]> Git Repo - linux.git/blob - drivers/gpu/drm/panthor/panthor_sched.c
Merge tag 'for-linus-6.14-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / panthor / panthor_sched.c
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/gpu_scheduler.h>
9 #include <drm/panthor_drm.h>
10
11 #include <linux/build_bug.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dma-resv.h>
16 #include <linux/firmware.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/iosys-map.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24
25 #include "panthor_devfreq.h"
26 #include "panthor_device.h"
27 #include "panthor_fw.h"
28 #include "panthor_gem.h"
29 #include "panthor_gpu.h"
30 #include "panthor_heap.h"
31 #include "panthor_mmu.h"
32 #include "panthor_regs.h"
33 #include "panthor_sched.h"
34
35 /**
36  * DOC: Scheduler
37  *
38  * Mali CSF hardware adopts a firmware-assisted scheduling model, where
39  * the firmware takes care of scheduling aspects, to some extent.
40  *
41  * The scheduling happens at the scheduling group level, each group
42  * contains 1 to N queues (N is FW/hardware dependent, and exposed
43  * through the firmware interface). Each queue is assigned a command
44  * stream ring buffer, which serves as a way to get jobs submitted to
45  * the GPU, among other things.
46  *
47  * The firmware can schedule a maximum of M groups (M is FW/hardware
48  * dependent, and exposed through the firmware interface). Passed
49  * this maximum number of groups, the kernel must take care of
50  * rotating the groups passed to the firmware so every group gets
51  * a chance to have his queues scheduled for execution.
52  *
53  * The current implementation only supports with kernel-mode queues.
54  * In other terms, userspace doesn't have access to the ring-buffer.
55  * Instead, userspace passes indirect command stream buffers that are
56  * called from the queue ring-buffer by the kernel using a pre-defined
57  * sequence of command stream instructions to ensure the userspace driver
58  * always gets consistent results (cache maintenance,
59  * synchronization, ...).
60  *
61  * We rely on the drm_gpu_scheduler framework to deal with job
62  * dependencies and submission. As any other driver dealing with a
63  * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
64  * entity has its own job scheduler. When a job is ready to be executed
65  * (all its dependencies are met), it is pushed to the appropriate
66  * queue ring-buffer, and the group is scheduled for execution if it
67  * wasn't already active.
68  *
69  * Kernel-side group scheduling is timeslice-based. When we have less
70  * groups than there are slots, the periodic tick is disabled and we
71  * just let the FW schedule the active groups. When there are more
72  * groups than slots, we let each group a chance to execute stuff for
73  * a given amount of time, and then re-evaluate and pick new groups
74  * to schedule. The group selection algorithm is based on
75  * priority+round-robin.
76  *
77  * Even though user-mode queues is out of the scope right now, the
78  * current design takes them into account by avoiding any guess on the
79  * group/queue state that would be based on information we wouldn't have
80  * if userspace was in charge of the ring-buffer. That's also one of the
81  * reason we don't do 'cooperative' scheduling (encoding FW group slot
82  * reservation as dma_fence that would be returned from the
83  * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
84  * a queue of waiters, ordered by job submission order). This approach
85  * would work for kernel-mode queues, but would make user-mode queues a
86  * lot more complicated to retrofit.
87  */
88
89 #define JOB_TIMEOUT_MS                          5000
90
91 #define MIN_CS_PER_CSG                          8
92
93 #define MIN_CSGS                                3
94 #define MAX_CSG_PRIO                            0xf
95
96 #define NUM_INSTRS_PER_CACHE_LINE               (64 / sizeof(u64))
97 #define MAX_INSTRS_PER_JOB                      24
98
99 struct panthor_group;
100
101 /**
102  * struct panthor_csg_slot - Command stream group slot
103  *
104  * This represents a FW slot for a scheduling group.
105  */
106 struct panthor_csg_slot {
107         /** @group: Scheduling group bound to this slot. */
108         struct panthor_group *group;
109
110         /** @priority: Group priority. */
111         u8 priority;
112
113         /**
114          * @idle: True if the group bound to this slot is idle.
115          *
116          * A group is idle when it has nothing waiting for execution on
117          * all its queues, or when queues are blocked waiting for something
118          * to happen (synchronization object).
119          */
120         bool idle;
121 };
122
123 /**
124  * enum panthor_csg_priority - Group priority
125  */
126 enum panthor_csg_priority {
127         /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
128         PANTHOR_CSG_PRIORITY_LOW = 0,
129
130         /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
131         PANTHOR_CSG_PRIORITY_MEDIUM,
132
133         /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
134         PANTHOR_CSG_PRIORITY_HIGH,
135
136         /**
137          * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
138          *
139          * Real-time priority allows one to preempt scheduling of other
140          * non-real-time groups. When such a group becomes executable,
141          * it will evict the group with the lowest non-rt priority if
142          * there's no free group slot available.
143          */
144         PANTHOR_CSG_PRIORITY_RT,
145
146         /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
147         PANTHOR_CSG_PRIORITY_COUNT,
148 };
149
150 /**
151  * struct panthor_scheduler - Object used to manage the scheduler
152  */
153 struct panthor_scheduler {
154         /** @ptdev: Device. */
155         struct panthor_device *ptdev;
156
157         /**
158          * @wq: Workqueue used by our internal scheduler logic and
159          * drm_gpu_scheduler.
160          *
161          * Used for the scheduler tick, group update or other kind of FW
162          * event processing that can't be handled in the threaded interrupt
163          * path. Also passed to the drm_gpu_scheduler instances embedded
164          * in panthor_queue.
165          */
166         struct workqueue_struct *wq;
167
168         /**
169          * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
170          *
171          * We have a queue dedicated to heap chunk allocation works to avoid
172          * blocking the rest of the scheduler if the allocation tries to
173          * reclaim memory.
174          */
175         struct workqueue_struct *heap_alloc_wq;
176
177         /** @tick_work: Work executed on a scheduling tick. */
178         struct delayed_work tick_work;
179
180         /**
181          * @sync_upd_work: Work used to process synchronization object updates.
182          *
183          * We use this work to unblock queues/groups that were waiting on a
184          * synchronization object.
185          */
186         struct work_struct sync_upd_work;
187
188         /**
189          * @fw_events_work: Work used to process FW events outside the interrupt path.
190          *
191          * Even if the interrupt is threaded, we need any event processing
192          * that require taking the panthor_scheduler::lock to be processed
193          * outside the interrupt path so we don't block the tick logic when
194          * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
195          * event processing requires taking this lock, we just delegate all
196          * FW event processing to the scheduler workqueue.
197          */
198         struct work_struct fw_events_work;
199
200         /**
201          * @fw_events: Bitmask encoding pending FW events.
202          */
203         atomic_t fw_events;
204
205         /**
206          * @resched_target: When the next tick should occur.
207          *
208          * Expressed in jiffies.
209          */
210         u64 resched_target;
211
212         /**
213          * @last_tick: When the last tick occurred.
214          *
215          * Expressed in jiffies.
216          */
217         u64 last_tick;
218
219         /** @tick_period: Tick period in jiffies. */
220         u64 tick_period;
221
222         /**
223          * @lock: Lock protecting access to all the scheduler fields.
224          *
225          * Should be taken in the tick work, the irq handler, and anywhere the @groups
226          * fields are touched.
227          */
228         struct mutex lock;
229
230         /** @groups: Various lists used to classify groups. */
231         struct {
232                 /**
233                  * @runnable: Runnable group lists.
234                  *
235                  * When a group has queues that want to execute something,
236                  * its panthor_group::run_node should be inserted here.
237                  *
238                  * One list per-priority.
239                  */
240                 struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
241
242                 /**
243                  * @idle: Idle group lists.
244                  *
245                  * When all queues of a group are idle (either because they
246                  * have nothing to execute, or because they are blocked), the
247                  * panthor_group::run_node field should be inserted here.
248                  *
249                  * One list per-priority.
250                  */
251                 struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
252
253                 /**
254                  * @waiting: List of groups whose queues are blocked on a
255                  * synchronization object.
256                  *
257                  * Insert panthor_group::wait_node here when a group is waiting
258                  * for synchronization objects to be signaled.
259                  *
260                  * This list is evaluated in the @sync_upd_work work.
261                  */
262                 struct list_head waiting;
263         } groups;
264
265         /**
266          * @csg_slots: FW command stream group slots.
267          */
268         struct panthor_csg_slot csg_slots[MAX_CSGS];
269
270         /** @csg_slot_count: Number of command stream group slots exposed by the FW. */
271         u32 csg_slot_count;
272
273         /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
274         u32 cs_slot_count;
275
276         /** @as_slot_count: Number of address space slots supported by the MMU. */
277         u32 as_slot_count;
278
279         /** @used_csg_slot_count: Number of command stream group slot currently used. */
280         u32 used_csg_slot_count;
281
282         /** @sb_slot_count: Number of scoreboard slots. */
283         u32 sb_slot_count;
284
285         /**
286          * @might_have_idle_groups: True if an active group might have become idle.
287          *
288          * This will force a tick, so other runnable groups can be scheduled if one
289          * or more active groups became idle.
290          */
291         bool might_have_idle_groups;
292
293         /** @pm: Power management related fields. */
294         struct {
295                 /** @has_ref: True if the scheduler owns a runtime PM reference. */
296                 bool has_ref;
297         } pm;
298
299         /** @reset: Reset related fields. */
300         struct {
301                 /** @lock: Lock protecting the other reset fields. */
302                 struct mutex lock;
303
304                 /**
305                  * @in_progress: True if a reset is in progress.
306                  *
307                  * Set to true in panthor_sched_pre_reset() and back to false in
308                  * panthor_sched_post_reset().
309                  */
310                 atomic_t in_progress;
311
312                 /**
313                  * @stopped_groups: List containing all groups that were stopped
314                  * before a reset.
315                  *
316                  * Insert panthor_group::run_node in the pre_reset path.
317                  */
318                 struct list_head stopped_groups;
319         } reset;
320 };
321
322 /**
323  * struct panthor_syncobj_32b - 32-bit FW synchronization object
324  */
325 struct panthor_syncobj_32b {
326         /** @seqno: Sequence number. */
327         u32 seqno;
328
329         /**
330          * @status: Status.
331          *
332          * Not zero on failure.
333          */
334         u32 status;
335 };
336
337 /**
338  * struct panthor_syncobj_64b - 64-bit FW synchronization object
339  */
340 struct panthor_syncobj_64b {
341         /** @seqno: Sequence number. */
342         u64 seqno;
343
344         /**
345          * @status: Status.
346          *
347          * Not zero on failure.
348          */
349         u32 status;
350
351         /** @pad: MBZ. */
352         u32 pad;
353 };
354
355 /**
356  * struct panthor_queue - Execution queue
357  */
358 struct panthor_queue {
359         /** @scheduler: DRM scheduler used for this queue. */
360         struct drm_gpu_scheduler scheduler;
361
362         /** @entity: DRM scheduling entity used for this queue. */
363         struct drm_sched_entity entity;
364
365         /**
366          * @remaining_time: Time remaining before the job timeout expires.
367          *
368          * The job timeout is suspended when the queue is not scheduled by the
369          * FW. Every time we suspend the timer, we need to save the remaining
370          * time so we can restore it later on.
371          */
372         unsigned long remaining_time;
373
374         /** @timeout_suspended: True if the job timeout was suspended. */
375         bool timeout_suspended;
376
377         /**
378          * @doorbell_id: Doorbell assigned to this queue.
379          *
380          * Right now, all groups share the same doorbell, and the doorbell ID
381          * is assigned to group_slot + 1 when the group is assigned a slot. But
382          * we might decide to provide fine grained doorbell assignment at some
383          * point, so don't have to wake up all queues in a group every time one
384          * of them is updated.
385          */
386         u8 doorbell_id;
387
388         /**
389          * @priority: Priority of the queue inside the group.
390          *
391          * Must be less than 16 (Only 4 bits available).
392          */
393         u8 priority;
394 #define CSF_MAX_QUEUE_PRIO      GENMASK(3, 0)
395
396         /** @ringbuf: Command stream ring-buffer. */
397         struct panthor_kernel_bo *ringbuf;
398
399         /** @iface: Firmware interface. */
400         struct {
401                 /** @mem: FW memory allocated for this interface. */
402                 struct panthor_kernel_bo *mem;
403
404                 /** @input: Input interface. */
405                 struct panthor_fw_ringbuf_input_iface *input;
406
407                 /** @output: Output interface. */
408                 const struct panthor_fw_ringbuf_output_iface *output;
409
410                 /** @input_fw_va: FW virtual address of the input interface buffer. */
411                 u32 input_fw_va;
412
413                 /** @output_fw_va: FW virtual address of the output interface buffer. */
414                 u32 output_fw_va;
415         } iface;
416
417         /**
418          * @syncwait: Stores information about the synchronization object this
419          * queue is waiting on.
420          */
421         struct {
422                 /** @gpu_va: GPU address of the synchronization object. */
423                 u64 gpu_va;
424
425                 /** @ref: Reference value to compare against. */
426                 u64 ref;
427
428                 /** @gt: True if this is a greater-than test. */
429                 bool gt;
430
431                 /** @sync64: True if this is a 64-bit sync object. */
432                 bool sync64;
433
434                 /** @bo: Buffer object holding the synchronization object. */
435                 struct drm_gem_object *obj;
436
437                 /** @offset: Offset of the synchronization object inside @bo. */
438                 u64 offset;
439
440                 /**
441                  * @kmap: Kernel mapping of the buffer object holding the
442                  * synchronization object.
443                  */
444                 void *kmap;
445         } syncwait;
446
447         /** @fence_ctx: Fence context fields. */
448         struct {
449                 /** @lock: Used to protect access to all fences allocated by this context. */
450                 spinlock_t lock;
451
452                 /**
453                  * @id: Fence context ID.
454                  *
455                  * Allocated with dma_fence_context_alloc().
456                  */
457                 u64 id;
458
459                 /** @seqno: Sequence number of the last initialized fence. */
460                 atomic64_t seqno;
461
462                 /**
463                  * @last_fence: Fence of the last submitted job.
464                  *
465                  * We return this fence when we get an empty command stream.
466                  * This way, we are guaranteed that all earlier jobs have completed
467                  * when drm_sched_job::s_fence::finished without having to feed
468                  * the CS ring buffer with a dummy job that only signals the fence.
469                  */
470                 struct dma_fence *last_fence;
471
472                 /**
473                  * @in_flight_jobs: List containing all in-flight jobs.
474                  *
475                  * Used to keep track and signal panthor_job::done_fence when the
476                  * synchronization object attached to the queue is signaled.
477                  */
478                 struct list_head in_flight_jobs;
479         } fence_ctx;
480
481         /** @profiling: Job profiling data slots and access information. */
482         struct {
483                 /** @slots: Kernel BO holding the slots. */
484                 struct panthor_kernel_bo *slots;
485
486                 /** @slot_count: Number of jobs ringbuffer can hold at once. */
487                 u32 slot_count;
488
489                 /** @seqno: Index of the next available profiling information slot. */
490                 u32 seqno;
491         } profiling;
492 };
493
494 /**
495  * enum panthor_group_state - Scheduling group state.
496  */
497 enum panthor_group_state {
498         /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
499         PANTHOR_CS_GROUP_CREATED,
500
501         /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
502         PANTHOR_CS_GROUP_ACTIVE,
503
504         /**
505          * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
506          * inactive/suspended right now.
507          */
508         PANTHOR_CS_GROUP_SUSPENDED,
509
510         /**
511          * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
512          *
513          * Can no longer be scheduled. The only allowed action is a destruction.
514          */
515         PANTHOR_CS_GROUP_TERMINATED,
516
517         /**
518          * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
519          *
520          * The FW returned an inconsistent state. The group is flagged unusable
521          * and can no longer be scheduled. The only allowed action is a
522          * destruction.
523          *
524          * When that happens, we also schedule a FW reset, to start from a fresh
525          * state.
526          */
527         PANTHOR_CS_GROUP_UNKNOWN_STATE,
528 };
529
530 /**
531  * struct panthor_group - Scheduling group object
532  */
533 struct panthor_group {
534         /** @refcount: Reference count */
535         struct kref refcount;
536
537         /** @ptdev: Device. */
538         struct panthor_device *ptdev;
539
540         /** @vm: VM bound to the group. */
541         struct panthor_vm *vm;
542
543         /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
544         u64 compute_core_mask;
545
546         /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
547         u64 fragment_core_mask;
548
549         /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
550         u64 tiler_core_mask;
551
552         /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
553         u8 max_compute_cores;
554
555         /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
556         u8 max_fragment_cores;
557
558         /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
559         u8 max_tiler_cores;
560
561         /** @priority: Group priority (check panthor_csg_priority). */
562         u8 priority;
563
564         /** @blocked_queues: Bitmask reflecting the blocked queues. */
565         u32 blocked_queues;
566
567         /** @idle_queues: Bitmask reflecting the idle queues. */
568         u32 idle_queues;
569
570         /** @fatal_lock: Lock used to protect access to fatal fields. */
571         spinlock_t fatal_lock;
572
573         /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
574         u32 fatal_queues;
575
576         /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
577         atomic_t tiler_oom;
578
579         /** @queue_count: Number of queues in this group. */
580         u32 queue_count;
581
582         /** @queues: Queues owned by this group. */
583         struct panthor_queue *queues[MAX_CS_PER_CSG];
584
585         /**
586          * @csg_id: ID of the FW group slot.
587          *
588          * -1 when the group is not scheduled/active.
589          */
590         int csg_id;
591
592         /**
593          * @destroyed: True when the group has been destroyed.
594          *
595          * If a group is destroyed it becomes useless: no further jobs can be submitted
596          * to its queues. We simply wait for all references to be dropped so we can
597          * release the group object.
598          */
599         bool destroyed;
600
601         /**
602          * @timedout: True when a timeout occurred on any of the queues owned by
603          * this group.
604          *
605          * Timeouts can be reported by drm_sched or by the FW. If a reset is required,
606          * and the group can't be suspended, this also leads to a timeout. In any case,
607          * any timeout situation is unrecoverable, and the group becomes useless. We
608          * simply wait for all references to be dropped so we can release the group
609          * object.
610          */
611         bool timedout;
612
613         /**
614          * @innocent: True when the group becomes unusable because the group suspension
615          * failed during a reset.
616          *
617          * Sometimes the FW was put in a bad state by other groups, causing the group
618          * suspension happening in the reset path to fail. In that case, we consider the
619          * group innocent.
620          */
621         bool innocent;
622
623         /**
624          * @syncobjs: Pool of per-queue synchronization objects.
625          *
626          * One sync object per queue. The position of the sync object is
627          * determined by the queue index.
628          */
629         struct panthor_kernel_bo *syncobjs;
630
631         /** @fdinfo: Per-file total cycle and timestamp values reference. */
632         struct {
633                 /** @data: Total sampled values for jobs in queues from this group. */
634                 struct panthor_gpu_usage data;
635
636                 /**
637                  * @lock: Mutex to govern concurrent access from drm file's fdinfo callback
638                  * and job post-completion processing function
639                  */
640                 struct mutex lock;
641         } fdinfo;
642
643         /** @state: Group state. */
644         enum panthor_group_state state;
645
646         /**
647          * @suspend_buf: Suspend buffer.
648          *
649          * Stores the state of the group and its queues when a group is suspended.
650          * Used at resume time to restore the group in its previous state.
651          *
652          * The size of the suspend buffer is exposed through the FW interface.
653          */
654         struct panthor_kernel_bo *suspend_buf;
655
656         /**
657          * @protm_suspend_buf: Protection mode suspend buffer.
658          *
659          * Stores the state of the group and its queues when a group that's in
660          * protection mode is suspended.
661          *
662          * Used at resume time to restore the group in its previous state.
663          *
664          * The size of the protection mode suspend buffer is exposed through the
665          * FW interface.
666          */
667         struct panthor_kernel_bo *protm_suspend_buf;
668
669         /** @sync_upd_work: Work used to check/signal job fences. */
670         struct work_struct sync_upd_work;
671
672         /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
673         struct work_struct tiler_oom_work;
674
675         /** @term_work: Work used to finish the group termination procedure. */
676         struct work_struct term_work;
677
678         /**
679          * @release_work: Work used to release group resources.
680          *
681          * We need to postpone the group release to avoid a deadlock when
682          * the last ref is released in the tick work.
683          */
684         struct work_struct release_work;
685
686         /**
687          * @run_node: Node used to insert the group in the
688          * panthor_group::groups::{runnable,idle} and
689          * panthor_group::reset.stopped_groups lists.
690          */
691         struct list_head run_node;
692
693         /**
694          * @wait_node: Node used to insert the group in the
695          * panthor_group::groups::waiting list.
696          */
697         struct list_head wait_node;
698 };
699
700 struct panthor_job_profiling_data {
701         struct {
702                 u64 before;
703                 u64 after;
704         } cycles;
705
706         struct {
707                 u64 before;
708                 u64 after;
709         } time;
710 };
711
712 /**
713  * group_queue_work() - Queue a group work
714  * @group: Group to queue the work for.
715  * @wname: Work name.
716  *
717  * Grabs a ref and queue a work item to the scheduler workqueue. If
718  * the work was already queued, we release the reference we grabbed.
719  *
720  * Work callbacks must release the reference we grabbed here.
721  */
722 #define group_queue_work(group, wname) \
723         do { \
724                 group_get(group); \
725                 if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
726                         group_put(group); \
727         } while (0)
728
729 /**
730  * sched_queue_work() - Queue a scheduler work.
731  * @sched: Scheduler object.
732  * @wname: Work name.
733  *
734  * Conditionally queues a scheduler work if no reset is pending/in-progress.
735  */
736 #define sched_queue_work(sched, wname) \
737         do { \
738                 if (!atomic_read(&(sched)->reset.in_progress) && \
739                     !panthor_device_reset_is_pending((sched)->ptdev)) \
740                         queue_work((sched)->wq, &(sched)->wname ## _work); \
741         } while (0)
742
743 /**
744  * sched_queue_delayed_work() - Queue a scheduler delayed work.
745  * @sched: Scheduler object.
746  * @wname: Work name.
747  * @delay: Work delay in jiffies.
748  *
749  * Conditionally queues a scheduler delayed work if no reset is
750  * pending/in-progress.
751  */
752 #define sched_queue_delayed_work(sched, wname, delay) \
753         do { \
754                 if (!atomic_read(&sched->reset.in_progress) && \
755                     !panthor_device_reset_is_pending((sched)->ptdev)) \
756                         mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
757         } while (0)
758
759 /*
760  * We currently set the maximum of groups per file to an arbitrary low value.
761  * But this can be updated if we need more.
762  */
763 #define MAX_GROUPS_PER_POOL 128
764
765 /**
766  * struct panthor_group_pool - Group pool
767  *
768  * Each file get assigned a group pool.
769  */
770 struct panthor_group_pool {
771         /** @xa: Xarray used to manage group handles. */
772         struct xarray xa;
773 };
774
775 /**
776  * struct panthor_job - Used to manage GPU job
777  */
778 struct panthor_job {
779         /** @base: Inherit from drm_sched_job. */
780         struct drm_sched_job base;
781
782         /** @refcount: Reference count. */
783         struct kref refcount;
784
785         /** @group: Group of the queue this job will be pushed to. */
786         struct panthor_group *group;
787
788         /** @queue_idx: Index of the queue inside @group. */
789         u32 queue_idx;
790
791         /** @call_info: Information about the userspace command stream call. */
792         struct {
793                 /** @start: GPU address of the userspace command stream. */
794                 u64 start;
795
796                 /** @size: Size of the userspace command stream. */
797                 u32 size;
798
799                 /**
800                  * @latest_flush: Flush ID at the time the userspace command
801                  * stream was built.
802                  *
803                  * Needed for the flush reduction mechanism.
804                  */
805                 u32 latest_flush;
806         } call_info;
807
808         /** @ringbuf: Position of this job is in the ring buffer. */
809         struct {
810                 /** @start: Start offset. */
811                 u64 start;
812
813                 /** @end: End offset. */
814                 u64 end;
815         } ringbuf;
816
817         /**
818          * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
819          * list.
820          */
821         struct list_head node;
822
823         /** @done_fence: Fence signaled when the job is finished or cancelled. */
824         struct dma_fence *done_fence;
825
826         /** @profiling: Job profiling information. */
827         struct {
828                 /** @mask: Current device job profiling enablement bitmask. */
829                 u32 mask;
830
831                 /** @slot: Job index in the profiling slots BO. */
832                 u32 slot;
833         } profiling;
834 };
835
836 static void
837 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
838 {
839         if (queue->syncwait.kmap) {
840                 struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
841
842                 drm_gem_vunmap_unlocked(queue->syncwait.obj, &map);
843                 queue->syncwait.kmap = NULL;
844         }
845
846         drm_gem_object_put(queue->syncwait.obj);
847         queue->syncwait.obj = NULL;
848 }
849
850 static void *
851 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
852 {
853         struct panthor_device *ptdev = group->ptdev;
854         struct panthor_gem_object *bo;
855         struct iosys_map map;
856         int ret;
857
858         if (queue->syncwait.kmap)
859                 return queue->syncwait.kmap + queue->syncwait.offset;
860
861         bo = panthor_vm_get_bo_for_va(group->vm,
862                                       queue->syncwait.gpu_va,
863                                       &queue->syncwait.offset);
864         if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
865                 goto err_put_syncwait_obj;
866
867         queue->syncwait.obj = &bo->base.base;
868         ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map);
869         if (drm_WARN_ON(&ptdev->base, ret))
870                 goto err_put_syncwait_obj;
871
872         queue->syncwait.kmap = map.vaddr;
873         if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
874                 goto err_put_syncwait_obj;
875
876         return queue->syncwait.kmap + queue->syncwait.offset;
877
878 err_put_syncwait_obj:
879         panthor_queue_put_syncwait_obj(queue);
880         return NULL;
881 }
882
883 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
884 {
885         if (IS_ERR_OR_NULL(queue))
886                 return;
887
888         if (queue->entity.fence_context)
889                 drm_sched_entity_destroy(&queue->entity);
890
891         if (queue->scheduler.ops)
892                 drm_sched_fini(&queue->scheduler);
893
894         panthor_queue_put_syncwait_obj(queue);
895
896         panthor_kernel_bo_destroy(queue->ringbuf);
897         panthor_kernel_bo_destroy(queue->iface.mem);
898         panthor_kernel_bo_destroy(queue->profiling.slots);
899
900         /* Release the last_fence we were holding, if any. */
901         dma_fence_put(queue->fence_ctx.last_fence);
902
903         kfree(queue);
904 }
905
906 static void group_release_work(struct work_struct *work)
907 {
908         struct panthor_group *group = container_of(work,
909                                                    struct panthor_group,
910                                                    release_work);
911         u32 i;
912
913         mutex_destroy(&group->fdinfo.lock);
914
915         for (i = 0; i < group->queue_count; i++)
916                 group_free_queue(group, group->queues[i]);
917
918         panthor_kernel_bo_destroy(group->suspend_buf);
919         panthor_kernel_bo_destroy(group->protm_suspend_buf);
920         panthor_kernel_bo_destroy(group->syncobjs);
921
922         panthor_vm_put(group->vm);
923         kfree(group);
924 }
925
926 static void group_release(struct kref *kref)
927 {
928         struct panthor_group *group = container_of(kref,
929                                                    struct panthor_group,
930                                                    refcount);
931         struct panthor_device *ptdev = group->ptdev;
932
933         drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
934         drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
935         drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
936
937         queue_work(panthor_cleanup_wq, &group->release_work);
938 }
939
940 static void group_put(struct panthor_group *group)
941 {
942         if (group)
943                 kref_put(&group->refcount, group_release);
944 }
945
946 static struct panthor_group *
947 group_get(struct panthor_group *group)
948 {
949         if (group)
950                 kref_get(&group->refcount);
951
952         return group;
953 }
954
955 /**
956  * group_bind_locked() - Bind a group to a group slot
957  * @group: Group.
958  * @csg_id: Slot.
959  *
960  * Return: 0 on success, a negative error code otherwise.
961  */
962 static int
963 group_bind_locked(struct panthor_group *group, u32 csg_id)
964 {
965         struct panthor_device *ptdev = group->ptdev;
966         struct panthor_csg_slot *csg_slot;
967         int ret;
968
969         lockdep_assert_held(&ptdev->scheduler->lock);
970
971         if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
972                         ptdev->scheduler->csg_slots[csg_id].group))
973                 return -EINVAL;
974
975         ret = panthor_vm_active(group->vm);
976         if (ret)
977                 return ret;
978
979         csg_slot = &ptdev->scheduler->csg_slots[csg_id];
980         group_get(group);
981         group->csg_id = csg_id;
982
983         /* Dummy doorbell allocation: doorbell is assigned to the group and
984          * all queues use the same doorbell.
985          *
986          * TODO: Implement LRU-based doorbell assignment, so the most often
987          * updated queues get their own doorbell, thus avoiding useless checks
988          * on queues belonging to the same group that are rarely updated.
989          */
990         for (u32 i = 0; i < group->queue_count; i++)
991                 group->queues[i]->doorbell_id = csg_id + 1;
992
993         csg_slot->group = group;
994
995         return 0;
996 }
997
998 /**
999  * group_unbind_locked() - Unbind a group from a slot.
1000  * @group: Group to unbind.
1001  *
1002  * Return: 0 on success, a negative error code otherwise.
1003  */
1004 static int
1005 group_unbind_locked(struct panthor_group *group)
1006 {
1007         struct panthor_device *ptdev = group->ptdev;
1008         struct panthor_csg_slot *slot;
1009
1010         lockdep_assert_held(&ptdev->scheduler->lock);
1011
1012         if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
1013                 return -EINVAL;
1014
1015         if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
1016                 return -EINVAL;
1017
1018         slot = &ptdev->scheduler->csg_slots[group->csg_id];
1019         panthor_vm_idle(group->vm);
1020         group->csg_id = -1;
1021
1022         /* Tiler OOM events will be re-issued next time the group is scheduled. */
1023         atomic_set(&group->tiler_oom, 0);
1024         cancel_work(&group->tiler_oom_work);
1025
1026         for (u32 i = 0; i < group->queue_count; i++)
1027                 group->queues[i]->doorbell_id = -1;
1028
1029         slot->group = NULL;
1030
1031         group_put(group);
1032         return 0;
1033 }
1034
1035 /**
1036  * cs_slot_prog_locked() - Program a queue slot
1037  * @ptdev: Device.
1038  * @csg_id: Group slot ID.
1039  * @cs_id: Queue slot ID.
1040  *
1041  * Program a queue slot with the queue information so things can start being
1042  * executed on this queue.
1043  *
1044  * The group slot must have a group bound to it already (group_bind_locked()).
1045  */
1046 static void
1047 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1048 {
1049         struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
1050         struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1051
1052         lockdep_assert_held(&ptdev->scheduler->lock);
1053
1054         queue->iface.input->extract = queue->iface.output->extract;
1055         drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
1056
1057         cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
1058         cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
1059         cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
1060         cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
1061         cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
1062                                   CS_CONFIG_DOORBELL(queue->doorbell_id);
1063         cs_iface->input->ack_irq_mask = ~0;
1064         panthor_fw_update_reqs(cs_iface, req,
1065                                CS_IDLE_SYNC_WAIT |
1066                                CS_IDLE_EMPTY |
1067                                CS_STATE_START |
1068                                CS_EXTRACT_EVENT,
1069                                CS_IDLE_SYNC_WAIT |
1070                                CS_IDLE_EMPTY |
1071                                CS_STATE_MASK |
1072                                CS_EXTRACT_EVENT);
1073         if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) {
1074                 drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time);
1075                 queue->timeout_suspended = false;
1076         }
1077 }
1078
1079 /**
1080  * cs_slot_reset_locked() - Reset a queue slot
1081  * @ptdev: Device.
1082  * @csg_id: Group slot.
1083  * @cs_id: Queue slot.
1084  *
1085  * Change the queue slot state to STOP and suspend the queue timeout if
1086  * the queue is not blocked.
1087  *
1088  * The group slot must have a group bound to it (group_bind_locked()).
1089  */
1090 static int
1091 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1092 {
1093         struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1094         struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1095         struct panthor_queue *queue = group->queues[cs_id];
1096
1097         lockdep_assert_held(&ptdev->scheduler->lock);
1098
1099         panthor_fw_update_reqs(cs_iface, req,
1100                                CS_STATE_STOP,
1101                                CS_STATE_MASK);
1102
1103         /* If the queue is blocked, we want to keep the timeout running, so
1104          * we can detect unbounded waits and kill the group when that happens.
1105          */
1106         if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) {
1107                 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
1108                 queue->timeout_suspended = true;
1109                 WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS));
1110         }
1111
1112         return 0;
1113 }
1114
1115 /**
1116  * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1117  * @ptdev: Device.
1118  * @csg_id: Group slot ID.
1119  *
1120  * Group slot priority update happens asynchronously. When we receive a
1121  * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1122  * reflect it to our panthor_csg_slot object.
1123  */
1124 static void
1125 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1126 {
1127         struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1128         struct panthor_fw_csg_iface *csg_iface;
1129
1130         lockdep_assert_held(&ptdev->scheduler->lock);
1131
1132         csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1133         csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28;
1134 }
1135
1136 /**
1137  * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1138  * @ptdev: Device.
1139  * @csg_id: Group slot.
1140  * @cs_id: Queue slot.
1141  *
1142  * Queue state is updated on group suspend or STATUS_UPDATE event.
1143  */
1144 static void
1145 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1146 {
1147         struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1148         struct panthor_queue *queue = group->queues[cs_id];
1149         struct panthor_fw_cs_iface *cs_iface =
1150                 panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1151
1152         u32 status_wait_cond;
1153
1154         switch (cs_iface->output->status_blocked_reason) {
1155         case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1156                 if (queue->iface.input->insert == queue->iface.output->extract &&
1157                     cs_iface->output->status_scoreboards == 0)
1158                         group->idle_queues |= BIT(cs_id);
1159                 break;
1160
1161         case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1162                 if (list_empty(&group->wait_node)) {
1163                         list_move_tail(&group->wait_node,
1164                                        &group->ptdev->scheduler->groups.waiting);
1165                 }
1166
1167                 /* The queue is only blocked if there's no deferred operation
1168                  * pending, which can be checked through the scoreboard status.
1169                  */
1170                 if (!cs_iface->output->status_scoreboards)
1171                         group->blocked_queues |= BIT(cs_id);
1172
1173                 queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1174                 queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1175                 status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1176                 queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1177                 if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1178                         u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1179
1180                         queue->syncwait.sync64 = true;
1181                         queue->syncwait.ref |= sync_val_hi << 32;
1182                 } else {
1183                         queue->syncwait.sync64 = false;
1184                 }
1185                 break;
1186
1187         default:
1188                 /* Other reasons are not blocking. Consider the queue as runnable
1189                  * in those cases.
1190                  */
1191                 break;
1192         }
1193 }
1194
1195 static void
1196 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1197 {
1198         struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1199         struct panthor_group *group = csg_slot->group;
1200         u32 i;
1201
1202         lockdep_assert_held(&ptdev->scheduler->lock);
1203
1204         group->idle_queues = 0;
1205         group->blocked_queues = 0;
1206
1207         for (i = 0; i < group->queue_count; i++) {
1208                 if (group->queues[i])
1209                         cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1210         }
1211 }
1212
1213 static void
1214 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1215 {
1216         struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1217         struct panthor_fw_csg_iface *csg_iface;
1218         struct panthor_group *group;
1219         enum panthor_group_state new_state, old_state;
1220         u32 csg_state;
1221
1222         lockdep_assert_held(&ptdev->scheduler->lock);
1223
1224         csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1225         group = csg_slot->group;
1226
1227         if (!group)
1228                 return;
1229
1230         old_state = group->state;
1231         csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1232         switch (csg_state) {
1233         case CSG_STATE_START:
1234         case CSG_STATE_RESUME:
1235                 new_state = PANTHOR_CS_GROUP_ACTIVE;
1236                 break;
1237         case CSG_STATE_TERMINATE:
1238                 new_state = PANTHOR_CS_GROUP_TERMINATED;
1239                 break;
1240         case CSG_STATE_SUSPEND:
1241                 new_state = PANTHOR_CS_GROUP_SUSPENDED;
1242                 break;
1243         default:
1244                 /* The unknown state might be caused by a FW state corruption,
1245                  * which means the group metadata can't be trusted anymore, and
1246                  * the SUSPEND operation might propagate the corruption to the
1247                  * suspend buffers. Flag the group state as unknown to make
1248                  * sure it's unusable after that point.
1249                  */
1250                 drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1251                         csg_id, csg_state);
1252                 new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1253                 break;
1254         }
1255
1256         if (old_state == new_state)
1257                 return;
1258
1259         /* The unknown state might be caused by a FW issue, reset the FW to
1260          * take a fresh start.
1261          */
1262         if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1263                 panthor_device_schedule_reset(ptdev);
1264
1265         if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1266                 csg_slot_sync_queues_state_locked(ptdev, csg_id);
1267
1268         if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1269                 u32 i;
1270
1271                 /* Reset the queue slots so we start from a clean
1272                  * state when starting/resuming a new group on this
1273                  * CSG slot. No wait needed here, and no ringbell
1274                  * either, since the CS slot will only be re-used
1275                  * on the next CSG start operation.
1276                  */
1277                 for (i = 0; i < group->queue_count; i++) {
1278                         if (group->queues[i])
1279                                 cs_slot_reset_locked(ptdev, csg_id, i);
1280                 }
1281         }
1282
1283         group->state = new_state;
1284 }
1285
1286 static int
1287 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1288 {
1289         struct panthor_fw_csg_iface *csg_iface;
1290         struct panthor_csg_slot *csg_slot;
1291         struct panthor_group *group;
1292         u32 queue_mask = 0, i;
1293
1294         lockdep_assert_held(&ptdev->scheduler->lock);
1295
1296         if (priority > MAX_CSG_PRIO)
1297                 return -EINVAL;
1298
1299         if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1300                 return -EINVAL;
1301
1302         csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1303         group = csg_slot->group;
1304         if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1305                 return 0;
1306
1307         csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1308
1309         for (i = 0; i < group->queue_count; i++) {
1310                 if (group->queues[i]) {
1311                         cs_slot_prog_locked(ptdev, csg_id, i);
1312                         queue_mask |= BIT(i);
1313                 }
1314         }
1315
1316         csg_iface->input->allow_compute = group->compute_core_mask;
1317         csg_iface->input->allow_fragment = group->fragment_core_mask;
1318         csg_iface->input->allow_other = group->tiler_core_mask;
1319         csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1320                                          CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1321                                          CSG_EP_REQ_TILER(group->max_tiler_cores) |
1322                                          CSG_EP_REQ_PRIORITY(priority);
1323         csg_iface->input->config = panthor_vm_as(group->vm);
1324
1325         if (group->suspend_buf)
1326                 csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1327         else
1328                 csg_iface->input->suspend_buf = 0;
1329
1330         if (group->protm_suspend_buf) {
1331                 csg_iface->input->protm_suspend_buf =
1332                         panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1333         } else {
1334                 csg_iface->input->protm_suspend_buf = 0;
1335         }
1336
1337         csg_iface->input->ack_irq_mask = ~0;
1338         panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1339         return 0;
1340 }
1341
1342 static void
1343 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1344                                    u32 csg_id, u32 cs_id)
1345 {
1346         struct panthor_scheduler *sched = ptdev->scheduler;
1347         struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1348         struct panthor_group *group = csg_slot->group;
1349         struct panthor_fw_cs_iface *cs_iface;
1350         u32 fatal;
1351         u64 info;
1352
1353         lockdep_assert_held(&sched->lock);
1354
1355         cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1356         fatal = cs_iface->output->fatal;
1357         info = cs_iface->output->fatal_info;
1358
1359         if (group)
1360                 group->fatal_queues |= BIT(cs_id);
1361
1362         if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1363                 /* If this exception is unrecoverable, queue a reset, and make
1364                  * sure we stop scheduling groups until the reset has happened.
1365                  */
1366                 panthor_device_schedule_reset(ptdev);
1367                 cancel_delayed_work(&sched->tick_work);
1368         } else {
1369                 sched_queue_delayed_work(sched, tick, 0);
1370         }
1371
1372         drm_warn(&ptdev->base,
1373                  "CSG slot %d CS slot: %d\n"
1374                  "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1375                  "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1376                  "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1377                  csg_id, cs_id,
1378                  (unsigned int)CS_EXCEPTION_TYPE(fatal),
1379                  panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1380                  (unsigned int)CS_EXCEPTION_DATA(fatal),
1381                  info);
1382 }
1383
1384 static void
1385 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1386                                    u32 csg_id, u32 cs_id)
1387 {
1388         struct panthor_scheduler *sched = ptdev->scheduler;
1389         struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1390         struct panthor_group *group = csg_slot->group;
1391         struct panthor_queue *queue = group && cs_id < group->queue_count ?
1392                                       group->queues[cs_id] : NULL;
1393         struct panthor_fw_cs_iface *cs_iface;
1394         u32 fault;
1395         u64 info;
1396
1397         lockdep_assert_held(&sched->lock);
1398
1399         cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1400         fault = cs_iface->output->fault;
1401         info = cs_iface->output->fault_info;
1402
1403         if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) {
1404                 u64 cs_extract = queue->iface.output->extract;
1405                 struct panthor_job *job;
1406
1407                 spin_lock(&queue->fence_ctx.lock);
1408                 list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1409                         if (cs_extract >= job->ringbuf.end)
1410                                 continue;
1411
1412                         if (cs_extract < job->ringbuf.start)
1413                                 break;
1414
1415                         dma_fence_set_error(job->done_fence, -EINVAL);
1416                 }
1417                 spin_unlock(&queue->fence_ctx.lock);
1418         }
1419
1420         drm_warn(&ptdev->base,
1421                  "CSG slot %d CS slot: %d\n"
1422                  "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1423                  "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1424                  "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1425                  csg_id, cs_id,
1426                  (unsigned int)CS_EXCEPTION_TYPE(fault),
1427                  panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1428                  (unsigned int)CS_EXCEPTION_DATA(fault),
1429                  info);
1430 }
1431
1432 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1433 {
1434         struct panthor_device *ptdev = group->ptdev;
1435         struct panthor_scheduler *sched = ptdev->scheduler;
1436         u32 renderpasses_in_flight, pending_frag_count;
1437         struct panthor_heap_pool *heaps = NULL;
1438         u64 heap_address, new_chunk_va = 0;
1439         u32 vt_start, vt_end, frag_end;
1440         int ret, csg_id;
1441
1442         mutex_lock(&sched->lock);
1443         csg_id = group->csg_id;
1444         if (csg_id >= 0) {
1445                 struct panthor_fw_cs_iface *cs_iface;
1446
1447                 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1448                 heaps = panthor_vm_get_heap_pool(group->vm, false);
1449                 heap_address = cs_iface->output->heap_address;
1450                 vt_start = cs_iface->output->heap_vt_start;
1451                 vt_end = cs_iface->output->heap_vt_end;
1452                 frag_end = cs_iface->output->heap_frag_end;
1453                 renderpasses_in_flight = vt_start - frag_end;
1454                 pending_frag_count = vt_end - frag_end;
1455         }
1456         mutex_unlock(&sched->lock);
1457
1458         /* The group got scheduled out, we stop here. We will get a new tiler OOM event
1459          * when it's scheduled again.
1460          */
1461         if (unlikely(csg_id < 0))
1462                 return 0;
1463
1464         if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1465                 ret = -EINVAL;
1466         } else {
1467                 /* We do the allocation without holding the scheduler lock to avoid
1468                  * blocking the scheduling.
1469                  */
1470                 ret = panthor_heap_grow(heaps, heap_address,
1471                                         renderpasses_in_flight,
1472                                         pending_frag_count, &new_chunk_va);
1473         }
1474
1475         /* If the heap context doesn't have memory for us, we want to let the
1476          * FW try to reclaim memory by waiting for fragment jobs to land or by
1477          * executing the tiler OOM exception handler, which is supposed to
1478          * implement incremental rendering.
1479          */
1480         if (ret && ret != -ENOMEM) {
1481                 drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1482                 group->fatal_queues |= BIT(cs_id);
1483                 sched_queue_delayed_work(sched, tick, 0);
1484                 goto out_put_heap_pool;
1485         }
1486
1487         mutex_lock(&sched->lock);
1488         csg_id = group->csg_id;
1489         if (csg_id >= 0) {
1490                 struct panthor_fw_csg_iface *csg_iface;
1491                 struct panthor_fw_cs_iface *cs_iface;
1492
1493                 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1494                 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1495
1496                 cs_iface->input->heap_start = new_chunk_va;
1497                 cs_iface->input->heap_end = new_chunk_va;
1498                 panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1499                 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1500                 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1501         }
1502         mutex_unlock(&sched->lock);
1503
1504         /* We allocated a chunck, but couldn't link it to the heap
1505          * context because the group was scheduled out while we were
1506          * allocating memory. We need to return this chunk to the heap.
1507          */
1508         if (unlikely(csg_id < 0 && new_chunk_va))
1509                 panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1510
1511         ret = 0;
1512
1513 out_put_heap_pool:
1514         panthor_heap_pool_put(heaps);
1515         return ret;
1516 }
1517
1518 static void group_tiler_oom_work(struct work_struct *work)
1519 {
1520         struct panthor_group *group =
1521                 container_of(work, struct panthor_group, tiler_oom_work);
1522         u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1523
1524         while (tiler_oom) {
1525                 u32 cs_id = ffs(tiler_oom) - 1;
1526
1527                 group_process_tiler_oom(group, cs_id);
1528                 tiler_oom &= ~BIT(cs_id);
1529         }
1530
1531         group_put(group);
1532 }
1533
1534 static void
1535 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1536                                        u32 csg_id, u32 cs_id)
1537 {
1538         struct panthor_scheduler *sched = ptdev->scheduler;
1539         struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1540         struct panthor_group *group = csg_slot->group;
1541
1542         lockdep_assert_held(&sched->lock);
1543
1544         if (drm_WARN_ON(&ptdev->base, !group))
1545                 return;
1546
1547         atomic_or(BIT(cs_id), &group->tiler_oom);
1548
1549         /* We don't use group_queue_work() here because we want to queue the
1550          * work item to the heap_alloc_wq.
1551          */
1552         group_get(group);
1553         if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1554                 group_put(group);
1555 }
1556
1557 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1558                                        u32 csg_id, u32 cs_id)
1559 {
1560         struct panthor_fw_cs_iface *cs_iface;
1561         u32 req, ack, events;
1562
1563         lockdep_assert_held(&ptdev->scheduler->lock);
1564
1565         cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1566         req = cs_iface->input->req;
1567         ack = cs_iface->output->ack;
1568         events = (req ^ ack) & CS_EVT_MASK;
1569
1570         if (events & CS_FATAL)
1571                 cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1572
1573         if (events & CS_FAULT)
1574                 cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1575
1576         if (events & CS_TILER_OOM)
1577                 cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1578
1579         /* We don't acknowledge the TILER_OOM event since its handling is
1580          * deferred to a separate work.
1581          */
1582         panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1583
1584         return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1585 }
1586
1587 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
1588 {
1589         struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1590         struct panthor_fw_csg_iface *csg_iface;
1591
1592         lockdep_assert_held(&ptdev->scheduler->lock);
1593
1594         csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1595         csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
1596 }
1597
1598 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1599 {
1600         struct panthor_scheduler *sched = ptdev->scheduler;
1601
1602         lockdep_assert_held(&sched->lock);
1603
1604         sched->might_have_idle_groups = true;
1605
1606         /* Schedule a tick so we can evict idle groups and schedule non-idle
1607          * ones. This will also update runtime PM and devfreq busy/idle states,
1608          * so the device can lower its frequency or get suspended.
1609          */
1610         sched_queue_delayed_work(sched, tick, 0);
1611 }
1612
1613 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1614                                         u32 csg_id)
1615 {
1616         struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1617         struct panthor_group *group = csg_slot->group;
1618
1619         lockdep_assert_held(&ptdev->scheduler->lock);
1620
1621         if (group)
1622                 group_queue_work(group, sync_upd);
1623
1624         sched_queue_work(ptdev->scheduler, sync_upd);
1625 }
1626
1627 static void
1628 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1629 {
1630         struct panthor_scheduler *sched = ptdev->scheduler;
1631         struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1632         struct panthor_group *group = csg_slot->group;
1633
1634         lockdep_assert_held(&sched->lock);
1635
1636         drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1637
1638         group = csg_slot->group;
1639         if (!drm_WARN_ON(&ptdev->base, !group))
1640                 group->timedout = true;
1641
1642         sched_queue_delayed_work(sched, tick, 0);
1643 }
1644
1645 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1646 {
1647         u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1648         struct panthor_fw_csg_iface *csg_iface;
1649         u32 ring_cs_db_mask = 0;
1650
1651         lockdep_assert_held(&ptdev->scheduler->lock);
1652
1653         if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1654                 return;
1655
1656         csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1657         req = READ_ONCE(csg_iface->input->req);
1658         ack = READ_ONCE(csg_iface->output->ack);
1659         cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1660         cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1661         csg_events = (req ^ ack) & CSG_EVT_MASK;
1662
1663         /* There may not be any pending CSG/CS interrupts to process */
1664         if (req == ack && cs_irq_req == cs_irq_ack)
1665                 return;
1666
1667         /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1668          * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1669          * doesn't miss an interrupt for the CS in the race scenario where
1670          * whilst Host is servicing an interrupt for the CS, firmware sends
1671          * another interrupt for that CS.
1672          */
1673         csg_iface->input->cs_irq_ack = cs_irq_req;
1674
1675         panthor_fw_update_reqs(csg_iface, req, ack,
1676                                CSG_SYNC_UPDATE |
1677                                CSG_IDLE |
1678                                CSG_PROGRESS_TIMER_EVENT);
1679
1680         if (csg_events & CSG_IDLE)
1681                 csg_slot_process_idle_event_locked(ptdev, csg_id);
1682
1683         if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1684                 csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1685
1686         cs_irqs = cs_irq_req ^ cs_irq_ack;
1687         while (cs_irqs) {
1688                 u32 cs_id = ffs(cs_irqs) - 1;
1689
1690                 if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1691                         ring_cs_db_mask |= BIT(cs_id);
1692
1693                 cs_irqs &= ~BIT(cs_id);
1694         }
1695
1696         if (csg_events & CSG_SYNC_UPDATE)
1697                 csg_slot_sync_update_locked(ptdev, csg_id);
1698
1699         if (ring_cs_db_mask)
1700                 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1701
1702         panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1703 }
1704
1705 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1706 {
1707         struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1708
1709         lockdep_assert_held(&ptdev->scheduler->lock);
1710
1711         /* Acknowledge the idle event and schedule a tick. */
1712         panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1713         sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1714 }
1715
1716 /**
1717  * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1718  * @ptdev: Device.
1719  */
1720 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1721 {
1722         struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1723         u32 req, ack, evts;
1724
1725         lockdep_assert_held(&ptdev->scheduler->lock);
1726
1727         req = READ_ONCE(glb_iface->input->req);
1728         ack = READ_ONCE(glb_iface->output->ack);
1729         evts = (req ^ ack) & GLB_EVT_MASK;
1730
1731         if (evts & GLB_IDLE)
1732                 sched_process_idle_event_locked(ptdev);
1733 }
1734
1735 static void process_fw_events_work(struct work_struct *work)
1736 {
1737         struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1738                                                       fw_events_work);
1739         u32 events = atomic_xchg(&sched->fw_events, 0);
1740         struct panthor_device *ptdev = sched->ptdev;
1741
1742         mutex_lock(&sched->lock);
1743
1744         if (events & JOB_INT_GLOBAL_IF) {
1745                 sched_process_global_irq_locked(ptdev);
1746                 events &= ~JOB_INT_GLOBAL_IF;
1747         }
1748
1749         while (events) {
1750                 u32 csg_id = ffs(events) - 1;
1751
1752                 sched_process_csg_irq_locked(ptdev, csg_id);
1753                 events &= ~BIT(csg_id);
1754         }
1755
1756         mutex_unlock(&sched->lock);
1757 }
1758
1759 /**
1760  * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1761  */
1762 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1763 {
1764         if (!ptdev->scheduler)
1765                 return;
1766
1767         atomic_or(events, &ptdev->scheduler->fw_events);
1768         sched_queue_work(ptdev->scheduler, fw_events);
1769 }
1770
1771 static const char *fence_get_driver_name(struct dma_fence *fence)
1772 {
1773         return "panthor";
1774 }
1775
1776 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1777 {
1778         return "queue-fence";
1779 }
1780
1781 static const struct dma_fence_ops panthor_queue_fence_ops = {
1782         .get_driver_name = fence_get_driver_name,
1783         .get_timeline_name = queue_fence_get_timeline_name,
1784 };
1785
1786 struct panthor_csg_slots_upd_ctx {
1787         u32 update_mask;
1788         u32 timedout_mask;
1789         struct {
1790                 u32 value;
1791                 u32 mask;
1792         } requests[MAX_CSGS];
1793 };
1794
1795 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1796 {
1797         memset(ctx, 0, sizeof(*ctx));
1798 }
1799
1800 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1801                                     struct panthor_csg_slots_upd_ctx *ctx,
1802                                     u32 csg_id, u32 value, u32 mask)
1803 {
1804         if (drm_WARN_ON(&ptdev->base, !mask) ||
1805             drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1806                 return;
1807
1808         ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1809         ctx->requests[csg_id].mask |= mask;
1810         ctx->update_mask |= BIT(csg_id);
1811 }
1812
1813 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1814                                      struct panthor_csg_slots_upd_ctx *ctx)
1815 {
1816         struct panthor_scheduler *sched = ptdev->scheduler;
1817         u32 update_slots = ctx->update_mask;
1818
1819         lockdep_assert_held(&sched->lock);
1820
1821         if (!ctx->update_mask)
1822                 return 0;
1823
1824         while (update_slots) {
1825                 struct panthor_fw_csg_iface *csg_iface;
1826                 u32 csg_id = ffs(update_slots) - 1;
1827
1828                 update_slots &= ~BIT(csg_id);
1829                 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1830                 panthor_fw_update_reqs(csg_iface, req,
1831                                        ctx->requests[csg_id].value,
1832                                        ctx->requests[csg_id].mask);
1833         }
1834
1835         panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1836
1837         update_slots = ctx->update_mask;
1838         while (update_slots) {
1839                 struct panthor_fw_csg_iface *csg_iface;
1840                 u32 csg_id = ffs(update_slots) - 1;
1841                 u32 req_mask = ctx->requests[csg_id].mask, acked;
1842                 int ret;
1843
1844                 update_slots &= ~BIT(csg_id);
1845                 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1846
1847                 ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1848
1849                 if (acked & CSG_ENDPOINT_CONFIG)
1850                         csg_slot_sync_priority_locked(ptdev, csg_id);
1851
1852                 if (acked & CSG_STATE_MASK)
1853                         csg_slot_sync_state_locked(ptdev, csg_id);
1854
1855                 if (acked & CSG_STATUS_UPDATE) {
1856                         csg_slot_sync_queues_state_locked(ptdev, csg_id);
1857                         csg_slot_sync_idle_state_locked(ptdev, csg_id);
1858                 }
1859
1860                 if (ret && acked != req_mask &&
1861                     ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
1862                         drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
1863                         ctx->timedout_mask |= BIT(csg_id);
1864                 }
1865         }
1866
1867         if (ctx->timedout_mask)
1868                 return -ETIMEDOUT;
1869
1870         return 0;
1871 }
1872
1873 struct panthor_sched_tick_ctx {
1874         struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
1875         struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
1876         u32 idle_group_count;
1877         u32 group_count;
1878         enum panthor_csg_priority min_priority;
1879         struct panthor_vm *vms[MAX_CS_PER_CSG];
1880         u32 as_count;
1881         bool immediate_tick;
1882         u32 csg_upd_failed_mask;
1883 };
1884
1885 static bool
1886 tick_ctx_is_full(const struct panthor_scheduler *sched,
1887                  const struct panthor_sched_tick_ctx *ctx)
1888 {
1889         return ctx->group_count == sched->csg_slot_count;
1890 }
1891
1892 static bool
1893 group_is_idle(struct panthor_group *group)
1894 {
1895         struct panthor_device *ptdev = group->ptdev;
1896         u32 inactive_queues;
1897
1898         if (group->csg_id >= 0)
1899                 return ptdev->scheduler->csg_slots[group->csg_id].idle;
1900
1901         inactive_queues = group->idle_queues | group->blocked_queues;
1902         return hweight32(inactive_queues) == group->queue_count;
1903 }
1904
1905 static bool
1906 group_can_run(struct panthor_group *group)
1907 {
1908         return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1909                group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1910                !group->destroyed && group->fatal_queues == 0 &&
1911                !group->timedout;
1912 }
1913
1914 static void
1915 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
1916                                struct panthor_sched_tick_ctx *ctx,
1917                                struct list_head *queue,
1918                                bool skip_idle_groups,
1919                                bool owned_by_tick_ctx)
1920 {
1921         struct panthor_group *group, *tmp;
1922
1923         if (tick_ctx_is_full(sched, ctx))
1924                 return;
1925
1926         list_for_each_entry_safe(group, tmp, queue, run_node) {
1927                 u32 i;
1928
1929                 if (!group_can_run(group))
1930                         continue;
1931
1932                 if (skip_idle_groups && group_is_idle(group))
1933                         continue;
1934
1935                 for (i = 0; i < ctx->as_count; i++) {
1936                         if (ctx->vms[i] == group->vm)
1937                                 break;
1938                 }
1939
1940                 if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
1941                         continue;
1942
1943                 if (!owned_by_tick_ctx)
1944                         group_get(group);
1945
1946                 list_move_tail(&group->run_node, &ctx->groups[group->priority]);
1947                 ctx->group_count++;
1948                 if (group_is_idle(group))
1949                         ctx->idle_group_count++;
1950
1951                 if (i == ctx->as_count)
1952                         ctx->vms[ctx->as_count++] = group->vm;
1953
1954                 if (ctx->min_priority > group->priority)
1955                         ctx->min_priority = group->priority;
1956
1957                 if (tick_ctx_is_full(sched, ctx))
1958                         return;
1959         }
1960 }
1961
1962 static void
1963 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
1964                           struct panthor_sched_tick_ctx *ctx,
1965                           struct panthor_group *group,
1966                           bool full_tick)
1967 {
1968         struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
1969         struct panthor_group *other_group;
1970
1971         if (!full_tick) {
1972                 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1973                 return;
1974         }
1975
1976         /* Rotate to make sure groups with lower CSG slot
1977          * priorities have a chance to get a higher CSG slot
1978          * priority next time they get picked. This priority
1979          * has an impact on resource request ordering, so it's
1980          * important to make sure we don't let one group starve
1981          * all other groups with the same group priority.
1982          */
1983         list_for_each_entry(other_group,
1984                             &ctx->old_groups[csg_slot->group->priority],
1985                             run_node) {
1986                 struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
1987
1988                 if (other_csg_slot->priority > csg_slot->priority) {
1989                         list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
1990                         return;
1991                 }
1992         }
1993
1994         list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1995 }
1996
1997 static void
1998 tick_ctx_init(struct panthor_scheduler *sched,
1999               struct panthor_sched_tick_ctx *ctx,
2000               bool full_tick)
2001 {
2002         struct panthor_device *ptdev = sched->ptdev;
2003         struct panthor_csg_slots_upd_ctx upd_ctx;
2004         int ret;
2005         u32 i;
2006
2007         memset(ctx, 0, sizeof(*ctx));
2008         csgs_upd_ctx_init(&upd_ctx);
2009
2010         ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
2011         for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2012                 INIT_LIST_HEAD(&ctx->groups[i]);
2013                 INIT_LIST_HEAD(&ctx->old_groups[i]);
2014         }
2015
2016         for (i = 0; i < sched->csg_slot_count; i++) {
2017                 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2018                 struct panthor_group *group = csg_slot->group;
2019                 struct panthor_fw_csg_iface *csg_iface;
2020
2021                 if (!group)
2022                         continue;
2023
2024                 csg_iface = panthor_fw_get_csg_iface(ptdev, i);
2025                 group_get(group);
2026
2027                 /* If there was unhandled faults on the VM, force processing of
2028                  * CSG IRQs, so we can flag the faulty queue.
2029                  */
2030                 if (panthor_vm_has_unhandled_faults(group->vm)) {
2031                         sched_process_csg_irq_locked(ptdev, i);
2032
2033                         /* No fatal fault reported, flag all queues as faulty. */
2034                         if (!group->fatal_queues)
2035                                 group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
2036                 }
2037
2038                 tick_ctx_insert_old_group(sched, ctx, group, full_tick);
2039                 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2040                                         csg_iface->output->ack ^ CSG_STATUS_UPDATE,
2041                                         CSG_STATUS_UPDATE);
2042         }
2043
2044         ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2045         if (ret) {
2046                 panthor_device_schedule_reset(ptdev);
2047                 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2048         }
2049 }
2050
2051 static void
2052 group_term_post_processing(struct panthor_group *group)
2053 {
2054         struct panthor_job *job, *tmp;
2055         LIST_HEAD(faulty_jobs);
2056         bool cookie;
2057         u32 i = 0;
2058
2059         if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
2060                 return;
2061
2062         cookie = dma_fence_begin_signalling();
2063         for (i = 0; i < group->queue_count; i++) {
2064                 struct panthor_queue *queue = group->queues[i];
2065                 struct panthor_syncobj_64b *syncobj;
2066                 int err;
2067
2068                 if (group->fatal_queues & BIT(i))
2069                         err = -EINVAL;
2070                 else if (group->timedout)
2071                         err = -ETIMEDOUT;
2072                 else
2073                         err = -ECANCELED;
2074
2075                 if (!queue)
2076                         continue;
2077
2078                 spin_lock(&queue->fence_ctx.lock);
2079                 list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2080                         list_move_tail(&job->node, &faulty_jobs);
2081                         dma_fence_set_error(job->done_fence, err);
2082                         dma_fence_signal_locked(job->done_fence);
2083                 }
2084                 spin_unlock(&queue->fence_ctx.lock);
2085
2086                 /* Manually update the syncobj seqno to unblock waiters. */
2087                 syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2088                 syncobj->status = ~0;
2089                 syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2090                 sched_queue_work(group->ptdev->scheduler, sync_upd);
2091         }
2092         dma_fence_end_signalling(cookie);
2093
2094         list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2095                 list_del_init(&job->node);
2096                 panthor_job_put(&job->base);
2097         }
2098 }
2099
2100 static void group_term_work(struct work_struct *work)
2101 {
2102         struct panthor_group *group =
2103                 container_of(work, struct panthor_group, term_work);
2104
2105         group_term_post_processing(group);
2106         group_put(group);
2107 }
2108
2109 static void
2110 tick_ctx_cleanup(struct panthor_scheduler *sched,
2111                  struct panthor_sched_tick_ctx *ctx)
2112 {
2113         struct panthor_device *ptdev = sched->ptdev;
2114         struct panthor_group *group, *tmp;
2115         u32 i;
2116
2117         for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2118                 list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2119                         /* If everything went fine, we should only have groups
2120                          * to be terminated in the old_groups lists.
2121                          */
2122                         drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask &&
2123                                     group_can_run(group));
2124
2125                         if (!group_can_run(group)) {
2126                                 list_del_init(&group->run_node);
2127                                 list_del_init(&group->wait_node);
2128                                 group_queue_work(group, term);
2129                         } else if (group->csg_id >= 0) {
2130                                 list_del_init(&group->run_node);
2131                         } else {
2132                                 list_move(&group->run_node,
2133                                           group_is_idle(group) ?
2134                                           &sched->groups.idle[group->priority] :
2135                                           &sched->groups.runnable[group->priority]);
2136                         }
2137                         group_put(group);
2138                 }
2139         }
2140
2141         for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2142                 /* If everything went fine, the groups to schedule lists should
2143                  * be empty.
2144                  */
2145                 drm_WARN_ON(&ptdev->base,
2146                             !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2147
2148                 list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2149                         if (group->csg_id >= 0) {
2150                                 list_del_init(&group->run_node);
2151                         } else {
2152                                 list_move(&group->run_node,
2153                                           group_is_idle(group) ?
2154                                           &sched->groups.idle[group->priority] :
2155                                           &sched->groups.runnable[group->priority]);
2156                         }
2157                         group_put(group);
2158                 }
2159         }
2160 }
2161
2162 static void
2163 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2164 {
2165         struct panthor_group *group, *tmp;
2166         struct panthor_device *ptdev = sched->ptdev;
2167         struct panthor_csg_slot *csg_slot;
2168         int prio, new_csg_prio = MAX_CSG_PRIO, i;
2169         u32 free_csg_slots = 0;
2170         struct panthor_csg_slots_upd_ctx upd_ctx;
2171         int ret;
2172
2173         csgs_upd_ctx_init(&upd_ctx);
2174
2175         for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2176                 /* Suspend or terminate evicted groups. */
2177                 list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2178                         bool term = !group_can_run(group);
2179                         int csg_id = group->csg_id;
2180
2181                         if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2182                                 continue;
2183
2184                         csg_slot = &sched->csg_slots[csg_id];
2185                         csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2186                                                 term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2187                                                 CSG_STATE_MASK);
2188                 }
2189
2190                 /* Update priorities on already running groups. */
2191                 list_for_each_entry(group, &ctx->groups[prio], run_node) {
2192                         struct panthor_fw_csg_iface *csg_iface;
2193                         int csg_id = group->csg_id;
2194
2195                         if (csg_id < 0) {
2196                                 new_csg_prio--;
2197                                 continue;
2198                         }
2199
2200                         csg_slot = &sched->csg_slots[csg_id];
2201                         csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2202                         if (csg_slot->priority == new_csg_prio) {
2203                                 new_csg_prio--;
2204                                 continue;
2205                         }
2206
2207                         panthor_fw_update_reqs(csg_iface, endpoint_req,
2208                                                CSG_EP_REQ_PRIORITY(new_csg_prio),
2209                                                CSG_EP_REQ_PRIORITY_MASK);
2210                         csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2211                                                 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2212                                                 CSG_ENDPOINT_CONFIG);
2213                         new_csg_prio--;
2214                 }
2215         }
2216
2217         ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2218         if (ret) {
2219                 panthor_device_schedule_reset(ptdev);
2220                 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2221                 return;
2222         }
2223
2224         /* Unbind evicted groups. */
2225         for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2226                 list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2227                         /* This group is gone. Process interrupts to clear
2228                          * any pending interrupts before we start the new
2229                          * group.
2230                          */
2231                         if (group->csg_id >= 0)
2232                                 sched_process_csg_irq_locked(ptdev, group->csg_id);
2233
2234                         group_unbind_locked(group);
2235                 }
2236         }
2237
2238         for (i = 0; i < sched->csg_slot_count; i++) {
2239                 if (!sched->csg_slots[i].group)
2240                         free_csg_slots |= BIT(i);
2241         }
2242
2243         csgs_upd_ctx_init(&upd_ctx);
2244         new_csg_prio = MAX_CSG_PRIO;
2245
2246         /* Start new groups. */
2247         for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2248                 list_for_each_entry(group, &ctx->groups[prio], run_node) {
2249                         int csg_id = group->csg_id;
2250                         struct panthor_fw_csg_iface *csg_iface;
2251
2252                         if (csg_id >= 0) {
2253                                 new_csg_prio--;
2254                                 continue;
2255                         }
2256
2257                         csg_id = ffs(free_csg_slots) - 1;
2258                         if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2259                                 break;
2260
2261                         csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2262                         csg_slot = &sched->csg_slots[csg_id];
2263                         group_bind_locked(group, csg_id);
2264                         csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2265                         csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2266                                                 group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2267                                                 CSG_STATE_RESUME : CSG_STATE_START,
2268                                                 CSG_STATE_MASK);
2269                         csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2270                                                 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2271                                                 CSG_ENDPOINT_CONFIG);
2272                         free_csg_slots &= ~BIT(csg_id);
2273                 }
2274         }
2275
2276         ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2277         if (ret) {
2278                 panthor_device_schedule_reset(ptdev);
2279                 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2280                 return;
2281         }
2282
2283         for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2284                 list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2285                         list_del_init(&group->run_node);
2286
2287                         /* If the group has been destroyed while we were
2288                          * scheduling, ask for an immediate tick to
2289                          * re-evaluate as soon as possible and get rid of
2290                          * this dangling group.
2291                          */
2292                         if (group->destroyed)
2293                                 ctx->immediate_tick = true;
2294                         group_put(group);
2295                 }
2296
2297                 /* Return evicted groups to the idle or run queues. Groups
2298                  * that can no longer be run (because they've been destroyed
2299                  * or experienced an unrecoverable error) will be scheduled
2300                  * for destruction in tick_ctx_cleanup().
2301                  */
2302                 list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2303                         if (!group_can_run(group))
2304                                 continue;
2305
2306                         if (group_is_idle(group))
2307                                 list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2308                         else
2309                                 list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2310                         group_put(group);
2311                 }
2312         }
2313
2314         sched->used_csg_slot_count = ctx->group_count;
2315         sched->might_have_idle_groups = ctx->idle_group_count > 0;
2316 }
2317
2318 static u64
2319 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2320                                const struct panthor_sched_tick_ctx *ctx)
2321 {
2322         /* We had space left, no need to reschedule until some external event happens. */
2323         if (!tick_ctx_is_full(sched, ctx))
2324                 goto no_tick;
2325
2326         /* If idle groups were scheduled, no need to wake up until some external
2327          * event happens (group unblocked, new job submitted, ...).
2328          */
2329         if (ctx->idle_group_count)
2330                 goto no_tick;
2331
2332         if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
2333                 goto no_tick;
2334
2335         /* If there are groups of the same priority waiting, we need to
2336          * keep the scheduler ticking, otherwise, we'll just wait for
2337          * new groups with higher priority to be queued.
2338          */
2339         if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
2340                 u64 resched_target = sched->last_tick + sched->tick_period;
2341
2342                 if (time_before64(sched->resched_target, sched->last_tick) ||
2343                     time_before64(resched_target, sched->resched_target))
2344                         sched->resched_target = resched_target;
2345
2346                 return sched->resched_target - sched->last_tick;
2347         }
2348
2349 no_tick:
2350         sched->resched_target = U64_MAX;
2351         return U64_MAX;
2352 }
2353
2354 static void tick_work(struct work_struct *work)
2355 {
2356         struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2357                                                       tick_work.work);
2358         struct panthor_device *ptdev = sched->ptdev;
2359         struct panthor_sched_tick_ctx ctx;
2360         u64 remaining_jiffies = 0, resched_delay;
2361         u64 now = get_jiffies_64();
2362         int prio, ret, cookie;
2363
2364         if (!drm_dev_enter(&ptdev->base, &cookie))
2365                 return;
2366
2367         ret = panthor_device_resume_and_get(ptdev);
2368         if (drm_WARN_ON(&ptdev->base, ret))
2369                 goto out_dev_exit;
2370
2371         if (time_before64(now, sched->resched_target))
2372                 remaining_jiffies = sched->resched_target - now;
2373
2374         mutex_lock(&sched->lock);
2375         if (panthor_device_reset_is_pending(sched->ptdev))
2376                 goto out_unlock;
2377
2378         tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
2379         if (ctx.csg_upd_failed_mask)
2380                 goto out_cleanup_ctx;
2381
2382         if (remaining_jiffies) {
2383                 /* Scheduling forced in the middle of a tick. Only RT groups
2384                  * can preempt non-RT ones. Currently running RT groups can't be
2385                  * preempted.
2386                  */
2387                 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2388                      prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2389                      prio--) {
2390                         tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2391                                                        true, true);
2392                         if (prio == PANTHOR_CSG_PRIORITY_RT) {
2393                                 tick_ctx_pick_groups_from_list(sched, &ctx,
2394                                                                &sched->groups.runnable[prio],
2395                                                                true, false);
2396                         }
2397                 }
2398         }
2399
2400         /* First pick non-idle groups */
2401         for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2402              prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2403              prio--) {
2404                 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2405                                                true, false);
2406                 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2407         }
2408
2409         /* If we have free CSG slots left, pick idle groups */
2410         for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2411              prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2412              prio--) {
2413                 /* Check the old_group queue first to avoid reprogramming the slots */
2414                 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2415                 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2416                                                false, false);
2417         }
2418
2419         tick_ctx_apply(sched, &ctx);
2420         if (ctx.csg_upd_failed_mask)
2421                 goto out_cleanup_ctx;
2422
2423         if (ctx.idle_group_count == ctx.group_count) {
2424                 panthor_devfreq_record_idle(sched->ptdev);
2425                 if (sched->pm.has_ref) {
2426                         pm_runtime_put_autosuspend(ptdev->base.dev);
2427                         sched->pm.has_ref = false;
2428                 }
2429         } else {
2430                 panthor_devfreq_record_busy(sched->ptdev);
2431                 if (!sched->pm.has_ref) {
2432                         pm_runtime_get(ptdev->base.dev);
2433                         sched->pm.has_ref = true;
2434                 }
2435         }
2436
2437         sched->last_tick = now;
2438         resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2439         if (ctx.immediate_tick)
2440                 resched_delay = 0;
2441
2442         if (resched_delay != U64_MAX)
2443                 sched_queue_delayed_work(sched, tick, resched_delay);
2444
2445 out_cleanup_ctx:
2446         tick_ctx_cleanup(sched, &ctx);
2447
2448 out_unlock:
2449         mutex_unlock(&sched->lock);
2450         pm_runtime_mark_last_busy(ptdev->base.dev);
2451         pm_runtime_put_autosuspend(ptdev->base.dev);
2452
2453 out_dev_exit:
2454         drm_dev_exit(cookie);
2455 }
2456
2457 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2458 {
2459         struct panthor_queue *queue = group->queues[queue_idx];
2460         union {
2461                 struct panthor_syncobj_64b sync64;
2462                 struct panthor_syncobj_32b sync32;
2463         } *syncobj;
2464         bool result;
2465         u64 value;
2466
2467         syncobj = panthor_queue_get_syncwait_obj(group, queue);
2468         if (!syncobj)
2469                 return -EINVAL;
2470
2471         value = queue->syncwait.sync64 ?
2472                 syncobj->sync64.seqno :
2473                 syncobj->sync32.seqno;
2474
2475         if (queue->syncwait.gt)
2476                 result = value > queue->syncwait.ref;
2477         else
2478                 result = value <= queue->syncwait.ref;
2479
2480         if (result)
2481                 panthor_queue_put_syncwait_obj(queue);
2482
2483         return result;
2484 }
2485
2486 static void sync_upd_work(struct work_struct *work)
2487 {
2488         struct panthor_scheduler *sched = container_of(work,
2489                                                       struct panthor_scheduler,
2490                                                       sync_upd_work);
2491         struct panthor_group *group, *tmp;
2492         bool immediate_tick = false;
2493
2494         mutex_lock(&sched->lock);
2495         list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2496                 u32 tested_queues = group->blocked_queues;
2497                 u32 unblocked_queues = 0;
2498
2499                 while (tested_queues) {
2500                         u32 cs_id = ffs(tested_queues) - 1;
2501                         int ret;
2502
2503                         ret = panthor_queue_eval_syncwait(group, cs_id);
2504                         drm_WARN_ON(&group->ptdev->base, ret < 0);
2505                         if (ret)
2506                                 unblocked_queues |= BIT(cs_id);
2507
2508                         tested_queues &= ~BIT(cs_id);
2509                 }
2510
2511                 if (unblocked_queues) {
2512                         group->blocked_queues &= ~unblocked_queues;
2513
2514                         if (group->csg_id < 0) {
2515                                 list_move(&group->run_node,
2516                                           &sched->groups.runnable[group->priority]);
2517                                 if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2518                                         immediate_tick = true;
2519                         }
2520                 }
2521
2522                 if (!group->blocked_queues)
2523                         list_del_init(&group->wait_node);
2524         }
2525         mutex_unlock(&sched->lock);
2526
2527         if (immediate_tick)
2528                 sched_queue_delayed_work(sched, tick, 0);
2529 }
2530
2531 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2532 {
2533         struct panthor_device *ptdev = group->ptdev;
2534         struct panthor_scheduler *sched = ptdev->scheduler;
2535         struct list_head *queue = &sched->groups.runnable[group->priority];
2536         u64 delay_jiffies = 0;
2537         bool was_idle;
2538         u64 now;
2539
2540         if (!group_can_run(group))
2541                 return;
2542
2543         /* All updated queues are blocked, no need to wake up the scheduler. */
2544         if ((queue_mask & group->blocked_queues) == queue_mask)
2545                 return;
2546
2547         was_idle = group_is_idle(group);
2548         group->idle_queues &= ~queue_mask;
2549
2550         /* Don't mess up with the lists if we're in a middle of a reset. */
2551         if (atomic_read(&sched->reset.in_progress))
2552                 return;
2553
2554         if (was_idle && !group_is_idle(group))
2555                 list_move_tail(&group->run_node, queue);
2556
2557         /* RT groups are preemptive. */
2558         if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2559                 sched_queue_delayed_work(sched, tick, 0);
2560                 return;
2561         }
2562
2563         /* Some groups might be idle, force an immediate tick to
2564          * re-evaluate.
2565          */
2566         if (sched->might_have_idle_groups) {
2567                 sched_queue_delayed_work(sched, tick, 0);
2568                 return;
2569         }
2570
2571         /* Scheduler is ticking, nothing to do. */
2572         if (sched->resched_target != U64_MAX) {
2573                 /* If there are free slots, force immediating ticking. */
2574                 if (sched->used_csg_slot_count < sched->csg_slot_count)
2575                         sched_queue_delayed_work(sched, tick, 0);
2576
2577                 return;
2578         }
2579
2580         /* Scheduler tick was off, recalculate the resched_target based on the
2581          * last tick event, and queue the scheduler work.
2582          */
2583         now = get_jiffies_64();
2584         sched->resched_target = sched->last_tick + sched->tick_period;
2585         if (sched->used_csg_slot_count == sched->csg_slot_count &&
2586             time_before64(now, sched->resched_target))
2587                 delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2588
2589         sched_queue_delayed_work(sched, tick, delay_jiffies);
2590 }
2591
2592 static void queue_stop(struct panthor_queue *queue,
2593                        struct panthor_job *bad_job)
2594 {
2595         drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2596 }
2597
2598 static void queue_start(struct panthor_queue *queue)
2599 {
2600         struct panthor_job *job;
2601
2602         /* Re-assign the parent fences. */
2603         list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2604                 job->base.s_fence->parent = dma_fence_get(job->done_fence);
2605
2606         drm_sched_start(&queue->scheduler, 0);
2607 }
2608
2609 static void panthor_group_stop(struct panthor_group *group)
2610 {
2611         struct panthor_scheduler *sched = group->ptdev->scheduler;
2612
2613         lockdep_assert_held(&sched->reset.lock);
2614
2615         for (u32 i = 0; i < group->queue_count; i++)
2616                 queue_stop(group->queues[i], NULL);
2617
2618         group_get(group);
2619         list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2620 }
2621
2622 static void panthor_group_start(struct panthor_group *group)
2623 {
2624         struct panthor_scheduler *sched = group->ptdev->scheduler;
2625
2626         lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2627
2628         for (u32 i = 0; i < group->queue_count; i++)
2629                 queue_start(group->queues[i]);
2630
2631         if (group_can_run(group)) {
2632                 list_move_tail(&group->run_node,
2633                                group_is_idle(group) ?
2634                                &sched->groups.idle[group->priority] :
2635                                &sched->groups.runnable[group->priority]);
2636         } else {
2637                 list_del_init(&group->run_node);
2638                 list_del_init(&group->wait_node);
2639                 group_queue_work(group, term);
2640         }
2641
2642         group_put(group);
2643 }
2644
2645 static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
2646 {
2647         struct panthor_scheduler *sched = ptdev->scheduler;
2648
2649         sched_queue_delayed_work(sched, tick, 0);
2650 }
2651
2652 /**
2653  * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2654  */
2655 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2656 {
2657         /* Force a tick to immediately kill faulty groups. */
2658         if (ptdev->scheduler)
2659                 panthor_sched_immediate_tick(ptdev);
2660 }
2661
2662 void panthor_sched_resume(struct panthor_device *ptdev)
2663 {
2664         /* Force a tick to re-evaluate after a resume. */
2665         panthor_sched_immediate_tick(ptdev);
2666 }
2667
2668 void panthor_sched_suspend(struct panthor_device *ptdev)
2669 {
2670         struct panthor_scheduler *sched = ptdev->scheduler;
2671         struct panthor_csg_slots_upd_ctx upd_ctx;
2672         struct panthor_group *group;
2673         u32 suspended_slots;
2674         u32 i;
2675
2676         mutex_lock(&sched->lock);
2677         csgs_upd_ctx_init(&upd_ctx);
2678         for (i = 0; i < sched->csg_slot_count; i++) {
2679                 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2680
2681                 if (csg_slot->group) {
2682                         csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2683                                                 group_can_run(csg_slot->group) ?
2684                                                 CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2685                                                 CSG_STATE_MASK);
2686                 }
2687         }
2688
2689         suspended_slots = upd_ctx.update_mask;
2690
2691         csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2692         suspended_slots &= ~upd_ctx.timedout_mask;
2693
2694         if (upd_ctx.timedout_mask) {
2695                 u32 slot_mask = upd_ctx.timedout_mask;
2696
2697                 drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2698                 csgs_upd_ctx_init(&upd_ctx);
2699                 while (slot_mask) {
2700                         u32 csg_id = ffs(slot_mask) - 1;
2701                         struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2702
2703                         /* If the group was still usable before that point, we consider
2704                          * it innocent.
2705                          */
2706                         if (group_can_run(csg_slot->group))
2707                                 csg_slot->group->innocent = true;
2708
2709                         /* We consider group suspension failures as fatal and flag the
2710                          * group as unusable by setting timedout=true.
2711                          */
2712                         csg_slot->group->timedout = true;
2713
2714                         csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2715                                                 CSG_STATE_TERMINATE,
2716                                                 CSG_STATE_MASK);
2717                         slot_mask &= ~BIT(csg_id);
2718                 }
2719
2720                 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2721
2722                 slot_mask = upd_ctx.timedout_mask;
2723                 while (slot_mask) {
2724                         u32 csg_id = ffs(slot_mask) - 1;
2725                         struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2726
2727                         /* Terminate command timedout, but the soft-reset will
2728                          * automatically terminate all active groups, so let's
2729                          * force the state to halted here.
2730                          */
2731                         if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED)
2732                                 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2733                         slot_mask &= ~BIT(csg_id);
2734                 }
2735         }
2736
2737         /* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2738          * If the flush fails, flag all queues for termination.
2739          */
2740         if (suspended_slots) {
2741                 bool flush_caches_failed = false;
2742                 u32 slot_mask = suspended_slots;
2743
2744                 if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2745                         flush_caches_failed = true;
2746
2747                 while (slot_mask) {
2748                         u32 csg_id = ffs(slot_mask) - 1;
2749                         struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2750
2751                         if (flush_caches_failed)
2752                                 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2753                         else
2754                                 csg_slot_sync_update_locked(ptdev, csg_id);
2755
2756                         slot_mask &= ~BIT(csg_id);
2757                 }
2758         }
2759
2760         for (i = 0; i < sched->csg_slot_count; i++) {
2761                 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2762
2763                 group = csg_slot->group;
2764                 if (!group)
2765                         continue;
2766
2767                 group_get(group);
2768
2769                 if (group->csg_id >= 0)
2770                         sched_process_csg_irq_locked(ptdev, group->csg_id);
2771
2772                 group_unbind_locked(group);
2773
2774                 drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2775
2776                 if (group_can_run(group)) {
2777                         list_add(&group->run_node,
2778                                  &sched->groups.idle[group->priority]);
2779                 } else {
2780                         /* We don't bother stopping the scheduler if the group is
2781                          * faulty, the group termination work will finish the job.
2782                          */
2783                         list_del_init(&group->wait_node);
2784                         group_queue_work(group, term);
2785                 }
2786                 group_put(group);
2787         }
2788         mutex_unlock(&sched->lock);
2789 }
2790
2791 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2792 {
2793         struct panthor_scheduler *sched = ptdev->scheduler;
2794         struct panthor_group *group, *group_tmp;
2795         u32 i;
2796
2797         mutex_lock(&sched->reset.lock);
2798         atomic_set(&sched->reset.in_progress, true);
2799
2800         /* Cancel all scheduler works. Once this is done, these works can't be
2801          * scheduled again until the reset operation is complete.
2802          */
2803         cancel_work_sync(&sched->sync_upd_work);
2804         cancel_delayed_work_sync(&sched->tick_work);
2805
2806         panthor_sched_suspend(ptdev);
2807
2808         /* Stop all groups that might still accept jobs, so we don't get passed
2809          * new jobs while we're resetting.
2810          */
2811         for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2812                 /* All groups should be in the idle lists. */
2813                 drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
2814                 list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2815                         panthor_group_stop(group);
2816         }
2817
2818         for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2819                 list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2820                         panthor_group_stop(group);
2821         }
2822
2823         mutex_unlock(&sched->reset.lock);
2824 }
2825
2826 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2827 {
2828         struct panthor_scheduler *sched = ptdev->scheduler;
2829         struct panthor_group *group, *group_tmp;
2830
2831         mutex_lock(&sched->reset.lock);
2832
2833         list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2834                 /* Consider all previously running group as terminated if the
2835                  * reset failed.
2836                  */
2837                 if (reset_failed)
2838                         group->state = PANTHOR_CS_GROUP_TERMINATED;
2839
2840                 panthor_group_start(group);
2841         }
2842
2843         /* We're done resetting the GPU, clear the reset.in_progress bit so we can
2844          * kick the scheduler.
2845          */
2846         atomic_set(&sched->reset.in_progress, false);
2847         mutex_unlock(&sched->reset.lock);
2848
2849         /* No need to queue a tick and update syncs if the reset failed. */
2850         if (!reset_failed) {
2851                 sched_queue_delayed_work(sched, tick, 0);
2852                 sched_queue_work(sched, sync_upd);
2853         }
2854 }
2855
2856 static void update_fdinfo_stats(struct panthor_job *job)
2857 {
2858         struct panthor_group *group = job->group;
2859         struct panthor_queue *queue = group->queues[job->queue_idx];
2860         struct panthor_gpu_usage *fdinfo = &group->fdinfo.data;
2861         struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap;
2862         struct panthor_job_profiling_data *data = &slots[job->profiling.slot];
2863
2864         mutex_lock(&group->fdinfo.lock);
2865         if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES)
2866                 fdinfo->cycles += data->cycles.after - data->cycles.before;
2867         if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP)
2868                 fdinfo->time += data->time.after - data->time.before;
2869         mutex_unlock(&group->fdinfo.lock);
2870 }
2871
2872 void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile)
2873 {
2874         struct panthor_group_pool *gpool = pfile->groups;
2875         struct panthor_group *group;
2876         unsigned long i;
2877
2878         if (IS_ERR_OR_NULL(gpool))
2879                 return;
2880
2881         xa_for_each(&gpool->xa, i, group) {
2882                 mutex_lock(&group->fdinfo.lock);
2883                 pfile->stats.cycles += group->fdinfo.data.cycles;
2884                 pfile->stats.time += group->fdinfo.data.time;
2885                 group->fdinfo.data.cycles = 0;
2886                 group->fdinfo.data.time = 0;
2887                 mutex_unlock(&group->fdinfo.lock);
2888         }
2889 }
2890
2891 static void group_sync_upd_work(struct work_struct *work)
2892 {
2893         struct panthor_group *group =
2894                 container_of(work, struct panthor_group, sync_upd_work);
2895         struct panthor_job *job, *job_tmp;
2896         LIST_HEAD(done_jobs);
2897         u32 queue_idx;
2898         bool cookie;
2899
2900         cookie = dma_fence_begin_signalling();
2901         for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
2902                 struct panthor_queue *queue = group->queues[queue_idx];
2903                 struct panthor_syncobj_64b *syncobj;
2904
2905                 if (!queue)
2906                         continue;
2907
2908                 syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj));
2909
2910                 spin_lock(&queue->fence_ctx.lock);
2911                 list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
2912                         if (syncobj->seqno < job->done_fence->seqno)
2913                                 break;
2914
2915                         list_move_tail(&job->node, &done_jobs);
2916                         dma_fence_signal_locked(job->done_fence);
2917                 }
2918                 spin_unlock(&queue->fence_ctx.lock);
2919         }
2920         dma_fence_end_signalling(cookie);
2921
2922         list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
2923                 if (job->profiling.mask)
2924                         update_fdinfo_stats(job);
2925                 list_del_init(&job->node);
2926                 panthor_job_put(&job->base);
2927         }
2928
2929         group_put(group);
2930 }
2931
2932 struct panthor_job_ringbuf_instrs {
2933         u64 buffer[MAX_INSTRS_PER_JOB];
2934         u32 count;
2935 };
2936
2937 struct panthor_job_instr {
2938         u32 profile_mask;
2939         u64 instr;
2940 };
2941
2942 #define JOB_INSTR(__prof, __instr) \
2943         { \
2944                 .profile_mask = __prof, \
2945                 .instr = __instr, \
2946         }
2947
2948 static void
2949 copy_instrs_to_ringbuf(struct panthor_queue *queue,
2950                        struct panthor_job *job,
2951                        struct panthor_job_ringbuf_instrs *instrs)
2952 {
2953         u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
2954         u64 start = job->ringbuf.start & (ringbuf_size - 1);
2955         u64 size, written;
2956
2957         /*
2958          * We need to write a whole slot, including any trailing zeroes
2959          * that may come at the end of it. Also, because instrs.buffer has
2960          * been zero-initialised, there's no need to pad it with 0's
2961          */
2962         instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
2963         size = instrs->count * sizeof(u64);
2964         WARN_ON(size > ringbuf_size);
2965         written = min(ringbuf_size - start, size);
2966
2967         memcpy(queue->ringbuf->kmap + start, instrs->buffer, written);
2968
2969         if (written < size)
2970                 memcpy(queue->ringbuf->kmap,
2971                        &instrs->buffer[written / sizeof(u64)],
2972                        size - written);
2973 }
2974
2975 struct panthor_job_cs_params {
2976         u32 profile_mask;
2977         u64 addr_reg; u64 val_reg;
2978         u64 cycle_reg; u64 time_reg;
2979         u64 sync_addr; u64 times_addr;
2980         u64 cs_start; u64 cs_size;
2981         u32 last_flush; u32 waitall_mask;
2982 };
2983
2984 static void
2985 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params)
2986 {
2987         struct panthor_group *group = job->group;
2988         struct panthor_queue *queue = group->queues[job->queue_idx];
2989         struct panthor_device *ptdev = group->ptdev;
2990         struct panthor_scheduler *sched = ptdev->scheduler;
2991
2992         params->addr_reg = ptdev->csif_info.cs_reg_count -
2993                            ptdev->csif_info.unpreserved_cs_reg_count;
2994         params->val_reg = params->addr_reg + 2;
2995         params->cycle_reg = params->addr_reg;
2996         params->time_reg = params->val_reg;
2997
2998         params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
2999                             job->queue_idx * sizeof(struct panthor_syncobj_64b);
3000         params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) +
3001                              (job->profiling.slot * sizeof(struct panthor_job_profiling_data));
3002         params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
3003
3004         params->cs_start = job->call_info.start;
3005         params->cs_size = job->call_info.size;
3006         params->last_flush = job->call_info.latest_flush;
3007
3008         params->profile_mask = job->profiling.mask;
3009 }
3010
3011 #define JOB_INSTR_ALWAYS(instr) \
3012         JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr))
3013 #define JOB_INSTR_TIMESTAMP(instr) \
3014         JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr))
3015 #define JOB_INSTR_CYCLES(instr) \
3016         JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr))
3017
3018 static void
3019 prepare_job_instrs(const struct panthor_job_cs_params *params,
3020                    struct panthor_job_ringbuf_instrs *instrs)
3021 {
3022         const struct panthor_job_instr instr_seq[] = {
3023                 /* MOV32 rX+2, cs.latest_flush */
3024                 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush),
3025                 /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
3026                 JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) |
3027                                  (0 << 16) | 0x233),
3028                 /* MOV48 rX:rX+1, cycles_offset */
3029                 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3030                                  (params->times_addr +
3031                                   offsetof(struct panthor_job_profiling_data, cycles.before))),
3032                 /* STORE_STATE cycles */
3033                 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3034                 /* MOV48 rX:rX+1, time_offset */
3035                 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3036                                     (params->times_addr +
3037                                      offsetof(struct panthor_job_profiling_data, time.before))),
3038                 /* STORE_STATE timer */
3039                 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3040                 /* MOV48 rX:rX+1, cs.start */
3041                 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start),
3042                 /* MOV32 rX+2, cs.size */
3043                 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size),
3044                 /* WAIT(0) => waits for FLUSH_CACHE2 instruction */
3045                 JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)),
3046                 /* CALL rX:rX+1, rX+2 */
3047                 JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) |
3048                                  (params->val_reg << 32)),
3049                 /* MOV48 rX:rX+1, cycles_offset */
3050                 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3051                                  (params->times_addr +
3052                                   offsetof(struct panthor_job_profiling_data, cycles.after))),
3053                 /* STORE_STATE cycles */
3054                 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3055                 /* MOV48 rX:rX+1, time_offset */
3056                 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3057                           (params->times_addr +
3058                            offsetof(struct panthor_job_profiling_data, time.after))),
3059                 /* STORE_STATE timer */
3060                 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3061                 /* MOV48 rX:rX+1, sync_addr */
3062                 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr),
3063                 /* MOV48 rX+2, #1 */
3064                 JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1),
3065                 /* WAIT(all) */
3066                 JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)),
3067                 /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
3068                 JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) |
3069                                  (params->val_reg << 32) | (0 << 16) | 1),
3070                 /* ERROR_BARRIER, so we can recover from faults at job boundaries. */
3071                 JOB_INSTR_ALWAYS((47ull << 56)),
3072         };
3073         u32 pad;
3074
3075         instrs->count = 0;
3076
3077         /* NEED to be cacheline aligned to please the prefetcher. */
3078         static_assert(sizeof(instrs->buffer) % 64 == 0,
3079                       "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline");
3080
3081         /* Make sure we have enough storage to store the whole sequence. */
3082         static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) ==
3083                       ARRAY_SIZE(instrs->buffer),
3084                       "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch");
3085
3086         for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) {
3087                 /* If the profile mask of this instruction is not enabled, skip it. */
3088                 if (instr_seq[i].profile_mask &&
3089                     !(instr_seq[i].profile_mask & params->profile_mask))
3090                         continue;
3091
3092                 instrs->buffer[instrs->count++] = instr_seq[i].instr;
3093         }
3094
3095         pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3096         memset(&instrs->buffer[instrs->count], 0,
3097                (pad - instrs->count) * sizeof(instrs->buffer[0]));
3098         instrs->count = pad;
3099 }
3100
3101 static u32 calc_job_credits(u32 profile_mask)
3102 {
3103         struct panthor_job_ringbuf_instrs instrs;
3104         struct panthor_job_cs_params params = {
3105                 .profile_mask = profile_mask,
3106         };
3107
3108         prepare_job_instrs(&params, &instrs);
3109         return instrs.count;
3110 }
3111
3112 static struct dma_fence *
3113 queue_run_job(struct drm_sched_job *sched_job)
3114 {
3115         struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3116         struct panthor_group *group = job->group;
3117         struct panthor_queue *queue = group->queues[job->queue_idx];
3118         struct panthor_device *ptdev = group->ptdev;
3119         struct panthor_scheduler *sched = ptdev->scheduler;
3120         struct panthor_job_ringbuf_instrs instrs;
3121         struct panthor_job_cs_params cs_params;
3122         struct dma_fence *done_fence;
3123         int ret;
3124
3125         /* Stream size is zero, nothing to do except making sure all previously
3126          * submitted jobs are done before we signal the
3127          * drm_sched_job::s_fence::finished fence.
3128          */
3129         if (!job->call_info.size) {
3130                 job->done_fence = dma_fence_get(queue->fence_ctx.last_fence);
3131                 return dma_fence_get(job->done_fence);
3132         }
3133
3134         ret = panthor_device_resume_and_get(ptdev);
3135         if (drm_WARN_ON(&ptdev->base, ret))
3136                 return ERR_PTR(ret);
3137
3138         mutex_lock(&sched->lock);
3139         if (!group_can_run(group)) {
3140                 done_fence = ERR_PTR(-ECANCELED);
3141                 goto out_unlock;
3142         }
3143
3144         dma_fence_init(job->done_fence,
3145                        &panthor_queue_fence_ops,
3146                        &queue->fence_ctx.lock,
3147                        queue->fence_ctx.id,
3148                        atomic64_inc_return(&queue->fence_ctx.seqno));
3149
3150         job->profiling.slot = queue->profiling.seqno++;
3151         if (queue->profiling.seqno == queue->profiling.slot_count)
3152                 queue->profiling.seqno = 0;
3153
3154         job->ringbuf.start = queue->iface.input->insert;
3155
3156         get_job_cs_params(job, &cs_params);
3157         prepare_job_instrs(&cs_params, &instrs);
3158         copy_instrs_to_ringbuf(queue, job, &instrs);
3159
3160         job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64));
3161
3162         panthor_job_get(&job->base);
3163         spin_lock(&queue->fence_ctx.lock);
3164         list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
3165         spin_unlock(&queue->fence_ctx.lock);
3166
3167         /* Make sure the ring buffer is updated before the INSERT
3168          * register.
3169          */
3170         wmb();
3171
3172         queue->iface.input->extract = queue->iface.output->extract;
3173         queue->iface.input->insert = job->ringbuf.end;
3174
3175         if (group->csg_id < 0) {
3176                 /* If the queue is blocked, we want to keep the timeout running, so we
3177                  * can detect unbounded waits and kill the group when that happens.
3178                  * Otherwise, we suspend the timeout so the time we spend waiting for
3179                  * a CSG slot is not counted.
3180                  */
3181                 if (!(group->blocked_queues & BIT(job->queue_idx)) &&
3182                     !queue->timeout_suspended) {
3183                         queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
3184                         queue->timeout_suspended = true;
3185                 }
3186
3187                 group_schedule_locked(group, BIT(job->queue_idx));
3188         } else {
3189                 gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
3190                 if (!sched->pm.has_ref &&
3191                     !(group->blocked_queues & BIT(job->queue_idx))) {
3192                         pm_runtime_get(ptdev->base.dev);
3193                         sched->pm.has_ref = true;
3194                 }
3195                 panthor_devfreq_record_busy(sched->ptdev);
3196         }
3197
3198         /* Update the last fence. */
3199         dma_fence_put(queue->fence_ctx.last_fence);
3200         queue->fence_ctx.last_fence = dma_fence_get(job->done_fence);
3201
3202         done_fence = dma_fence_get(job->done_fence);
3203
3204 out_unlock:
3205         mutex_unlock(&sched->lock);
3206         pm_runtime_mark_last_busy(ptdev->base.dev);
3207         pm_runtime_put_autosuspend(ptdev->base.dev);
3208
3209         return done_fence;
3210 }
3211
3212 static enum drm_gpu_sched_stat
3213 queue_timedout_job(struct drm_sched_job *sched_job)
3214 {
3215         struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3216         struct panthor_group *group = job->group;
3217         struct panthor_device *ptdev = group->ptdev;
3218         struct panthor_scheduler *sched = ptdev->scheduler;
3219         struct panthor_queue *queue = group->queues[job->queue_idx];
3220
3221         drm_warn(&ptdev->base, "job timeout\n");
3222
3223         drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
3224
3225         queue_stop(queue, job);
3226
3227         mutex_lock(&sched->lock);
3228         group->timedout = true;
3229         if (group->csg_id >= 0) {
3230                 sched_queue_delayed_work(ptdev->scheduler, tick, 0);
3231         } else {
3232                 /* Remove from the run queues, so the scheduler can't
3233                  * pick the group on the next tick.
3234                  */
3235                 list_del_init(&group->run_node);
3236                 list_del_init(&group->wait_node);
3237
3238                 group_queue_work(group, term);
3239         }
3240         mutex_unlock(&sched->lock);
3241
3242         queue_start(queue);
3243
3244         return DRM_GPU_SCHED_STAT_NOMINAL;
3245 }
3246
3247 static void queue_free_job(struct drm_sched_job *sched_job)
3248 {
3249         drm_sched_job_cleanup(sched_job);
3250         panthor_job_put(sched_job);
3251 }
3252
3253 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
3254         .run_job = queue_run_job,
3255         .timedout_job = queue_timedout_job,
3256         .free_job = queue_free_job,
3257 };
3258
3259 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev,
3260                                             u32 cs_ringbuf_size)
3261 {
3262         u32 min_profiled_job_instrs = U32_MAX;
3263         u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL);
3264
3265         /*
3266          * We want to calculate the minimum size of a profiled job's CS,
3267          * because since they need additional instructions for the sampling
3268          * of performance metrics, they might take up further slots in
3269          * the queue's ringbuffer. This means we might not need as many job
3270          * slots for keeping track of their profiling information. What we
3271          * need is the maximum number of slots we should allocate to this end,
3272          * which matches the maximum number of profiled jobs we can place
3273          * simultaneously in the queue's ring buffer.
3274          * That has to be calculated separately for every single job profiling
3275          * flag, but not in the case job profiling is disabled, since unprofiled
3276          * jobs don't need to keep track of this at all.
3277          */
3278         for (u32 i = 0; i < last_flag; i++) {
3279                 min_profiled_job_instrs =
3280                         min(min_profiled_job_instrs, calc_job_credits(BIT(i)));
3281         }
3282
3283         return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64));
3284 }
3285
3286 static struct panthor_queue *
3287 group_create_queue(struct panthor_group *group,
3288                    const struct drm_panthor_queue_create *args)
3289 {
3290         struct drm_gpu_scheduler *drm_sched;
3291         struct panthor_queue *queue;
3292         int ret;
3293
3294         if (args->pad[0] || args->pad[1] || args->pad[2])
3295                 return ERR_PTR(-EINVAL);
3296
3297         if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3298             !is_power_of_2(args->ringbuf_size))
3299                 return ERR_PTR(-EINVAL);
3300
3301         if (args->priority > CSF_MAX_QUEUE_PRIO)
3302                 return ERR_PTR(-EINVAL);
3303
3304         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3305         if (!queue)
3306                 return ERR_PTR(-ENOMEM);
3307
3308         queue->fence_ctx.id = dma_fence_context_alloc(1);
3309         spin_lock_init(&queue->fence_ctx.lock);
3310         INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3311
3312         queue->priority = args->priority;
3313
3314         queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3315                                                   args->ringbuf_size,
3316                                                   DRM_PANTHOR_BO_NO_MMAP,
3317                                                   DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3318                                                   DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3319                                                   PANTHOR_VM_KERNEL_AUTO_VA);
3320         if (IS_ERR(queue->ringbuf)) {
3321                 ret = PTR_ERR(queue->ringbuf);
3322                 goto err_free_queue;
3323         }
3324
3325         ret = panthor_kernel_bo_vmap(queue->ringbuf);
3326         if (ret)
3327                 goto err_free_queue;
3328
3329         queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3330                                                             &queue->iface.input,
3331                                                             &queue->iface.output,
3332                                                             &queue->iface.input_fw_va,
3333                                                             &queue->iface.output_fw_va);
3334         if (IS_ERR(queue->iface.mem)) {
3335                 ret = PTR_ERR(queue->iface.mem);
3336                 goto err_free_queue;
3337         }
3338
3339         queue->profiling.slot_count =
3340                 calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size);
3341
3342         queue->profiling.slots =
3343                 panthor_kernel_bo_create(group->ptdev, group->vm,
3344                                          queue->profiling.slot_count *
3345                                          sizeof(struct panthor_job_profiling_data),
3346                                          DRM_PANTHOR_BO_NO_MMAP,
3347                                          DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3348                                          DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3349                                          PANTHOR_VM_KERNEL_AUTO_VA);
3350
3351         if (IS_ERR(queue->profiling.slots)) {
3352                 ret = PTR_ERR(queue->profiling.slots);
3353                 goto err_free_queue;
3354         }
3355
3356         ret = panthor_kernel_bo_vmap(queue->profiling.slots);
3357         if (ret)
3358                 goto err_free_queue;
3359
3360         /*
3361          * Credit limit argument tells us the total number of instructions
3362          * across all CS slots in the ringbuffer, with some jobs requiring
3363          * twice as many as others, depending on their profiling status.
3364          */
3365         ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops,
3366                              group->ptdev->scheduler->wq, 1,
3367                              args->ringbuf_size / sizeof(u64),
3368                              0, msecs_to_jiffies(JOB_TIMEOUT_MS),
3369                              group->ptdev->reset.wq,
3370                              NULL, "panthor-queue", group->ptdev->base.dev);
3371         if (ret)
3372                 goto err_free_queue;
3373
3374         drm_sched = &queue->scheduler;
3375         ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3376
3377         return queue;
3378
3379 err_free_queue:
3380         group_free_queue(group, queue);
3381         return ERR_PTR(ret);
3382 }
3383
3384 #define MAX_GROUPS_PER_POOL             128
3385
3386 int panthor_group_create(struct panthor_file *pfile,
3387                          const struct drm_panthor_group_create *group_args,
3388                          const struct drm_panthor_queue_create *queue_args)
3389 {
3390         struct panthor_device *ptdev = pfile->ptdev;
3391         struct panthor_group_pool *gpool = pfile->groups;
3392         struct panthor_scheduler *sched = ptdev->scheduler;
3393         struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3394         struct panthor_group *group = NULL;
3395         u32 gid, i, suspend_size;
3396         int ret;
3397
3398         if (group_args->pad)
3399                 return -EINVAL;
3400
3401         if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT)
3402                 return -EINVAL;
3403
3404         if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3405             (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3406             (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3407                 return -EINVAL;
3408
3409         if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3410             hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3411             hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3412                 return -EINVAL;
3413
3414         group = kzalloc(sizeof(*group), GFP_KERNEL);
3415         if (!group)
3416                 return -ENOMEM;
3417
3418         spin_lock_init(&group->fatal_lock);
3419         kref_init(&group->refcount);
3420         group->state = PANTHOR_CS_GROUP_CREATED;
3421         group->csg_id = -1;
3422
3423         group->ptdev = ptdev;
3424         group->max_compute_cores = group_args->max_compute_cores;
3425         group->compute_core_mask = group_args->compute_core_mask;
3426         group->max_fragment_cores = group_args->max_fragment_cores;
3427         group->fragment_core_mask = group_args->fragment_core_mask;
3428         group->max_tiler_cores = group_args->max_tiler_cores;
3429         group->tiler_core_mask = group_args->tiler_core_mask;
3430         group->priority = group_args->priority;
3431
3432         INIT_LIST_HEAD(&group->wait_node);
3433         INIT_LIST_HEAD(&group->run_node);
3434         INIT_WORK(&group->term_work, group_term_work);
3435         INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3436         INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3437         INIT_WORK(&group->release_work, group_release_work);
3438
3439         group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3440         if (!group->vm) {
3441                 ret = -EINVAL;
3442                 goto err_put_group;
3443         }
3444
3445         suspend_size = csg_iface->control->suspend_size;
3446         group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3447         if (IS_ERR(group->suspend_buf)) {
3448                 ret = PTR_ERR(group->suspend_buf);
3449                 group->suspend_buf = NULL;
3450                 goto err_put_group;
3451         }
3452
3453         suspend_size = csg_iface->control->protm_suspend_size;
3454         group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3455         if (IS_ERR(group->protm_suspend_buf)) {
3456                 ret = PTR_ERR(group->protm_suspend_buf);
3457                 group->protm_suspend_buf = NULL;
3458                 goto err_put_group;
3459         }
3460
3461         group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3462                                                    group_args->queues.count *
3463                                                    sizeof(struct panthor_syncobj_64b),
3464                                                    DRM_PANTHOR_BO_NO_MMAP,
3465                                                    DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3466                                                    DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3467                                                    PANTHOR_VM_KERNEL_AUTO_VA);
3468         if (IS_ERR(group->syncobjs)) {
3469                 ret = PTR_ERR(group->syncobjs);
3470                 goto err_put_group;
3471         }
3472
3473         ret = panthor_kernel_bo_vmap(group->syncobjs);
3474         if (ret)
3475                 goto err_put_group;
3476
3477         memset(group->syncobjs->kmap, 0,
3478                group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3479
3480         for (i = 0; i < group_args->queues.count; i++) {
3481                 group->queues[i] = group_create_queue(group, &queue_args[i]);
3482                 if (IS_ERR(group->queues[i])) {
3483                         ret = PTR_ERR(group->queues[i]);
3484                         group->queues[i] = NULL;
3485                         goto err_put_group;
3486                 }
3487
3488                 group->queue_count++;
3489         }
3490
3491         group->idle_queues = GENMASK(group->queue_count - 1, 0);
3492
3493         ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3494         if (ret)
3495                 goto err_put_group;
3496
3497         mutex_lock(&sched->reset.lock);
3498         if (atomic_read(&sched->reset.in_progress)) {
3499                 panthor_group_stop(group);
3500         } else {
3501                 mutex_lock(&sched->lock);
3502                 list_add_tail(&group->run_node,
3503                               &sched->groups.idle[group->priority]);
3504                 mutex_unlock(&sched->lock);
3505         }
3506         mutex_unlock(&sched->reset.lock);
3507
3508         mutex_init(&group->fdinfo.lock);
3509
3510         return gid;
3511
3512 err_put_group:
3513         group_put(group);
3514         return ret;
3515 }
3516
3517 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3518 {
3519         struct panthor_group_pool *gpool = pfile->groups;
3520         struct panthor_device *ptdev = pfile->ptdev;
3521         struct panthor_scheduler *sched = ptdev->scheduler;
3522         struct panthor_group *group;
3523
3524         group = xa_erase(&gpool->xa, group_handle);
3525         if (!group)
3526                 return -EINVAL;
3527
3528         for (u32 i = 0; i < group->queue_count; i++) {
3529                 if (group->queues[i])
3530                         drm_sched_entity_destroy(&group->queues[i]->entity);
3531         }
3532
3533         mutex_lock(&sched->reset.lock);
3534         mutex_lock(&sched->lock);
3535         group->destroyed = true;
3536         if (group->csg_id >= 0) {
3537                 sched_queue_delayed_work(sched, tick, 0);
3538         } else if (!atomic_read(&sched->reset.in_progress)) {
3539                 /* Remove from the run queues, so the scheduler can't
3540                  * pick the group on the next tick.
3541                  */
3542                 list_del_init(&group->run_node);
3543                 list_del_init(&group->wait_node);
3544                 group_queue_work(group, term);
3545         }
3546         mutex_unlock(&sched->lock);
3547         mutex_unlock(&sched->reset.lock);
3548
3549         group_put(group);
3550         return 0;
3551 }
3552
3553 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool,
3554                                                u32 group_handle)
3555 {
3556         struct panthor_group *group;
3557
3558         xa_lock(&pool->xa);
3559         group = group_get(xa_load(&pool->xa, group_handle));
3560         xa_unlock(&pool->xa);
3561
3562         return group;
3563 }
3564
3565 int panthor_group_get_state(struct panthor_file *pfile,
3566                             struct drm_panthor_group_get_state *get_state)
3567 {
3568         struct panthor_group_pool *gpool = pfile->groups;
3569         struct panthor_device *ptdev = pfile->ptdev;
3570         struct panthor_scheduler *sched = ptdev->scheduler;
3571         struct panthor_group *group;
3572
3573         if (get_state->pad)
3574                 return -EINVAL;
3575
3576         group = group_from_handle(gpool, get_state->group_handle);
3577         if (!group)
3578                 return -EINVAL;
3579
3580         memset(get_state, 0, sizeof(*get_state));
3581
3582         mutex_lock(&sched->lock);
3583         if (group->timedout)
3584                 get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3585         if (group->fatal_queues) {
3586                 get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3587                 get_state->fatal_queues = group->fatal_queues;
3588         }
3589         if (group->innocent)
3590                 get_state->state |= DRM_PANTHOR_GROUP_STATE_INNOCENT;
3591         mutex_unlock(&sched->lock);
3592
3593         group_put(group);
3594         return 0;
3595 }
3596
3597 int panthor_group_pool_create(struct panthor_file *pfile)
3598 {
3599         struct panthor_group_pool *gpool;
3600
3601         gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3602         if (!gpool)
3603                 return -ENOMEM;
3604
3605         xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3606         pfile->groups = gpool;
3607         return 0;
3608 }
3609
3610 void panthor_group_pool_destroy(struct panthor_file *pfile)
3611 {
3612         struct panthor_group_pool *gpool = pfile->groups;
3613         struct panthor_group *group;
3614         unsigned long i;
3615
3616         if (IS_ERR_OR_NULL(gpool))
3617                 return;
3618
3619         xa_for_each(&gpool->xa, i, group)
3620                 panthor_group_destroy(pfile, i);
3621
3622         xa_destroy(&gpool->xa);
3623         kfree(gpool);
3624         pfile->groups = NULL;
3625 }
3626
3627 static void job_release(struct kref *ref)
3628 {
3629         struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3630
3631         drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3632
3633         if (job->base.s_fence)
3634                 drm_sched_job_cleanup(&job->base);
3635
3636         if (job->done_fence && job->done_fence->ops)
3637                 dma_fence_put(job->done_fence);
3638         else
3639                 dma_fence_free(job->done_fence);
3640
3641         group_put(job->group);
3642
3643         kfree(job);
3644 }
3645
3646 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3647 {
3648         if (sched_job) {
3649                 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3650
3651                 kref_get(&job->refcount);
3652         }
3653
3654         return sched_job;
3655 }
3656
3657 void panthor_job_put(struct drm_sched_job *sched_job)
3658 {
3659         struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3660
3661         if (sched_job)
3662                 kref_put(&job->refcount, job_release);
3663 }
3664
3665 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3666 {
3667         struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3668
3669         return job->group->vm;
3670 }
3671
3672 struct drm_sched_job *
3673 panthor_job_create(struct panthor_file *pfile,
3674                    u16 group_handle,
3675                    const struct drm_panthor_queue_submit *qsubmit)
3676 {
3677         struct panthor_group_pool *gpool = pfile->groups;
3678         struct panthor_job *job;
3679         u32 credits;
3680         int ret;
3681
3682         if (qsubmit->pad)
3683                 return ERR_PTR(-EINVAL);
3684
3685         /* If stream_addr is zero, so stream_size should be. */
3686         if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3687                 return ERR_PTR(-EINVAL);
3688
3689         /* Make sure the address is aligned on 64-byte (cacheline) and the size is
3690          * aligned on 8-byte (instruction size).
3691          */
3692         if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3693                 return ERR_PTR(-EINVAL);
3694
3695         /* bits 24:30 must be zero. */
3696         if (qsubmit->latest_flush & GENMASK(30, 24))
3697                 return ERR_PTR(-EINVAL);
3698
3699         job = kzalloc(sizeof(*job), GFP_KERNEL);
3700         if (!job)
3701                 return ERR_PTR(-ENOMEM);
3702
3703         kref_init(&job->refcount);
3704         job->queue_idx = qsubmit->queue_index;
3705         job->call_info.size = qsubmit->stream_size;
3706         job->call_info.start = qsubmit->stream_addr;
3707         job->call_info.latest_flush = qsubmit->latest_flush;
3708         INIT_LIST_HEAD(&job->node);
3709
3710         job->group = group_from_handle(gpool, group_handle);
3711         if (!job->group) {
3712                 ret = -EINVAL;
3713                 goto err_put_job;
3714         }
3715
3716         if (!group_can_run(job->group)) {
3717                 ret = -EINVAL;
3718                 goto err_put_job;
3719         }
3720
3721         if (job->queue_idx >= job->group->queue_count ||
3722             !job->group->queues[job->queue_idx]) {
3723                 ret = -EINVAL;
3724                 goto err_put_job;
3725         }
3726
3727         /* Empty command streams don't need a fence, they'll pick the one from
3728          * the previously submitted job.
3729          */
3730         if (job->call_info.size) {
3731                 job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
3732                 if (!job->done_fence) {
3733                         ret = -ENOMEM;
3734                         goto err_put_job;
3735                 }
3736         }
3737
3738         job->profiling.mask = pfile->ptdev->profile_mask;
3739         credits = calc_job_credits(job->profiling.mask);
3740         if (credits == 0) {
3741                 ret = -EINVAL;
3742                 goto err_put_job;
3743         }
3744
3745         ret = drm_sched_job_init(&job->base,
3746                                  &job->group->queues[job->queue_idx]->entity,
3747                                  credits, job->group);
3748         if (ret)
3749                 goto err_put_job;
3750
3751         return &job->base;
3752
3753 err_put_job:
3754         panthor_job_put(&job->base);
3755         return ERR_PTR(ret);
3756 }
3757
3758 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
3759 {
3760         struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3761
3762         panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
3763                                 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
3764 }
3765
3766 void panthor_sched_unplug(struct panthor_device *ptdev)
3767 {
3768         struct panthor_scheduler *sched = ptdev->scheduler;
3769
3770         cancel_delayed_work_sync(&sched->tick_work);
3771
3772         mutex_lock(&sched->lock);
3773         if (sched->pm.has_ref) {
3774                 pm_runtime_put(ptdev->base.dev);
3775                 sched->pm.has_ref = false;
3776         }
3777         mutex_unlock(&sched->lock);
3778 }
3779
3780 static void panthor_sched_fini(struct drm_device *ddev, void *res)
3781 {
3782         struct panthor_scheduler *sched = res;
3783         int prio;
3784
3785         if (!sched || !sched->csg_slot_count)
3786                 return;
3787
3788         cancel_delayed_work_sync(&sched->tick_work);
3789
3790         if (sched->wq)
3791                 destroy_workqueue(sched->wq);
3792
3793         if (sched->heap_alloc_wq)
3794                 destroy_workqueue(sched->heap_alloc_wq);
3795
3796         for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3797                 drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
3798                 drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
3799         }
3800
3801         drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
3802 }
3803
3804 int panthor_sched_init(struct panthor_device *ptdev)
3805 {
3806         struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
3807         struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3808         struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
3809         struct panthor_scheduler *sched;
3810         u32 gpu_as_count, num_groups;
3811         int prio, ret;
3812
3813         sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
3814         if (!sched)
3815                 return -ENOMEM;
3816
3817         /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
3818          * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
3819          */
3820         num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
3821
3822         /* The FW-side scheduler might deadlock if two groups with the same
3823          * priority try to access a set of resources that overlaps, with part
3824          * of the resources being allocated to one group and the other part to
3825          * the other group, both groups waiting for the remaining resources to
3826          * be allocated. To avoid that, it is recommended to assign each CSG a
3827          * different priority. In theory we could allow several groups to have
3828          * the same CSG priority if they don't request the same resources, but
3829          * that makes the scheduling logic more complicated, so let's clamp
3830          * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
3831          */
3832         num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
3833
3834         /* We need at least one AS for the MCU and one for the GPU contexts. */
3835         gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
3836         if (!gpu_as_count) {
3837                 drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
3838                         gpu_as_count + 1);
3839                 return -EINVAL;
3840         }
3841
3842         sched->ptdev = ptdev;
3843         sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
3844         sched->csg_slot_count = num_groups;
3845         sched->cs_slot_count = csg_iface->control->stream_num;
3846         sched->as_slot_count = gpu_as_count;
3847         ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
3848         ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
3849         ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
3850
3851         sched->last_tick = 0;
3852         sched->resched_target = U64_MAX;
3853         sched->tick_period = msecs_to_jiffies(10);
3854         INIT_DELAYED_WORK(&sched->tick_work, tick_work);
3855         INIT_WORK(&sched->sync_upd_work, sync_upd_work);
3856         INIT_WORK(&sched->fw_events_work, process_fw_events_work);
3857
3858         ret = drmm_mutex_init(&ptdev->base, &sched->lock);
3859         if (ret)
3860                 return ret;
3861
3862         for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3863                 INIT_LIST_HEAD(&sched->groups.runnable[prio]);
3864                 INIT_LIST_HEAD(&sched->groups.idle[prio]);
3865         }
3866         INIT_LIST_HEAD(&sched->groups.waiting);
3867
3868         ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
3869         if (ret)
3870                 return ret;
3871
3872         INIT_LIST_HEAD(&sched->reset.stopped_groups);
3873
3874         /* sched->heap_alloc_wq will be used for heap chunk allocation on
3875          * tiler OOM events, which means we can't use the same workqueue for
3876          * the scheduler because works queued by the scheduler are in
3877          * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
3878          * work around this limitation.
3879          *
3880          * FIXME: Ultimately, what we need is a failable/non-blocking GEM
3881          * allocation path that we can call when a heap OOM is reported. The
3882          * FW is smart enough to fall back on other methods if the kernel can't
3883          * allocate memory, and fail the tiling job if none of these
3884          * countermeasures worked.
3885          *
3886          * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
3887          * system is running out of memory.
3888          */
3889         sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
3890         sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
3891         if (!sched->wq || !sched->heap_alloc_wq) {
3892                 panthor_sched_fini(&ptdev->base, sched);
3893                 drm_err(&ptdev->base, "Failed to allocate the workqueues");
3894                 return -ENOMEM;
3895         }
3896
3897         ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
3898         if (ret)
3899                 return ret;
3900
3901         ptdev->scheduler = sched;
3902         return 0;
3903 }
This page took 0.256168 seconds and 4 git commands to generate.