 btrfs_set_file_extent_num_bytes(leaf, fi,
852 args->start - key.offset);
854 fi = btrfs_item_ptr(leaf, path->slots[0],
855 struct btrfs_file_extent_item);
857 extent_offset += args->start - key.offset;
858 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
859 btrfs_set_file_extent_num_bytes(leaf, fi,
860 extent_end - args->start);
861 btrfs_mark_buffer_dirty(leaf);
863 if (update_refs && disk_bytenr > 0) {
864 btrfs_init_generic_ref(&ref,
865 BTRFS_ADD_DELAYED_REF,
866 disk_bytenr, num_bytes, 0);
867 btrfs_init_data_ref(&ref,
868 root->root_key.objectid,
870 args->start - extent_offset);
871 ret = btrfs_inc_extent_ref(trans, &ref);
872 BUG_ON(ret); /* -ENOMEM */
874 key.offset = args->start;
877 * From here on out we will have actually dropped something, so
878 * last_end can be updated.
880 last_end = extent_end;
883 * | ---- range to drop ----- |
884 * | -------- extent -------- |
886 if (args->start <= key.offset && args->end < extent_end) {
887 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
892 memcpy(&new_key, &key, sizeof(new_key));
893 new_key.offset = args->end;
894 btrfs_set_item_key_safe(fs_info, path, &new_key);
896 extent_offset += args->end - key.offset;
897 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
898 btrfs_set_file_extent_num_bytes(leaf, fi,
899 extent_end - args->end);
900 btrfs_mark_buffer_dirty(leaf);
901 if (update_refs && disk_bytenr > 0)
902 args->bytes_found += args->end - key.offset;
906 search_start = extent_end;
908 * | ---- range to drop ----- |
909 * | -------- extent -------- |
911 if (args->start > key.offset && args->end >= extent_end) {
913 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
918 btrfs_set_file_extent_num_bytes(leaf, fi,
919 args->start - key.offset);
920 btrfs_mark_buffer_dirty(leaf);
921 if (update_refs && disk_bytenr > 0)
922 args->bytes_found += extent_end - args->start;
923 if (args->end == extent_end)
931 * | ---- range to drop ----- |
932 * | ------ extent ------ |
934 if (args->start <= key.offset && args->end >= extent_end) {
937 del_slot = path->slots[0];
940 BUG_ON(del_slot + del_nr != path->slots[0]);
945 extent_type == BTRFS_FILE_EXTENT_INLINE) {
946 args->bytes_found += extent_end - key.offset;
947 extent_end = ALIGN(extent_end,
948 fs_info->sectorsize);
949 } else if (update_refs && disk_bytenr > 0) {
950 btrfs_init_generic_ref(&ref,
951 BTRFS_DROP_DELAYED_REF,
952 disk_bytenr, num_bytes, 0);
953 btrfs_init_data_ref(&ref,
954 root->root_key.objectid,
956 key.offset - extent_offset);
957 ret = btrfs_free_extent(trans, &ref);
958 BUG_ON(ret); /* -ENOMEM */
959 args->bytes_found += extent_end - key.offset;
962 if (args->end == extent_end)
965 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
970 ret = btrfs_del_items(trans, root, path, del_slot,
973 btrfs_abort_transaction(trans, ret);
980 btrfs_release_path(path);
987 if (!ret && del_nr > 0) {
989 * Set path->slots[0] to first slot, so that after the delete
990 * if items are move off from our leaf to its immediate left or
991 * right neighbor leafs, we end up with a correct and adjusted
992 * path->slots[0] for our insertion (if args->replace_extent).
994 path->slots[0] = del_slot;
995 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
997 btrfs_abort_transaction(trans, ret);
1000 leaf = path->nodes[0];
1002 * If btrfs_del_items() was called, it might have deleted a leaf, in
1003 * which case it unlocked our path, so check path->locks[0] matches a
1006 if (!ret && args->replace_extent && leafs_visited == 1 &&
1007 path->locks[0] == BTRFS_WRITE_LOCK &&
1008 btrfs_leaf_free_space(leaf) >=
1009 sizeof(struct btrfs_item) + args->extent_item_size) {
1012 key.type = BTRFS_EXTENT_DATA_KEY;
1013 key.offset = args->start;
1014 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1015 struct btrfs_key slot_key;
1017 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1018 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1021 setup_items_for_insert(root, path, &key,
1022 &args->extent_item_size, 1);
1023 args->extent_inserted = true;
1027 btrfs_free_path(path);
1028 else if (!args->extent_inserted)
1029 btrfs_release_path(path);
1031 args->drop_end = found ? min(args->end, last_end) : args->end;
1036 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1037 u64 objectid, u64 bytenr, u64 orig_offset,
1038 u64 *start, u64 *end)
1040 struct btrfs_file_extent_item *fi;
1041 struct btrfs_key key;
1044 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1047 btrfs_item_key_to_cpu(leaf, &key, slot);
1048 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1051 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1052 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1053 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1054 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1055 btrfs_file_extent_compression(leaf, fi) ||
1056 btrfs_file_extent_encryption(leaf, fi) ||
1057 btrfs_file_extent_other_encoding(leaf, fi))
1060 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1061 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1064 *start = key.offset;
1070 * Mark extent in the range start - end as written.
1072 * This changes extent type from 'pre-allocated' to 'regular'. If only
1073 * part of extent is marked as written, the extent will be split into
1076 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1077 struct btrfs_inode *inode, u64 start, u64 end)
1079 struct btrfs_fs_info *fs_info = trans->fs_info;
1080 struct btrfs_root *root = inode->root;
1081 struct extent_buffer *leaf;
1082 struct btrfs_path *path;
1083 struct btrfs_file_extent_item *fi;
1084 struct btrfs_ref ref = { 0 };
1085 struct btrfs_key key;
1086 struct btrfs_key new_key;
1098 u64 ino = btrfs_ino(inode);
1100 path = btrfs_alloc_path();
1107 key.type = BTRFS_EXTENT_DATA_KEY;
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1113 if (ret > 0 && path->slots[0] > 0)
1116 leaf = path->nodes[0];
1117 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1118 if (key.objectid != ino ||
1119 key.type != BTRFS_EXTENT_DATA_KEY) {
1121 btrfs_abort_transaction(trans, ret);
1124 fi = btrfs_item_ptr(leaf, path->slots[0],
1125 struct btrfs_file_extent_item);
1126 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1128 btrfs_abort_transaction(trans, ret);
1131 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1132 if (key.offset > start || extent_end < end) {
1134 btrfs_abort_transaction(trans, ret);
1138 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1139 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1140 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1141 memcpy(&new_key, &key, sizeof(new_key));
1143 if (start == key.offset && end < extent_end) {
1146 if (extent_mergeable(leaf, path->slots[0] - 1,
1147 ino, bytenr, orig_offset,
1148 &other_start, &other_end)) {
1149 new_key.offset = end;
1150 btrfs_set_item_key_safe(fs_info, path, &new_key);
1151 fi = btrfs_item_ptr(leaf, path->slots[0],
1152 struct btrfs_file_extent_item);
1153 btrfs_set_file_extent_generation(leaf, fi,
1155 btrfs_set_file_extent_num_bytes(leaf, fi,
1157 btrfs_set_file_extent_offset(leaf, fi,
1159 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1160 struct btrfs_file_extent_item);
1161 btrfs_set_file_extent_generation(leaf, fi,
1163 btrfs_set_file_extent_num_bytes(leaf, fi,
1165 btrfs_mark_buffer_dirty(leaf);
1170 if (start > key.offset && end == extent_end) {
1173 if (extent_mergeable(leaf, path->slots[0] + 1,
1174 ino, bytenr, orig_offset,
1175 &other_start, &other_end)) {
1176 fi = btrfs_item_ptr(leaf, path->slots[0],
1177 struct btrfs_file_extent_item);
1178 btrfs_set_file_extent_num_bytes(leaf, fi,
1179 start - key.offset);
1180 btrfs_set_file_extent_generation(leaf, fi,
1183 new_key.offset = start;
1184 btrfs_set_item_key_safe(fs_info, path, &new_key);
1186 fi = btrfs_item_ptr(leaf, path->slots[0],
1187 struct btrfs_file_extent_item);
1188 btrfs_set_file_extent_generation(leaf, fi,
1190 btrfs_set_file_extent_num_bytes(leaf, fi,
1192 btrfs_set_file_extent_offset(leaf, fi,
1193 start - orig_offset);
1194 btrfs_mark_buffer_dirty(leaf);
1199 while (start > key.offset || end < extent_end) {
1200 if (key.offset == start)
1203 new_key.offset = split;
1204 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1205 if (ret == -EAGAIN) {
1206 btrfs_release_path(path);
1210 btrfs_abort_transaction(trans, ret);
1214 leaf = path->nodes[0];
1215 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1216 struct btrfs_file_extent_item);
1217 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1218 btrfs_set_file_extent_num_bytes(leaf, fi,
1219 split - key.offset);
1221 fi = btrfs_item_ptr(leaf, path->slots[0],
1222 struct btrfs_file_extent_item);
1224 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1225 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1226 btrfs_set_file_extent_num_bytes(leaf, fi,
1227 extent_end - split);
1228 btrfs_mark_buffer_dirty(leaf);
1230 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1232 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1234 ret = btrfs_inc_extent_ref(trans, &ref);
1236 btrfs_abort_transaction(trans, ret);
1240 if (split == start) {
1243 if (start != key.offset) {
1245 btrfs_abort_transaction(trans, ret);
1256 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1258 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1259 if (extent_mergeable(leaf, path->slots[0] + 1,
1260 ino, bytenr, orig_offset,
1261 &other_start, &other_end)) {
1263 btrfs_release_path(path);
1266 extent_end = other_end;
1267 del_slot = path->slots[0] + 1;
1269 ret = btrfs_free_extent(trans, &ref);
1271 btrfs_abort_transaction(trans, ret);
1277 if (extent_mergeable(leaf, path->slots[0] - 1,
1278 ino, bytenr, orig_offset,
1279 &other_start, &other_end)) {
1281 btrfs_release_path(path);
1284 key.offset = other_start;
1285 del_slot = path->slots[0];
1287 ret = btrfs_free_extent(trans, &ref);
1289 btrfs_abort_transaction(trans, ret);
1294 fi = btrfs_item_ptr(leaf, path->slots[0],
1295 struct btrfs_file_extent_item);
1296 btrfs_set_file_extent_type(leaf, fi,
1297 BTRFS_FILE_EXTENT_REG);
1298 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1299 btrfs_mark_buffer_dirty(leaf);
1301 fi = btrfs_item_ptr(leaf, del_slot - 1,
1302 struct btrfs_file_extent_item);
1303 btrfs_set_file_extent_type(leaf, fi,
1304 BTRFS_FILE_EXTENT_REG);
1305 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1306 btrfs_set_file_extent_num_bytes(leaf, fi,
1307 extent_end - key.offset);
1308 btrfs_mark_buffer_dirty(leaf);
1310 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1312 btrfs_abort_transaction(trans, ret);
1317 btrfs_free_path(path);
1322 * on error we return an unlocked page and the error value
1323 * on success we return a locked page and 0
1325 static int prepare_uptodate_page(struct inode *inode,
1326 struct page *page, u64 pos,
1327 bool force_uptodate)
1331 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1332 !PageUptodate(page)) {
1333 ret = btrfs_readpage(NULL, page);
1337 if (!PageUptodate(page)) {
1341 if (page->mapping != inode->i_mapping) {
1350 * this just gets pages into the page cache and locks them down.
1352 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1353 size_t num_pages, loff_t pos,
1354 size_t write_bytes, bool force_uptodate)
1357 unsigned long index = pos >> PAGE_SHIFT;
1358 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1362 for (i = 0; i < num_pages; i++) {
1364 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1365 mask | __GFP_WRITE);
1372 err = set_page_extent_mapped(pages[i]);
1379 err = prepare_uptodate_page(inode, pages[i], pos,
1381 if (!err && i == num_pages - 1)
1382 err = prepare_uptodate_page(inode, pages[i],
1383 pos + write_bytes, false);
1386 if (err == -EAGAIN) {
1393 wait_on_page_writeback(pages[i]);
1398 while (faili >= 0) {
1399 unlock_page(pages[faili]);
1400 put_page(pages[faili]);
1408 * This function locks the extent and properly waits for data=ordered extents
1409 * to finish before allowing the pages to be modified if need.
1412 * 1 - the extent is locked
1413 * 0 - the extent is not locked, and everything is OK
1414 * -EAGAIN - need re-prepare the pages
1415 * the other < 0 number - Something wrong happens
1418 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1419 size_t num_pages, loff_t pos,
1421 u64 *lockstart, u64 *lockend,
1422 struct extent_state **cached_state)
1424 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1430 start_pos = round_down(pos, fs_info->sectorsize);
1431 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1433 if (start_pos < inode->vfs_inode.i_size) {
1434 struct btrfs_ordered_extent *ordered;
1436 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1438 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1439 last_pos - start_pos + 1);
1441 ordered->file_offset + ordered->num_bytes > start_pos &&
1442 ordered->file_offset <= last_pos) {
1443 unlock_extent_cached(&inode->io_tree, start_pos,
1444 last_pos, cached_state);
1445 for (i = 0; i < num_pages; i++) {
1446 unlock_page(pages[i]);
1449 btrfs_start_ordered_extent(ordered, 1);
1450 btrfs_put_ordered_extent(ordered);
1454 btrfs_put_ordered_extent(ordered);
1456 *lockstart = start_pos;
1457 *lockend = last_pos;
1462 * We should be called after prepare_pages() which should have locked
1463 * all pages in the range.
1465 for (i = 0; i < num_pages; i++)
1466 WARN_ON(!PageLocked(pages[i]));
1471 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1472 size_t *write_bytes, bool nowait)
1474 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1475 struct btrfs_root *root = inode->root;
1476 u64 lockstart, lockend;
1480 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1483 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1486 lockstart = round_down(pos, fs_info->sectorsize);
1487 lockend = round_up(pos + *write_bytes,
1488 fs_info->sectorsize) - 1;
1489 num_bytes = lockend - lockstart + 1;
1492 struct btrfs_ordered_extent *ordered;
1494 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1497 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1500 btrfs_put_ordered_extent(ordered);
1505 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1509 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1510 NULL, NULL, NULL, false);
1514 btrfs_drew_write_unlock(&root->snapshot_lock);
1516 *write_bytes = min_t(size_t, *write_bytes ,
1517 num_bytes - pos + lockstart);
1520 unlock_extent(&inode->io_tree, lockstart, lockend);
1525 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1526 size_t *write_bytes)
1528 return check_can_nocow(inode, pos, write_bytes, true);
1532 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1535 * @write_bytes: The length to write, will be updated to the nocow writeable
1538 * This function will flush ordered extents in the range to ensure proper
1542 * >0 and update @write_bytes if we can do nocow write
1543 * 0 if we can't do nocow write
1544 * -EAGAIN if we can't get the needed lock or there are ordered extents
1545 * for * (nowait == true) case
1546 * <0 if other error happened
1548 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1550 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1551 size_t *write_bytes)
1553 return check_can_nocow(inode, pos, write_bytes, false);
1556 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1558 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1561 static void update_time_for_write(struct inode *inode)
1563 struct timespec64 now;
1565 if (IS_NOCMTIME(inode))
1568 now = current_time(inode);
1569 if (!timespec64_equal(&inode->i_mtime, &now))
1570 inode->i_mtime = now;
1572 if (!timespec64_equal(&inode->i_ctime, &now))
1573 inode->i_ctime = now;
1575 if (IS_I_VERSION(inode))
1576 inode_inc_iversion(inode);
1579 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1582 struct file *file = iocb->ki_filp;
1583 struct inode *inode = file_inode(file);
1584 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1585 loff_t pos = iocb->ki_pos;
1590 if (iocb->ki_flags & IOCB_NOWAIT) {
1591 size_t nocow_bytes = count;
1593 /* We will allocate space in case nodatacow is not set, so bail */
1594 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1597 * There are holes in the range or parts of the range that must
1598 * be COWed (shared extents, RO block groups, etc), so just bail
1601 if (nocow_bytes < count)
1605 current->backing_dev_info = inode_to_bdi(inode);
1606 ret = file_remove_privs(file);
1611 * We reserve space for updating the inode when we reserve space for the
1612 * extent we are going to write, so we will enospc out there. We don't
1613 * need to start yet another transaction to update the inode as we will
1614 * update the inode when we finish writing whatever data we write.
1616 update_time_for_write(inode);
1618 start_pos = round_down(pos, fs_info->sectorsize);
1619 oldsize = i_size_read(inode);
1620 if (start_pos > oldsize) {
1621 /* Expand hole size to cover write data, preventing empty gap */
1622 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1624 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1626 current->backing_dev_info = NULL;
1634 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1637 struct file *file = iocb->ki_filp;
1639 struct inode *inode = file_inode(file);
1640 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1641 struct page **pages = NULL;
1642 struct extent_changeset *data_reserved = NULL;
1643 u64 release_bytes = 0;
1646 size_t num_written = 0;
1649 bool only_release_metadata = false;
1650 bool force_page_uptodate = false;
1651 loff_t old_isize = i_size_read(inode);
1652 unsigned int ilock_flags = 0;
1654 if (iocb->ki_flags & IOCB_NOWAIT)
1655 ilock_flags |= BTRFS_ILOCK_TRY;
1657 ret = btrfs_inode_lock(inode, ilock_flags);
1661 ret = generic_write_checks(iocb, i);
1665 ret = btrfs_write_check(iocb, i, ret);
1670 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1671 PAGE_SIZE / (sizeof(struct page *)));
1672 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1673 nrptrs = max(nrptrs, 8);
1674 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1680 while (iov_iter_count(i) > 0) {
1681 struct extent_state *cached_state = NULL;
1682 size_t offset = offset_in_page(pos);
1683 size_t sector_offset;
1684 size_t write_bytes = min(iov_iter_count(i),
1685 nrptrs * (size_t)PAGE_SIZE -
1688 size_t reserve_bytes;
1691 size_t dirty_sectors;
1696 * Fault pages before locking them in prepare_pages
1697 * to avoid recursive lock
1699 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1704 only_release_metadata = false;
1705 sector_offset = pos & (fs_info->sectorsize - 1);
1707 extent_changeset_release(data_reserved);
1708 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1709 &data_reserved, pos,
1713 * If we don't have to COW at the offset, reserve
1714 * metadata only. write_bytes may get smaller than
1717 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1719 only_release_metadata = true;
1724 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1725 WARN_ON(num_pages > nrptrs);
1726 reserve_bytes = round_up(write_bytes + sector_offset,
1727 fs_info->sectorsize);
1728 WARN_ON(reserve_bytes == 0);
1729 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1732 if (!only_release_metadata)
1733 btrfs_free_reserved_data_space(BTRFS_I(inode),
1737 btrfs_check_nocow_unlock(BTRFS_I(inode));
1741 release_bytes = reserve_bytes;
1744 * This is going to setup the pages array with the number of
1745 * pages we want, so we don't really need to worry about the
1746 * contents of pages from loop to loop
1748 ret = prepare_pages(inode, pages, num_pages,
1750 force_page_uptodate);
1752 btrfs_delalloc_release_extents(BTRFS_I(inode),
1757 extents_locked = lock_and_cleanup_extent_if_need(
1758 BTRFS_I(inode), pages,
1759 num_pages, pos, write_bytes, &lockstart,
1760 &lockend, &cached_state);
1761 if (extents_locked < 0) {
1762 if (extents_locked == -EAGAIN)
1764 btrfs_delalloc_release_extents(BTRFS_I(inode),
1766 ret = extents_locked;
1770 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1772 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1773 dirty_sectors = round_up(copied + sector_offset,
1774 fs_info->sectorsize);
1775 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1778 * if we have trouble faulting in the pages, fall
1779 * back to one page at a time
1781 if (copied < write_bytes)
1785 force_page_uptodate = true;
1789 force_page_uptodate = false;
1790 dirty_pages = DIV_ROUND_UP(copied + offset,
1794 if (num_sectors > dirty_sectors) {
1795 /* release everything except the sectors we dirtied */
1796 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1797 if (only_release_metadata) {
1798 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1799 release_bytes, true);
1803 __pos = round_down(pos,
1804 fs_info->sectorsize) +
1805 (dirty_pages << PAGE_SHIFT);
1806 btrfs_delalloc_release_space(BTRFS_I(inode),
1807 data_reserved, __pos,
1808 release_bytes, true);
1812 release_bytes = round_up(copied + sector_offset,
1813 fs_info->sectorsize);
1815 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1816 dirty_pages, pos, copied,
1817 &cached_state, only_release_metadata);
1820 * If we have not locked the extent range, because the range's
1821 * start offset is >= i_size, we might still have a non-NULL
1822 * cached extent state, acquired while marking the extent range
1823 * as delalloc through btrfs_dirty_pages(). Therefore free any
1824 * possible cached extent state to avoid a memory leak.
1827 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1828 lockstart, lockend, &cached_state);
1830 free_extent_state(cached_state);
1832 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1834 btrfs_drop_pages(pages, num_pages);
1839 if (only_release_metadata)
1840 btrfs_check_nocow_unlock(BTRFS_I(inode));
1842 btrfs_drop_pages(pages, num_pages);
1846 balance_dirty_pages_ratelimited(inode->i_mapping);
1849 num_written += copied;
1854 if (release_bytes) {
1855 if (only_release_metadata) {
1856 btrfs_check_nocow_unlock(BTRFS_I(inode));
1857 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1858 release_bytes, true);
1860 btrfs_delalloc_release_space(BTRFS_I(inode),
1862 round_down(pos, fs_info->sectorsize),
1863 release_bytes, true);
1867 extent_changeset_free(data_reserved);
1868 if (num_written > 0) {
1869 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1870 iocb->ki_pos += num_written;
1873 btrfs_inode_unlock(inode, ilock_flags);
1874 return num_written ? num_written : ret;
1877 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1878 const struct iov_iter *iter, loff_t offset)
1880 const u32 blocksize_mask = fs_info->sectorsize - 1;
1882 if (offset & blocksize_mask)
1885 if (iov_iter_alignment(iter) & blocksize_mask)
1891 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1893 struct file *file = iocb->ki_filp;
1894 struct inode *inode = file_inode(file);
1895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1897 ssize_t written = 0;
1898 ssize_t written_buffered;
1901 unsigned int ilock_flags = 0;
1902 struct iomap_dio *dio = NULL;
1904 if (iocb->ki_flags & IOCB_NOWAIT)
1905 ilock_flags |= BTRFS_ILOCK_TRY;
1907 /* If the write DIO is within EOF, use a shared lock */
1908 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1909 ilock_flags |= BTRFS_ILOCK_SHARED;
1912 err = btrfs_inode_lock(inode, ilock_flags);
1916 err = generic_write_checks(iocb, from);
1918 btrfs_inode_unlock(inode, ilock_flags);
1922 err = btrfs_write_check(iocb, from, err);
1924 btrfs_inode_unlock(inode, ilock_flags);
1930 * Re-check since file size may have changed just before taking the
1931 * lock or pos may have changed because of O_APPEND in generic_write_check()
1933 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1934 pos + iov_iter_count(from) > i_size_read(inode)) {
1935 btrfs_inode_unlock(inode, ilock_flags);
1936 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1940 if (check_direct_IO(fs_info, from, pos)) {
1941 btrfs_inode_unlock(inode, ilock_flags);
1945 dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1948 btrfs_inode_unlock(inode, ilock_flags);
1950 if (IS_ERR_OR_NULL(dio)) {
1951 err = PTR_ERR_OR_ZERO(dio);
1952 if (err < 0 && err != -ENOTBLK)
1955 written = iomap_dio_complete(dio);
1958 if (written < 0 || !iov_iter_count(from)) {
1965 written_buffered = btrfs_buffered_write(iocb, from);
1966 if (written_buffered < 0) {
1967 err = written_buffered;
1971 * Ensure all data is persisted. We want the next direct IO read to be
1972 * able to read what was just written.
1974 endbyte = pos + written_buffered - 1;
1975 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1978 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1981 written += written_buffered;
1982 iocb->ki_pos = pos + written_buffered;
1983 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1984 endbyte >> PAGE_SHIFT);
1986 return written ? written : err;
1989 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1990 struct iov_iter *from)
1992 struct file *file = iocb->ki_filp;
1993 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1994 ssize_t num_written = 0;
1995 const bool sync = iocb->ki_flags & IOCB_DSYNC;
1998 * If the fs flips readonly due to some impossible error, although we
1999 * have opened a file as writable, we have to stop this write operation
2000 * to ensure consistency.
2002 if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2005 if (!(iocb->ki_flags & IOCB_DIRECT) &&
2006 (iocb->ki_flags & IOCB_NOWAIT))
2010 atomic_inc(&inode->sync_writers);
2012 if (iocb->ki_flags & IOCB_DIRECT)
2013 num_written = btrfs_direct_write(iocb, from);
2015 num_written = btrfs_buffered_write(iocb, from);
2017 btrfs_set_inode_last_sub_trans(inode);
2019 if (num_written > 0)
2020 num_written = generic_write_sync(iocb, num_written);
2023 atomic_dec(&inode->sync_writers);
2025 current->backing_dev_info = NULL;
2029 int btrfs_release_file(struct inode *inode, struct file *filp)
2031 struct btrfs_file_private *private = filp->private_data;
2033 if (private && private->filldir_buf)
2034 kfree(private->filldir_buf);
2036 filp->private_data = NULL;
2039 * Set by setattr when we are about to truncate a file from a non-zero
2040 * size to a zero size. This tries to flush down new bytes that may
2041 * have been written if the application were using truncate to replace
2044 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2045 &BTRFS_I(inode)->runtime_flags))
2046 filemap_flush(inode->i_mapping);
2050 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2053 struct blk_plug plug;
2056 * This is only called in fsync, which would do synchronous writes, so
2057 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2058 * multiple disks using raid profile, a large IO can be split to
2059 * several segments of stripe length (currently 64K).
2061 blk_start_plug(&plug);
2062 atomic_inc(&BTRFS_I(inode)->sync_writers);
2063 ret = btrfs_fdatawrite_range(inode, start, end);
2064 atomic_dec(&BTRFS_I(inode)->sync_writers);
2065 blk_finish_plug(&plug);
2070 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2072 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2073 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2075 if (btrfs_inode_in_log(inode, fs_info->generation) &&
2076 list_empty(&ctx->ordered_extents))
2080 * If we are doing a fast fsync we can not bail out if the inode's
2081 * last_trans is <= then the last committed transaction, because we only
2082 * update the last_trans of the inode during ordered extent completion,
2083 * and for a fast fsync we don't wait for that, we only wait for the
2084 * writeback to complete.
2086 if (inode->last_trans <= fs_info->last_trans_committed &&
2087 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2088 list_empty(&ctx->ordered_extents)))
2095 * fsync call for both files and directories. This logs the inode into
2096 * the tree log instead of forcing full commits whenever possible.
2098 * It needs to call filemap_fdatawait so that all ordered extent updates are
2099 * in the metadata btree are up to date for copying to the log.
2101 * It drops the inode mutex before doing the tree log commit. This is an
2102 * important optimization for directories because holding the mutex prevents
2103 * new operations on the dir while we write to disk.
2105 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2107 struct dentry *dentry = file_dentry(file);
2108 struct inode *inode = d_inode(dentry);
2109 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2110 struct btrfs_root *root = BTRFS_I(inode)->root;
2111 struct btrfs_trans_handle *trans;
2112 struct btrfs_log_ctx ctx;
2117 trace_btrfs_sync_file(file, datasync);
2119 btrfs_init_log_ctx(&ctx, inode);
2122 * Always set the range to a full range, otherwise we can get into
2123 * several problems, from missing file extent items to represent holes
2124 * when not using the NO_HOLES feature, to log tree corruption due to
2125 * races between hole detection during logging and completion of ordered
2126 * extents outside the range, to missing checksums due to ordered extents
2127 * for which we flushed only a subset of their pages.
2131 len = (u64)LLONG_MAX + 1;
2134 * We write the dirty pages in the range and wait until they complete
2135 * out of the ->i_mutex. If so, we can flush the dirty pages by
2136 * multi-task, and make the performance up. See
2137 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2139 ret = start_ordered_ops(inode, start, end);
2143 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2145 atomic_inc(&root->log_batch);
2148 * Always check for the full sync flag while holding the inode's lock,
2149 * to avoid races with other tasks. The flag must be either set all the
2150 * time during logging or always off all the time while logging.
2152 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2153 &BTRFS_I(inode)->runtime_flags);
2156 * Before we acquired the inode's lock and the mmap lock, someone may
2157 * have dirtied more pages in the target range. We need to make sure
2158 * that writeback for any such pages does not start while we are logging
2159 * the inode, because if it does, any of the following might happen when
2160 * we are not doing a full inode sync:
2162 * 1) We log an extent after its writeback finishes but before its
2163 * checksums are added to the csum tree, leading to -EIO errors
2164 * when attempting to read the extent after a log replay.
2166 * 2) We can end up logging an extent before its writeback finishes.
2167 * Therefore after the log replay we will have a file extent item
2168 * pointing to an unwritten extent (and no data checksums as well).
2170 * So trigger writeback for any eventual new dirty pages and then we
2171 * wait for all ordered extents to complete below.
2173 ret = start_ordered_ops(inode, start, end);
2175 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2180 * We have to do this here to avoid the priority inversion of waiting on
2181 * IO of a lower priority task while holding a transaction open.
2183 * For a full fsync we wait for the ordered extents to complete while
2184 * for a fast fsync we wait just for writeback to complete, and then
2185 * attach the ordered extents to the transaction so that a transaction
2186 * commit waits for their completion, to avoid data loss if we fsync,
2187 * the current transaction commits before the ordered extents complete
2188 * and a power failure happens right after that.
2190 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2191 * logical address recorded in the ordered extent may change. We need
2192 * to wait for the IO to stabilize the logical address.
2194 if (full_sync || btrfs_is_zoned(fs_info)) {
2195 ret = btrfs_wait_ordered_range(inode, start, len);
2198 * Get our ordered extents as soon as possible to avoid doing
2199 * checksum lookups in the csum tree, and use instead the
2200 * checksums attached to the ordered extents.
2202 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2203 &ctx.ordered_extents);
2204 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2208 goto out_release_extents;
2210 atomic_inc(&root->log_batch);
2213 if (skip_inode_logging(&ctx)) {
2215 * We've had everything committed since the last time we were
2216 * modified so clear this flag in case it was set for whatever
2217 * reason, it's no longer relevant.
2219 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2220 &BTRFS_I(inode)->runtime_flags);
2222 * An ordered extent might have started before and completed
2223 * already with io errors, in which case the inode was not
2224 * updated and we end up here. So check the inode's mapping
2225 * for any errors that might have happened since we last
2226 * checked called fsync.
2228 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2229 goto out_release_extents;
2233 * We use start here because we will need to wait on the IO to complete
2234 * in btrfs_sync_log, which could require joining a transaction (for
2235 * example checking cross references in the nocow path). If we use join
2236 * here we could get into a situation where we're waiting on IO to
2237 * happen that is blocked on a transaction trying to commit. With start
2238 * we inc the extwriter counter, so we wait for all extwriters to exit
2239 * before we start blocking joiners. This comment is to keep somebody
2240 * from thinking they are super smart and changing this to
2241 * btrfs_join_transaction *cough*Josef*cough*.
2243 trans = btrfs_start_transaction(root, 0);
2244 if (IS_ERR(trans)) {
2245 ret = PTR_ERR(trans);
2246 goto out_release_extents;
2248 trans->in_fsync = true;
2250 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2251 btrfs_release_log_ctx_extents(&ctx);
2253 /* Fallthrough and commit/free transaction. */
2257 /* we've logged all the items and now have a consistent
2258 * version of the file in the log. It is possible that
2259 * someone will come in and modify the file, but that's
2260 * fine because the log is consistent on disk, and we
2261 * have references to all of the file's extents
2263 * It is possible that someone will come in and log the
2264 * file again, but that will end up using the synchronization
2265 * inside btrfs_sync_log to keep things safe.
2267 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2269 if (ret != BTRFS_NO_LOG_SYNC) {
2271 ret = btrfs_sync_log(trans, root, &ctx);
2273 ret = btrfs_end_transaction(trans);
2278 ret = btrfs_wait_ordered_range(inode, start, len);
2280 btrfs_end_transaction(trans);
2284 ret = btrfs_commit_transaction(trans);
2286 ret = btrfs_end_transaction(trans);
2289 ASSERT(list_empty(&ctx.list));
2290 err = file_check_and_advance_wb_err(file);
2293 return ret > 0 ? -EIO : ret;
2295 out_release_extents:
2296 btrfs_release_log_ctx_extents(&ctx);
2297 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2301 static const struct vm_operations_struct btrfs_file_vm_ops = {
2302 .fault = filemap_fault,
2303 .map_pages = filemap_map_pages,
2304 .page_mkwrite = btrfs_page_mkwrite,
2307 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2309 struct address_space *mapping = filp->f_mapping;
2311 if (!mapping->a_ops->readpage)
2314 file_accessed(filp);
2315 vma->vm_ops = &btrfs_file_vm_ops;
2320 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2321 int slot, u64 start, u64 end)
2323 struct btrfs_file_extent_item *fi;
2324 struct btrfs_key key;
2326 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2329 btrfs_item_key_to_cpu(leaf, &key, slot);
2330 if (key.objectid != btrfs_ino(inode) ||
2331 key.type != BTRFS_EXTENT_DATA_KEY)
2334 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2336 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2339 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2342 if (key.offset == end)
2344 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2349 static int fill_holes(struct btrfs_trans_handle *trans,
2350 struct btrfs_inode *inode,
2351 struct btrfs_path *path, u64 offset, u64 end)
2353 struct btrfs_fs_info *fs_info = trans->fs_info;
2354 struct btrfs_root *root = inode->root;
2355 struct extent_buffer *leaf;
2356 struct btrfs_file_extent_item *fi;
2357 struct extent_map *hole_em;
2358 struct extent_map_tree *em_tree = &inode->extent_tree;
2359 struct btrfs_key key;
2362 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2365 key.objectid = btrfs_ino(inode);
2366 key.type = BTRFS_EXTENT_DATA_KEY;
2367 key.offset = offset;
2369 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2372 * We should have dropped this offset, so if we find it then
2373 * something has gone horribly wrong.
2380 leaf = path->nodes[0];
2381 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2385 fi = btrfs_item_ptr(leaf, path->slots[0],
2386 struct btrfs_file_extent_item);
2387 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2389 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2390 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2391 btrfs_set_file_extent_offset(leaf, fi, 0);
2392 btrfs_mark_buffer_dirty(leaf);
2396 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2399 key.offset = offset;
2400 btrfs_set_item_key_safe(fs_info, path, &key);
2401 fi = btrfs_item_ptr(leaf, path->slots[0],
2402 struct btrfs_file_extent_item);
2403 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2405 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2406 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2407 btrfs_set_file_extent_offset(leaf, fi, 0);
2408 btrfs_mark_buffer_dirty(leaf);
2411 btrfs_release_path(path);
2413 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2414 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2419 btrfs_release_path(path);
2421 hole_em = alloc_extent_map();
2423 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2424 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2426 hole_em->start = offset;
2427 hole_em->len = end - offset;
2428 hole_em->ram_bytes = hole_em->len;
2429 hole_em->orig_start = offset;
2431 hole_em->block_start = EXTENT_MAP_HOLE;
2432 hole_em->block_len = 0;
2433 hole_em->orig_block_len = 0;
2434 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2435 hole_em->generation = trans->transid;
2438 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2439 write_lock(&em_tree->lock);
2440 ret = add_extent_mapping(em_tree, hole_em, 1);
2441 write_unlock(&em_tree->lock);
2442 } while (ret == -EEXIST);
2443 free_extent_map(hole_em);
2445 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2446 &inode->runtime_flags);
2453 * Find a hole extent on given inode and change start/len to the end of hole
2454 * extent.(hole/vacuum extent whose em->start <= start &&
2455 * em->start + em->len > start)
2456 * When a hole extent is found, return 1 and modify start/len.
2458 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2460 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2461 struct extent_map *em;
2464 em = btrfs_get_extent(inode, NULL, 0,
2465 round_down(*start, fs_info->sectorsize),
2466 round_up(*len, fs_info->sectorsize));
2470 /* Hole or vacuum extent(only exists in no-hole mode) */
2471 if (em->block_start == EXTENT_MAP_HOLE) {
2473 *len = em->start + em->len > *start + *len ?
2474 0 : *start + *len - em->start - em->len;
2475 *start = em->start + em->len;
2477 free_extent_map(em);
2481 static int btrfs_punch_hole_lock_range(struct inode *inode,
2482 const u64 lockstart,
2484 struct extent_state **cached_state)
2487 struct btrfs_ordered_extent *ordered;
2490 truncate_pagecache_range(inode, lockstart, lockend);
2492 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2494 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2498 * We need to make sure we have no ordered extents in this range
2499 * and nobody raced in and read a page in this range, if we did
2500 * we need to try again.
2503 (ordered->file_offset + ordered->num_bytes <= lockstart ||
2504 ordered->file_offset > lockend)) &&
2505 !filemap_range_has_page(inode->i_mapping,
2506 lockstart, lockend)) {
2508 btrfs_put_ordered_extent(ordered);
2512 btrfs_put_ordered_extent(ordered);
2513 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2514 lockend, cached_state);
2515 ret = btrfs_wait_ordered_range(inode, lockstart,
2516 lockend - lockstart + 1);
2523 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2524 struct btrfs_inode *inode,
2525 struct btrfs_path *path,
2526 struct btrfs_replace_extent_info *extent_info,
2527 const u64 replace_len,
2528 const u64 bytes_to_drop)
2530 struct btrfs_fs_info *fs_info = trans->fs_info;
2531 struct btrfs_root *root = inode->root;
2532 struct btrfs_file_extent_item *extent;
2533 struct extent_buffer *leaf;
2534 struct btrfs_key key;
2536 struct btrfs_ref ref = { 0 };
2539 if (replace_len == 0)
2542 if (extent_info->disk_offset == 0 &&
2543 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2544 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2548 key.objectid = btrfs_ino(inode);
2549 key.type = BTRFS_EXTENT_DATA_KEY;
2550 key.offset = extent_info->file_offset;
2551 ret = btrfs_insert_empty_item(trans, root, path, &key,
2552 sizeof(struct btrfs_file_extent_item));
2555 leaf = path->nodes[0];
2556 slot = path->slots[0];
2557 write_extent_buffer(leaf, extent_info->extent_buf,
2558 btrfs_item_ptr_offset(leaf, slot),
2559 sizeof(struct btrfs_file_extent_item));
2560 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2561 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2562 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2563 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2564 if (extent_info->is_new_extent)
2565 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2566 btrfs_mark_buffer_dirty(leaf);
2567 btrfs_release_path(path);
2569 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2574 /* If it's a hole, nothing more needs to be done. */
2575 if (extent_info->disk_offset == 0) {
2576 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2580 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2582 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2583 key.objectid = extent_info->disk_offset;
2584 key.type = BTRFS_EXTENT_ITEM_KEY;
2585 key.offset = extent_info->disk_len;
2586 ret = btrfs_alloc_reserved_file_extent(trans, root,
2588 extent_info->file_offset,
2589 extent_info->qgroup_reserved,
2594 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2595 extent_info->disk_offset,
2596 extent_info->disk_len, 0);
2597 ref_offset = extent_info->file_offset - extent_info->data_offset;
2598 btrfs_init_data_ref(&ref, root->root_key.objectid,
2599 btrfs_ino(inode), ref_offset);
2600 ret = btrfs_inc_extent_ref(trans, &ref);
2603 extent_info->insertions++;
2609 * The respective range must have been previously locked, as well as the inode.
2610 * The end offset is inclusive (last byte of the range).
2611 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2612 * the file range with an extent.
2613 * When not punching a hole, we don't want to end up in a state where we dropped
2614 * extents without inserting a new one, so we must abort the transaction to avoid
2617 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2618 struct btrfs_path *path, const u64 start,
2620 struct btrfs_replace_extent_info *extent_info,
2621 struct btrfs_trans_handle **trans_out)
2623 struct btrfs_drop_extents_args drop_args = { 0 };
2624 struct btrfs_root *root = inode->root;
2625 struct btrfs_fs_info *fs_info = root->fs_info;
2626 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2627 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2628 struct btrfs_trans_handle *trans = NULL;
2629 struct btrfs_block_rsv *rsv;
2630 unsigned int rsv_count;
2632 u64 len = end - start;
2638 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2643 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2647 * 1 - update the inode
2648 * 1 - removing the extents in the range
2649 * 1 - adding the hole extent if no_holes isn't set or if we are
2650 * replacing the range with a new extent
2652 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2657 trans = btrfs_start_transaction(root, rsv_count);
2658 if (IS_ERR(trans)) {
2659 ret = PTR_ERR(trans);
2664 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2667 trans->block_rsv = rsv;
2670 drop_args.path = path;
2671 drop_args.end = end + 1;
2672 drop_args.drop_cache = true;
2673 while (cur_offset < end) {
2674 drop_args.start = cur_offset;
2675 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2676 /* If we are punching a hole decrement the inode's byte count */
2678 btrfs_update_inode_bytes(inode, 0,
2679 drop_args.bytes_found);
2680 if (ret != -ENOSPC) {
2682 * When cloning we want to avoid transaction aborts when
2683 * nothing was done and we are attempting to clone parts
2684 * of inline extents, in such cases -EOPNOTSUPP is
2685 * returned by __btrfs_drop_extents() without having
2686 * changed anything in the file.
2688 if (extent_info && !extent_info->is_new_extent &&
2689 ret && ret != -EOPNOTSUPP)
2690 btrfs_abort_transaction(trans, ret);
2694 trans->block_rsv = &fs_info->trans_block_rsv;
2696 if (!extent_info && cur_offset < drop_args.drop_end &&
2697 cur_offset < ino_size) {
2698 ret = fill_holes(trans, inode, path, cur_offset,
2699 drop_args.drop_end);
2702 * If we failed then we didn't insert our hole
2703 * entries for the area we dropped, so now the
2704 * fs is corrupted, so we must abort the
2707 btrfs_abort_transaction(trans, ret);
2710 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2712 * We are past the i_size here, but since we didn't
2713 * insert holes we need to clear the mapped area so we
2714 * know to not set disk_i_size in this area until a new
2715 * file extent is inserted here.
2717 ret = btrfs_inode_clear_file_extent_range(inode,
2719 drop_args.drop_end - cur_offset);
2722 * We couldn't clear our area, so we could
2723 * presumably adjust up and corrupt the fs, so
2726 btrfs_abort_transaction(trans, ret);
2732 drop_args.drop_end > extent_info->file_offset) {
2733 u64 replace_len = drop_args.drop_end -
2734 extent_info->file_offset;
2736 ret = btrfs_insert_replace_extent(trans, inode, path,
2737 extent_info, replace_len,
2738 drop_args.bytes_found);
2740 btrfs_abort_transaction(trans, ret);
2743 extent_info->data_len -= replace_len;
2744 extent_info->data_offset += replace_len;
2745 extent_info->file_offset += replace_len;
2748 ret = btrfs_update_inode(trans, root, inode);
2752 btrfs_end_transaction(trans);
2753 btrfs_btree_balance_dirty(fs_info);
2755 trans = btrfs_start_transaction(root, rsv_count);
2756 if (IS_ERR(trans)) {
2757 ret = PTR_ERR(trans);
2762 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2763 rsv, min_size, false);
2764 BUG_ON(ret); /* shouldn't happen */
2765 trans->block_rsv = rsv;
2767 cur_offset = drop_args.drop_end;
2768 len = end - cur_offset;
2769 if (!extent_info && len) {
2770 ret = find_first_non_hole(inode, &cur_offset, &len);
2771 if (unlikely(ret < 0))
2781 * If we were cloning, force the next fsync to be a full one since we
2782 * we replaced (or just dropped in the case of cloning holes when
2783 * NO_HOLES is enabled) file extent items and did not setup new extent
2784 * maps for the replacement extents (or holes).
2786 if (extent_info && !extent_info->is_new_extent)
2787 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2792 trans->block_rsv = &fs_info->trans_block_rsv;
2794 * If we are using the NO_HOLES feature we might have had already an
2795 * hole that overlaps a part of the region [lockstart, lockend] and
2796 * ends at (or beyond) lockend. Since we have no file extent items to
2797 * represent holes, drop_end can be less than lockend and so we must
2798 * make sure we have an extent map representing the existing hole (the
2799 * call to __btrfs_drop_extents() might have dropped the existing extent
2800 * map representing the existing hole), otherwise the fast fsync path
2801 * will not record the existence of the hole region
2802 * [existing_hole_start, lockend].
2804 if (drop_args.drop_end <= end)
2805 drop_args.drop_end = end + 1;
2807 * Don't insert file hole extent item if it's for a range beyond eof
2808 * (because it's useless) or if it represents a 0 bytes range (when
2809 * cur_offset == drop_end).
2811 if (!extent_info && cur_offset < ino_size &&
2812 cur_offset < drop_args.drop_end) {
2813 ret = fill_holes(trans, inode, path, cur_offset,
2814 drop_args.drop_end);
2816 /* Same comment as above. */
2817 btrfs_abort_transaction(trans, ret);
2820 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2821 /* See the comment in the loop above for the reasoning here. */
2822 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2823 drop_args.drop_end - cur_offset);
2825 btrfs_abort_transaction(trans, ret);
2831 ret = btrfs_insert_replace_extent(trans, inode, path,
2832 extent_info, extent_info->data_len,
2833 drop_args.bytes_found);
2835 btrfs_abort_transaction(trans, ret);
2844 trans->block_rsv = &fs_info->trans_block_rsv;
2846 btrfs_end_transaction(trans);
2850 btrfs_free_block_rsv(fs_info, rsv);
2855 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2857 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2858 struct btrfs_root *root = BTRFS_I(inode)->root;
2859 struct extent_state *cached_state = NULL;
2860 struct btrfs_path *path;
2861 struct btrfs_trans_handle *trans = NULL;
2866 u64 orig_start = offset;
2870 bool truncated_block = false;
2871 bool updated_inode = false;
2873 ret = btrfs_wait_ordered_range(inode, offset, len);
2877 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2878 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2879 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2881 goto out_only_mutex;
2883 /* Already in a large hole */
2885 goto out_only_mutex;
2888 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2889 lockend = round_down(offset + len,
2890 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2891 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2892 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2894 * We needn't truncate any block which is beyond the end of the file
2895 * because we are sure there is no data there.
2898 * Only do this if we are in the same block and we aren't doing the
2901 if (same_block && len < fs_info->sectorsize) {
2902 if (offset < ino_size) {
2903 truncated_block = true;
2904 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2909 goto out_only_mutex;
2912 /* zero back part of the first block */
2913 if (offset < ino_size) {
2914 truncated_block = true;
2915 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2917 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2922 /* Check the aligned pages after the first unaligned page,
2923 * if offset != orig_start, which means the first unaligned page
2924 * including several following pages are already in holes,
2925 * the extra check can be skipped */
2926 if (offset == orig_start) {
2927 /* after truncate page, check hole again */
2928 len = offset + len - lockstart;
2930 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2932 goto out_only_mutex;
2935 goto out_only_mutex;
2940 /* Check the tail unaligned part is in a hole */
2941 tail_start = lockend + 1;
2942 tail_len = offset + len - tail_start;
2944 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2945 if (unlikely(ret < 0))
2946 goto out_only_mutex;
2948 /* zero the front end of the last page */
2949 if (tail_start + tail_len < ino_size) {
2950 truncated_block = true;
2951 ret = btrfs_truncate_block(BTRFS_I(inode),
2952 tail_start + tail_len,
2955 goto out_only_mutex;
2960 if (lockend < lockstart) {
2962 goto out_only_mutex;
2965 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2968 goto out_only_mutex;
2970 path = btrfs_alloc_path();
2976 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2977 lockend, NULL, &trans);
2978 btrfs_free_path(path);
2982 ASSERT(trans != NULL);
2983 inode_inc_iversion(inode);
2984 inode->i_mtime = inode->i_ctime = current_time(inode);
2985 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2986 updated_inode = true;
2987 btrfs_end_transaction(trans);
2988 btrfs_btree_balance_dirty(fs_info);
2990 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2993 if (!updated_inode && truncated_block && !ret) {
2995 * If we only end up zeroing part of a page, we still need to
2996 * update the inode item, so that all the time fields are
2997 * updated as well as the necessary btrfs inode in memory fields
2998 * for detecting, at fsync time, if the inode isn't yet in the
2999 * log tree or it's there but not up to date.
3001 struct timespec64 now = current_time(inode);
3003 inode_inc_iversion(inode);
3004 inode->i_mtime = now;
3005 inode->i_ctime = now;
3006 trans = btrfs_start_transaction(root, 1);
3007 if (IS_ERR(trans)) {
3008 ret = PTR_ERR(trans);
3012 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3013 ret2 = btrfs_end_transaction(trans);
3018 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3022 /* Helper structure to record which range is already reserved */
3023 struct falloc_range {
3024 struct list_head list;
3030 * Helper function to add falloc range
3032 * Caller should have locked the larger range of extent containing
3035 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3037 struct falloc_range *prev = NULL;
3038 struct falloc_range *range = NULL;
3040 if (list_empty(head))
3044 * As fallocate iterate by bytenr order, we only need to check
3047 prev = list_entry(head->prev, struct falloc_range, list);
3048 if (prev->start + prev->len == start) {
3053 range = kmalloc(sizeof(*range), GFP_KERNEL);
3056 range->start = start;
3058 list_add_tail(&range->list, head);
3062 static int btrfs_fallocate_update_isize(struct inode *inode,
3066 struct btrfs_trans_handle *trans;
3067 struct btrfs_root *root = BTRFS_I(inode)->root;
3071 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3074 trans = btrfs_start_transaction(root, 1);
3076 return PTR_ERR(trans);
3078 inode->i_ctime = current_time(inode);
3079 i_size_write(inode, end);
3080 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3081 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3082 ret2 = btrfs_end_transaction(trans);
3084 return ret ? ret : ret2;
3088 RANGE_BOUNDARY_WRITTEN_EXTENT,
3089 RANGE_BOUNDARY_PREALLOC_EXTENT,
3090 RANGE_BOUNDARY_HOLE,
3093 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3096 const u64 sectorsize = btrfs_inode_sectorsize(inode);
3097 struct extent_map *em;
3100 offset = round_down(offset, sectorsize);
3101 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3105 if (em->block_start == EXTENT_MAP_HOLE)
3106 ret = RANGE_BOUNDARY_HOLE;
3107 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3108 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3110 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3112 free_extent_map(em);
3116 static int btrfs_zero_range(struct inode *inode,
3121 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3122 struct extent_map *em;
3123 struct extent_changeset *data_reserved = NULL;
3126 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3127 u64 alloc_start = round_down(offset, sectorsize);
3128 u64 alloc_end = round_up(offset + len, sectorsize);
3129 u64 bytes_to_reserve = 0;
3130 bool space_reserved = false;
3132 inode_dio_wait(inode);
3134 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3135 alloc_end - alloc_start);
3142 * Avoid hole punching and extent allocation for some cases. More cases
3143 * could be considered, but these are unlikely common and we keep things
3144 * as simple as possible for now. Also, intentionally, if the target
3145 * range contains one or more prealloc extents together with regular
3146 * extents and holes, we drop all the existing extents and allocate a
3147 * new prealloc extent, so that we get a larger contiguous disk extent.
3149 if (em->start <= alloc_start &&
3150 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3151 const u64 em_end = em->start + em->len;
3153 if (em_end >= offset + len) {
3155 * The whole range is already a prealloc extent,
3156 * do nothing except updating the inode's i_size if
3159 free_extent_map(em);
3160 ret = btrfs_fallocate_update_isize(inode, offset + len,
3165 * Part of the range is already a prealloc extent, so operate
3166 * only on the remaining part of the range.
3168 alloc_start = em_end;
3169 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3170 len = offset + len - alloc_start;
3171 offset = alloc_start;
3172 alloc_hint = em->block_start + em->len;
3174 free_extent_map(em);
3176 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3177 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3178 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3185 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3186 free_extent_map(em);
3187 ret = btrfs_fallocate_update_isize(inode, offset + len,
3191 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3192 free_extent_map(em);
3193 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3196 ret = btrfs_fallocate_update_isize(inode,
3201 free_extent_map(em);
3202 alloc_start = round_down(offset, sectorsize);
3203 alloc_end = alloc_start + sectorsize;
3207 alloc_start = round_up(offset, sectorsize);
3208 alloc_end = round_down(offset + len, sectorsize);
3211 * For unaligned ranges, check the pages at the boundaries, they might
3212 * map to an extent, in which case we need to partially zero them, or
3213 * they might map to a hole, in which case we need our allocation range
3216 if (!IS_ALIGNED(offset, sectorsize)) {
3217 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3221 if (ret == RANGE_BOUNDARY_HOLE) {
3222 alloc_start = round_down(offset, sectorsize);
3224 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3225 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3233 if (!IS_ALIGNED(offset + len, sectorsize)) {
3234 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3238 if (ret == RANGE_BOUNDARY_HOLE) {
3239 alloc_end = round_up(offset + len, sectorsize);
3241 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3242 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3252 if (alloc_start < alloc_end) {
3253 struct extent_state *cached_state = NULL;
3254 const u64 lockstart = alloc_start;
3255 const u64 lockend = alloc_end - 1;
3257 bytes_to_reserve = alloc_end - alloc_start;
3258 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3262 space_reserved = true;
3263 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3267 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3268 alloc_start, bytes_to_reserve);
3270 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3271 lockend, &cached_state);
3274 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3275 alloc_end - alloc_start,
3277 offset + len, &alloc_hint);
3278 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3279 lockend, &cached_state);
3280 /* btrfs_prealloc_file_range releases reserved space on error */
3282 space_reserved = false;
3286 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3288 if (ret && space_reserved)
3289 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3290 alloc_start, bytes_to_reserve);
3291 extent_changeset_free(data_reserved);
3296 static long btrfs_fallocate(struct file *file, int mode,
3297 loff_t offset, loff_t len)
3299 struct inode *inode = file_inode(file);
3300 struct extent_state *cached_state = NULL;
3301 struct extent_changeset *data_reserved = NULL;
3302 struct falloc_range *range;
3303 struct falloc_range *tmp;
3304 struct list_head reserve_list;
3312 struct extent_map *em;
3313 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3316 /* Do not allow fallocate in ZONED mode */
3317 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3320 alloc_start = round_down(offset, blocksize);
3321 alloc_end = round_up(offset + len, blocksize);
3322 cur_offset = alloc_start;
3324 /* Make sure we aren't being give some crap mode */
3325 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3326 FALLOC_FL_ZERO_RANGE))
3329 if (mode & FALLOC_FL_PUNCH_HOLE)
3330 return btrfs_punch_hole(inode, offset, len);
3333 * Only trigger disk allocation, don't trigger qgroup reserve
3335 * For qgroup space, it will be checked later.
3337 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3338 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3339 alloc_end - alloc_start);
3344 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3346 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3347 ret = inode_newsize_ok(inode, offset + len);
3353 * TODO: Move these two operations after we have checked
3354 * accurate reserved space, or fallocate can still fail but
3355 * with page truncated or size expanded.
3357 * But that's a minor problem and won't do much harm BTW.
3359 if (alloc_start > inode->i_size) {
3360 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3364 } else if (offset + len > inode->i_size) {
3366 * If we are fallocating from the end of the file onward we
3367 * need to zero out the end of the block if i_size lands in the
3368 * middle of a block.
3370 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3376 * wait for ordered IO before we have any locks. We'll loop again
3377 * below with the locks held.
3379 ret = btrfs_wait_ordered_range(inode, alloc_start,
3380 alloc_end - alloc_start);
3384 if (mode & FALLOC_FL_ZERO_RANGE) {
3385 ret = btrfs_zero_range(inode, offset, len, mode);
3386 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3390 locked_end = alloc_end - 1;
3392 struct btrfs_ordered_extent *ordered;
3394 /* the extent lock is ordered inside the running
3397 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3398 locked_end, &cached_state);
3399 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3403 ordered->file_offset + ordered->num_bytes > alloc_start &&
3404 ordered->file_offset < alloc_end) {
3405 btrfs_put_ordered_extent(ordered);
3406 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3407 alloc_start, locked_end,
3410 * we can't wait on the range with the transaction
3411 * running or with the extent lock held
3413 ret = btrfs_wait_ordered_range(inode, alloc_start,
3414 alloc_end - alloc_start);
3419 btrfs_put_ordered_extent(ordered);
3424 /* First, check if we exceed the qgroup limit */
3425 INIT_LIST_HEAD(&reserve_list);
3426 while (cur_offset < alloc_end) {
3427 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3428 alloc_end - cur_offset);
3433 last_byte = min(extent_map_end(em), alloc_end);
3434 actual_end = min_t(u64, extent_map_end(em), offset + len);
3435 last_byte = ALIGN(last_byte, blocksize);
3436 if (em->block_start == EXTENT_MAP_HOLE ||
3437 (cur_offset >= inode->i_size &&
3438 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3439 ret = add_falloc_range(&reserve_list, cur_offset,
3440 last_byte - cur_offset);
3442 free_extent_map(em);
3445 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3446 &data_reserved, cur_offset,
3447 last_byte - cur_offset);
3449 cur_offset = last_byte;
3450 free_extent_map(em);
3455 * Do not need to reserve unwritten extent for this
3456 * range, free reserved data space first, otherwise
3457 * it'll result in false ENOSPC error.
3459 btrfs_free_reserved_data_space(BTRFS_I(inode),
3460 data_reserved, cur_offset,
3461 last_byte - cur_offset);
3463 free_extent_map(em);
3464 cur_offset = last_byte;
3468 * If ret is still 0, means we're OK to fallocate.
3469 * Or just cleanup the list and exit.
3471 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3473 ret = btrfs_prealloc_file_range(inode, mode,
3475 range->len, i_blocksize(inode),
3476 offset + len, &alloc_hint);
3478 btrfs_free_reserved_data_space(BTRFS_I(inode),
3479 data_reserved, range->start,
3481 list_del(&range->list);
3488 * We didn't need to allocate any more space, but we still extended the
3489 * size of the file so we need to update i_size and the inode item.
3491 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3493 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3496 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3497 /* Let go of our reservation. */
3498 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3499 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3500 cur_offset, alloc_end - cur_offset);
3501 extent_changeset_free(data_reserved);
3505 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3508 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3509 struct extent_map *em = NULL;
3510 struct extent_state *cached_state = NULL;
3511 loff_t i_size = inode->vfs_inode.i_size;
3518 if (i_size == 0 || offset >= i_size)
3522 * offset can be negative, in this case we start finding DATA/HOLE from
3523 * the very start of the file.
3525 start = max_t(loff_t, 0, offset);
3527 lockstart = round_down(start, fs_info->sectorsize);
3528 lockend = round_up(i_size, fs_info->sectorsize);
3529 if (lockend <= lockstart)
3530 lockend = lockstart + fs_info->sectorsize;
3532 len = lockend - lockstart + 1;
3534 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3536 while (start < i_size) {
3537 em = btrfs_get_extent_fiemap(inode, start, len);
3544 if (whence == SEEK_HOLE &&
3545 (em->block_start == EXTENT_MAP_HOLE ||
3546 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3548 else if (whence == SEEK_DATA &&
3549 (em->block_start != EXTENT_MAP_HOLE &&
3550 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3553 start = em->start + em->len;
3554 free_extent_map(em);
3558 free_extent_map(em);
3559 unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3564 if (whence == SEEK_DATA && start >= i_size)
3567 offset = min_t(loff_t, start, i_size);
3573 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3575 struct inode *inode = file->f_mapping->host;
3579 return generic_file_llseek(file, offset, whence);
3582 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3583 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3584 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3591 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3594 static int btrfs_file_open(struct inode *inode, struct file *filp)
3596 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3597 return generic_file_open(inode, filp);
3600 static int check_direct_read(struct btrfs_fs_info *fs_info,
3601 const struct iov_iter *iter, loff_t offset)
3606 ret = check_direct_IO(fs_info, iter, offset);
3610 if (!iter_is_iovec(iter))
3613 for (seg = 0; seg < iter->nr_segs; seg++)
3614 for (i = seg + 1; i < iter->nr_segs; i++)
3615 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3620 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3622 struct inode *inode = file_inode(iocb->ki_filp);
3625 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3628 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3629 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3630 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3634 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3638 if (iocb->ki_flags & IOCB_DIRECT) {
3639 ret = btrfs_direct_read(iocb, to);
3640 if (ret < 0 || !iov_iter_count(to) ||
3641 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3645 return filemap_read(iocb, to, ret);
3648 const struct file_operations btrfs_file_operations = {
3649 .llseek = btrfs_file_llseek,
3650 .read_iter = btrfs_file_read_iter,
3651 .splice_read = generic_file_splice_read,
3652 .write_iter = btrfs_file_write_iter,
3653 .splice_write = iter_file_splice_write,
3654 .mmap = btrfs_file_mmap,
3655 .open = btrfs_file_open,
3656 .release = btrfs_release_file,
3657 .fsync = btrfs_sync_file,
3658 .fallocate = btrfs_fallocate,
3659 .unlocked_ioctl = btrfs_ioctl,
3660 #ifdef CONFIG_COMPAT
3661 .compat_ioctl = btrfs_compat_ioctl,
3663 .remap_file_range = btrfs_remap_file_range,
3666 void __cold btrfs_auto_defrag_exit(void)
3668 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3671 int __init btrfs_auto_defrag_init(void)
3673 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3674 sizeof(struct inode_defrag), 0,
3677 if (!btrfs_inode_defrag_cachep)
3683 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3688 * So with compression we will find and lock a dirty page and clear the
3689 * first one as dirty, setup an async extent, and immediately return
3690 * with the entire range locked but with nobody actually marked with
3691 * writeback. So we can't just filemap_write_and_wait_range() and
3692 * expect it to work since it will just kick off a thread to do the
3693 * actual work. So we need to call filemap_fdatawrite_range _again_
3694 * since it will wait on the page lock, which won't be unlocked until
3695 * after the pages have been marked as writeback and so we're good to go
3696 * from there. We have to do this otherwise we'll miss the ordered
3697 * extents and that results in badness. Please Josef, do not think you
3698 * know better and pull this out at some point in the future, it is
3699 * right and you are wrong.
3701 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3702 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3703 &BTRFS_I(inode)->runtime_flags))
3704 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);