]> Git Repo - linux.git/blob - drivers/gpu/drm/imagination/pvr_queue.c
Merge tag 'for-linus-6.14-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / imagination / pvr_queue.c
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3
4 #include <drm/drm_managed.h>
5 #include <drm/gpu_scheduler.h>
6
7 #include "pvr_cccb.h"
8 #include "pvr_context.h"
9 #include "pvr_device.h"
10 #include "pvr_drv.h"
11 #include "pvr_job.h"
12 #include "pvr_queue.h"
13 #include "pvr_vm.h"
14
15 #include "pvr_rogue_fwif_client.h"
16
17 #define MAX_DEADLINE_MS 30000
18
19 #define CTX_COMPUTE_CCCB_SIZE_LOG2 15
20 #define CTX_FRAG_CCCB_SIZE_LOG2 15
21 #define CTX_GEOM_CCCB_SIZE_LOG2 15
22 #define CTX_TRANSFER_CCCB_SIZE_LOG2 15
23
24 static int get_xfer_ctx_state_size(struct pvr_device *pvr_dev)
25 {
26         u32 num_isp_store_registers;
27
28         if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) {
29                 num_isp_store_registers = 1;
30         } else {
31                 int err;
32
33                 err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers);
34                 if (WARN_ON(err))
35                         return err;
36         }
37
38         return sizeof(struct rogue_fwif_frag_ctx_state) +
39                (num_isp_store_registers *
40                 sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0]));
41 }
42
43 static int get_frag_ctx_state_size(struct pvr_device *pvr_dev)
44 {
45         u32 num_isp_store_registers;
46         int err;
47
48         if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) {
49                 err = PVR_FEATURE_VALUE(pvr_dev, num_raster_pipes, &num_isp_store_registers);
50                 if (WARN_ON(err))
51                         return err;
52
53                 if (PVR_HAS_FEATURE(pvr_dev, gpu_multicore_support)) {
54                         u32 xpu_max_slaves;
55
56                         err = PVR_FEATURE_VALUE(pvr_dev, xpu_max_slaves, &xpu_max_slaves);
57                         if (WARN_ON(err))
58                                 return err;
59
60                         num_isp_store_registers *= (1 + xpu_max_slaves);
61                 }
62         } else {
63                 err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers);
64                 if (WARN_ON(err))
65                         return err;
66         }
67
68         return sizeof(struct rogue_fwif_frag_ctx_state) +
69                (num_isp_store_registers *
70                 sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0]));
71 }
72
73 static int get_ctx_state_size(struct pvr_device *pvr_dev, enum drm_pvr_job_type type)
74 {
75         switch (type) {
76         case DRM_PVR_JOB_TYPE_GEOMETRY:
77                 return sizeof(struct rogue_fwif_geom_ctx_state);
78         case DRM_PVR_JOB_TYPE_FRAGMENT:
79                 return get_frag_ctx_state_size(pvr_dev);
80         case DRM_PVR_JOB_TYPE_COMPUTE:
81                 return sizeof(struct rogue_fwif_compute_ctx_state);
82         case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
83                 return get_xfer_ctx_state_size(pvr_dev);
84         }
85
86         WARN(1, "Invalid queue type");
87         return -EINVAL;
88 }
89
90 static u32 get_ctx_offset(enum drm_pvr_job_type type)
91 {
92         switch (type) {
93         case DRM_PVR_JOB_TYPE_GEOMETRY:
94                 return offsetof(struct rogue_fwif_fwrendercontext, geom_context);
95         case DRM_PVR_JOB_TYPE_FRAGMENT:
96                 return offsetof(struct rogue_fwif_fwrendercontext, frag_context);
97         case DRM_PVR_JOB_TYPE_COMPUTE:
98                 return offsetof(struct rogue_fwif_fwcomputecontext, cdm_context);
99         case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
100                 return offsetof(struct rogue_fwif_fwtransfercontext, tq_context);
101         }
102
103         return 0;
104 }
105
106 static const char *
107 pvr_queue_fence_get_driver_name(struct dma_fence *f)
108 {
109         return PVR_DRIVER_NAME;
110 }
111
112 static void pvr_queue_fence_release(struct dma_fence *f)
113 {
114         struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);
115
116         pvr_context_put(fence->queue->ctx);
117         dma_fence_free(f);
118 }
119
120 static const char *
121 pvr_queue_job_fence_get_timeline_name(struct dma_fence *f)
122 {
123         struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);
124
125         switch (fence->queue->type) {
126         case DRM_PVR_JOB_TYPE_GEOMETRY:
127                 return "geometry";
128
129         case DRM_PVR_JOB_TYPE_FRAGMENT:
130                 return "fragment";
131
132         case DRM_PVR_JOB_TYPE_COMPUTE:
133                 return "compute";
134
135         case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
136                 return "transfer";
137         }
138
139         WARN(1, "Invalid queue type");
140         return "invalid";
141 }
142
143 static const char *
144 pvr_queue_cccb_fence_get_timeline_name(struct dma_fence *f)
145 {
146         struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);
147
148         switch (fence->queue->type) {
149         case DRM_PVR_JOB_TYPE_GEOMETRY:
150                 return "geometry-cccb";
151
152         case DRM_PVR_JOB_TYPE_FRAGMENT:
153                 return "fragment-cccb";
154
155         case DRM_PVR_JOB_TYPE_COMPUTE:
156                 return "compute-cccb";
157
158         case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
159                 return "transfer-cccb";
160         }
161
162         WARN(1, "Invalid queue type");
163         return "invalid";
164 }
165
166 static const struct dma_fence_ops pvr_queue_job_fence_ops = {
167         .get_driver_name = pvr_queue_fence_get_driver_name,
168         .get_timeline_name = pvr_queue_job_fence_get_timeline_name,
169         .release = pvr_queue_fence_release,
170 };
171
172 /**
173  * to_pvr_queue_job_fence() - Return a pvr_queue_fence object if the fence is
174  * backed by a UFO.
175  * @f: The dma_fence to turn into a pvr_queue_fence.
176  *
177  * Return:
178  *  * A non-NULL pvr_queue_fence object if the dma_fence is backed by a UFO, or
179  *  * NULL otherwise.
180  */
181 static struct pvr_queue_fence *
182 to_pvr_queue_job_fence(struct dma_fence *f)
183 {
184         struct drm_sched_fence *sched_fence = to_drm_sched_fence(f);
185
186         if (sched_fence)
187                 f = sched_fence->parent;
188
189         if (f && f->ops == &pvr_queue_job_fence_ops)
190                 return container_of(f, struct pvr_queue_fence, base);
191
192         return NULL;
193 }
194
195 static const struct dma_fence_ops pvr_queue_cccb_fence_ops = {
196         .get_driver_name = pvr_queue_fence_get_driver_name,
197         .get_timeline_name = pvr_queue_cccb_fence_get_timeline_name,
198         .release = pvr_queue_fence_release,
199 };
200
201 /**
202  * pvr_queue_fence_put() - Put wrapper for pvr_queue_fence objects.
203  * @f: The dma_fence object to put.
204  *
205  * If the pvr_queue_fence has been initialized, we call dma_fence_put(),
206  * otherwise we free the object with dma_fence_free(). This allows us
207  * to do the right thing before and after pvr_queue_fence_init() had been
208  * called.
209  */
210 static void pvr_queue_fence_put(struct dma_fence *f)
211 {
212         if (!f)
213                 return;
214
215         if (WARN_ON(f->ops &&
216                     f->ops != &pvr_queue_cccb_fence_ops &&
217                     f->ops != &pvr_queue_job_fence_ops))
218                 return;
219
220         /* If the fence hasn't been initialized yet, free the object directly. */
221         if (f->ops)
222                 dma_fence_put(f);
223         else
224                 dma_fence_free(f);
225 }
226
227 /**
228  * pvr_queue_fence_alloc() - Allocate a pvr_queue_fence fence object
229  *
230  * Call this function to allocate job CCCB and done fences. This only
231  * allocates the objects. Initialization happens when the underlying
232  * dma_fence object is to be returned to drm_sched (in prepare_job() or
233  * run_job()).
234  *
235  * Return:
236  *  * A valid pointer if the allocation succeeds, or
237  *  * NULL if the allocation fails.
238  */
239 static struct dma_fence *
240 pvr_queue_fence_alloc(void)
241 {
242         struct pvr_queue_fence *fence;
243
244         fence = kzalloc(sizeof(*fence), GFP_KERNEL);
245         if (!fence)
246                 return NULL;
247
248         return &fence->base;
249 }
250
251 /**
252  * pvr_queue_fence_init() - Initializes a pvr_queue_fence object.
253  * @f: The fence to initialize
254  * @queue: The queue this fence belongs to.
255  * @fence_ops: The fence operations.
256  * @fence_ctx: The fence context.
257  *
258  * Wrapper around dma_fence_init() that takes care of initializing the
259  * pvr_queue_fence::queue field too.
260  */
261 static void
262 pvr_queue_fence_init(struct dma_fence *f,
263                      struct pvr_queue *queue,
264                      const struct dma_fence_ops *fence_ops,
265                      struct pvr_queue_fence_ctx *fence_ctx)
266 {
267         struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);
268
269         pvr_context_get(queue->ctx);
270         fence->queue = queue;
271         dma_fence_init(&fence->base, fence_ops,
272                        &fence_ctx->lock, fence_ctx->id,
273                        atomic_inc_return(&fence_ctx->seqno));
274 }
275
276 /**
277  * pvr_queue_cccb_fence_init() - Initializes a CCCB fence object.
278  * @fence: The fence to initialize.
279  * @queue: The queue this fence belongs to.
280  *
281  * Initializes a fence that can be used to wait for CCCB space.
282  *
283  * Should be called in the ::prepare_job() path, so the fence returned to
284  * drm_sched is valid.
285  */
286 static void
287 pvr_queue_cccb_fence_init(struct dma_fence *fence, struct pvr_queue *queue)
288 {
289         pvr_queue_fence_init(fence, queue, &pvr_queue_cccb_fence_ops,
290                              &queue->cccb_fence_ctx.base);
291 }
292
293 /**
294  * pvr_queue_job_fence_init() - Initializes a job done fence object.
295  * @fence: The fence to initialize.
296  * @queue: The queue this fence belongs to.
297  *
298  * Initializes a fence that will be signaled when the GPU is done executing
299  * a job.
300  *
301  * Should be called *before* the ::run_job() path, so the fence is initialised
302  * before being placed in the pending_list.
303  */
304 static void
305 pvr_queue_job_fence_init(struct dma_fence *fence, struct pvr_queue *queue)
306 {
307         pvr_queue_fence_init(fence, queue, &pvr_queue_job_fence_ops,
308                              &queue->job_fence_ctx);
309 }
310
311 /**
312  * pvr_queue_fence_ctx_init() - Queue fence context initialization.
313  * @fence_ctx: The context to initialize
314  */
315 static void
316 pvr_queue_fence_ctx_init(struct pvr_queue_fence_ctx *fence_ctx)
317 {
318         spin_lock_init(&fence_ctx->lock);
319         fence_ctx->id = dma_fence_context_alloc(1);
320         atomic_set(&fence_ctx->seqno, 0);
321 }
322
323 static u32 ufo_cmds_size(u32 elem_count)
324 {
325         /* We can pass at most ROGUE_FWIF_CCB_CMD_MAX_UFOS per UFO-related command. */
326         u32 full_cmd_count = elem_count / ROGUE_FWIF_CCB_CMD_MAX_UFOS;
327         u32 remaining_elems = elem_count % ROGUE_FWIF_CCB_CMD_MAX_UFOS;
328         u32 size = full_cmd_count *
329                    pvr_cccb_get_size_of_cmd_with_hdr(ROGUE_FWIF_CCB_CMD_MAX_UFOS *
330                                                      sizeof(struct rogue_fwif_ufo));
331
332         if (remaining_elems) {
333                 size += pvr_cccb_get_size_of_cmd_with_hdr(remaining_elems *
334                                                           sizeof(struct rogue_fwif_ufo));
335         }
336
337         return size;
338 }
339
340 static u32 job_cmds_size(struct pvr_job *job, u32 ufo_wait_count)
341 {
342         /* One UFO cmd for the fence signaling, one UFO cmd per native fence native,
343          * and a command for the job itself.
344          */
345         return ufo_cmds_size(1) + ufo_cmds_size(ufo_wait_count) +
346                pvr_cccb_get_size_of_cmd_with_hdr(job->cmd_len);
347 }
348
349 /**
350  * job_count_remaining_native_deps() - Count the number of non-signaled native dependencies.
351  * @job: Job to operate on.
352  *
353  * Returns: Number of non-signaled native deps remaining.
354  */
355 static unsigned long job_count_remaining_native_deps(struct pvr_job *job)
356 {
357         unsigned long remaining_count = 0;
358         struct dma_fence *fence = NULL;
359         unsigned long index;
360
361         xa_for_each(&job->base.dependencies, index, fence) {
362                 struct pvr_queue_fence *jfence;
363
364                 jfence = to_pvr_queue_job_fence(fence);
365                 if (!jfence)
366                         continue;
367
368                 if (!dma_fence_is_signaled(&jfence->base))
369                         remaining_count++;
370         }
371
372         return remaining_count;
373 }
374
375 /**
376  * pvr_queue_get_job_cccb_fence() - Get the CCCB fence attached to a job.
377  * @queue: The queue this job will be submitted to.
378  * @job: The job to get the CCCB fence on.
379  *
380  * The CCCB fence is a synchronization primitive allowing us to delay job
381  * submission until there's enough space in the CCCB to submit the job.
382  *
383  * Return:
384  *  * NULL if there's enough space in the CCCB to submit this job, or
385  *  * A valid dma_fence object otherwise.
386  */
387 static struct dma_fence *
388 pvr_queue_get_job_cccb_fence(struct pvr_queue *queue, struct pvr_job *job)
389 {
390         struct pvr_queue_fence *cccb_fence;
391         unsigned int native_deps_remaining;
392
393         /* If the fence is NULL, that means we already checked that we had
394          * enough space in the cccb for our job.
395          */
396         if (!job->cccb_fence)
397                 return NULL;
398
399         mutex_lock(&queue->cccb_fence_ctx.job_lock);
400
401         /* Count remaining native dependencies and check if the job fits in the CCCB. */
402         native_deps_remaining = job_count_remaining_native_deps(job);
403         if (pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) {
404                 pvr_queue_fence_put(job->cccb_fence);
405                 job->cccb_fence = NULL;
406                 goto out_unlock;
407         }
408
409         /* There should be no job attached to the CCCB fence context:
410          * drm_sched_entity guarantees that jobs are submitted one at a time.
411          */
412         if (WARN_ON(queue->cccb_fence_ctx.job))
413                 pvr_job_put(queue->cccb_fence_ctx.job);
414
415         queue->cccb_fence_ctx.job = pvr_job_get(job);
416
417         /* Initialize the fence before returning it. */
418         cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base);
419         if (!WARN_ON(cccb_fence->queue))
420                 pvr_queue_cccb_fence_init(job->cccb_fence, queue);
421
422 out_unlock:
423         mutex_unlock(&queue->cccb_fence_ctx.job_lock);
424
425         return dma_fence_get(job->cccb_fence);
426 }
427
428 /**
429  * pvr_queue_get_job_kccb_fence() - Get the KCCB fence attached to a job.
430  * @queue: The queue this job will be submitted to.
431  * @job: The job to get the KCCB fence on.
432  *
433  * The KCCB fence is a synchronization primitive allowing us to delay job
434  * submission until there's enough space in the KCCB to submit the job.
435  *
436  * Return:
437  *  * NULL if there's enough space in the KCCB to submit this job, or
438  *  * A valid dma_fence object otherwise.
439  */
440 static struct dma_fence *
441 pvr_queue_get_job_kccb_fence(struct pvr_queue *queue, struct pvr_job *job)
442 {
443         struct pvr_device *pvr_dev = queue->ctx->pvr_dev;
444         struct dma_fence *kccb_fence = NULL;
445
446         /* If the fence is NULL, that means we already checked that we had
447          * enough space in the KCCB for our job.
448          */
449         if (!job->kccb_fence)
450                 return NULL;
451
452         if (!WARN_ON(job->kccb_fence->ops)) {
453                 kccb_fence = pvr_kccb_reserve_slot(pvr_dev, job->kccb_fence);
454                 job->kccb_fence = NULL;
455         }
456
457         return kccb_fence;
458 }
459
460 static struct dma_fence *
461 pvr_queue_get_paired_frag_job_dep(struct pvr_queue *queue, struct pvr_job *job)
462 {
463         struct pvr_job *frag_job = job->type == DRM_PVR_JOB_TYPE_GEOMETRY ?
464                                    job->paired_job : NULL;
465         struct dma_fence *f;
466         unsigned long index;
467
468         if (!frag_job)
469                 return NULL;
470
471         xa_for_each(&frag_job->base.dependencies, index, f) {
472                 /* Skip already signaled fences. */
473                 if (dma_fence_is_signaled(f))
474                         continue;
475
476                 /* Skip our own fence. */
477                 if (f == &job->base.s_fence->scheduled)
478                         continue;
479
480                 return dma_fence_get(f);
481         }
482
483         return frag_job->base.sched->ops->prepare_job(&frag_job->base, &queue->entity);
484 }
485
486 /**
487  * pvr_queue_prepare_job() - Return the next internal dependencies expressed as a dma_fence.
488  * @sched_job: The job to query the next internal dependency on
489  * @s_entity: The entity this job is queue on.
490  *
491  * After iterating over drm_sched_job::dependencies, drm_sched let the driver return
492  * its own internal dependencies. We use this function to return our internal dependencies.
493  */
494 static struct dma_fence *
495 pvr_queue_prepare_job(struct drm_sched_job *sched_job,
496                       struct drm_sched_entity *s_entity)
497 {
498         struct pvr_job *job = container_of(sched_job, struct pvr_job, base);
499         struct pvr_queue *queue = container_of(s_entity, struct pvr_queue, entity);
500         struct dma_fence *internal_dep = NULL;
501
502         /*
503          * Initialize the done_fence, so we can signal it. This must be done
504          * here because otherwise by the time of run_job() the job will end up
505          * in the pending list without a valid fence.
506          */
507         if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) {
508                 /*
509                  * This will be called on a paired fragment job after being
510                  * submitted to firmware. We can tell if this is the case and
511                  * bail early from whether run_job() has been called on the
512                  * geometry job, which would issue a pm ref.
513                  */
514                 if (job->paired_job->has_pm_ref)
515                         return NULL;
516
517                 /*
518                  * In this case we need to use the job's own ctx to initialise
519                  * the done_fence.  The other steps are done in the ctx of the
520                  * paired geometry job.
521                  */
522                 pvr_queue_job_fence_init(job->done_fence,
523                                          job->ctx->queues.fragment);
524         } else {
525                 pvr_queue_job_fence_init(job->done_fence, queue);
526         }
527
528         /* CCCB fence is used to make sure we have enough space in the CCCB to
529          * submit our commands.
530          */
531         internal_dep = pvr_queue_get_job_cccb_fence(queue, job);
532
533         /* KCCB fence is used to make sure we have a KCCB slot to queue our
534          * CMD_KICK.
535          */
536         if (!internal_dep)
537                 internal_dep = pvr_queue_get_job_kccb_fence(queue, job);
538
539         /* Any extra internal dependency should be added here, using the following
540          * pattern:
541          *
542          *      if (!internal_dep)
543          *              internal_dep = pvr_queue_get_job_xxxx_fence(queue, job);
544          */
545
546         /* The paired job fence should come last, when everything else is ready. */
547         if (!internal_dep)
548                 internal_dep = pvr_queue_get_paired_frag_job_dep(queue, job);
549
550         return internal_dep;
551 }
552
553 /**
554  * pvr_queue_update_active_state_locked() - Update the queue active state.
555  * @queue: Queue to update the state on.
556  *
557  * Locked version of pvr_queue_update_active_state(). Must be called with
558  * pvr_device::queue::lock held.
559  */
560 static void pvr_queue_update_active_state_locked(struct pvr_queue *queue)
561 {
562         struct pvr_device *pvr_dev = queue->ctx->pvr_dev;
563
564         lockdep_assert_held(&pvr_dev->queues.lock);
565
566         /* The queue is temporary out of any list when it's being reset,
567          * we don't want a call to pvr_queue_update_active_state_locked()
568          * to re-insert it behind our back.
569          */
570         if (list_empty(&queue->node))
571                 return;
572
573         if (!atomic_read(&queue->in_flight_job_count))
574                 list_move_tail(&queue->node, &pvr_dev->queues.idle);
575         else
576                 list_move_tail(&queue->node, &pvr_dev->queues.active);
577 }
578
579 /**
580  * pvr_queue_update_active_state() - Update the queue active state.
581  * @queue: Queue to update the state on.
582  *
583  * Active state is based on the in_flight_job_count value.
584  *
585  * Updating the active state implies moving the queue in or out of the
586  * active queue list, which also defines whether the queue is checked
587  * or not when a FW event is received.
588  *
589  * This function should be called any time a job is submitted or it done
590  * fence is signaled.
591  */
592 static void pvr_queue_update_active_state(struct pvr_queue *queue)
593 {
594         struct pvr_device *pvr_dev = queue->ctx->pvr_dev;
595
596         mutex_lock(&pvr_dev->queues.lock);
597         pvr_queue_update_active_state_locked(queue);
598         mutex_unlock(&pvr_dev->queues.lock);
599 }
600
601 static void pvr_queue_submit_job_to_cccb(struct pvr_job *job)
602 {
603         struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler);
604         struct rogue_fwif_ufo ufos[ROGUE_FWIF_CCB_CMD_MAX_UFOS];
605         struct pvr_cccb *cccb = &queue->cccb;
606         struct pvr_queue_fence *jfence;
607         struct dma_fence *fence;
608         unsigned long index;
609         u32 ufo_count = 0;
610
611         /* We need to add the queue to the active list before updating the CCCB,
612          * otherwise we might miss the FW event informing us that something
613          * happened on this queue.
614          */
615         atomic_inc(&queue->in_flight_job_count);
616         pvr_queue_update_active_state(queue);
617
618         xa_for_each(&job->base.dependencies, index, fence) {
619                 jfence = to_pvr_queue_job_fence(fence);
620                 if (!jfence)
621                         continue;
622
623                 /* Skip the partial render fence, we will place it at the end. */
624                 if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job &&
625                     &job->paired_job->base.s_fence->scheduled == fence)
626                         continue;
627
628                 if (dma_fence_is_signaled(&jfence->base))
629                         continue;
630
631                 pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj,
632                                           &ufos[ufo_count].addr);
633                 ufos[ufo_count++].value = jfence->base.seqno;
634
635                 if (ufo_count == ARRAY_SIZE(ufos)) {
636                         pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR,
637                                                            sizeof(ufos), ufos, 0, 0);
638                         ufo_count = 0;
639                 }
640         }
641
642         /* Partial render fence goes last. */
643         if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) {
644                 jfence = to_pvr_queue_job_fence(job->paired_job->done_fence);
645                 if (!WARN_ON(!jfence)) {
646                         pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj,
647                                                   &ufos[ufo_count].addr);
648                         ufos[ufo_count++].value = job->paired_job->done_fence->seqno;
649                 }
650         }
651
652         if (ufo_count) {
653                 pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR,
654                                                    sizeof(ufos[0]) * ufo_count, ufos, 0, 0);
655         }
656
657         if (job->type == DRM_PVR_JOB_TYPE_GEOMETRY && job->paired_job) {
658                 struct rogue_fwif_cmd_geom *cmd = job->cmd;
659
660                 /* Reference value for the partial render test is the current queue fence
661                  * seqno minus one.
662                  */
663                 pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj,
664                                           &cmd->partial_render_geom_frag_fence.addr);
665                 cmd->partial_render_geom_frag_fence.value = job->done_fence->seqno - 1;
666         }
667
668         /* Submit job to FW */
669         pvr_cccb_write_command_with_header(cccb, job->fw_ccb_cmd_type, job->cmd_len, job->cmd,
670                                            job->id, job->id);
671
672         /* Signal the job fence. */
673         pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj, &ufos[0].addr);
674         ufos[0].value = job->done_fence->seqno;
675         pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_UPDATE,
676                                            sizeof(ufos[0]), ufos, 0, 0);
677 }
678
679 /**
680  * pvr_queue_run_job() - Submit a job to the FW.
681  * @sched_job: The job to submit.
682  *
683  * This function is called when all non-native dependencies have been met and
684  * when the commands resulting from this job are guaranteed to fit in the CCCB.
685  */
686 static struct dma_fence *pvr_queue_run_job(struct drm_sched_job *sched_job)
687 {
688         struct pvr_job *job = container_of(sched_job, struct pvr_job, base);
689         struct pvr_device *pvr_dev = job->pvr_dev;
690         int err;
691
692         /* The fragment job is issued along the geometry job when we use combined
693          * geom+frag kicks. When we get there, we should simply return the
694          * done_fence that's been initialized earlier.
695          */
696         if (job->paired_job && job->type == DRM_PVR_JOB_TYPE_FRAGMENT &&
697             job->done_fence->ops) {
698                 return dma_fence_get(job->done_fence);
699         }
700
701         /* The only kind of jobs that can be paired are geometry and fragment, and
702          * we bail out early if we see a fragment job that's paired with a geomtry
703          * job.
704          * Paired jobs must also target the same context and point to the same
705          * HWRT.
706          */
707         if (WARN_ON(job->paired_job &&
708                     (job->type != DRM_PVR_JOB_TYPE_GEOMETRY ||
709                      job->paired_job->type != DRM_PVR_JOB_TYPE_FRAGMENT ||
710                      job->hwrt != job->paired_job->hwrt ||
711                      job->ctx != job->paired_job->ctx)))
712                 return ERR_PTR(-EINVAL);
713
714         err = pvr_job_get_pm_ref(job);
715         if (WARN_ON(err))
716                 return ERR_PTR(err);
717
718         if (job->paired_job) {
719                 err = pvr_job_get_pm_ref(job->paired_job);
720                 if (WARN_ON(err))
721                         return ERR_PTR(err);
722         }
723
724         /* Submit our job to the CCCB */
725         pvr_queue_submit_job_to_cccb(job);
726
727         if (job->paired_job) {
728                 struct pvr_job *geom_job = job;
729                 struct pvr_job *frag_job = job->paired_job;
730                 struct pvr_queue *geom_queue = job->ctx->queues.geometry;
731                 struct pvr_queue *frag_queue = job->ctx->queues.fragment;
732
733                 /* Submit the fragment job along the geometry job and send a combined kick. */
734                 pvr_queue_submit_job_to_cccb(frag_job);
735                 pvr_cccb_send_kccb_combined_kick(pvr_dev,
736                                                  &geom_queue->cccb, &frag_queue->cccb,
737                                                  pvr_context_get_fw_addr(geom_job->ctx) +
738                                                  geom_queue->ctx_offset,
739                                                  pvr_context_get_fw_addr(frag_job->ctx) +
740                                                  frag_queue->ctx_offset,
741                                                  job->hwrt,
742                                                  frag_job->fw_ccb_cmd_type ==
743                                                  ROGUE_FWIF_CCB_CMD_TYPE_FRAG_PR);
744         } else {
745                 struct pvr_queue *queue = container_of(job->base.sched,
746                                                        struct pvr_queue, scheduler);
747
748                 pvr_cccb_send_kccb_kick(pvr_dev, &queue->cccb,
749                                         pvr_context_get_fw_addr(job->ctx) + queue->ctx_offset,
750                                         job->hwrt);
751         }
752
753         return dma_fence_get(job->done_fence);
754 }
755
756 static void pvr_queue_stop(struct pvr_queue *queue, struct pvr_job *bad_job)
757 {
758         drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
759 }
760
761 static void pvr_queue_start(struct pvr_queue *queue)
762 {
763         struct pvr_job *job;
764
765         /* Make sure we CPU-signal the UFO object, so other queues don't get
766          * blocked waiting on it.
767          */
768         *queue->timeline_ufo.value = atomic_read(&queue->job_fence_ctx.seqno);
769
770         list_for_each_entry(job, &queue->scheduler.pending_list, base.list) {
771                 if (dma_fence_is_signaled(job->done_fence)) {
772                         /* Jobs might have completed after drm_sched_stop() was called.
773                          * In that case, re-assign the parent field to the done_fence.
774                          */
775                         WARN_ON(job->base.s_fence->parent);
776                         job->base.s_fence->parent = dma_fence_get(job->done_fence);
777                 } else {
778                         /* If we had unfinished jobs, flag the entity as guilty so no
779                          * new job can be submitted.
780                          */
781                         atomic_set(&queue->ctx->faulty, 1);
782                 }
783         }
784
785         drm_sched_start(&queue->scheduler, 0);
786 }
787
788 /**
789  * pvr_queue_timedout_job() - Handle a job timeout event.
790  * @s_job: The job this timeout occurred on.
791  *
792  * FIXME: We don't do anything here to unblock the situation, we just stop+start
793  * the scheduler, and re-assign parent fences in the middle.
794  *
795  * Return:
796  *  * DRM_GPU_SCHED_STAT_NOMINAL.
797  */
798 static enum drm_gpu_sched_stat
799 pvr_queue_timedout_job(struct drm_sched_job *s_job)
800 {
801         struct drm_gpu_scheduler *sched = s_job->sched;
802         struct pvr_queue *queue = container_of(sched, struct pvr_queue, scheduler);
803         struct pvr_device *pvr_dev = queue->ctx->pvr_dev;
804         struct pvr_job *job;
805         u32 job_count = 0;
806
807         dev_err(sched->dev, "Job timeout\n");
808
809         /* Before we stop the scheduler, make sure the queue is out of any list, so
810          * any call to pvr_queue_update_active_state_locked() that might happen
811          * until the scheduler is really stopped doesn't end up re-inserting the
812          * queue in the active list. This would cause
813          * pvr_queue_signal_done_fences() and drm_sched_stop() to race with each
814          * other when accessing the pending_list, since drm_sched_stop() doesn't
815          * grab the job_list_lock when modifying the list (it's assuming the
816          * only other accessor is the scheduler, and it's safe to not grab the
817          * lock since it's stopped).
818          */
819         mutex_lock(&pvr_dev->queues.lock);
820         list_del_init(&queue->node);
821         mutex_unlock(&pvr_dev->queues.lock);
822
823         drm_sched_stop(sched, s_job);
824
825         /* Re-assign job parent fences. */
826         list_for_each_entry(job, &sched->pending_list, base.list) {
827                 job->base.s_fence->parent = dma_fence_get(job->done_fence);
828                 job_count++;
829         }
830         WARN_ON(atomic_read(&queue->in_flight_job_count) != job_count);
831
832         /* Re-insert the queue in the proper list, and kick a queue processing
833          * operation if there were jobs pending.
834          */
835         mutex_lock(&pvr_dev->queues.lock);
836         if (!job_count) {
837                 list_move_tail(&queue->node, &pvr_dev->queues.idle);
838         } else {
839                 atomic_set(&queue->in_flight_job_count, job_count);
840                 list_move_tail(&queue->node, &pvr_dev->queues.active);
841                 pvr_queue_process(queue);
842         }
843         mutex_unlock(&pvr_dev->queues.lock);
844
845         drm_sched_start(sched, 0);
846
847         return DRM_GPU_SCHED_STAT_NOMINAL;
848 }
849
850 /**
851  * pvr_queue_free_job() - Release the reference the scheduler had on a job object.
852  * @sched_job: Job object to free.
853  */
854 static void pvr_queue_free_job(struct drm_sched_job *sched_job)
855 {
856         struct pvr_job *job = container_of(sched_job, struct pvr_job, base);
857
858         drm_sched_job_cleanup(sched_job);
859         job->paired_job = NULL;
860         pvr_job_put(job);
861 }
862
863 static const struct drm_sched_backend_ops pvr_queue_sched_ops = {
864         .prepare_job = pvr_queue_prepare_job,
865         .run_job = pvr_queue_run_job,
866         .timedout_job = pvr_queue_timedout_job,
867         .free_job = pvr_queue_free_job,
868 };
869
870 /**
871  * pvr_queue_fence_is_ufo_backed() - Check if a dma_fence is backed by a UFO object
872  * @f: Fence to test.
873  *
874  * A UFO-backed fence is a fence that can be signaled or waited upon FW-side.
875  * pvr_job::done_fence objects are backed by the timeline UFO attached to the queue
876  * they are pushed to, but those fences are not directly exposed to the outside
877  * world, so we also need to check if the fence we're being passed is a
878  * drm_sched_fence that was coming from our driver.
879  */
880 bool pvr_queue_fence_is_ufo_backed(struct dma_fence *f)
881 {
882         struct drm_sched_fence *sched_fence = f ? to_drm_sched_fence(f) : NULL;
883
884         if (sched_fence &&
885             sched_fence->sched->ops == &pvr_queue_sched_ops)
886                 return true;
887
888         if (f && f->ops == &pvr_queue_job_fence_ops)
889                 return true;
890
891         return false;
892 }
893
894 /**
895  * pvr_queue_signal_done_fences() - Signal done fences.
896  * @queue: Queue to check.
897  *
898  * Signal done fences of jobs whose seqno is less than the current value of
899  * the UFO object attached to the queue.
900  */
901 static void
902 pvr_queue_signal_done_fences(struct pvr_queue *queue)
903 {
904         struct pvr_job *job, *tmp_job;
905         u32 cur_seqno;
906
907         spin_lock(&queue->scheduler.job_list_lock);
908         cur_seqno = *queue->timeline_ufo.value;
909         list_for_each_entry_safe(job, tmp_job, &queue->scheduler.pending_list, base.list) {
910                 if ((int)(cur_seqno - lower_32_bits(job->done_fence->seqno)) < 0)
911                         break;
912
913                 if (!dma_fence_is_signaled(job->done_fence)) {
914                         dma_fence_signal(job->done_fence);
915                         pvr_job_release_pm_ref(job);
916                         atomic_dec(&queue->in_flight_job_count);
917                 }
918         }
919         spin_unlock(&queue->scheduler.job_list_lock);
920 }
921
922 /**
923  * pvr_queue_check_job_waiting_for_cccb_space() - Check if the job waiting for CCCB space
924  * can be unblocked
925  * pushed to the CCCB
926  * @queue: Queue to check
927  *
928  * If we have a job waiting for CCCB, and this job now fits in the CCCB, we signal
929  * its CCCB fence, which should kick drm_sched.
930  */
931 static void
932 pvr_queue_check_job_waiting_for_cccb_space(struct pvr_queue *queue)
933 {
934         struct pvr_queue_fence *cccb_fence;
935         u32 native_deps_remaining;
936         struct pvr_job *job;
937
938         mutex_lock(&queue->cccb_fence_ctx.job_lock);
939         job = queue->cccb_fence_ctx.job;
940         if (!job)
941                 goto out_unlock;
942
943         /* If we have a job attached to the CCCB fence context, its CCCB fence
944          * shouldn't be NULL.
945          */
946         if (WARN_ON(!job->cccb_fence)) {
947                 job = NULL;
948                 goto out_unlock;
949         }
950
951         /* If we get there, CCCB fence has to be initialized. */
952         cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base);
953         if (WARN_ON(!cccb_fence->queue)) {
954                 job = NULL;
955                 goto out_unlock;
956         }
957
958         /* Evict signaled dependencies before checking for CCCB space.
959          * If the job fits, signal the CCCB fence, this should unblock
960          * the drm_sched_entity.
961          */
962         native_deps_remaining = job_count_remaining_native_deps(job);
963         if (!pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) {
964                 job = NULL;
965                 goto out_unlock;
966         }
967
968         dma_fence_signal(job->cccb_fence);
969         pvr_queue_fence_put(job->cccb_fence);
970         job->cccb_fence = NULL;
971         queue->cccb_fence_ctx.job = NULL;
972
973 out_unlock:
974         mutex_unlock(&queue->cccb_fence_ctx.job_lock);
975
976         pvr_job_put(job);
977 }
978
979 /**
980  * pvr_queue_process() - Process events that happened on a queue.
981  * @queue: Queue to check
982  *
983  * Signal job fences and check if jobs waiting for CCCB space can be unblocked.
984  */
985 void pvr_queue_process(struct pvr_queue *queue)
986 {
987         lockdep_assert_held(&queue->ctx->pvr_dev->queues.lock);
988
989         pvr_queue_check_job_waiting_for_cccb_space(queue);
990         pvr_queue_signal_done_fences(queue);
991         pvr_queue_update_active_state_locked(queue);
992 }
993
994 static u32 get_dm_type(struct pvr_queue *queue)
995 {
996         switch (queue->type) {
997         case DRM_PVR_JOB_TYPE_GEOMETRY:
998                 return PVR_FWIF_DM_GEOM;
999         case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
1000         case DRM_PVR_JOB_TYPE_FRAGMENT:
1001                 return PVR_FWIF_DM_FRAG;
1002         case DRM_PVR_JOB_TYPE_COMPUTE:
1003                 return PVR_FWIF_DM_CDM;
1004         }
1005
1006         return ~0;
1007 }
1008
1009 /**
1010  * init_fw_context() - Initializes the queue part of a FW context.
1011  * @queue: Queue object to initialize the FW context for.
1012  * @fw_ctx_map: The FW context CPU mapping.
1013  *
1014  * FW contexts are containing various states, one of them being a per-queue state
1015  * that needs to be initialized for each queue being exposed by a context. This
1016  * function takes care of that.
1017  */
1018 static void init_fw_context(struct pvr_queue *queue, void *fw_ctx_map)
1019 {
1020         struct pvr_context *ctx = queue->ctx;
1021         struct pvr_fw_object *fw_mem_ctx_obj = pvr_vm_get_fw_mem_context(ctx->vm_ctx);
1022         struct rogue_fwif_fwcommoncontext *cctx_fw;
1023         struct pvr_cccb *cccb = &queue->cccb;
1024
1025         cctx_fw = fw_ctx_map + queue->ctx_offset;
1026         cctx_fw->ccbctl_fw_addr = cccb->ctrl_fw_addr;
1027         cctx_fw->ccb_fw_addr = cccb->cccb_fw_addr;
1028
1029         cctx_fw->dm = get_dm_type(queue);
1030         cctx_fw->priority = ctx->priority;
1031         cctx_fw->priority_seq_num = 0;
1032         cctx_fw->max_deadline_ms = MAX_DEADLINE_MS;
1033         cctx_fw->pid = task_tgid_nr(current);
1034         cctx_fw->server_common_context_id = ctx->ctx_id;
1035
1036         pvr_fw_object_get_fw_addr(fw_mem_ctx_obj, &cctx_fw->fw_mem_context_fw_addr);
1037
1038         pvr_fw_object_get_fw_addr(queue->reg_state_obj, &cctx_fw->context_state_addr);
1039 }
1040
1041 /**
1042  * pvr_queue_cleanup_fw_context() - Wait for the FW context to be idle and clean it up.
1043  * @queue: Queue on FW context to clean up.
1044  *
1045  * Return:
1046  *  * 0 on success,
1047  *  * Any error returned by pvr_fw_structure_cleanup() otherwise.
1048  */
1049 static int pvr_queue_cleanup_fw_context(struct pvr_queue *queue)
1050 {
1051         if (!queue->ctx->fw_obj)
1052                 return 0;
1053
1054         return pvr_fw_structure_cleanup(queue->ctx->pvr_dev,
1055                                         ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT,
1056                                         queue->ctx->fw_obj, queue->ctx_offset);
1057 }
1058
1059 /**
1060  * pvr_queue_job_init() - Initialize queue related fields in a pvr_job object.
1061  * @job: The job to initialize.
1062  *
1063  * Bind the job to a queue and allocate memory to guarantee pvr_queue_job_arm()
1064  * and pvr_queue_job_push() can't fail. We also make sure the context type is
1065  * valid and the job can fit in the CCCB.
1066  *
1067  * Return:
1068  *  * 0 on success, or
1069  *  * An error code if something failed.
1070  */
1071 int pvr_queue_job_init(struct pvr_job *job)
1072 {
1073         /* Fragment jobs need at least one native fence wait on the geometry job fence. */
1074         u32 min_native_dep_count = job->type == DRM_PVR_JOB_TYPE_FRAGMENT ? 1 : 0;
1075         struct pvr_queue *queue;
1076         int err;
1077
1078         if (atomic_read(&job->ctx->faulty))
1079                 return -EIO;
1080
1081         queue = pvr_context_get_queue_for_job(job->ctx, job->type);
1082         if (!queue)
1083                 return -EINVAL;
1084
1085         if (!pvr_cccb_cmdseq_can_fit(&queue->cccb, job_cmds_size(job, min_native_dep_count)))
1086                 return -E2BIG;
1087
1088         err = drm_sched_job_init(&job->base, &queue->entity, 1, THIS_MODULE);
1089         if (err)
1090                 return err;
1091
1092         job->cccb_fence = pvr_queue_fence_alloc();
1093         job->kccb_fence = pvr_kccb_fence_alloc();
1094         job->done_fence = pvr_queue_fence_alloc();
1095         if (!job->cccb_fence || !job->kccb_fence || !job->done_fence)
1096                 return -ENOMEM;
1097
1098         return 0;
1099 }
1100
1101 /**
1102  * pvr_queue_job_arm() - Arm a job object.
1103  * @job: The job to arm.
1104  *
1105  * Initializes fences and return the drm_sched finished fence so it can
1106  * be exposed to the outside world. Once this function is called, you should
1107  * make sure the job is pushed using pvr_queue_job_push(), or guarantee that
1108  * no one grabbed a reference to the returned fence. The latter can happen if
1109  * we do multi-job submission, and something failed when creating/initializing
1110  * a job. In that case, we know the fence didn't leave the driver, and we
1111  * can thus guarantee nobody will wait on an dead fence object.
1112  *
1113  * Return:
1114  *  * A dma_fence object.
1115  */
1116 struct dma_fence *pvr_queue_job_arm(struct pvr_job *job)
1117 {
1118         drm_sched_job_arm(&job->base);
1119
1120         return &job->base.s_fence->finished;
1121 }
1122
1123 /**
1124  * pvr_queue_job_cleanup() - Cleanup fence/scheduler related fields in the job object.
1125  * @job: The job to cleanup.
1126  *
1127  * Should be called in the job release path.
1128  */
1129 void pvr_queue_job_cleanup(struct pvr_job *job)
1130 {
1131         pvr_queue_fence_put(job->done_fence);
1132         pvr_queue_fence_put(job->cccb_fence);
1133         pvr_kccb_fence_put(job->kccb_fence);
1134
1135         if (job->base.s_fence)
1136                 drm_sched_job_cleanup(&job->base);
1137 }
1138
1139 /**
1140  * pvr_queue_job_push() - Push a job to its queue.
1141  * @job: The job to push.
1142  *
1143  * Must be called after pvr_queue_job_init() and after all dependencies
1144  * have been added to the job. This will effectively queue the job to
1145  * the drm_sched_entity attached to the queue. We grab a reference on
1146  * the job object, so the caller is free to drop its reference when it's
1147  * done accessing the job object.
1148  */
1149 void pvr_queue_job_push(struct pvr_job *job)
1150 {
1151         struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler);
1152
1153         /* Keep track of the last queued job scheduled fence for combined submit. */
1154         dma_fence_put(queue->last_queued_job_scheduled_fence);
1155         queue->last_queued_job_scheduled_fence = dma_fence_get(&job->base.s_fence->scheduled);
1156
1157         pvr_job_get(job);
1158         drm_sched_entity_push_job(&job->base);
1159 }
1160
1161 static void reg_state_init(void *cpu_ptr, void *priv)
1162 {
1163         struct pvr_queue *queue = priv;
1164
1165         if (queue->type == DRM_PVR_JOB_TYPE_GEOMETRY) {
1166                 struct rogue_fwif_geom_ctx_state *geom_ctx_state_fw = cpu_ptr;
1167
1168                 geom_ctx_state_fw->geom_core[0].geom_reg_vdm_call_stack_pointer_init =
1169                         queue->callstack_addr;
1170         }
1171 }
1172
1173 /**
1174  * pvr_queue_create() - Create a queue object.
1175  * @ctx: The context this queue will be attached to.
1176  * @type: The type of jobs being pushed to this queue.
1177  * @args: The arguments passed to the context creation function.
1178  * @fw_ctx_map: CPU mapping of the FW context object.
1179  *
1180  * Create a queue object that will be used to queue and track jobs.
1181  *
1182  * Return:
1183  *  * A valid pointer to a pvr_queue object, or
1184  *  * An error pointer if the creation/initialization failed.
1185  */
1186 struct pvr_queue *pvr_queue_create(struct pvr_context *ctx,
1187                                    enum drm_pvr_job_type type,
1188                                    struct drm_pvr_ioctl_create_context_args *args,
1189                                    void *fw_ctx_map)
1190 {
1191         static const struct {
1192                 u32 cccb_size;
1193                 const char *name;
1194         } props[] = {
1195                 [DRM_PVR_JOB_TYPE_GEOMETRY] = {
1196                         .cccb_size = CTX_GEOM_CCCB_SIZE_LOG2,
1197                         .name = "geometry",
1198                 },
1199                 [DRM_PVR_JOB_TYPE_FRAGMENT] = {
1200                         .cccb_size = CTX_FRAG_CCCB_SIZE_LOG2,
1201                         .name = "fragment"
1202                 },
1203                 [DRM_PVR_JOB_TYPE_COMPUTE] = {
1204                         .cccb_size = CTX_COMPUTE_CCCB_SIZE_LOG2,
1205                         .name = "compute"
1206                 },
1207                 [DRM_PVR_JOB_TYPE_TRANSFER_FRAG] = {
1208                         .cccb_size = CTX_TRANSFER_CCCB_SIZE_LOG2,
1209                         .name = "transfer_frag"
1210                 },
1211         };
1212         struct pvr_device *pvr_dev = ctx->pvr_dev;
1213         struct drm_gpu_scheduler *sched;
1214         struct pvr_queue *queue;
1215         int ctx_state_size, err;
1216         void *cpu_map;
1217
1218         if (WARN_ON(type >= sizeof(props)))
1219                 return ERR_PTR(-EINVAL);
1220
1221         switch (ctx->type) {
1222         case DRM_PVR_CTX_TYPE_RENDER:
1223                 if (type != DRM_PVR_JOB_TYPE_GEOMETRY &&
1224                     type != DRM_PVR_JOB_TYPE_FRAGMENT)
1225                         return ERR_PTR(-EINVAL);
1226                 break;
1227         case DRM_PVR_CTX_TYPE_COMPUTE:
1228                 if (type != DRM_PVR_JOB_TYPE_COMPUTE)
1229                         return ERR_PTR(-EINVAL);
1230                 break;
1231         case DRM_PVR_CTX_TYPE_TRANSFER_FRAG:
1232                 if (type != DRM_PVR_JOB_TYPE_TRANSFER_FRAG)
1233                         return ERR_PTR(-EINVAL);
1234                 break;
1235         default:
1236                 return ERR_PTR(-EINVAL);
1237         }
1238
1239         ctx_state_size = get_ctx_state_size(pvr_dev, type);
1240         if (ctx_state_size < 0)
1241                 return ERR_PTR(ctx_state_size);
1242
1243         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1244         if (!queue)
1245                 return ERR_PTR(-ENOMEM);
1246
1247         queue->type = type;
1248         queue->ctx_offset = get_ctx_offset(type);
1249         queue->ctx = ctx;
1250         queue->callstack_addr = args->callstack_addr;
1251         sched = &queue->scheduler;
1252         INIT_LIST_HEAD(&queue->node);
1253         mutex_init(&queue->cccb_fence_ctx.job_lock);
1254         pvr_queue_fence_ctx_init(&queue->cccb_fence_ctx.base);
1255         pvr_queue_fence_ctx_init(&queue->job_fence_ctx);
1256
1257         err = pvr_cccb_init(pvr_dev, &queue->cccb, props[type].cccb_size, props[type].name);
1258         if (err)
1259                 goto err_free_queue;
1260
1261         err = pvr_fw_object_create(pvr_dev, ctx_state_size,
1262                                    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
1263                                    reg_state_init, queue, &queue->reg_state_obj);
1264         if (err)
1265                 goto err_cccb_fini;
1266
1267         init_fw_context(queue, fw_ctx_map);
1268
1269         if (type != DRM_PVR_JOB_TYPE_GEOMETRY && type != DRM_PVR_JOB_TYPE_FRAGMENT &&
1270             args->callstack_addr) {
1271                 err = -EINVAL;
1272                 goto err_release_reg_state;
1273         }
1274
1275         cpu_map = pvr_fw_object_create_and_map(pvr_dev, sizeof(*queue->timeline_ufo.value),
1276                                                PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
1277                                                NULL, NULL, &queue->timeline_ufo.fw_obj);
1278         if (IS_ERR(cpu_map)) {
1279                 err = PTR_ERR(cpu_map);
1280                 goto err_release_reg_state;
1281         }
1282
1283         queue->timeline_ufo.value = cpu_map;
1284
1285         err = drm_sched_init(&queue->scheduler,
1286                              &pvr_queue_sched_ops,
1287                              pvr_dev->sched_wq, 1, 64 * 1024, 1,
1288                              msecs_to_jiffies(500),
1289                              pvr_dev->sched_wq, NULL, "pvr-queue",
1290                              pvr_dev->base.dev);
1291         if (err)
1292                 goto err_release_ufo;
1293
1294         err = drm_sched_entity_init(&queue->entity,
1295                                     DRM_SCHED_PRIORITY_KERNEL,
1296                                     &sched, 1, &ctx->faulty);
1297         if (err)
1298                 goto err_sched_fini;
1299
1300         mutex_lock(&pvr_dev->queues.lock);
1301         list_add_tail(&queue->node, &pvr_dev->queues.idle);
1302         mutex_unlock(&pvr_dev->queues.lock);
1303
1304         return queue;
1305
1306 err_sched_fini:
1307         drm_sched_fini(&queue->scheduler);
1308
1309 err_release_ufo:
1310         pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj);
1311
1312 err_release_reg_state:
1313         pvr_fw_object_destroy(queue->reg_state_obj);
1314
1315 err_cccb_fini:
1316         pvr_cccb_fini(&queue->cccb);
1317
1318 err_free_queue:
1319         mutex_destroy(&queue->cccb_fence_ctx.job_lock);
1320         kfree(queue);
1321
1322         return ERR_PTR(err);
1323 }
1324
1325 void pvr_queue_device_pre_reset(struct pvr_device *pvr_dev)
1326 {
1327         struct pvr_queue *queue;
1328
1329         mutex_lock(&pvr_dev->queues.lock);
1330         list_for_each_entry(queue, &pvr_dev->queues.idle, node)
1331                 pvr_queue_stop(queue, NULL);
1332         list_for_each_entry(queue, &pvr_dev->queues.active, node)
1333                 pvr_queue_stop(queue, NULL);
1334         mutex_unlock(&pvr_dev->queues.lock);
1335 }
1336
1337 void pvr_queue_device_post_reset(struct pvr_device *pvr_dev)
1338 {
1339         struct pvr_queue *queue;
1340
1341         mutex_lock(&pvr_dev->queues.lock);
1342         list_for_each_entry(queue, &pvr_dev->queues.active, node)
1343                 pvr_queue_start(queue);
1344         list_for_each_entry(queue, &pvr_dev->queues.idle, node)
1345                 pvr_queue_start(queue);
1346         mutex_unlock(&pvr_dev->queues.lock);
1347 }
1348
1349 /**
1350  * pvr_queue_kill() - Kill a queue.
1351  * @queue: The queue to kill.
1352  *
1353  * Kill the queue so no new jobs can be pushed. Should be called when the
1354  * context handle is destroyed. The queue object might last longer if jobs
1355  * are still in flight and holding a reference to the context this queue
1356  * belongs to.
1357  */
1358 void pvr_queue_kill(struct pvr_queue *queue)
1359 {
1360         drm_sched_entity_destroy(&queue->entity);
1361         dma_fence_put(queue->last_queued_job_scheduled_fence);
1362         queue->last_queued_job_scheduled_fence = NULL;
1363 }
1364
1365 /**
1366  * pvr_queue_destroy() - Destroy a queue.
1367  * @queue: The queue to destroy.
1368  *
1369  * Cleanup the queue and free the resources attached to it. Should be
1370  * called from the context release function.
1371  */
1372 void pvr_queue_destroy(struct pvr_queue *queue)
1373 {
1374         if (!queue)
1375                 return;
1376
1377         mutex_lock(&queue->ctx->pvr_dev->queues.lock);
1378         list_del_init(&queue->node);
1379         mutex_unlock(&queue->ctx->pvr_dev->queues.lock);
1380
1381         drm_sched_fini(&queue->scheduler);
1382         drm_sched_entity_fini(&queue->entity);
1383
1384         if (WARN_ON(queue->last_queued_job_scheduled_fence))
1385                 dma_fence_put(queue->last_queued_job_scheduled_fence);
1386
1387         pvr_queue_cleanup_fw_context(queue);
1388
1389         pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj);
1390         pvr_fw_object_destroy(queue->reg_state_obj);
1391         pvr_cccb_fini(&queue->cccb);
1392         mutex_destroy(&queue->cccb_fence_ctx.job_lock);
1393         kfree(queue);
1394 }
1395
1396 /**
1397  * pvr_queue_device_init() - Device-level initialization of queue related fields.
1398  * @pvr_dev: The device to initialize.
1399  *
1400  * Initializes all fields related to queue management in pvr_device.
1401  *
1402  * Return:
1403  *  * 0 on success, or
1404  *  * An error code on failure.
1405  */
1406 int pvr_queue_device_init(struct pvr_device *pvr_dev)
1407 {
1408         int err;
1409
1410         INIT_LIST_HEAD(&pvr_dev->queues.active);
1411         INIT_LIST_HEAD(&pvr_dev->queues.idle);
1412         err = drmm_mutex_init(from_pvr_device(pvr_dev), &pvr_dev->queues.lock);
1413         if (err)
1414                 return err;
1415
1416         pvr_dev->sched_wq = alloc_workqueue("powervr-sched", WQ_UNBOUND, 0);
1417         if (!pvr_dev->sched_wq)
1418                 return -ENOMEM;
1419
1420         return 0;
1421 }
1422
1423 /**
1424  * pvr_queue_device_fini() - Device-level cleanup of queue related fields.
1425  * @pvr_dev: The device to cleanup.
1426  *
1427  * Cleanup/free all queue-related resources attached to a pvr_device object.
1428  */
1429 void pvr_queue_device_fini(struct pvr_device *pvr_dev)
1430 {
1431         destroy_workqueue(pvr_dev->sched_wq);
1432 }
This page took 0.110273 seconds and 4 git commands to generate.