]> Git Repo - linux.git/blob - mm/shmem.c
md/raid1: only allocate write behind bio for WriteMostly device
[linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102         pgoff_t start;          /* start of range currently being fallocated */
103         pgoff_t next;           /* the next page offset to be fallocated */
104         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
105         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
106 };
107
108 struct shmem_options {
109         unsigned long long blocks;
110         unsigned long long inodes;
111         struct mempolicy *mpol;
112         kuid_t uid;
113         kgid_t gid;
114         umode_t mode;
115         bool full_inums;
116         int huge;
117         int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127         return totalram_pages() / 2;
128 }
129
130 static unsigned long shmem_default_max_inodes(void)
131 {
132         unsigned long nr_pages = totalram_pages();
133
134         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139                              struct page **pagep, enum sgp_type sgp,
140                              gfp_t gfp, struct vm_area_struct *vma,
141                              vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143                 struct page **pagep, enum sgp_type sgp,
144                 gfp_t gfp, struct vm_area_struct *vma,
145                 struct vm_fault *vmf, vm_fault_t *fault_type);
146
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp)
149 {
150         return shmem_getpage_gfp(inode, index, pagep, sgp,
151                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156         return sb->s_fs_info;
157 }
158
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167         return (flags & VM_NORESERVE) ?
168                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173         if (!(flags & VM_NORESERVE))
174                 vm_unacct_memory(VM_ACCT(size));
175 }
176
177 static inline int shmem_reacct_size(unsigned long flags,
178                 loff_t oldsize, loff_t newsize)
179 {
180         if (!(flags & VM_NORESERVE)) {
181                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182                         return security_vm_enough_memory_mm(current->mm,
183                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
184                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186         }
187         return 0;
188 }
189
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198         if (!(flags & VM_NORESERVE))
199                 return 0;
200
201         return security_vm_enough_memory_mm(current->mm,
202                         pages * VM_ACCT(PAGE_SIZE));
203 }
204
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207         if (flags & VM_NORESERVE)
208                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213         struct shmem_inode_info *info = SHMEM_I(inode);
214         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216         if (shmem_acct_block(info->flags, pages))
217                 return false;
218
219         if (sbinfo->max_blocks) {
220                 if (percpu_counter_compare(&sbinfo->used_blocks,
221                                            sbinfo->max_blocks - pages) > 0)
222                         goto unacct;
223                 percpu_counter_add(&sbinfo->used_blocks, pages);
224         }
225
226         return true;
227
228 unacct:
229         shmem_unacct_blocks(info->flags, pages);
230         return false;
231 }
232
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235         struct shmem_inode_info *info = SHMEM_I(inode);
236         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238         if (sbinfo->max_blocks)
239                 percpu_counter_sub(&sbinfo->used_blocks, pages);
240         shmem_unacct_blocks(info->flags, pages);
241 }
242
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254         return vma->vm_ops == &shmem_vm_ops;
255 }
256
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273         ino_t ino;
274
275         if (!(sb->s_flags & SB_KERNMOUNT)) {
276                 raw_spin_lock(&sbinfo->stat_lock);
277                 if (sbinfo->max_inodes) {
278                         if (!sbinfo->free_inodes) {
279                                 raw_spin_unlock(&sbinfo->stat_lock);
280                                 return -ENOSPC;
281                         }
282                         sbinfo->free_inodes--;
283                 }
284                 if (inop) {
285                         ino = sbinfo->next_ino++;
286                         if (unlikely(is_zero_ino(ino)))
287                                 ino = sbinfo->next_ino++;
288                         if (unlikely(!sbinfo->full_inums &&
289                                      ino > UINT_MAX)) {
290                                 /*
291                                  * Emulate get_next_ino uint wraparound for
292                                  * compatibility
293                                  */
294                                 if (IS_ENABLED(CONFIG_64BIT))
295                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296                                                 __func__, MINOR(sb->s_dev));
297                                 sbinfo->next_ino = 1;
298                                 ino = sbinfo->next_ino++;
299                         }
300                         *inop = ino;
301                 }
302                 raw_spin_unlock(&sbinfo->stat_lock);
303         } else if (inop) {
304                 /*
305                  * __shmem_file_setup, one of our callers, is lock-free: it
306                  * doesn't hold stat_lock in shmem_reserve_inode since
307                  * max_inodes is always 0, and is called from potentially
308                  * unknown contexts. As such, use a per-cpu batched allocator
309                  * which doesn't require the per-sb stat_lock unless we are at
310                  * the batch boundary.
311                  *
312                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313                  * shmem mounts are not exposed to userspace, so we don't need
314                  * to worry about things like glibc compatibility.
315                  */
316                 ino_t *next_ino;
317
318                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319                 ino = *next_ino;
320                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321                         raw_spin_lock(&sbinfo->stat_lock);
322                         ino = sbinfo->next_ino;
323                         sbinfo->next_ino += SHMEM_INO_BATCH;
324                         raw_spin_unlock(&sbinfo->stat_lock);
325                         if (unlikely(is_zero_ino(ino)))
326                                 ino++;
327                 }
328                 *inop = ino;
329                 *next_ino = ++ino;
330                 put_cpu();
331         }
332
333         return 0;
334 }
335
336 static void shmem_free_inode(struct super_block *sb)
337 {
338         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339         if (sbinfo->max_inodes) {
340                 raw_spin_lock(&sbinfo->stat_lock);
341                 sbinfo->free_inodes++;
342                 raw_spin_unlock(&sbinfo->stat_lock);
343         }
344 }
345
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360         struct shmem_inode_info *info = SHMEM_I(inode);
361         long freed;
362
363         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364         if (freed > 0) {
365                 info->alloced -= freed;
366                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367                 shmem_inode_unacct_blocks(inode, freed);
368         }
369 }
370
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373         struct shmem_inode_info *info = SHMEM_I(inode);
374         unsigned long flags;
375
376         if (!shmem_inode_acct_block(inode, pages))
377                 return false;
378
379         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380         inode->i_mapping->nrpages += pages;
381
382         spin_lock_irqsave(&info->lock, flags);
383         info->alloced += pages;
384         inode->i_blocks += pages * BLOCKS_PER_PAGE;
385         shmem_recalc_inode(inode);
386         spin_unlock_irqrestore(&info->lock, flags);
387
388         return true;
389 }
390
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393         struct shmem_inode_info *info = SHMEM_I(inode);
394         unsigned long flags;
395
396         /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
398         spin_lock_irqsave(&info->lock, flags);
399         info->alloced -= pages;
400         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401         shmem_recalc_inode(inode);
402         spin_unlock_irqrestore(&info->lock, flags);
403
404         shmem_inode_unacct_blocks(inode, pages);
405 }
406
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411                         pgoff_t index, void *expected, void *replacement)
412 {
413         XA_STATE(xas, &mapping->i_pages, index);
414         void *item;
415
416         VM_BUG_ON(!expected);
417         VM_BUG_ON(!replacement);
418         item = xas_load(&xas);
419         if (item != expected)
420                 return -ENOENT;
421         xas_store(&xas, replacement);
422         return 0;
423 }
424
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433                                pgoff_t index, swp_entry_t swap)
434 {
435         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *      disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *      enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *      only allocate huge pages if the page will be fully within i_size,
447  *      also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *      only allocate huge pages if requested with fadvise()/madvise();
450  */
451
452 #define SHMEM_HUGE_NEVER        0
453 #define SHMEM_HUGE_ALWAYS       1
454 #define SHMEM_HUGE_WITHIN_SIZE  2
455 #define SHMEM_HUGE_ADVISE       3
456
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *      disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY         (-1)
468 #define SHMEM_HUGE_FORCE        (-2)
469
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474
475 bool shmem_is_huge(struct vm_area_struct *vma,
476                    struct inode *inode, pgoff_t index)
477 {
478         loff_t i_size;
479
480         if (shmem_huge == SHMEM_HUGE_DENY)
481                 return false;
482         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484                 return false;
485         if (shmem_huge == SHMEM_HUGE_FORCE)
486                 return true;
487
488         switch (SHMEM_SB(inode->i_sb)->huge) {
489         case SHMEM_HUGE_ALWAYS:
490                 return true;
491         case SHMEM_HUGE_WITHIN_SIZE:
492                 index = round_up(index + 1, HPAGE_PMD_NR);
493                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
494                 if (i_size >> PAGE_SHIFT >= index)
495                         return true;
496                 fallthrough;
497         case SHMEM_HUGE_ADVISE:
498                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
499                         return true;
500                 fallthrough;
501         default:
502                 return false;
503         }
504 }
505
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509         if (!strcmp(str, "never"))
510                 return SHMEM_HUGE_NEVER;
511         if (!strcmp(str, "always"))
512                 return SHMEM_HUGE_ALWAYS;
513         if (!strcmp(str, "within_size"))
514                 return SHMEM_HUGE_WITHIN_SIZE;
515         if (!strcmp(str, "advise"))
516                 return SHMEM_HUGE_ADVISE;
517         if (!strcmp(str, "deny"))
518                 return SHMEM_HUGE_DENY;
519         if (!strcmp(str, "force"))
520                 return SHMEM_HUGE_FORCE;
521         return -EINVAL;
522 }
523 #endif
524
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528         switch (huge) {
529         case SHMEM_HUGE_NEVER:
530                 return "never";
531         case SHMEM_HUGE_ALWAYS:
532                 return "always";
533         case SHMEM_HUGE_WITHIN_SIZE:
534                 return "within_size";
535         case SHMEM_HUGE_ADVISE:
536                 return "advise";
537         case SHMEM_HUGE_DENY:
538                 return "deny";
539         case SHMEM_HUGE_FORCE:
540                 return "force";
541         default:
542                 VM_BUG_ON(1);
543                 return "bad_val";
544         }
545 }
546 #endif
547
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549                 struct shrink_control *sc, unsigned long nr_to_split)
550 {
551         LIST_HEAD(list), *pos, *next;
552         LIST_HEAD(to_remove);
553         struct inode *inode;
554         struct shmem_inode_info *info;
555         struct page *page;
556         unsigned long batch = sc ? sc->nr_to_scan : 128;
557         int removed = 0, split = 0;
558
559         if (list_empty(&sbinfo->shrinklist))
560                 return SHRINK_STOP;
561
562         spin_lock(&sbinfo->shrinklist_lock);
563         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565
566                 /* pin the inode */
567                 inode = igrab(&info->vfs_inode);
568
569                 /* inode is about to be evicted */
570                 if (!inode) {
571                         list_del_init(&info->shrinklist);
572                         removed++;
573                         goto next;
574                 }
575
576                 /* Check if there's anything to gain */
577                 if (round_up(inode->i_size, PAGE_SIZE) ==
578                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579                         list_move(&info->shrinklist, &to_remove);
580                         removed++;
581                         goto next;
582                 }
583
584                 list_move(&info->shrinklist, &list);
585 next:
586                 if (!--batch)
587                         break;
588         }
589         spin_unlock(&sbinfo->shrinklist_lock);
590
591         list_for_each_safe(pos, next, &to_remove) {
592                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593                 inode = &info->vfs_inode;
594                 list_del_init(&info->shrinklist);
595                 iput(inode);
596         }
597
598         list_for_each_safe(pos, next, &list) {
599                 int ret;
600
601                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602                 inode = &info->vfs_inode;
603
604                 if (nr_to_split && split >= nr_to_split)
605                         goto leave;
606
607                 page = find_get_page(inode->i_mapping,
608                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609                 if (!page)
610                         goto drop;
611
612                 /* No huge page at the end of the file: nothing to split */
613                 if (!PageTransHuge(page)) {
614                         put_page(page);
615                         goto drop;
616                 }
617
618                 /*
619                  * Leave the inode on the list if we failed to lock
620                  * the page at this time.
621                  *
622                  * Waiting for the lock may lead to deadlock in the
623                  * reclaim path.
624                  */
625                 if (!trylock_page(page)) {
626                         put_page(page);
627                         goto leave;
628                 }
629
630                 ret = split_huge_page(page);
631                 unlock_page(page);
632                 put_page(page);
633
634                 /* If split failed leave the inode on the list */
635                 if (ret)
636                         goto leave;
637
638                 split++;
639 drop:
640                 list_del_init(&info->shrinklist);
641                 removed++;
642 leave:
643                 iput(inode);
644         }
645
646         spin_lock(&sbinfo->shrinklist_lock);
647         list_splice_tail(&list, &sbinfo->shrinklist);
648         sbinfo->shrinklist_len -= removed;
649         spin_unlock(&sbinfo->shrinklist_lock);
650
651         return split;
652 }
653
654 static long shmem_unused_huge_scan(struct super_block *sb,
655                 struct shrink_control *sc)
656 {
657         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658
659         if (!READ_ONCE(sbinfo->shrinklist_len))
660                 return SHRINK_STOP;
661
662         return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664
665 static long shmem_unused_huge_count(struct super_block *sb,
666                 struct shrink_control *sc)
667 {
668         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669         return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672
673 #define shmem_huge SHMEM_HUGE_DENY
674
675 bool shmem_is_huge(struct vm_area_struct *vma,
676                    struct inode *inode, pgoff_t index)
677 {
678         return false;
679 }
680
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682                 struct shrink_control *sc, unsigned long nr_to_split)
683 {
684         return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687
688 /*
689  * Like add_to_page_cache_locked, but error if expected item has gone.
690  */
691 static int shmem_add_to_page_cache(struct page *page,
692                                    struct address_space *mapping,
693                                    pgoff_t index, void *expected, gfp_t gfp,
694                                    struct mm_struct *charge_mm)
695 {
696         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697         unsigned long i = 0;
698         unsigned long nr = compound_nr(page);
699         int error;
700
701         VM_BUG_ON_PAGE(PageTail(page), page);
702         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
703         VM_BUG_ON_PAGE(!PageLocked(page), page);
704         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
705         VM_BUG_ON(expected && PageTransHuge(page));
706
707         page_ref_add(page, nr);
708         page->mapping = mapping;
709         page->index = index;
710
711         if (!PageSwapCache(page)) {
712                 error = mem_cgroup_charge(page, charge_mm, gfp);
713                 if (error) {
714                         if (PageTransHuge(page)) {
715                                 count_vm_event(THP_FILE_FALLBACK);
716                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
717                         }
718                         goto error;
719                 }
720         }
721         cgroup_throttle_swaprate(page, gfp);
722
723         do {
724                 void *entry;
725                 xas_lock_irq(&xas);
726                 entry = xas_find_conflict(&xas);
727                 if (entry != expected)
728                         xas_set_err(&xas, -EEXIST);
729                 xas_create_range(&xas);
730                 if (xas_error(&xas))
731                         goto unlock;
732 next:
733                 xas_store(&xas, page);
734                 if (++i < nr) {
735                         xas_next(&xas);
736                         goto next;
737                 }
738                 if (PageTransHuge(page)) {
739                         count_vm_event(THP_FILE_ALLOC);
740                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
741                 }
742                 mapping->nrpages += nr;
743                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
745 unlock:
746                 xas_unlock_irq(&xas);
747         } while (xas_nomem(&xas, gfp));
748
749         if (xas_error(&xas)) {
750                 error = xas_error(&xas);
751                 goto error;
752         }
753
754         return 0;
755 error:
756         page->mapping = NULL;
757         page_ref_sub(page, nr);
758         return error;
759 }
760
761 /*
762  * Like delete_from_page_cache, but substitutes swap for page.
763  */
764 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
765 {
766         struct address_space *mapping = page->mapping;
767         int error;
768
769         VM_BUG_ON_PAGE(PageCompound(page), page);
770
771         xa_lock_irq(&mapping->i_pages);
772         error = shmem_replace_entry(mapping, page->index, page, radswap);
773         page->mapping = NULL;
774         mapping->nrpages--;
775         __dec_lruvec_page_state(page, NR_FILE_PAGES);
776         __dec_lruvec_page_state(page, NR_SHMEM);
777         xa_unlock_irq(&mapping->i_pages);
778         put_page(page);
779         BUG_ON(error);
780 }
781
782 /*
783  * Remove swap entry from page cache, free the swap and its page cache.
784  */
785 static int shmem_free_swap(struct address_space *mapping,
786                            pgoff_t index, void *radswap)
787 {
788         void *old;
789
790         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
791         if (old != radswap)
792                 return -ENOENT;
793         free_swap_and_cache(radix_to_swp_entry(radswap));
794         return 0;
795 }
796
797 /*
798  * Determine (in bytes) how many of the shmem object's pages mapped by the
799  * given offsets are swapped out.
800  *
801  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
802  * as long as the inode doesn't go away and racy results are not a problem.
803  */
804 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805                                                 pgoff_t start, pgoff_t end)
806 {
807         XA_STATE(xas, &mapping->i_pages, start);
808         struct page *page;
809         unsigned long swapped = 0;
810
811         rcu_read_lock();
812         xas_for_each(&xas, page, end - 1) {
813                 if (xas_retry(&xas, page))
814                         continue;
815                 if (xa_is_value(page))
816                         swapped++;
817
818                 if (need_resched()) {
819                         xas_pause(&xas);
820                         cond_resched_rcu();
821                 }
822         }
823
824         rcu_read_unlock();
825
826         return swapped << PAGE_SHIFT;
827 }
828
829 /*
830  * Determine (in bytes) how many of the shmem object's pages mapped by the
831  * given vma is swapped out.
832  *
833  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
834  * as long as the inode doesn't go away and racy results are not a problem.
835  */
836 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 {
838         struct inode *inode = file_inode(vma->vm_file);
839         struct shmem_inode_info *info = SHMEM_I(inode);
840         struct address_space *mapping = inode->i_mapping;
841         unsigned long swapped;
842
843         /* Be careful as we don't hold info->lock */
844         swapped = READ_ONCE(info->swapped);
845
846         /*
847          * The easier cases are when the shmem object has nothing in swap, or
848          * the vma maps it whole. Then we can simply use the stats that we
849          * already track.
850          */
851         if (!swapped)
852                 return 0;
853
854         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855                 return swapped << PAGE_SHIFT;
856
857         /* Here comes the more involved part */
858         return shmem_partial_swap_usage(mapping,
859                         linear_page_index(vma, vma->vm_start),
860                         linear_page_index(vma, vma->vm_end));
861 }
862
863 /*
864  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865  */
866 void shmem_unlock_mapping(struct address_space *mapping)
867 {
868         struct pagevec pvec;
869         pgoff_t index = 0;
870
871         pagevec_init(&pvec);
872         /*
873          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874          */
875         while (!mapping_unevictable(mapping)) {
876                 if (!pagevec_lookup(&pvec, mapping, &index))
877                         break;
878                 check_move_unevictable_pages(&pvec);
879                 pagevec_release(&pvec);
880                 cond_resched();
881         }
882 }
883
884 /*
885  * Check whether a hole-punch or truncation needs to split a huge page,
886  * returning true if no split was required, or the split has been successful.
887  *
888  * Eviction (or truncation to 0 size) should never need to split a huge page;
889  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
890  * head, and then succeeded to trylock on tail.
891  *
892  * A split can only succeed when there are no additional references on the
893  * huge page: so the split below relies upon find_get_entries() having stopped
894  * when it found a subpage of the huge page, without getting further references.
895  */
896 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
897 {
898         if (!PageTransCompound(page))
899                 return true;
900
901         /* Just proceed to delete a huge page wholly within the range punched */
902         if (PageHead(page) &&
903             page->index >= start && page->index + HPAGE_PMD_NR <= end)
904                 return true;
905
906         /* Try to split huge page, so we can truly punch the hole or truncate */
907         return split_huge_page(page) >= 0;
908 }
909
910 /*
911  * Remove range of pages and swap entries from page cache, and free them.
912  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
913  */
914 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
915                                                                  bool unfalloc)
916 {
917         struct address_space *mapping = inode->i_mapping;
918         struct shmem_inode_info *info = SHMEM_I(inode);
919         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
920         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
921         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
922         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
923         struct pagevec pvec;
924         pgoff_t indices[PAGEVEC_SIZE];
925         long nr_swaps_freed = 0;
926         pgoff_t index;
927         int i;
928
929         if (lend == -1)
930                 end = -1;       /* unsigned, so actually very big */
931
932         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
933                 info->fallocend = start;
934
935         pagevec_init(&pvec);
936         index = start;
937         while (index < end && find_lock_entries(mapping, index, end - 1,
938                         &pvec, indices)) {
939                 for (i = 0; i < pagevec_count(&pvec); i++) {
940                         struct page *page = pvec.pages[i];
941
942                         index = indices[i];
943
944                         if (xa_is_value(page)) {
945                                 if (unfalloc)
946                                         continue;
947                                 nr_swaps_freed += !shmem_free_swap(mapping,
948                                                                 index, page);
949                                 continue;
950                         }
951                         index += thp_nr_pages(page) - 1;
952
953                         if (!unfalloc || !PageUptodate(page))
954                                 truncate_inode_page(mapping, page);
955                         unlock_page(page);
956                 }
957                 pagevec_remove_exceptionals(&pvec);
958                 pagevec_release(&pvec);
959                 cond_resched();
960                 index++;
961         }
962
963         if (partial_start) {
964                 struct page *page = NULL;
965                 shmem_getpage(inode, start - 1, &page, SGP_READ);
966                 if (page) {
967                         unsigned int top = PAGE_SIZE;
968                         if (start > end) {
969                                 top = partial_end;
970                                 partial_end = 0;
971                         }
972                         zero_user_segment(page, partial_start, top);
973                         set_page_dirty(page);
974                         unlock_page(page);
975                         put_page(page);
976                 }
977         }
978         if (partial_end) {
979                 struct page *page = NULL;
980                 shmem_getpage(inode, end, &page, SGP_READ);
981                 if (page) {
982                         zero_user_segment(page, 0, partial_end);
983                         set_page_dirty(page);
984                         unlock_page(page);
985                         put_page(page);
986                 }
987         }
988         if (start >= end)
989                 return;
990
991         index = start;
992         while (index < end) {
993                 cond_resched();
994
995                 if (!find_get_entries(mapping, index, end - 1, &pvec,
996                                 indices)) {
997                         /* If all gone or hole-punch or unfalloc, we're done */
998                         if (index == start || end != -1)
999                                 break;
1000                         /* But if truncating, restart to make sure all gone */
1001                         index = start;
1002                         continue;
1003                 }
1004                 for (i = 0; i < pagevec_count(&pvec); i++) {
1005                         struct page *page = pvec.pages[i];
1006
1007                         index = indices[i];
1008                         if (xa_is_value(page)) {
1009                                 if (unfalloc)
1010                                         continue;
1011                                 if (shmem_free_swap(mapping, index, page)) {
1012                                         /* Swap was replaced by page: retry */
1013                                         index--;
1014                                         break;
1015                                 }
1016                                 nr_swaps_freed++;
1017                                 continue;
1018                         }
1019
1020                         lock_page(page);
1021
1022                         if (!unfalloc || !PageUptodate(page)) {
1023                                 if (page_mapping(page) != mapping) {
1024                                         /* Page was replaced by swap: retry */
1025                                         unlock_page(page);
1026                                         index--;
1027                                         break;
1028                                 }
1029                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1030                                 if (shmem_punch_compound(page, start, end))
1031                                         truncate_inode_page(mapping, page);
1032                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1033                                         /* Wipe the page and don't get stuck */
1034                                         clear_highpage(page);
1035                                         flush_dcache_page(page);
1036                                         set_page_dirty(page);
1037                                         if (index <
1038                                             round_up(start, HPAGE_PMD_NR))
1039                                                 start = index + 1;
1040                                 }
1041                         }
1042                         unlock_page(page);
1043                 }
1044                 pagevec_remove_exceptionals(&pvec);
1045                 pagevec_release(&pvec);
1046                 index++;
1047         }
1048
1049         spin_lock_irq(&info->lock);
1050         info->swapped -= nr_swaps_freed;
1051         shmem_recalc_inode(inode);
1052         spin_unlock_irq(&info->lock);
1053 }
1054
1055 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1056 {
1057         shmem_undo_range(inode, lstart, lend, false);
1058         inode->i_ctime = inode->i_mtime = current_time(inode);
1059 }
1060 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1061
1062 static int shmem_getattr(struct user_namespace *mnt_userns,
1063                          const struct path *path, struct kstat *stat,
1064                          u32 request_mask, unsigned int query_flags)
1065 {
1066         struct inode *inode = path->dentry->d_inode;
1067         struct shmem_inode_info *info = SHMEM_I(inode);
1068
1069         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1070                 spin_lock_irq(&info->lock);
1071                 shmem_recalc_inode(inode);
1072                 spin_unlock_irq(&info->lock);
1073         }
1074         generic_fillattr(&init_user_ns, inode, stat);
1075
1076         if (shmem_is_huge(NULL, inode, 0))
1077                 stat->blksize = HPAGE_PMD_SIZE;
1078
1079         return 0;
1080 }
1081
1082 static int shmem_setattr(struct user_namespace *mnt_userns,
1083                          struct dentry *dentry, struct iattr *attr)
1084 {
1085         struct inode *inode = d_inode(dentry);
1086         struct shmem_inode_info *info = SHMEM_I(inode);
1087         int error;
1088
1089         error = setattr_prepare(&init_user_ns, dentry, attr);
1090         if (error)
1091                 return error;
1092
1093         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1094                 loff_t oldsize = inode->i_size;
1095                 loff_t newsize = attr->ia_size;
1096
1097                 /* protected by i_rwsem */
1098                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1099                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1100                         return -EPERM;
1101
1102                 if (newsize != oldsize) {
1103                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1104                                         oldsize, newsize);
1105                         if (error)
1106                                 return error;
1107                         i_size_write(inode, newsize);
1108                         inode->i_ctime = inode->i_mtime = current_time(inode);
1109                 }
1110                 if (newsize <= oldsize) {
1111                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1112                         if (oldsize > holebegin)
1113                                 unmap_mapping_range(inode->i_mapping,
1114                                                         holebegin, 0, 1);
1115                         if (info->alloced)
1116                                 shmem_truncate_range(inode,
1117                                                         newsize, (loff_t)-1);
1118                         /* unmap again to remove racily COWed private pages */
1119                         if (oldsize > holebegin)
1120                                 unmap_mapping_range(inode->i_mapping,
1121                                                         holebegin, 0, 1);
1122                 }
1123         }
1124
1125         setattr_copy(&init_user_ns, inode, attr);
1126         if (attr->ia_valid & ATTR_MODE)
1127                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1128         return error;
1129 }
1130
1131 static void shmem_evict_inode(struct inode *inode)
1132 {
1133         struct shmem_inode_info *info = SHMEM_I(inode);
1134         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1135
1136         if (shmem_mapping(inode->i_mapping)) {
1137                 shmem_unacct_size(info->flags, inode->i_size);
1138                 inode->i_size = 0;
1139                 shmem_truncate_range(inode, 0, (loff_t)-1);
1140                 if (!list_empty(&info->shrinklist)) {
1141                         spin_lock(&sbinfo->shrinklist_lock);
1142                         if (!list_empty(&info->shrinklist)) {
1143                                 list_del_init(&info->shrinklist);
1144                                 sbinfo->shrinklist_len--;
1145                         }
1146                         spin_unlock(&sbinfo->shrinklist_lock);
1147                 }
1148                 while (!list_empty(&info->swaplist)) {
1149                         /* Wait while shmem_unuse() is scanning this inode... */
1150                         wait_var_event(&info->stop_eviction,
1151                                        !atomic_read(&info->stop_eviction));
1152                         mutex_lock(&shmem_swaplist_mutex);
1153                         /* ...but beware of the race if we peeked too early */
1154                         if (!atomic_read(&info->stop_eviction))
1155                                 list_del_init(&info->swaplist);
1156                         mutex_unlock(&shmem_swaplist_mutex);
1157                 }
1158         }
1159
1160         simple_xattrs_free(&info->xattrs);
1161         WARN_ON(inode->i_blocks);
1162         shmem_free_inode(inode->i_sb);
1163         clear_inode(inode);
1164 }
1165
1166 static int shmem_find_swap_entries(struct address_space *mapping,
1167                                    pgoff_t start, unsigned int nr_entries,
1168                                    struct page **entries, pgoff_t *indices,
1169                                    unsigned int type, bool frontswap)
1170 {
1171         XA_STATE(xas, &mapping->i_pages, start);
1172         struct page *page;
1173         swp_entry_t entry;
1174         unsigned int ret = 0;
1175
1176         if (!nr_entries)
1177                 return 0;
1178
1179         rcu_read_lock();
1180         xas_for_each(&xas, page, ULONG_MAX) {
1181                 if (xas_retry(&xas, page))
1182                         continue;
1183
1184                 if (!xa_is_value(page))
1185                         continue;
1186
1187                 entry = radix_to_swp_entry(page);
1188                 if (swp_type(entry) != type)
1189                         continue;
1190                 if (frontswap &&
1191                     !frontswap_test(swap_info[type], swp_offset(entry)))
1192                         continue;
1193
1194                 indices[ret] = xas.xa_index;
1195                 entries[ret] = page;
1196
1197                 if (need_resched()) {
1198                         xas_pause(&xas);
1199                         cond_resched_rcu();
1200                 }
1201                 if (++ret == nr_entries)
1202                         break;
1203         }
1204         rcu_read_unlock();
1205
1206         return ret;
1207 }
1208
1209 /*
1210  * Move the swapped pages for an inode to page cache. Returns the count
1211  * of pages swapped in, or the error in case of failure.
1212  */
1213 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1214                                     pgoff_t *indices)
1215 {
1216         int i = 0;
1217         int ret = 0;
1218         int error = 0;
1219         struct address_space *mapping = inode->i_mapping;
1220
1221         for (i = 0; i < pvec.nr; i++) {
1222                 struct page *page = pvec.pages[i];
1223
1224                 if (!xa_is_value(page))
1225                         continue;
1226                 error = shmem_swapin_page(inode, indices[i],
1227                                           &page, SGP_CACHE,
1228                                           mapping_gfp_mask(mapping),
1229                                           NULL, NULL);
1230                 if (error == 0) {
1231                         unlock_page(page);
1232                         put_page(page);
1233                         ret++;
1234                 }
1235                 if (error == -ENOMEM)
1236                         break;
1237                 error = 0;
1238         }
1239         return error ? error : ret;
1240 }
1241
1242 /*
1243  * If swap found in inode, free it and move page from swapcache to filecache.
1244  */
1245 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1246                              bool frontswap, unsigned long *fs_pages_to_unuse)
1247 {
1248         struct address_space *mapping = inode->i_mapping;
1249         pgoff_t start = 0;
1250         struct pagevec pvec;
1251         pgoff_t indices[PAGEVEC_SIZE];
1252         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1253         int ret = 0;
1254
1255         pagevec_init(&pvec);
1256         do {
1257                 unsigned int nr_entries = PAGEVEC_SIZE;
1258
1259                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1260                         nr_entries = *fs_pages_to_unuse;
1261
1262                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1263                                                   pvec.pages, indices,
1264                                                   type, frontswap);
1265                 if (pvec.nr == 0) {
1266                         ret = 0;
1267                         break;
1268                 }
1269
1270                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1271                 if (ret < 0)
1272                         break;
1273
1274                 if (frontswap_partial) {
1275                         *fs_pages_to_unuse -= ret;
1276                         if (*fs_pages_to_unuse == 0) {
1277                                 ret = FRONTSWAP_PAGES_UNUSED;
1278                                 break;
1279                         }
1280                 }
1281
1282                 start = indices[pvec.nr - 1];
1283         } while (true);
1284
1285         return ret;
1286 }
1287
1288 /*
1289  * Read all the shared memory data that resides in the swap
1290  * device 'type' back into memory, so the swap device can be
1291  * unused.
1292  */
1293 int shmem_unuse(unsigned int type, bool frontswap,
1294                 unsigned long *fs_pages_to_unuse)
1295 {
1296         struct shmem_inode_info *info, *next;
1297         int error = 0;
1298
1299         if (list_empty(&shmem_swaplist))
1300                 return 0;
1301
1302         mutex_lock(&shmem_swaplist_mutex);
1303         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1304                 if (!info->swapped) {
1305                         list_del_init(&info->swaplist);
1306                         continue;
1307                 }
1308                 /*
1309                  * Drop the swaplist mutex while searching the inode for swap;
1310                  * but before doing so, make sure shmem_evict_inode() will not
1311                  * remove placeholder inode from swaplist, nor let it be freed
1312                  * (igrab() would protect from unlink, but not from unmount).
1313                  */
1314                 atomic_inc(&info->stop_eviction);
1315                 mutex_unlock(&shmem_swaplist_mutex);
1316
1317                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1318                                           fs_pages_to_unuse);
1319                 cond_resched();
1320
1321                 mutex_lock(&shmem_swaplist_mutex);
1322                 next = list_next_entry(info, swaplist);
1323                 if (!info->swapped)
1324                         list_del_init(&info->swaplist);
1325                 if (atomic_dec_and_test(&info->stop_eviction))
1326                         wake_up_var(&info->stop_eviction);
1327                 if (error)
1328                         break;
1329         }
1330         mutex_unlock(&shmem_swaplist_mutex);
1331
1332         return error;
1333 }
1334
1335 /*
1336  * Move the page from the page cache to the swap cache.
1337  */
1338 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1339 {
1340         struct shmem_inode_info *info;
1341         struct address_space *mapping;
1342         struct inode *inode;
1343         swp_entry_t swap;
1344         pgoff_t index;
1345
1346         /*
1347          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1348          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1349          * and its shmem_writeback() needs them to be split when swapping.
1350          */
1351         if (PageTransCompound(page)) {
1352                 /* Ensure the subpages are still dirty */
1353                 SetPageDirty(page);
1354                 if (split_huge_page(page) < 0)
1355                         goto redirty;
1356                 ClearPageDirty(page);
1357         }
1358
1359         BUG_ON(!PageLocked(page));
1360         mapping = page->mapping;
1361         index = page->index;
1362         inode = mapping->host;
1363         info = SHMEM_I(inode);
1364         if (info->flags & VM_LOCKED)
1365                 goto redirty;
1366         if (!total_swap_pages)
1367                 goto redirty;
1368
1369         /*
1370          * Our capabilities prevent regular writeback or sync from ever calling
1371          * shmem_writepage; but a stacking filesystem might use ->writepage of
1372          * its underlying filesystem, in which case tmpfs should write out to
1373          * swap only in response to memory pressure, and not for the writeback
1374          * threads or sync.
1375          */
1376         if (!wbc->for_reclaim) {
1377                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1378                 goto redirty;
1379         }
1380
1381         /*
1382          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383          * value into swapfile.c, the only way we can correctly account for a
1384          * fallocated page arriving here is now to initialize it and write it.
1385          *
1386          * That's okay for a page already fallocated earlier, but if we have
1387          * not yet completed the fallocation, then (a) we want to keep track
1388          * of this page in case we have to undo it, and (b) it may not be a
1389          * good idea to continue anyway, once we're pushing into swap.  So
1390          * reactivate the page, and let shmem_fallocate() quit when too many.
1391          */
1392         if (!PageUptodate(page)) {
1393                 if (inode->i_private) {
1394                         struct shmem_falloc *shmem_falloc;
1395                         spin_lock(&inode->i_lock);
1396                         shmem_falloc = inode->i_private;
1397                         if (shmem_falloc &&
1398                             !shmem_falloc->waitq &&
1399                             index >= shmem_falloc->start &&
1400                             index < shmem_falloc->next)
1401                                 shmem_falloc->nr_unswapped++;
1402                         else
1403                                 shmem_falloc = NULL;
1404                         spin_unlock(&inode->i_lock);
1405                         if (shmem_falloc)
1406                                 goto redirty;
1407                 }
1408                 clear_highpage(page);
1409                 flush_dcache_page(page);
1410                 SetPageUptodate(page);
1411         }
1412
1413         swap = get_swap_page(page);
1414         if (!swap.val)
1415                 goto redirty;
1416
1417         /*
1418          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1419          * if it's not already there.  Do it now before the page is
1420          * moved to swap cache, when its pagelock no longer protects
1421          * the inode from eviction.  But don't unlock the mutex until
1422          * we've incremented swapped, because shmem_unuse_inode() will
1423          * prune a !swapped inode from the swaplist under this mutex.
1424          */
1425         mutex_lock(&shmem_swaplist_mutex);
1426         if (list_empty(&info->swaplist))
1427                 list_add(&info->swaplist, &shmem_swaplist);
1428
1429         if (add_to_swap_cache(page, swap,
1430                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431                         NULL) == 0) {
1432                 spin_lock_irq(&info->lock);
1433                 shmem_recalc_inode(inode);
1434                 info->swapped++;
1435                 spin_unlock_irq(&info->lock);
1436
1437                 swap_shmem_alloc(swap);
1438                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1439
1440                 mutex_unlock(&shmem_swaplist_mutex);
1441                 BUG_ON(page_mapped(page));
1442                 swap_writepage(page, wbc);
1443                 return 0;
1444         }
1445
1446         mutex_unlock(&shmem_swaplist_mutex);
1447         put_swap_page(page, swap);
1448 redirty:
1449         set_page_dirty(page);
1450         if (wbc->for_reclaim)
1451                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1452         unlock_page(page);
1453         return 0;
1454 }
1455
1456 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1457 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1458 {
1459         char buffer[64];
1460
1461         if (!mpol || mpol->mode == MPOL_DEFAULT)
1462                 return;         /* show nothing */
1463
1464         mpol_to_str(buffer, sizeof(buffer), mpol);
1465
1466         seq_printf(seq, ",mpol=%s", buffer);
1467 }
1468
1469 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470 {
1471         struct mempolicy *mpol = NULL;
1472         if (sbinfo->mpol) {
1473                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1474                 mpol = sbinfo->mpol;
1475                 mpol_get(mpol);
1476                 raw_spin_unlock(&sbinfo->stat_lock);
1477         }
1478         return mpol;
1479 }
1480 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1482 {
1483 }
1484 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1485 {
1486         return NULL;
1487 }
1488 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489 #ifndef CONFIG_NUMA
1490 #define vm_policy vm_private_data
1491 #endif
1492
1493 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494                 struct shmem_inode_info *info, pgoff_t index)
1495 {
1496         /* Create a pseudo vma that just contains the policy */
1497         vma_init(vma, NULL);
1498         /* Bias interleave by inode number to distribute better across nodes */
1499         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1500         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1501 }
1502
1503 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504 {
1505         /* Drop reference taken by mpol_shared_policy_lookup() */
1506         mpol_cond_put(vma->vm_policy);
1507 }
1508
1509 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510                         struct shmem_inode_info *info, pgoff_t index)
1511 {
1512         struct vm_area_struct pvma;
1513         struct page *page;
1514         struct vm_fault vmf = {
1515                 .vma = &pvma,
1516         };
1517
1518         shmem_pseudo_vma_init(&pvma, info, index);
1519         page = swap_cluster_readahead(swap, gfp, &vmf);
1520         shmem_pseudo_vma_destroy(&pvma);
1521
1522         return page;
1523 }
1524
1525 /*
1526  * Make sure huge_gfp is always more limited than limit_gfp.
1527  * Some of the flags set permissions, while others set limitations.
1528  */
1529 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1530 {
1531         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1532         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1533         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1534         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1535
1536         /* Allow allocations only from the originally specified zones. */
1537         result |= zoneflags;
1538
1539         /*
1540          * Minimize the result gfp by taking the union with the deny flags,
1541          * and the intersection of the allow flags.
1542          */
1543         result |= (limit_gfp & denyflags);
1544         result |= (huge_gfp & limit_gfp) & allowflags;
1545
1546         return result;
1547 }
1548
1549 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1550                 struct shmem_inode_info *info, pgoff_t index)
1551 {
1552         struct vm_area_struct pvma;
1553         struct address_space *mapping = info->vfs_inode.i_mapping;
1554         pgoff_t hindex;
1555         struct page *page;
1556
1557         hindex = round_down(index, HPAGE_PMD_NR);
1558         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1559                                                                 XA_PRESENT))
1560                 return NULL;
1561
1562         shmem_pseudo_vma_init(&pvma, info, hindex);
1563         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1564                                true);
1565         shmem_pseudo_vma_destroy(&pvma);
1566         if (page)
1567                 prep_transhuge_page(page);
1568         else
1569                 count_vm_event(THP_FILE_FALLBACK);
1570         return page;
1571 }
1572
1573 static struct page *shmem_alloc_page(gfp_t gfp,
1574                         struct shmem_inode_info *info, pgoff_t index)
1575 {
1576         struct vm_area_struct pvma;
1577         struct page *page;
1578
1579         shmem_pseudo_vma_init(&pvma, info, index);
1580         page = alloc_page_vma(gfp, &pvma, 0);
1581         shmem_pseudo_vma_destroy(&pvma);
1582
1583         return page;
1584 }
1585
1586 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1587                 struct inode *inode,
1588                 pgoff_t index, bool huge)
1589 {
1590         struct shmem_inode_info *info = SHMEM_I(inode);
1591         struct page *page;
1592         int nr;
1593         int err = -ENOSPC;
1594
1595         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1596                 huge = false;
1597         nr = huge ? HPAGE_PMD_NR : 1;
1598
1599         if (!shmem_inode_acct_block(inode, nr))
1600                 goto failed;
1601
1602         if (huge)
1603                 page = shmem_alloc_hugepage(gfp, info, index);
1604         else
1605                 page = shmem_alloc_page(gfp, info, index);
1606         if (page) {
1607                 __SetPageLocked(page);
1608                 __SetPageSwapBacked(page);
1609                 return page;
1610         }
1611
1612         err = -ENOMEM;
1613         shmem_inode_unacct_blocks(inode, nr);
1614 failed:
1615         return ERR_PTR(err);
1616 }
1617
1618 /*
1619  * When a page is moved from swapcache to shmem filecache (either by the
1620  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1621  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1622  * ignorance of the mapping it belongs to.  If that mapping has special
1623  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1624  * we may need to copy to a suitable page before moving to filecache.
1625  *
1626  * In a future release, this may well be extended to respect cpuset and
1627  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1628  * but for now it is a simple matter of zone.
1629  */
1630 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1631 {
1632         return page_zonenum(page) > gfp_zone(gfp);
1633 }
1634
1635 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1636                                 struct shmem_inode_info *info, pgoff_t index)
1637 {
1638         struct page *oldpage, *newpage;
1639         struct address_space *swap_mapping;
1640         swp_entry_t entry;
1641         pgoff_t swap_index;
1642         int error;
1643
1644         oldpage = *pagep;
1645         entry.val = page_private(oldpage);
1646         swap_index = swp_offset(entry);
1647         swap_mapping = page_mapping(oldpage);
1648
1649         /*
1650          * We have arrived here because our zones are constrained, so don't
1651          * limit chance of success by further cpuset and node constraints.
1652          */
1653         gfp &= ~GFP_CONSTRAINT_MASK;
1654         newpage = shmem_alloc_page(gfp, info, index);
1655         if (!newpage)
1656                 return -ENOMEM;
1657
1658         get_page(newpage);
1659         copy_highpage(newpage, oldpage);
1660         flush_dcache_page(newpage);
1661
1662         __SetPageLocked(newpage);
1663         __SetPageSwapBacked(newpage);
1664         SetPageUptodate(newpage);
1665         set_page_private(newpage, entry.val);
1666         SetPageSwapCache(newpage);
1667
1668         /*
1669          * Our caller will very soon move newpage out of swapcache, but it's
1670          * a nice clean interface for us to replace oldpage by newpage there.
1671          */
1672         xa_lock_irq(&swap_mapping->i_pages);
1673         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1674         if (!error) {
1675                 mem_cgroup_migrate(oldpage, newpage);
1676                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1677                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1678         }
1679         xa_unlock_irq(&swap_mapping->i_pages);
1680
1681         if (unlikely(error)) {
1682                 /*
1683                  * Is this possible?  I think not, now that our callers check
1684                  * both PageSwapCache and page_private after getting page lock;
1685                  * but be defensive.  Reverse old to newpage for clear and free.
1686                  */
1687                 oldpage = newpage;
1688         } else {
1689                 lru_cache_add(newpage);
1690                 *pagep = newpage;
1691         }
1692
1693         ClearPageSwapCache(oldpage);
1694         set_page_private(oldpage, 0);
1695
1696         unlock_page(oldpage);
1697         put_page(oldpage);
1698         put_page(oldpage);
1699         return error;
1700 }
1701
1702 /*
1703  * Swap in the page pointed to by *pagep.
1704  * Caller has to make sure that *pagep contains a valid swapped page.
1705  * Returns 0 and the page in pagep if success. On failure, returns the
1706  * error code and NULL in *pagep.
1707  */
1708 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1709                              struct page **pagep, enum sgp_type sgp,
1710                              gfp_t gfp, struct vm_area_struct *vma,
1711                              vm_fault_t *fault_type)
1712 {
1713         struct address_space *mapping = inode->i_mapping;
1714         struct shmem_inode_info *info = SHMEM_I(inode);
1715         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1716         struct page *page;
1717         swp_entry_t swap;
1718         int error;
1719
1720         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1721         swap = radix_to_swp_entry(*pagep);
1722         *pagep = NULL;
1723
1724         /* Look it up and read it in.. */
1725         page = lookup_swap_cache(swap, NULL, 0);
1726         if (!page) {
1727                 /* Or update major stats only when swapin succeeds?? */
1728                 if (fault_type) {
1729                         *fault_type |= VM_FAULT_MAJOR;
1730                         count_vm_event(PGMAJFAULT);
1731                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1732                 }
1733                 /* Here we actually start the io */
1734                 page = shmem_swapin(swap, gfp, info, index);
1735                 if (!page) {
1736                         error = -ENOMEM;
1737                         goto failed;
1738                 }
1739         }
1740
1741         /* We have to do this with page locked to prevent races */
1742         lock_page(page);
1743         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1744             !shmem_confirm_swap(mapping, index, swap)) {
1745                 error = -EEXIST;
1746                 goto unlock;
1747         }
1748         if (!PageUptodate(page)) {
1749                 error = -EIO;
1750                 goto failed;
1751         }
1752         wait_on_page_writeback(page);
1753
1754         /*
1755          * Some architectures may have to restore extra metadata to the
1756          * physical page after reading from swap.
1757          */
1758         arch_swap_restore(swap, page);
1759
1760         if (shmem_should_replace_page(page, gfp)) {
1761                 error = shmem_replace_page(&page, gfp, info, index);
1762                 if (error)
1763                         goto failed;
1764         }
1765
1766         error = shmem_add_to_page_cache(page, mapping, index,
1767                                         swp_to_radix_entry(swap), gfp,
1768                                         charge_mm);
1769         if (error)
1770                 goto failed;
1771
1772         spin_lock_irq(&info->lock);
1773         info->swapped--;
1774         shmem_recalc_inode(inode);
1775         spin_unlock_irq(&info->lock);
1776
1777         if (sgp == SGP_WRITE)
1778                 mark_page_accessed(page);
1779
1780         delete_from_swap_cache(page);
1781         set_page_dirty(page);
1782         swap_free(swap);
1783
1784         *pagep = page;
1785         return 0;
1786 failed:
1787         if (!shmem_confirm_swap(mapping, index, swap))
1788                 error = -EEXIST;
1789 unlock:
1790         if (page) {
1791                 unlock_page(page);
1792                 put_page(page);
1793         }
1794
1795         return error;
1796 }
1797
1798 /*
1799  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1800  *
1801  * If we allocate a new one we do not mark it dirty. That's up to the
1802  * vm. If we swap it in we mark it dirty since we also free the swap
1803  * entry since a page cannot live in both the swap and page cache.
1804  *
1805  * vma, vmf, and fault_type are only supplied by shmem_fault:
1806  * otherwise they are NULL.
1807  */
1808 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1809         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1810         struct vm_area_struct *vma, struct vm_fault *vmf,
1811                         vm_fault_t *fault_type)
1812 {
1813         struct address_space *mapping = inode->i_mapping;
1814         struct shmem_inode_info *info = SHMEM_I(inode);
1815         struct shmem_sb_info *sbinfo;
1816         struct mm_struct *charge_mm;
1817         struct page *page;
1818         pgoff_t hindex = index;
1819         gfp_t huge_gfp;
1820         int error;
1821         int once = 0;
1822         int alloced = 0;
1823
1824         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1825                 return -EFBIG;
1826 repeat:
1827         if (sgp <= SGP_CACHE &&
1828             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1829                 return -EINVAL;
1830         }
1831
1832         sbinfo = SHMEM_SB(inode->i_sb);
1833         charge_mm = vma ? vma->vm_mm : NULL;
1834
1835         page = pagecache_get_page(mapping, index,
1836                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1837
1838         if (page && vma && userfaultfd_minor(vma)) {
1839                 if (!xa_is_value(page)) {
1840                         unlock_page(page);
1841                         put_page(page);
1842                 }
1843                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1844                 return 0;
1845         }
1846
1847         if (xa_is_value(page)) {
1848                 error = shmem_swapin_page(inode, index, &page,
1849                                           sgp, gfp, vma, fault_type);
1850                 if (error == -EEXIST)
1851                         goto repeat;
1852
1853                 *pagep = page;
1854                 return error;
1855         }
1856
1857         if (page) {
1858                 hindex = page->index;
1859                 if (sgp == SGP_WRITE)
1860                         mark_page_accessed(page);
1861                 if (PageUptodate(page))
1862                         goto out;
1863                 /* fallocated page */
1864                 if (sgp != SGP_READ)
1865                         goto clear;
1866                 unlock_page(page);
1867                 put_page(page);
1868         }
1869
1870         /*
1871          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1872          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1873          */
1874         *pagep = NULL;
1875         if (sgp == SGP_READ)
1876                 return 0;
1877         if (sgp == SGP_NOALLOC)
1878                 return -ENOENT;
1879
1880         /*
1881          * Fast cache lookup and swap lookup did not find it: allocate.
1882          */
1883
1884         if (vma && userfaultfd_missing(vma)) {
1885                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1886                 return 0;
1887         }
1888
1889         /* Never use a huge page for shmem_symlink() */
1890         if (S_ISLNK(inode->i_mode))
1891                 goto alloc_nohuge;
1892         if (!shmem_is_huge(vma, inode, index))
1893                 goto alloc_nohuge;
1894
1895         huge_gfp = vma_thp_gfp_mask(vma);
1896         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1897         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1898         if (IS_ERR(page)) {
1899 alloc_nohuge:
1900                 page = shmem_alloc_and_acct_page(gfp, inode,
1901                                                  index, false);
1902         }
1903         if (IS_ERR(page)) {
1904                 int retry = 5;
1905
1906                 error = PTR_ERR(page);
1907                 page = NULL;
1908                 if (error != -ENOSPC)
1909                         goto unlock;
1910                 /*
1911                  * Try to reclaim some space by splitting a huge page
1912                  * beyond i_size on the filesystem.
1913                  */
1914                 while (retry--) {
1915                         int ret;
1916
1917                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1918                         if (ret == SHRINK_STOP)
1919                                 break;
1920                         if (ret)
1921                                 goto alloc_nohuge;
1922                 }
1923                 goto unlock;
1924         }
1925
1926         if (PageTransHuge(page))
1927                 hindex = round_down(index, HPAGE_PMD_NR);
1928         else
1929                 hindex = index;
1930
1931         if (sgp == SGP_WRITE)
1932                 __SetPageReferenced(page);
1933
1934         error = shmem_add_to_page_cache(page, mapping, hindex,
1935                                         NULL, gfp & GFP_RECLAIM_MASK,
1936                                         charge_mm);
1937         if (error)
1938                 goto unacct;
1939         lru_cache_add(page);
1940
1941         spin_lock_irq(&info->lock);
1942         info->alloced += compound_nr(page);
1943         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1944         shmem_recalc_inode(inode);
1945         spin_unlock_irq(&info->lock);
1946         alloced = true;
1947
1948         if (PageTransHuge(page) &&
1949             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1950                         hindex + HPAGE_PMD_NR - 1) {
1951                 /*
1952                  * Part of the huge page is beyond i_size: subject
1953                  * to shrink under memory pressure.
1954                  */
1955                 spin_lock(&sbinfo->shrinklist_lock);
1956                 /*
1957                  * _careful to defend against unlocked access to
1958                  * ->shrink_list in shmem_unused_huge_shrink()
1959                  */
1960                 if (list_empty_careful(&info->shrinklist)) {
1961                         list_add_tail(&info->shrinklist,
1962                                       &sbinfo->shrinklist);
1963                         sbinfo->shrinklist_len++;
1964                 }
1965                 spin_unlock(&sbinfo->shrinklist_lock);
1966         }
1967
1968         /*
1969          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1970          */
1971         if (sgp == SGP_FALLOC)
1972                 sgp = SGP_WRITE;
1973 clear:
1974         /*
1975          * Let SGP_WRITE caller clear ends if write does not fill page;
1976          * but SGP_FALLOC on a page fallocated earlier must initialize
1977          * it now, lest undo on failure cancel our earlier guarantee.
1978          */
1979         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1980                 int i;
1981
1982                 for (i = 0; i < compound_nr(page); i++) {
1983                         clear_highpage(page + i);
1984                         flush_dcache_page(page + i);
1985                 }
1986                 SetPageUptodate(page);
1987         }
1988
1989         /* Perhaps the file has been truncated since we checked */
1990         if (sgp <= SGP_CACHE &&
1991             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1992                 if (alloced) {
1993                         ClearPageDirty(page);
1994                         delete_from_page_cache(page);
1995                         spin_lock_irq(&info->lock);
1996                         shmem_recalc_inode(inode);
1997                         spin_unlock_irq(&info->lock);
1998                 }
1999                 error = -EINVAL;
2000                 goto unlock;
2001         }
2002 out:
2003         *pagep = page + index - hindex;
2004         return 0;
2005
2006         /*
2007          * Error recovery.
2008          */
2009 unacct:
2010         shmem_inode_unacct_blocks(inode, compound_nr(page));
2011
2012         if (PageTransHuge(page)) {
2013                 unlock_page(page);
2014                 put_page(page);
2015                 goto alloc_nohuge;
2016         }
2017 unlock:
2018         if (page) {
2019                 unlock_page(page);
2020                 put_page(page);
2021         }
2022         if (error == -ENOSPC && !once++) {
2023                 spin_lock_irq(&info->lock);
2024                 shmem_recalc_inode(inode);
2025                 spin_unlock_irq(&info->lock);
2026                 goto repeat;
2027         }
2028         if (error == -EEXIST)
2029                 goto repeat;
2030         return error;
2031 }
2032
2033 /*
2034  * This is like autoremove_wake_function, but it removes the wait queue
2035  * entry unconditionally - even if something else had already woken the
2036  * target.
2037  */
2038 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2039 {
2040         int ret = default_wake_function(wait, mode, sync, key);
2041         list_del_init(&wait->entry);
2042         return ret;
2043 }
2044
2045 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2046 {
2047         struct vm_area_struct *vma = vmf->vma;
2048         struct inode *inode = file_inode(vma->vm_file);
2049         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2050         int err;
2051         vm_fault_t ret = VM_FAULT_LOCKED;
2052
2053         /*
2054          * Trinity finds that probing a hole which tmpfs is punching can
2055          * prevent the hole-punch from ever completing: which in turn
2056          * locks writers out with its hold on i_rwsem.  So refrain from
2057          * faulting pages into the hole while it's being punched.  Although
2058          * shmem_undo_range() does remove the additions, it may be unable to
2059          * keep up, as each new page needs its own unmap_mapping_range() call,
2060          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2061          *
2062          * It does not matter if we sometimes reach this check just before the
2063          * hole-punch begins, so that one fault then races with the punch:
2064          * we just need to make racing faults a rare case.
2065          *
2066          * The implementation below would be much simpler if we just used a
2067          * standard mutex or completion: but we cannot take i_rwsem in fault,
2068          * and bloating every shmem inode for this unlikely case would be sad.
2069          */
2070         if (unlikely(inode->i_private)) {
2071                 struct shmem_falloc *shmem_falloc;
2072
2073                 spin_lock(&inode->i_lock);
2074                 shmem_falloc = inode->i_private;
2075                 if (shmem_falloc &&
2076                     shmem_falloc->waitq &&
2077                     vmf->pgoff >= shmem_falloc->start &&
2078                     vmf->pgoff < shmem_falloc->next) {
2079                         struct file *fpin;
2080                         wait_queue_head_t *shmem_falloc_waitq;
2081                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2082
2083                         ret = VM_FAULT_NOPAGE;
2084                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2085                         if (fpin)
2086                                 ret = VM_FAULT_RETRY;
2087
2088                         shmem_falloc_waitq = shmem_falloc->waitq;
2089                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2090                                         TASK_UNINTERRUPTIBLE);
2091                         spin_unlock(&inode->i_lock);
2092                         schedule();
2093
2094                         /*
2095                          * shmem_falloc_waitq points into the shmem_fallocate()
2096                          * stack of the hole-punching task: shmem_falloc_waitq
2097                          * is usually invalid by the time we reach here, but
2098                          * finish_wait() does not dereference it in that case;
2099                          * though i_lock needed lest racing with wake_up_all().
2100                          */
2101                         spin_lock(&inode->i_lock);
2102                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2103                         spin_unlock(&inode->i_lock);
2104
2105                         if (fpin)
2106                                 fput(fpin);
2107                         return ret;
2108                 }
2109                 spin_unlock(&inode->i_lock);
2110         }
2111
2112         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2113                                   gfp, vma, vmf, &ret);
2114         if (err)
2115                 return vmf_error(err);
2116         return ret;
2117 }
2118
2119 unsigned long shmem_get_unmapped_area(struct file *file,
2120                                       unsigned long uaddr, unsigned long len,
2121                                       unsigned long pgoff, unsigned long flags)
2122 {
2123         unsigned long (*get_area)(struct file *,
2124                 unsigned long, unsigned long, unsigned long, unsigned long);
2125         unsigned long addr;
2126         unsigned long offset;
2127         unsigned long inflated_len;
2128         unsigned long inflated_addr;
2129         unsigned long inflated_offset;
2130
2131         if (len > TASK_SIZE)
2132                 return -ENOMEM;
2133
2134         get_area = current->mm->get_unmapped_area;
2135         addr = get_area(file, uaddr, len, pgoff, flags);
2136
2137         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2138                 return addr;
2139         if (IS_ERR_VALUE(addr))
2140                 return addr;
2141         if (addr & ~PAGE_MASK)
2142                 return addr;
2143         if (addr > TASK_SIZE - len)
2144                 return addr;
2145
2146         if (shmem_huge == SHMEM_HUGE_DENY)
2147                 return addr;
2148         if (len < HPAGE_PMD_SIZE)
2149                 return addr;
2150         if (flags & MAP_FIXED)
2151                 return addr;
2152         /*
2153          * Our priority is to support MAP_SHARED mapped hugely;
2154          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2155          * But if caller specified an address hint and we allocated area there
2156          * successfully, respect that as before.
2157          */
2158         if (uaddr == addr)
2159                 return addr;
2160
2161         if (shmem_huge != SHMEM_HUGE_FORCE) {
2162                 struct super_block *sb;
2163
2164                 if (file) {
2165                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2166                         sb = file_inode(file)->i_sb;
2167                 } else {
2168                         /*
2169                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2170                          * for "/dev/zero", to create a shared anonymous object.
2171                          */
2172                         if (IS_ERR(shm_mnt))
2173                                 return addr;
2174                         sb = shm_mnt->mnt_sb;
2175                 }
2176                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2177                         return addr;
2178         }
2179
2180         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2181         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2182                 return addr;
2183         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2184                 return addr;
2185
2186         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2187         if (inflated_len > TASK_SIZE)
2188                 return addr;
2189         if (inflated_len < len)
2190                 return addr;
2191
2192         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2193         if (IS_ERR_VALUE(inflated_addr))
2194                 return addr;
2195         if (inflated_addr & ~PAGE_MASK)
2196                 return addr;
2197
2198         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2199         inflated_addr += offset - inflated_offset;
2200         if (inflated_offset > offset)
2201                 inflated_addr += HPAGE_PMD_SIZE;
2202
2203         if (inflated_addr > TASK_SIZE - len)
2204                 return addr;
2205         return inflated_addr;
2206 }
2207
2208 #ifdef CONFIG_NUMA
2209 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2210 {
2211         struct inode *inode = file_inode(vma->vm_file);
2212         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2213 }
2214
2215 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2216                                           unsigned long addr)
2217 {
2218         struct inode *inode = file_inode(vma->vm_file);
2219         pgoff_t index;
2220
2221         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2222         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2223 }
2224 #endif
2225
2226 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2227 {
2228         struct inode *inode = file_inode(file);
2229         struct shmem_inode_info *info = SHMEM_I(inode);
2230         int retval = -ENOMEM;
2231
2232         /*
2233          * What serializes the accesses to info->flags?
2234          * ipc_lock_object() when called from shmctl_do_lock(),
2235          * no serialization needed when called from shm_destroy().
2236          */
2237         if (lock && !(info->flags & VM_LOCKED)) {
2238                 if (!user_shm_lock(inode->i_size, ucounts))
2239                         goto out_nomem;
2240                 info->flags |= VM_LOCKED;
2241                 mapping_set_unevictable(file->f_mapping);
2242         }
2243         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2244                 user_shm_unlock(inode->i_size, ucounts);
2245                 info->flags &= ~VM_LOCKED;
2246                 mapping_clear_unevictable(file->f_mapping);
2247         }
2248         retval = 0;
2249
2250 out_nomem:
2251         return retval;
2252 }
2253
2254 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2255 {
2256         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2257         int ret;
2258
2259         ret = seal_check_future_write(info->seals, vma);
2260         if (ret)
2261                 return ret;
2262
2263         /* arm64 - allow memory tagging on RAM-based files */
2264         vma->vm_flags |= VM_MTE_ALLOWED;
2265
2266         file_accessed(file);
2267         vma->vm_ops = &shmem_vm_ops;
2268         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2269                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2270                         (vma->vm_end & HPAGE_PMD_MASK)) {
2271                 khugepaged_enter(vma, vma->vm_flags);
2272         }
2273         return 0;
2274 }
2275
2276 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2277                                      umode_t mode, dev_t dev, unsigned long flags)
2278 {
2279         struct inode *inode;
2280         struct shmem_inode_info *info;
2281         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2282         ino_t ino;
2283
2284         if (shmem_reserve_inode(sb, &ino))
2285                 return NULL;
2286
2287         inode = new_inode(sb);
2288         if (inode) {
2289                 inode->i_ino = ino;
2290                 inode_init_owner(&init_user_ns, inode, dir, mode);
2291                 inode->i_blocks = 0;
2292                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2293                 inode->i_generation = prandom_u32();
2294                 info = SHMEM_I(inode);
2295                 memset(info, 0, (char *)inode - (char *)info);
2296                 spin_lock_init(&info->lock);
2297                 atomic_set(&info->stop_eviction, 0);
2298                 info->seals = F_SEAL_SEAL;
2299                 info->flags = flags & VM_NORESERVE;
2300                 INIT_LIST_HEAD(&info->shrinklist);
2301                 INIT_LIST_HEAD(&info->swaplist);
2302                 simple_xattrs_init(&info->xattrs);
2303                 cache_no_acl(inode);
2304
2305                 switch (mode & S_IFMT) {
2306                 default:
2307                         inode->i_op = &shmem_special_inode_operations;
2308                         init_special_inode(inode, mode, dev);
2309                         break;
2310                 case S_IFREG:
2311                         inode->i_mapping->a_ops = &shmem_aops;
2312                         inode->i_op = &shmem_inode_operations;
2313                         inode->i_fop = &shmem_file_operations;
2314                         mpol_shared_policy_init(&info->policy,
2315                                                  shmem_get_sbmpol(sbinfo));
2316                         break;
2317                 case S_IFDIR:
2318                         inc_nlink(inode);
2319                         /* Some things misbehave if size == 0 on a directory */
2320                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2321                         inode->i_op = &shmem_dir_inode_operations;
2322                         inode->i_fop = &simple_dir_operations;
2323                         break;
2324                 case S_IFLNK:
2325                         /*
2326                          * Must not load anything in the rbtree,
2327                          * mpol_free_shared_policy will not be called.
2328                          */
2329                         mpol_shared_policy_init(&info->policy, NULL);
2330                         break;
2331                 }
2332
2333                 lockdep_annotate_inode_mutex_key(inode);
2334         } else
2335                 shmem_free_inode(sb);
2336         return inode;
2337 }
2338
2339 #ifdef CONFIG_USERFAULTFD
2340 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2341                            pmd_t *dst_pmd,
2342                            struct vm_area_struct *dst_vma,
2343                            unsigned long dst_addr,
2344                            unsigned long src_addr,
2345                            bool zeropage,
2346                            struct page **pagep)
2347 {
2348         struct inode *inode = file_inode(dst_vma->vm_file);
2349         struct shmem_inode_info *info = SHMEM_I(inode);
2350         struct address_space *mapping = inode->i_mapping;
2351         gfp_t gfp = mapping_gfp_mask(mapping);
2352         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2353         void *page_kaddr;
2354         struct page *page;
2355         int ret;
2356         pgoff_t max_off;
2357
2358         if (!shmem_inode_acct_block(inode, 1)) {
2359                 /*
2360                  * We may have got a page, returned -ENOENT triggering a retry,
2361                  * and now we find ourselves with -ENOMEM. Release the page, to
2362                  * avoid a BUG_ON in our caller.
2363                  */
2364                 if (unlikely(*pagep)) {
2365                         put_page(*pagep);
2366                         *pagep = NULL;
2367                 }
2368                 return -ENOMEM;
2369         }
2370
2371         if (!*pagep) {
2372                 ret = -ENOMEM;
2373                 page = shmem_alloc_page(gfp, info, pgoff);
2374                 if (!page)
2375                         goto out_unacct_blocks;
2376
2377                 if (!zeropage) {        /* COPY */
2378                         page_kaddr = kmap_atomic(page);
2379                         ret = copy_from_user(page_kaddr,
2380                                              (const void __user *)src_addr,
2381                                              PAGE_SIZE);
2382                         kunmap_atomic(page_kaddr);
2383
2384                         /* fallback to copy_from_user outside mmap_lock */
2385                         if (unlikely(ret)) {
2386                                 *pagep = page;
2387                                 ret = -ENOENT;
2388                                 /* don't free the page */
2389                                 goto out_unacct_blocks;
2390                         }
2391                 } else {                /* ZEROPAGE */
2392                         clear_highpage(page);
2393                 }
2394         } else {
2395                 page = *pagep;
2396                 *pagep = NULL;
2397         }
2398
2399         VM_BUG_ON(PageLocked(page));
2400         VM_BUG_ON(PageSwapBacked(page));
2401         __SetPageLocked(page);
2402         __SetPageSwapBacked(page);
2403         __SetPageUptodate(page);
2404
2405         ret = -EFAULT;
2406         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2407         if (unlikely(pgoff >= max_off))
2408                 goto out_release;
2409
2410         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2411                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2412         if (ret)
2413                 goto out_release;
2414
2415         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2416                                        page, true, false);
2417         if (ret)
2418                 goto out_delete_from_cache;
2419
2420         spin_lock_irq(&info->lock);
2421         info->alloced++;
2422         inode->i_blocks += BLOCKS_PER_PAGE;
2423         shmem_recalc_inode(inode);
2424         spin_unlock_irq(&info->lock);
2425
2426         SetPageDirty(page);
2427         unlock_page(page);
2428         return 0;
2429 out_delete_from_cache:
2430         delete_from_page_cache(page);
2431 out_release:
2432         unlock_page(page);
2433         put_page(page);
2434 out_unacct_blocks:
2435         shmem_inode_unacct_blocks(inode, 1);
2436         return ret;
2437 }
2438 #endif /* CONFIG_USERFAULTFD */
2439
2440 #ifdef CONFIG_TMPFS
2441 static const struct inode_operations shmem_symlink_inode_operations;
2442 static const struct inode_operations shmem_short_symlink_operations;
2443
2444 #ifdef CONFIG_TMPFS_XATTR
2445 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2446 #else
2447 #define shmem_initxattrs NULL
2448 #endif
2449
2450 static int
2451 shmem_write_begin(struct file *file, struct address_space *mapping,
2452                         loff_t pos, unsigned len, unsigned flags,
2453                         struct page **pagep, void **fsdata)
2454 {
2455         struct inode *inode = mapping->host;
2456         struct shmem_inode_info *info = SHMEM_I(inode);
2457         pgoff_t index = pos >> PAGE_SHIFT;
2458
2459         /* i_rwsem is held by caller */
2460         if (unlikely(info->seals & (F_SEAL_GROW |
2461                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2462                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2463                         return -EPERM;
2464                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2465                         return -EPERM;
2466         }
2467
2468         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2469 }
2470
2471 static int
2472 shmem_write_end(struct file *file, struct address_space *mapping,
2473                         loff_t pos, unsigned len, unsigned copied,
2474                         struct page *page, void *fsdata)
2475 {
2476         struct inode *inode = mapping->host;
2477
2478         if (pos + copied > inode->i_size)
2479                 i_size_write(inode, pos + copied);
2480
2481         if (!PageUptodate(page)) {
2482                 struct page *head = compound_head(page);
2483                 if (PageTransCompound(page)) {
2484                         int i;
2485
2486                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2487                                 if (head + i == page)
2488                                         continue;
2489                                 clear_highpage(head + i);
2490                                 flush_dcache_page(head + i);
2491                         }
2492                 }
2493                 if (copied < PAGE_SIZE) {
2494                         unsigned from = pos & (PAGE_SIZE - 1);
2495                         zero_user_segments(page, 0, from,
2496                                         from + copied, PAGE_SIZE);
2497                 }
2498                 SetPageUptodate(head);
2499         }
2500         set_page_dirty(page);
2501         unlock_page(page);
2502         put_page(page);
2503
2504         return copied;
2505 }
2506
2507 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2508 {
2509         struct file *file = iocb->ki_filp;
2510         struct inode *inode = file_inode(file);
2511         struct address_space *mapping = inode->i_mapping;
2512         pgoff_t index;
2513         unsigned long offset;
2514         enum sgp_type sgp = SGP_READ;
2515         int error = 0;
2516         ssize_t retval = 0;
2517         loff_t *ppos = &iocb->ki_pos;
2518
2519         /*
2520          * Might this read be for a stacking filesystem?  Then when reading
2521          * holes of a sparse file, we actually need to allocate those pages,
2522          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2523          */
2524         if (!iter_is_iovec(to))
2525                 sgp = SGP_CACHE;
2526
2527         index = *ppos >> PAGE_SHIFT;
2528         offset = *ppos & ~PAGE_MASK;
2529
2530         for (;;) {
2531                 struct page *page = NULL;
2532                 pgoff_t end_index;
2533                 unsigned long nr, ret;
2534                 loff_t i_size = i_size_read(inode);
2535
2536                 end_index = i_size >> PAGE_SHIFT;
2537                 if (index > end_index)
2538                         break;
2539                 if (index == end_index) {
2540                         nr = i_size & ~PAGE_MASK;
2541                         if (nr <= offset)
2542                                 break;
2543                 }
2544
2545                 error = shmem_getpage(inode, index, &page, sgp);
2546                 if (error) {
2547                         if (error == -EINVAL)
2548                                 error = 0;
2549                         break;
2550                 }
2551                 if (page) {
2552                         if (sgp == SGP_CACHE)
2553                                 set_page_dirty(page);
2554                         unlock_page(page);
2555                 }
2556
2557                 /*
2558                  * We must evaluate after, since reads (unlike writes)
2559                  * are called without i_rwsem protection against truncate
2560                  */
2561                 nr = PAGE_SIZE;
2562                 i_size = i_size_read(inode);
2563                 end_index = i_size >> PAGE_SHIFT;
2564                 if (index == end_index) {
2565                         nr = i_size & ~PAGE_MASK;
2566                         if (nr <= offset) {
2567                                 if (page)
2568                                         put_page(page);
2569                                 break;
2570                         }
2571                 }
2572                 nr -= offset;
2573
2574                 if (page) {
2575                         /*
2576                          * If users can be writing to this page using arbitrary
2577                          * virtual addresses, take care about potential aliasing
2578                          * before reading the page on the kernel side.
2579                          */
2580                         if (mapping_writably_mapped(mapping))
2581                                 flush_dcache_page(page);
2582                         /*
2583                          * Mark the page accessed if we read the beginning.
2584                          */
2585                         if (!offset)
2586                                 mark_page_accessed(page);
2587                 } else {
2588                         page = ZERO_PAGE(0);
2589                         get_page(page);
2590                 }
2591
2592                 /*
2593                  * Ok, we have the page, and it's up-to-date, so
2594                  * now we can copy it to user space...
2595                  */
2596                 ret = copy_page_to_iter(page, offset, nr, to);
2597                 retval += ret;
2598                 offset += ret;
2599                 index += offset >> PAGE_SHIFT;
2600                 offset &= ~PAGE_MASK;
2601
2602                 put_page(page);
2603                 if (!iov_iter_count(to))
2604                         break;
2605                 if (ret < nr) {
2606                         error = -EFAULT;
2607                         break;
2608                 }
2609                 cond_resched();
2610         }
2611
2612         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2613         file_accessed(file);
2614         return retval ? retval : error;
2615 }
2616
2617 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2618 {
2619         struct address_space *mapping = file->f_mapping;
2620         struct inode *inode = mapping->host;
2621
2622         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2623                 return generic_file_llseek_size(file, offset, whence,
2624                                         MAX_LFS_FILESIZE, i_size_read(inode));
2625         if (offset < 0)
2626                 return -ENXIO;
2627
2628         inode_lock(inode);
2629         /* We're holding i_rwsem so we can access i_size directly */
2630         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2631         if (offset >= 0)
2632                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2633         inode_unlock(inode);
2634         return offset;
2635 }
2636
2637 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2638                                                          loff_t len)
2639 {
2640         struct inode *inode = file_inode(file);
2641         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2642         struct shmem_inode_info *info = SHMEM_I(inode);
2643         struct shmem_falloc shmem_falloc;
2644         pgoff_t start, index, end, undo_fallocend;
2645         int error;
2646
2647         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2648                 return -EOPNOTSUPP;
2649
2650         inode_lock(inode);
2651
2652         if (mode & FALLOC_FL_PUNCH_HOLE) {
2653                 struct address_space *mapping = file->f_mapping;
2654                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2655                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2656                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2657
2658                 /* protected by i_rwsem */
2659                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2660                         error = -EPERM;
2661                         goto out;
2662                 }
2663
2664                 shmem_falloc.waitq = &shmem_falloc_waitq;
2665                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2666                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2667                 spin_lock(&inode->i_lock);
2668                 inode->i_private = &shmem_falloc;
2669                 spin_unlock(&inode->i_lock);
2670
2671                 if ((u64)unmap_end > (u64)unmap_start)
2672                         unmap_mapping_range(mapping, unmap_start,
2673                                             1 + unmap_end - unmap_start, 0);
2674                 shmem_truncate_range(inode, offset, offset + len - 1);
2675                 /* No need to unmap again: hole-punching leaves COWed pages */
2676
2677                 spin_lock(&inode->i_lock);
2678                 inode->i_private = NULL;
2679                 wake_up_all(&shmem_falloc_waitq);
2680                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2681                 spin_unlock(&inode->i_lock);
2682                 error = 0;
2683                 goto out;
2684         }
2685
2686         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2687         error = inode_newsize_ok(inode, offset + len);
2688         if (error)
2689                 goto out;
2690
2691         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2692                 error = -EPERM;
2693                 goto out;
2694         }
2695
2696         start = offset >> PAGE_SHIFT;
2697         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2698         /* Try to avoid a swapstorm if len is impossible to satisfy */
2699         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2700                 error = -ENOSPC;
2701                 goto out;
2702         }
2703
2704         shmem_falloc.waitq = NULL;
2705         shmem_falloc.start = start;
2706         shmem_falloc.next  = start;
2707         shmem_falloc.nr_falloced = 0;
2708         shmem_falloc.nr_unswapped = 0;
2709         spin_lock(&inode->i_lock);
2710         inode->i_private = &shmem_falloc;
2711         spin_unlock(&inode->i_lock);
2712
2713         /*
2714          * info->fallocend is only relevant when huge pages might be
2715          * involved: to prevent split_huge_page() freeing fallocated
2716          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2717          */
2718         undo_fallocend = info->fallocend;
2719         if (info->fallocend < end)
2720                 info->fallocend = end;
2721
2722         for (index = start; index < end; ) {
2723                 struct page *page;
2724
2725                 /*
2726                  * Good, the fallocate(2) manpage permits EINTR: we may have
2727                  * been interrupted because we are using up too much memory.
2728                  */
2729                 if (signal_pending(current))
2730                         error = -EINTR;
2731                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2732                         error = -ENOMEM;
2733                 else
2734                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2735                 if (error) {
2736                         info->fallocend = undo_fallocend;
2737                         /* Remove the !PageUptodate pages we added */
2738                         if (index > start) {
2739                                 shmem_undo_range(inode,
2740                                     (loff_t)start << PAGE_SHIFT,
2741                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2742                         }
2743                         goto undone;
2744                 }
2745
2746                 index++;
2747                 /*
2748                  * Here is a more important optimization than it appears:
2749                  * a second SGP_FALLOC on the same huge page will clear it,
2750                  * making it PageUptodate and un-undoable if we fail later.
2751                  */
2752                 if (PageTransCompound(page)) {
2753                         index = round_up(index, HPAGE_PMD_NR);
2754                         /* Beware 32-bit wraparound */
2755                         if (!index)
2756                                 index--;
2757                 }
2758
2759                 /*
2760                  * Inform shmem_writepage() how far we have reached.
2761                  * No need for lock or barrier: we have the page lock.
2762                  */
2763                 if (!PageUptodate(page))
2764                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2765                 shmem_falloc.next = index;
2766
2767                 /*
2768                  * If !PageUptodate, leave it that way so that freeable pages
2769                  * can be recognized if we need to rollback on error later.
2770                  * But set_page_dirty so that memory pressure will swap rather
2771                  * than free the pages we are allocating (and SGP_CACHE pages
2772                  * might still be clean: we now need to mark those dirty too).
2773                  */
2774                 set_page_dirty(page);
2775                 unlock_page(page);
2776                 put_page(page);
2777                 cond_resched();
2778         }
2779
2780         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2781                 i_size_write(inode, offset + len);
2782         inode->i_ctime = current_time(inode);
2783 undone:
2784         spin_lock(&inode->i_lock);
2785         inode->i_private = NULL;
2786         spin_unlock(&inode->i_lock);
2787 out:
2788         inode_unlock(inode);
2789         return error;
2790 }
2791
2792 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2793 {
2794         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2795
2796         buf->f_type = TMPFS_MAGIC;
2797         buf->f_bsize = PAGE_SIZE;
2798         buf->f_namelen = NAME_MAX;
2799         if (sbinfo->max_blocks) {
2800                 buf->f_blocks = sbinfo->max_blocks;
2801                 buf->f_bavail =
2802                 buf->f_bfree  = sbinfo->max_blocks -
2803                                 percpu_counter_sum(&sbinfo->used_blocks);
2804         }
2805         if (sbinfo->max_inodes) {
2806                 buf->f_files = sbinfo->max_inodes;
2807                 buf->f_ffree = sbinfo->free_inodes;
2808         }
2809         /* else leave those fields 0 like simple_statfs */
2810
2811         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2812
2813         return 0;
2814 }
2815
2816 /*
2817  * File creation. Allocate an inode, and we're done..
2818  */
2819 static int
2820 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2821             struct dentry *dentry, umode_t mode, dev_t dev)
2822 {
2823         struct inode *inode;
2824         int error = -ENOSPC;
2825
2826         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2827         if (inode) {
2828                 error = simple_acl_create(dir, inode);
2829                 if (error)
2830                         goto out_iput;
2831                 error = security_inode_init_security(inode, dir,
2832                                                      &dentry->d_name,
2833                                                      shmem_initxattrs, NULL);
2834                 if (error && error != -EOPNOTSUPP)
2835                         goto out_iput;
2836
2837                 error = 0;
2838                 dir->i_size += BOGO_DIRENT_SIZE;
2839                 dir->i_ctime = dir->i_mtime = current_time(dir);
2840                 d_instantiate(dentry, inode);
2841                 dget(dentry); /* Extra count - pin the dentry in core */
2842         }
2843         return error;
2844 out_iput:
2845         iput(inode);
2846         return error;
2847 }
2848
2849 static int
2850 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2851               struct dentry *dentry, umode_t mode)
2852 {
2853         struct inode *inode;
2854         int error = -ENOSPC;
2855
2856         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2857         if (inode) {
2858                 error = security_inode_init_security(inode, dir,
2859                                                      NULL,
2860                                                      shmem_initxattrs, NULL);
2861                 if (error && error != -EOPNOTSUPP)
2862                         goto out_iput;
2863                 error = simple_acl_create(dir, inode);
2864                 if (error)
2865                         goto out_iput;
2866                 d_tmpfile(dentry, inode);
2867         }
2868         return error;
2869 out_iput:
2870         iput(inode);
2871         return error;
2872 }
2873
2874 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2875                        struct dentry *dentry, umode_t mode)
2876 {
2877         int error;
2878
2879         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2880                                  mode | S_IFDIR, 0)))
2881                 return error;
2882         inc_nlink(dir);
2883         return 0;
2884 }
2885
2886 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2887                         struct dentry *dentry, umode_t mode, bool excl)
2888 {
2889         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2890 }
2891
2892 /*
2893  * Link a file..
2894  */
2895 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2896 {
2897         struct inode *inode = d_inode(old_dentry);
2898         int ret = 0;
2899
2900         /*
2901          * No ordinary (disk based) filesystem counts links as inodes;
2902          * but each new link needs a new dentry, pinning lowmem, and
2903          * tmpfs dentries cannot be pruned until they are unlinked.
2904          * But if an O_TMPFILE file is linked into the tmpfs, the
2905          * first link must skip that, to get the accounting right.
2906          */
2907         if (inode->i_nlink) {
2908                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2909                 if (ret)
2910                         goto out;
2911         }
2912
2913         dir->i_size += BOGO_DIRENT_SIZE;
2914         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2915         inc_nlink(inode);
2916         ihold(inode);   /* New dentry reference */
2917         dget(dentry);           /* Extra pinning count for the created dentry */
2918         d_instantiate(dentry, inode);
2919 out:
2920         return ret;
2921 }
2922
2923 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2924 {
2925         struct inode *inode = d_inode(dentry);
2926
2927         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2928                 shmem_free_inode(inode->i_sb);
2929
2930         dir->i_size -= BOGO_DIRENT_SIZE;
2931         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2932         drop_nlink(inode);
2933         dput(dentry);   /* Undo the count from "create" - this does all the work */
2934         return 0;
2935 }
2936
2937 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2938 {
2939         if (!simple_empty(dentry))
2940                 return -ENOTEMPTY;
2941
2942         drop_nlink(d_inode(dentry));
2943         drop_nlink(dir);
2944         return shmem_unlink(dir, dentry);
2945 }
2946
2947 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2948 {
2949         bool old_is_dir = d_is_dir(old_dentry);
2950         bool new_is_dir = d_is_dir(new_dentry);
2951
2952         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2953                 if (old_is_dir) {
2954                         drop_nlink(old_dir);
2955                         inc_nlink(new_dir);
2956                 } else {
2957                         drop_nlink(new_dir);
2958                         inc_nlink(old_dir);
2959                 }
2960         }
2961         old_dir->i_ctime = old_dir->i_mtime =
2962         new_dir->i_ctime = new_dir->i_mtime =
2963         d_inode(old_dentry)->i_ctime =
2964         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2965
2966         return 0;
2967 }
2968
2969 static int shmem_whiteout(struct user_namespace *mnt_userns,
2970                           struct inode *old_dir, struct dentry *old_dentry)
2971 {
2972         struct dentry *whiteout;
2973         int error;
2974
2975         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2976         if (!whiteout)
2977                 return -ENOMEM;
2978
2979         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2980                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2981         dput(whiteout);
2982         if (error)
2983                 return error;
2984
2985         /*
2986          * Cheat and hash the whiteout while the old dentry is still in
2987          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2988          *
2989          * d_lookup() will consistently find one of them at this point,
2990          * not sure which one, but that isn't even important.
2991          */
2992         d_rehash(whiteout);
2993         return 0;
2994 }
2995
2996 /*
2997  * The VFS layer already does all the dentry stuff for rename,
2998  * we just have to decrement the usage count for the target if
2999  * it exists so that the VFS layer correctly free's it when it
3000  * gets overwritten.
3001  */
3002 static int shmem_rename2(struct user_namespace *mnt_userns,
3003                          struct inode *old_dir, struct dentry *old_dentry,
3004                          struct inode *new_dir, struct dentry *new_dentry,
3005                          unsigned int flags)
3006 {
3007         struct inode *inode = d_inode(old_dentry);
3008         int they_are_dirs = S_ISDIR(inode->i_mode);
3009
3010         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3011                 return -EINVAL;
3012
3013         if (flags & RENAME_EXCHANGE)
3014                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3015
3016         if (!simple_empty(new_dentry))
3017                 return -ENOTEMPTY;
3018
3019         if (flags & RENAME_WHITEOUT) {
3020                 int error;
3021
3022                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3023                 if (error)
3024                         return error;
3025         }
3026
3027         if (d_really_is_positive(new_dentry)) {
3028                 (void) shmem_unlink(new_dir, new_dentry);
3029                 if (they_are_dirs) {
3030                         drop_nlink(d_inode(new_dentry));
3031                         drop_nlink(old_dir);
3032                 }
3033         } else if (they_are_dirs) {
3034                 drop_nlink(old_dir);
3035                 inc_nlink(new_dir);
3036         }
3037
3038         old_dir->i_size -= BOGO_DIRENT_SIZE;
3039         new_dir->i_size += BOGO_DIRENT_SIZE;
3040         old_dir->i_ctime = old_dir->i_mtime =
3041         new_dir->i_ctime = new_dir->i_mtime =
3042         inode->i_ctime = current_time(old_dir);
3043         return 0;
3044 }
3045
3046 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3047                          struct dentry *dentry, const char *symname)
3048 {
3049         int error;
3050         int len;
3051         struct inode *inode;
3052         struct page *page;
3053
3054         len = strlen(symname) + 1;
3055         if (len > PAGE_SIZE)
3056                 return -ENAMETOOLONG;
3057
3058         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3059                                 VM_NORESERVE);
3060         if (!inode)
3061                 return -ENOSPC;
3062
3063         error = security_inode_init_security(inode, dir, &dentry->d_name,
3064                                              shmem_initxattrs, NULL);
3065         if (error && error != -EOPNOTSUPP) {
3066                 iput(inode);
3067                 return error;
3068         }
3069
3070         inode->i_size = len-1;
3071         if (len <= SHORT_SYMLINK_LEN) {
3072                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3073                 if (!inode->i_link) {
3074                         iput(inode);
3075                         return -ENOMEM;
3076                 }
3077                 inode->i_op = &shmem_short_symlink_operations;
3078         } else {
3079                 inode_nohighmem(inode);
3080                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3081                 if (error) {
3082                         iput(inode);
3083                         return error;
3084                 }
3085                 inode->i_mapping->a_ops = &shmem_aops;
3086                 inode->i_op = &shmem_symlink_inode_operations;
3087                 memcpy(page_address(page), symname, len);
3088                 SetPageUptodate(page);
3089                 set_page_dirty(page);
3090                 unlock_page(page);
3091                 put_page(page);
3092         }
3093         dir->i_size += BOGO_DIRENT_SIZE;
3094         dir->i_ctime = dir->i_mtime = current_time(dir);
3095         d_instantiate(dentry, inode);
3096         dget(dentry);
3097         return 0;
3098 }
3099
3100 static void shmem_put_link(void *arg)
3101 {
3102         mark_page_accessed(arg);
3103         put_page(arg);
3104 }
3105
3106 static const char *shmem_get_link(struct dentry *dentry,
3107                                   struct inode *inode,
3108                                   struct delayed_call *done)
3109 {
3110         struct page *page = NULL;
3111         int error;
3112         if (!dentry) {
3113                 page = find_get_page(inode->i_mapping, 0);
3114                 if (!page)
3115                         return ERR_PTR(-ECHILD);
3116                 if (!PageUptodate(page)) {
3117                         put_page(page);
3118                         return ERR_PTR(-ECHILD);
3119                 }
3120         } else {
3121                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3122                 if (error)
3123                         return ERR_PTR(error);
3124                 unlock_page(page);
3125         }
3126         set_delayed_call(done, shmem_put_link, page);
3127         return page_address(page);
3128 }
3129
3130 #ifdef CONFIG_TMPFS_XATTR
3131 /*
3132  * Superblocks without xattr inode operations may get some security.* xattr
3133  * support from the LSM "for free". As soon as we have any other xattrs
3134  * like ACLs, we also need to implement the security.* handlers at
3135  * filesystem level, though.
3136  */
3137
3138 /*
3139  * Callback for security_inode_init_security() for acquiring xattrs.
3140  */
3141 static int shmem_initxattrs(struct inode *inode,
3142                             const struct xattr *xattr_array,
3143                             void *fs_info)
3144 {
3145         struct shmem_inode_info *info = SHMEM_I(inode);
3146         const struct xattr *xattr;
3147         struct simple_xattr *new_xattr;
3148         size_t len;
3149
3150         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3151                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3152                 if (!new_xattr)
3153                         return -ENOMEM;
3154
3155                 len = strlen(xattr->name) + 1;
3156                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3157                                           GFP_KERNEL);
3158                 if (!new_xattr->name) {
3159                         kvfree(new_xattr);
3160                         return -ENOMEM;
3161                 }
3162
3163                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3164                        XATTR_SECURITY_PREFIX_LEN);
3165                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3166                        xattr->name, len);
3167
3168                 simple_xattr_list_add(&info->xattrs, new_xattr);
3169         }
3170
3171         return 0;
3172 }
3173
3174 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3175                                    struct dentry *unused, struct inode *inode,
3176                                    const char *name, void *buffer, size_t size)
3177 {
3178         struct shmem_inode_info *info = SHMEM_I(inode);
3179
3180         name = xattr_full_name(handler, name);
3181         return simple_xattr_get(&info->xattrs, name, buffer, size);
3182 }
3183
3184 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3185                                    struct user_namespace *mnt_userns,
3186                                    struct dentry *unused, struct inode *inode,
3187                                    const char *name, const void *value,
3188                                    size_t size, int flags)
3189 {
3190         struct shmem_inode_info *info = SHMEM_I(inode);
3191
3192         name = xattr_full_name(handler, name);
3193         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3194 }
3195
3196 static const struct xattr_handler shmem_security_xattr_handler = {
3197         .prefix = XATTR_SECURITY_PREFIX,
3198         .get = shmem_xattr_handler_get,
3199         .set = shmem_xattr_handler_set,
3200 };
3201
3202 static const struct xattr_handler shmem_trusted_xattr_handler = {
3203         .prefix = XATTR_TRUSTED_PREFIX,
3204         .get = shmem_xattr_handler_get,
3205         .set = shmem_xattr_handler_set,
3206 };
3207
3208 static const struct xattr_handler *shmem_xattr_handlers[] = {
3209 #ifdef CONFIG_TMPFS_POSIX_ACL
3210         &posix_acl_access_xattr_handler,
3211         &posix_acl_default_xattr_handler,
3212 #endif
3213         &shmem_security_xattr_handler,
3214         &shmem_trusted_xattr_handler,
3215         NULL
3216 };
3217
3218 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3219 {
3220         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3221         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3222 }
3223 #endif /* CONFIG_TMPFS_XATTR */
3224
3225 static const struct inode_operations shmem_short_symlink_operations = {
3226         .get_link       = simple_get_link,
3227 #ifdef CONFIG_TMPFS_XATTR
3228         .listxattr      = shmem_listxattr,
3229 #endif
3230 };
3231
3232 static const struct inode_operations shmem_symlink_inode_operations = {
3233         .get_link       = shmem_get_link,
3234 #ifdef CONFIG_TMPFS_XATTR
3235         .listxattr      = shmem_listxattr,
3236 #endif
3237 };
3238
3239 static struct dentry *shmem_get_parent(struct dentry *child)
3240 {
3241         return ERR_PTR(-ESTALE);
3242 }
3243
3244 static int shmem_match(struct inode *ino, void *vfh)
3245 {
3246         __u32 *fh = vfh;
3247         __u64 inum = fh[2];
3248         inum = (inum << 32) | fh[1];
3249         return ino->i_ino == inum && fh[0] == ino->i_generation;
3250 }
3251
3252 /* Find any alias of inode, but prefer a hashed alias */
3253 static struct dentry *shmem_find_alias(struct inode *inode)
3254 {
3255         struct dentry *alias = d_find_alias(inode);
3256
3257         return alias ?: d_find_any_alias(inode);
3258 }
3259
3260
3261 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3262                 struct fid *fid, int fh_len, int fh_type)
3263 {
3264         struct inode *inode;
3265         struct dentry *dentry = NULL;
3266         u64 inum;
3267
3268         if (fh_len < 3)
3269                 return NULL;
3270
3271         inum = fid->raw[2];
3272         inum = (inum << 32) | fid->raw[1];
3273
3274         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3275                         shmem_match, fid->raw);
3276         if (inode) {
3277                 dentry = shmem_find_alias(inode);
3278                 iput(inode);
3279         }
3280
3281         return dentry;
3282 }
3283
3284 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3285                                 struct inode *parent)
3286 {
3287         if (*len < 3) {
3288                 *len = 3;
3289                 return FILEID_INVALID;
3290         }
3291
3292         if (inode_unhashed(inode)) {
3293                 /* Unfortunately insert_inode_hash is not idempotent,
3294                  * so as we hash inodes here rather than at creation
3295                  * time, we need a lock to ensure we only try
3296                  * to do it once
3297                  */
3298                 static DEFINE_SPINLOCK(lock);
3299                 spin_lock(&lock);
3300                 if (inode_unhashed(inode))
3301                         __insert_inode_hash(inode,
3302                                             inode->i_ino + inode->i_generation);
3303                 spin_unlock(&lock);
3304         }
3305
3306         fh[0] = inode->i_generation;
3307         fh[1] = inode->i_ino;
3308         fh[2] = ((__u64)inode->i_ino) >> 32;
3309
3310         *len = 3;
3311         return 1;
3312 }
3313
3314 static const struct export_operations shmem_export_ops = {
3315         .get_parent     = shmem_get_parent,
3316         .encode_fh      = shmem_encode_fh,
3317         .fh_to_dentry   = shmem_fh_to_dentry,
3318 };
3319
3320 enum shmem_param {
3321         Opt_gid,
3322         Opt_huge,
3323         Opt_mode,
3324         Opt_mpol,
3325         Opt_nr_blocks,
3326         Opt_nr_inodes,
3327         Opt_size,
3328         Opt_uid,
3329         Opt_inode32,
3330         Opt_inode64,
3331 };
3332
3333 static const struct constant_table shmem_param_enums_huge[] = {
3334         {"never",       SHMEM_HUGE_NEVER },
3335         {"always",      SHMEM_HUGE_ALWAYS },
3336         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3337         {"advise",      SHMEM_HUGE_ADVISE },
3338         {}
3339 };
3340
3341 const struct fs_parameter_spec shmem_fs_parameters[] = {
3342         fsparam_u32   ("gid",           Opt_gid),
3343         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3344         fsparam_u32oct("mode",          Opt_mode),
3345         fsparam_string("mpol",          Opt_mpol),
3346         fsparam_string("nr_blocks",     Opt_nr_blocks),
3347         fsparam_string("nr_inodes",     Opt_nr_inodes),
3348         fsparam_string("size",          Opt_size),
3349         fsparam_u32   ("uid",           Opt_uid),
3350         fsparam_flag  ("inode32",       Opt_inode32),
3351         fsparam_flag  ("inode64",       Opt_inode64),
3352         {}
3353 };
3354
3355 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3356 {
3357         struct shmem_options *ctx = fc->fs_private;
3358         struct fs_parse_result result;
3359         unsigned long long size;
3360         char *rest;
3361         int opt;
3362
3363         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3364         if (opt < 0)
3365                 return opt;
3366
3367         switch (opt) {
3368         case Opt_size:
3369                 size = memparse(param->string, &rest);
3370                 if (*rest == '%') {
3371                         size <<= PAGE_SHIFT;
3372                         size *= totalram_pages();
3373                         do_div(size, 100);
3374                         rest++;
3375                 }
3376                 if (*rest)
3377                         goto bad_value;
3378                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3379                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3380                 break;
3381         case Opt_nr_blocks:
3382                 ctx->blocks = memparse(param->string, &rest);
3383                 if (*rest)
3384                         goto bad_value;
3385                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3386                 break;
3387         case Opt_nr_inodes:
3388                 ctx->inodes = memparse(param->string, &rest);
3389                 if (*rest)
3390                         goto bad_value;
3391                 ctx->seen |= SHMEM_SEEN_INODES;
3392                 break;
3393         case Opt_mode:
3394                 ctx->mode = result.uint_32 & 07777;
3395                 break;
3396         case Opt_uid:
3397                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3398                 if (!uid_valid(ctx->uid))
3399                         goto bad_value;
3400                 break;
3401         case Opt_gid:
3402                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3403                 if (!gid_valid(ctx->gid))
3404                         goto bad_value;
3405                 break;
3406         case Opt_huge:
3407                 ctx->huge = result.uint_32;
3408                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3409                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3410                       has_transparent_hugepage()))
3411                         goto unsupported_parameter;
3412                 ctx->seen |= SHMEM_SEEN_HUGE;
3413                 break;
3414         case Opt_mpol:
3415                 if (IS_ENABLED(CONFIG_NUMA)) {
3416                         mpol_put(ctx->mpol);
3417                         ctx->mpol = NULL;
3418                         if (mpol_parse_str(param->string, &ctx->mpol))
3419                                 goto bad_value;
3420                         break;
3421                 }
3422                 goto unsupported_parameter;
3423         case Opt_inode32:
3424                 ctx->full_inums = false;
3425                 ctx->seen |= SHMEM_SEEN_INUMS;
3426                 break;
3427         case Opt_inode64:
3428                 if (sizeof(ino_t) < 8) {
3429                         return invalfc(fc,
3430                                        "Cannot use inode64 with <64bit inums in kernel\n");
3431                 }
3432                 ctx->full_inums = true;
3433                 ctx->seen |= SHMEM_SEEN_INUMS;
3434                 break;
3435         }
3436         return 0;
3437
3438 unsupported_parameter:
3439         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3440 bad_value:
3441         return invalfc(fc, "Bad value for '%s'", param->key);
3442 }
3443
3444 static int shmem_parse_options(struct fs_context *fc, void *data)
3445 {
3446         char *options = data;
3447
3448         if (options) {
3449                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3450                 if (err)
3451                         return err;
3452         }
3453
3454         while (options != NULL) {
3455                 char *this_char = options;
3456                 for (;;) {
3457                         /*
3458                          * NUL-terminate this option: unfortunately,
3459                          * mount options form a comma-separated list,
3460                          * but mpol's nodelist may also contain commas.
3461                          */
3462                         options = strchr(options, ',');
3463                         if (options == NULL)
3464                                 break;
3465                         options++;
3466                         if (!isdigit(*options)) {
3467                                 options[-1] = '\0';
3468                                 break;
3469                         }
3470                 }
3471                 if (*this_char) {
3472                         char *value = strchr(this_char, '=');
3473                         size_t len = 0;
3474                         int err;
3475
3476                         if (value) {
3477                                 *value++ = '\0';
3478                                 len = strlen(value);
3479                         }
3480                         err = vfs_parse_fs_string(fc, this_char, value, len);
3481                         if (err < 0)
3482                                 return err;
3483                 }
3484         }
3485         return 0;
3486 }
3487
3488 /*
3489  * Reconfigure a shmem filesystem.
3490  *
3491  * Note that we disallow change from limited->unlimited blocks/inodes while any
3492  * are in use; but we must separately disallow unlimited->limited, because in
3493  * that case we have no record of how much is already in use.
3494  */
3495 static int shmem_reconfigure(struct fs_context *fc)
3496 {
3497         struct shmem_options *ctx = fc->fs_private;
3498         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3499         unsigned long inodes;
3500         struct mempolicy *mpol = NULL;
3501         const char *err;
3502
3503         raw_spin_lock(&sbinfo->stat_lock);
3504         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3505         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3506                 if (!sbinfo->max_blocks) {
3507                         err = "Cannot retroactively limit size";
3508                         goto out;
3509                 }
3510                 if (percpu_counter_compare(&sbinfo->used_blocks,
3511                                            ctx->blocks) > 0) {
3512                         err = "Too small a size for current use";
3513                         goto out;
3514                 }
3515         }
3516         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3517                 if (!sbinfo->max_inodes) {
3518                         err = "Cannot retroactively limit inodes";
3519                         goto out;
3520                 }
3521                 if (ctx->inodes < inodes) {
3522                         err = "Too few inodes for current use";
3523                         goto out;
3524                 }
3525         }
3526
3527         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3528             sbinfo->next_ino > UINT_MAX) {
3529                 err = "Current inum too high to switch to 32-bit inums";
3530                 goto out;
3531         }
3532
3533         if (ctx->seen & SHMEM_SEEN_HUGE)
3534                 sbinfo->huge = ctx->huge;
3535         if (ctx->seen & SHMEM_SEEN_INUMS)
3536                 sbinfo->full_inums = ctx->full_inums;
3537         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3538                 sbinfo->max_blocks  = ctx->blocks;
3539         if (ctx->seen & SHMEM_SEEN_INODES) {
3540                 sbinfo->max_inodes  = ctx->inodes;
3541                 sbinfo->free_inodes = ctx->inodes - inodes;
3542         }
3543
3544         /*
3545          * Preserve previous mempolicy unless mpol remount option was specified.
3546          */
3547         if (ctx->mpol) {
3548                 mpol = sbinfo->mpol;
3549                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3550                 ctx->mpol = NULL;
3551         }
3552         raw_spin_unlock(&sbinfo->stat_lock);
3553         mpol_put(mpol);
3554         return 0;
3555 out:
3556         raw_spin_unlock(&sbinfo->stat_lock);
3557         return invalfc(fc, "%s", err);
3558 }
3559
3560 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3561 {
3562         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3563
3564         if (sbinfo->max_blocks != shmem_default_max_blocks())
3565                 seq_printf(seq, ",size=%luk",
3566                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3567         if (sbinfo->max_inodes != shmem_default_max_inodes())
3568                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3569         if (sbinfo->mode != (0777 | S_ISVTX))
3570                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3571         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3572                 seq_printf(seq, ",uid=%u",
3573                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3574         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3575                 seq_printf(seq, ",gid=%u",
3576                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3577
3578         /*
3579          * Showing inode{64,32} might be useful even if it's the system default,
3580          * since then people don't have to resort to checking both here and
3581          * /proc/config.gz to confirm 64-bit inums were successfully applied
3582          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3583          *
3584          * We hide it when inode64 isn't the default and we are using 32-bit
3585          * inodes, since that probably just means the feature isn't even under
3586          * consideration.
3587          *
3588          * As such:
3589          *
3590          *                     +-----------------+-----------------+
3591          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3592          *  +------------------+-----------------+-----------------+
3593          *  | full_inums=true  | show            | show            |
3594          *  | full_inums=false | show            | hide            |
3595          *  +------------------+-----------------+-----------------+
3596          *
3597          */
3598         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3599                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3601         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3602         if (sbinfo->huge)
3603                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3604 #endif
3605         shmem_show_mpol(seq, sbinfo->mpol);
3606         return 0;
3607 }
3608
3609 #endif /* CONFIG_TMPFS */
3610
3611 static void shmem_put_super(struct super_block *sb)
3612 {
3613         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3614
3615         free_percpu(sbinfo->ino_batch);
3616         percpu_counter_destroy(&sbinfo->used_blocks);
3617         mpol_put(sbinfo->mpol);
3618         kfree(sbinfo);
3619         sb->s_fs_info = NULL;
3620 }
3621
3622 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3623 {
3624         struct shmem_options *ctx = fc->fs_private;
3625         struct inode *inode;
3626         struct shmem_sb_info *sbinfo;
3627
3628         /* Round up to L1_CACHE_BYTES to resist false sharing */
3629         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3630                                 L1_CACHE_BYTES), GFP_KERNEL);
3631         if (!sbinfo)
3632                 return -ENOMEM;
3633
3634         sb->s_fs_info = sbinfo;
3635
3636 #ifdef CONFIG_TMPFS
3637         /*
3638          * Per default we only allow half of the physical ram per
3639          * tmpfs instance, limiting inodes to one per page of lowmem;
3640          * but the internal instance is left unlimited.
3641          */
3642         if (!(sb->s_flags & SB_KERNMOUNT)) {
3643                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3644                         ctx->blocks = shmem_default_max_blocks();
3645                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3646                         ctx->inodes = shmem_default_max_inodes();
3647                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3648                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3649         } else {
3650                 sb->s_flags |= SB_NOUSER;
3651         }
3652         sb->s_export_op = &shmem_export_ops;
3653         sb->s_flags |= SB_NOSEC;
3654 #else
3655         sb->s_flags |= SB_NOUSER;
3656 #endif
3657         sbinfo->max_blocks = ctx->blocks;
3658         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3659         if (sb->s_flags & SB_KERNMOUNT) {
3660                 sbinfo->ino_batch = alloc_percpu(ino_t);
3661                 if (!sbinfo->ino_batch)
3662                         goto failed;
3663         }
3664         sbinfo->uid = ctx->uid;
3665         sbinfo->gid = ctx->gid;
3666         sbinfo->full_inums = ctx->full_inums;
3667         sbinfo->mode = ctx->mode;
3668         sbinfo->huge = ctx->huge;
3669         sbinfo->mpol = ctx->mpol;
3670         ctx->mpol = NULL;
3671
3672         raw_spin_lock_init(&sbinfo->stat_lock);
3673         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3674                 goto failed;
3675         spin_lock_init(&sbinfo->shrinklist_lock);
3676         INIT_LIST_HEAD(&sbinfo->shrinklist);
3677
3678         sb->s_maxbytes = MAX_LFS_FILESIZE;
3679         sb->s_blocksize = PAGE_SIZE;
3680         sb->s_blocksize_bits = PAGE_SHIFT;
3681         sb->s_magic = TMPFS_MAGIC;
3682         sb->s_op = &shmem_ops;
3683         sb->s_time_gran = 1;
3684 #ifdef CONFIG_TMPFS_XATTR
3685         sb->s_xattr = shmem_xattr_handlers;
3686 #endif
3687 #ifdef CONFIG_TMPFS_POSIX_ACL
3688         sb->s_flags |= SB_POSIXACL;
3689 #endif
3690         uuid_gen(&sb->s_uuid);
3691
3692         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3693         if (!inode)
3694                 goto failed;
3695         inode->i_uid = sbinfo->uid;
3696         inode->i_gid = sbinfo->gid;
3697         sb->s_root = d_make_root(inode);
3698         if (!sb->s_root)
3699                 goto failed;
3700         return 0;
3701
3702 failed:
3703         shmem_put_super(sb);
3704         return -ENOMEM;
3705 }
3706
3707 static int shmem_get_tree(struct fs_context *fc)
3708 {
3709         return get_tree_nodev(fc, shmem_fill_super);
3710 }
3711
3712 static void shmem_free_fc(struct fs_context *fc)
3713 {
3714         struct shmem_options *ctx = fc->fs_private;
3715
3716         if (ctx) {
3717                 mpol_put(ctx->mpol);
3718                 kfree(ctx);
3719         }
3720 }
3721
3722 static const struct fs_context_operations shmem_fs_context_ops = {
3723         .free                   = shmem_free_fc,
3724         .get_tree               = shmem_get_tree,
3725 #ifdef CONFIG_TMPFS
3726         .parse_monolithic       = shmem_parse_options,
3727         .parse_param            = shmem_parse_one,
3728         .reconfigure            = shmem_reconfigure,
3729 #endif
3730 };
3731
3732 static struct kmem_cache *shmem_inode_cachep;
3733
3734 static struct inode *shmem_alloc_inode(struct super_block *sb)
3735 {
3736         struct shmem_inode_info *info;
3737         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3738         if (!info)
3739                 return NULL;
3740         return &info->vfs_inode;
3741 }
3742
3743 static void shmem_free_in_core_inode(struct inode *inode)
3744 {
3745         if (S_ISLNK(inode->i_mode))
3746                 kfree(inode->i_link);
3747         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3748 }
3749
3750 static void shmem_destroy_inode(struct inode *inode)
3751 {
3752         if (S_ISREG(inode->i_mode))
3753                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3754 }
3755
3756 static void shmem_init_inode(void *foo)
3757 {
3758         struct shmem_inode_info *info = foo;
3759         inode_init_once(&info->vfs_inode);
3760 }
3761
3762 static void shmem_init_inodecache(void)
3763 {
3764         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3765                                 sizeof(struct shmem_inode_info),
3766                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3767 }
3768
3769 static void shmem_destroy_inodecache(void)
3770 {
3771         kmem_cache_destroy(shmem_inode_cachep);
3772 }
3773
3774 const struct address_space_operations shmem_aops = {
3775         .writepage      = shmem_writepage,
3776         .set_page_dirty = __set_page_dirty_no_writeback,
3777 #ifdef CONFIG_TMPFS
3778         .write_begin    = shmem_write_begin,
3779         .write_end      = shmem_write_end,
3780 #endif
3781 #ifdef CONFIG_MIGRATION
3782         .migratepage    = migrate_page,
3783 #endif
3784         .error_remove_page = generic_error_remove_page,
3785 };
3786 EXPORT_SYMBOL(shmem_aops);
3787
3788 static const struct file_operations shmem_file_operations = {
3789         .mmap           = shmem_mmap,
3790         .get_unmapped_area = shmem_get_unmapped_area,
3791 #ifdef CONFIG_TMPFS
3792         .llseek         = shmem_file_llseek,
3793         .read_iter      = shmem_file_read_iter,
3794         .write_iter     = generic_file_write_iter,
3795         .fsync          = noop_fsync,
3796         .splice_read    = generic_file_splice_read,
3797         .splice_write   = iter_file_splice_write,
3798         .fallocate      = shmem_fallocate,
3799 #endif
3800 };
3801
3802 static const struct inode_operations shmem_inode_operations = {
3803         .getattr        = shmem_getattr,
3804         .setattr        = shmem_setattr,
3805 #ifdef CONFIG_TMPFS_XATTR
3806         .listxattr      = shmem_listxattr,
3807         .set_acl        = simple_set_acl,
3808 #endif
3809 };
3810
3811 static const struct inode_operations shmem_dir_inode_operations = {
3812 #ifdef CONFIG_TMPFS
3813         .create         = shmem_create,
3814         .lookup         = simple_lookup,
3815         .link           = shmem_link,
3816         .unlink         = shmem_unlink,
3817         .symlink        = shmem_symlink,
3818         .mkdir          = shmem_mkdir,
3819         .rmdir          = shmem_rmdir,
3820         .mknod          = shmem_mknod,
3821         .rename         = shmem_rename2,
3822         .tmpfile        = shmem_tmpfile,
3823 #endif
3824 #ifdef CONFIG_TMPFS_XATTR
3825         .listxattr      = shmem_listxattr,
3826 #endif
3827 #ifdef CONFIG_TMPFS_POSIX_ACL
3828         .setattr        = shmem_setattr,
3829         .set_acl        = simple_set_acl,
3830 #endif
3831 };
3832
3833 static const struct inode_operations shmem_special_inode_operations = {
3834 #ifdef CONFIG_TMPFS_XATTR
3835         .listxattr      = shmem_listxattr,
3836 #endif
3837 #ifdef CONFIG_TMPFS_POSIX_ACL
3838         .setattr        = shmem_setattr,
3839         .set_acl        = simple_set_acl,
3840 #endif
3841 };
3842
3843 static const struct super_operations shmem_ops = {
3844         .alloc_inode    = shmem_alloc_inode,
3845         .free_inode     = shmem_free_in_core_inode,
3846         .destroy_inode  = shmem_destroy_inode,
3847 #ifdef CONFIG_TMPFS
3848         .statfs         = shmem_statfs,
3849         .show_options   = shmem_show_options,
3850 #endif
3851         .evict_inode    = shmem_evict_inode,
3852         .drop_inode     = generic_delete_inode,
3853         .put_super      = shmem_put_super,
3854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3855         .nr_cached_objects      = shmem_unused_huge_count,
3856         .free_cached_objects    = shmem_unused_huge_scan,
3857 #endif
3858 };
3859
3860 static const struct vm_operations_struct shmem_vm_ops = {
3861         .fault          = shmem_fault,
3862         .map_pages      = filemap_map_pages,
3863 #ifdef CONFIG_NUMA
3864         .set_policy     = shmem_set_policy,
3865         .get_policy     = shmem_get_policy,
3866 #endif
3867 };
3868
3869 int shmem_init_fs_context(struct fs_context *fc)
3870 {
3871         struct shmem_options *ctx;
3872
3873         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3874         if (!ctx)
3875                 return -ENOMEM;
3876
3877         ctx->mode = 0777 | S_ISVTX;
3878         ctx->uid = current_fsuid();
3879         ctx->gid = current_fsgid();
3880
3881         fc->fs_private = ctx;
3882         fc->ops = &shmem_fs_context_ops;
3883         return 0;
3884 }
3885
3886 static struct file_system_type shmem_fs_type = {
3887         .owner          = THIS_MODULE,
3888         .name           = "tmpfs",
3889         .init_fs_context = shmem_init_fs_context,
3890 #ifdef CONFIG_TMPFS
3891         .parameters     = shmem_fs_parameters,
3892 #endif
3893         .kill_sb        = kill_litter_super,
3894         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3895 };
3896
3897 int __init shmem_init(void)
3898 {
3899         int error;
3900
3901         shmem_init_inodecache();
3902
3903         error = register_filesystem(&shmem_fs_type);
3904         if (error) {
3905                 pr_err("Could not register tmpfs\n");
3906                 goto out2;
3907         }
3908
3909         shm_mnt = kern_mount(&shmem_fs_type);
3910         if (IS_ERR(shm_mnt)) {
3911                 error = PTR_ERR(shm_mnt);
3912                 pr_err("Could not kern_mount tmpfs\n");
3913                 goto out1;
3914         }
3915
3916 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3917         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3918                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3919         else
3920                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3921 #endif
3922         return 0;
3923
3924 out1:
3925         unregister_filesystem(&shmem_fs_type);
3926 out2:
3927         shmem_destroy_inodecache();
3928         shm_mnt = ERR_PTR(error);
3929         return error;
3930 }
3931
3932 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3933 static ssize_t shmem_enabled_show(struct kobject *kobj,
3934                                   struct kobj_attribute *attr, char *buf)
3935 {
3936         static const int values[] = {
3937                 SHMEM_HUGE_ALWAYS,
3938                 SHMEM_HUGE_WITHIN_SIZE,
3939                 SHMEM_HUGE_ADVISE,
3940                 SHMEM_HUGE_NEVER,
3941                 SHMEM_HUGE_DENY,
3942                 SHMEM_HUGE_FORCE,
3943         };
3944         int len = 0;
3945         int i;
3946
3947         for (i = 0; i < ARRAY_SIZE(values); i++) {
3948                 len += sysfs_emit_at(buf, len,
3949                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3950                                      i ? " " : "",
3951                                      shmem_format_huge(values[i]));
3952         }
3953
3954         len += sysfs_emit_at(buf, len, "\n");
3955
3956         return len;
3957 }
3958
3959 static ssize_t shmem_enabled_store(struct kobject *kobj,
3960                 struct kobj_attribute *attr, const char *buf, size_t count)
3961 {
3962         char tmp[16];
3963         int huge;
3964
3965         if (count + 1 > sizeof(tmp))
3966                 return -EINVAL;
3967         memcpy(tmp, buf, count);
3968         tmp[count] = '\0';
3969         if (count && tmp[count - 1] == '\n')
3970                 tmp[count - 1] = '\0';
3971
3972         huge = shmem_parse_huge(tmp);
3973         if (huge == -EINVAL)
3974                 return -EINVAL;
3975         if (!has_transparent_hugepage() &&
3976                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3977                 return -EINVAL;
3978
3979         shmem_huge = huge;
3980         if (shmem_huge > SHMEM_HUGE_DENY)
3981                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3982         return count;
3983 }
3984
3985 struct kobj_attribute shmem_enabled_attr =
3986         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3987 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3988
3989 #else /* !CONFIG_SHMEM */
3990
3991 /*
3992  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3993  *
3994  * This is intended for small system where the benefits of the full
3995  * shmem code (swap-backed and resource-limited) are outweighed by
3996  * their complexity. On systems without swap this code should be
3997  * effectively equivalent, but much lighter weight.
3998  */
3999
4000 static struct file_system_type shmem_fs_type = {
4001         .name           = "tmpfs",
4002         .init_fs_context = ramfs_init_fs_context,
4003         .parameters     = ramfs_fs_parameters,
4004         .kill_sb        = kill_litter_super,
4005         .fs_flags       = FS_USERNS_MOUNT,
4006 };
4007
4008 int __init shmem_init(void)
4009 {
4010         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4011
4012         shm_mnt = kern_mount(&shmem_fs_type);
4013         BUG_ON(IS_ERR(shm_mnt));
4014
4015         return 0;
4016 }
4017
4018 int shmem_unuse(unsigned int type, bool frontswap,
4019                 unsigned long *fs_pages_to_unuse)
4020 {
4021         return 0;
4022 }
4023
4024 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4025 {
4026         return 0;
4027 }
4028
4029 void shmem_unlock_mapping(struct address_space *mapping)
4030 {
4031 }
4032
4033 #ifdef CONFIG_MMU
4034 unsigned long shmem_get_unmapped_area(struct file *file,
4035                                       unsigned long addr, unsigned long len,
4036                                       unsigned long pgoff, unsigned long flags)
4037 {
4038         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4039 }
4040 #endif
4041
4042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4043 {
4044         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4045 }
4046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4047
4048 #define shmem_vm_ops                            generic_file_vm_ops
4049 #define shmem_file_operations                   ramfs_file_operations
4050 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4051 #define shmem_acct_size(flags, size)            0
4052 #define shmem_unacct_size(flags, size)          do {} while (0)
4053
4054 #endif /* CONFIG_SHMEM */
4055
4056 /* common code */
4057
4058 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4059                                        unsigned long flags, unsigned int i_flags)
4060 {
4061         struct inode *inode;
4062         struct file *res;
4063
4064         if (IS_ERR(mnt))
4065                 return ERR_CAST(mnt);
4066
4067         if (size < 0 || size > MAX_LFS_FILESIZE)
4068                 return ERR_PTR(-EINVAL);
4069
4070         if (shmem_acct_size(flags, size))
4071                 return ERR_PTR(-ENOMEM);
4072
4073         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4074                                 flags);
4075         if (unlikely(!inode)) {
4076                 shmem_unacct_size(flags, size);
4077                 return ERR_PTR(-ENOSPC);
4078         }
4079         inode->i_flags |= i_flags;
4080         inode->i_size = size;
4081         clear_nlink(inode);     /* It is unlinked */
4082         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4083         if (!IS_ERR(res))
4084                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4085                                 &shmem_file_operations);
4086         if (IS_ERR(res))
4087                 iput(inode);
4088         return res;
4089 }
4090
4091 /**
4092  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4093  *      kernel internal.  There will be NO LSM permission checks against the
4094  *      underlying inode.  So users of this interface must do LSM checks at a
4095  *      higher layer.  The users are the big_key and shm implementations.  LSM
4096  *      checks are provided at the key or shm level rather than the inode.
4097  * @name: name for dentry (to be seen in /proc/<pid>/maps
4098  * @size: size to be set for the file
4099  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4100  */
4101 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4102 {
4103         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4104 }
4105
4106 /**
4107  * shmem_file_setup - get an unlinked file living in tmpfs
4108  * @name: name for dentry (to be seen in /proc/<pid>/maps
4109  * @size: size to be set for the file
4110  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4111  */
4112 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4113 {
4114         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4115 }
4116 EXPORT_SYMBOL_GPL(shmem_file_setup);
4117
4118 /**
4119  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4120  * @mnt: the tmpfs mount where the file will be created
4121  * @name: name for dentry (to be seen in /proc/<pid>/maps
4122  * @size: size to be set for the file
4123  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4124  */
4125 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4126                                        loff_t size, unsigned long flags)
4127 {
4128         return __shmem_file_setup(mnt, name, size, flags, 0);
4129 }
4130 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4131
4132 /**
4133  * shmem_zero_setup - setup a shared anonymous mapping
4134  * @vma: the vma to be mmapped is prepared by do_mmap
4135  */
4136 int shmem_zero_setup(struct vm_area_struct *vma)
4137 {
4138         struct file *file;
4139         loff_t size = vma->vm_end - vma->vm_start;
4140
4141         /*
4142          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4143          * between XFS directory reading and selinux: since this file is only
4144          * accessible to the user through its mapping, use S_PRIVATE flag to
4145          * bypass file security, in the same way as shmem_kernel_file_setup().
4146          */
4147         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4148         if (IS_ERR(file))
4149                 return PTR_ERR(file);
4150
4151         if (vma->vm_file)
4152                 fput(vma->vm_file);
4153         vma->vm_file = file;
4154         vma->vm_ops = &shmem_vm_ops;
4155
4156         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4157                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4158                         (vma->vm_end & HPAGE_PMD_MASK)) {
4159                 khugepaged_enter(vma, vma->vm_flags);
4160         }
4161
4162         return 0;
4163 }
4164
4165 /**
4166  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4167  * @mapping:    the page's address_space
4168  * @index:      the page index
4169  * @gfp:        the page allocator flags to use if allocating
4170  *
4171  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4172  * with any new page allocations done using the specified allocation flags.
4173  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4174  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4175  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4176  *
4177  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4178  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4179  */
4180 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4181                                          pgoff_t index, gfp_t gfp)
4182 {
4183 #ifdef CONFIG_SHMEM
4184         struct inode *inode = mapping->host;
4185         struct page *page;
4186         int error;
4187
4188         BUG_ON(!shmem_mapping(mapping));
4189         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4190                                   gfp, NULL, NULL, NULL);
4191         if (error)
4192                 page = ERR_PTR(error);
4193         else
4194                 unlock_page(page);
4195         return page;
4196 #else
4197         /*
4198          * The tiny !SHMEM case uses ramfs without swap
4199          */
4200         return read_cache_page_gfp(mapping, index, gfp);
4201 #endif
4202 }
4203 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.275898 seconds and 4 git commands to generate.