]> Git Repo - linux.git/blob - drivers/base/cacheinfo.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf
[linux.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <[email protected]>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of_device.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx)         \
29                                 (per_cpu_cacheinfo(cpu) + (idx))
30
31 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
32 {
33         return ci_cacheinfo(cpu);
34 }
35
36 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
37                                            struct cacheinfo *sib_leaf)
38 {
39         /*
40          * For non DT/ACPI systems, assume unique level 1 caches,
41          * system-wide shared caches for all other levels. This will be used
42          * only if arch specific code has not populated shared_cpu_map
43          */
44         if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)))
45                 return !(this_leaf->level == 1);
46
47         if ((sib_leaf->attributes & CACHE_ID) &&
48             (this_leaf->attributes & CACHE_ID))
49                 return sib_leaf->id == this_leaf->id;
50
51         return sib_leaf->fw_token == this_leaf->fw_token;
52 }
53
54 bool last_level_cache_is_valid(unsigned int cpu)
55 {
56         struct cacheinfo *llc;
57
58         if (!cache_leaves(cpu))
59                 return false;
60
61         llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
62
63         return (llc->attributes & CACHE_ID) || !!llc->fw_token;
64
65 }
66
67 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
68 {
69         struct cacheinfo *llc_x, *llc_y;
70
71         if (!last_level_cache_is_valid(cpu_x) ||
72             !last_level_cache_is_valid(cpu_y))
73                 return false;
74
75         llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
76         llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
77
78         return cache_leaves_are_shared(llc_x, llc_y);
79 }
80
81 #ifdef CONFIG_OF
82 /* OF properties to query for a given cache type */
83 struct cache_type_info {
84         const char *size_prop;
85         const char *line_size_props[2];
86         const char *nr_sets_prop;
87 };
88
89 static const struct cache_type_info cache_type_info[] = {
90         {
91                 .size_prop       = "cache-size",
92                 .line_size_props = { "cache-line-size",
93                                      "cache-block-size", },
94                 .nr_sets_prop    = "cache-sets",
95         }, {
96                 .size_prop       = "i-cache-size",
97                 .line_size_props = { "i-cache-line-size",
98                                      "i-cache-block-size", },
99                 .nr_sets_prop    = "i-cache-sets",
100         }, {
101                 .size_prop       = "d-cache-size",
102                 .line_size_props = { "d-cache-line-size",
103                                      "d-cache-block-size", },
104                 .nr_sets_prop    = "d-cache-sets",
105         },
106 };
107
108 static inline int get_cacheinfo_idx(enum cache_type type)
109 {
110         if (type == CACHE_TYPE_UNIFIED)
111                 return 0;
112         return type;
113 }
114
115 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
116 {
117         const char *propname;
118         int ct_idx;
119
120         ct_idx = get_cacheinfo_idx(this_leaf->type);
121         propname = cache_type_info[ct_idx].size_prop;
122
123         of_property_read_u32(np, propname, &this_leaf->size);
124 }
125
126 /* not cache_line_size() because that's a macro in include/linux/cache.h */
127 static void cache_get_line_size(struct cacheinfo *this_leaf,
128                                 struct device_node *np)
129 {
130         int i, lim, ct_idx;
131
132         ct_idx = get_cacheinfo_idx(this_leaf->type);
133         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
134
135         for (i = 0; i < lim; i++) {
136                 int ret;
137                 u32 line_size;
138                 const char *propname;
139
140                 propname = cache_type_info[ct_idx].line_size_props[i];
141                 ret = of_property_read_u32(np, propname, &line_size);
142                 if (!ret) {
143                         this_leaf->coherency_line_size = line_size;
144                         break;
145                 }
146         }
147 }
148
149 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
150 {
151         const char *propname;
152         int ct_idx;
153
154         ct_idx = get_cacheinfo_idx(this_leaf->type);
155         propname = cache_type_info[ct_idx].nr_sets_prop;
156
157         of_property_read_u32(np, propname, &this_leaf->number_of_sets);
158 }
159
160 static void cache_associativity(struct cacheinfo *this_leaf)
161 {
162         unsigned int line_size = this_leaf->coherency_line_size;
163         unsigned int nr_sets = this_leaf->number_of_sets;
164         unsigned int size = this_leaf->size;
165
166         /*
167          * If the cache is fully associative, there is no need to
168          * check the other properties.
169          */
170         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
171                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
172 }
173
174 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
175                                   struct device_node *np)
176 {
177         return of_property_read_bool(np, "cache-unified");
178 }
179
180 static void cache_of_set_props(struct cacheinfo *this_leaf,
181                                struct device_node *np)
182 {
183         /*
184          * init_cache_level must setup the cache level correctly
185          * overriding the architecturally specified levels, so
186          * if type is NONE at this stage, it should be unified
187          */
188         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
189             cache_node_is_unified(this_leaf, np))
190                 this_leaf->type = CACHE_TYPE_UNIFIED;
191         cache_size(this_leaf, np);
192         cache_get_line_size(this_leaf, np);
193         cache_nr_sets(this_leaf, np);
194         cache_associativity(this_leaf);
195 }
196
197 static int cache_setup_of_node(unsigned int cpu)
198 {
199         struct device_node *np, *prev;
200         struct cacheinfo *this_leaf;
201         unsigned int index = 0;
202
203         np = of_cpu_device_node_get(cpu);
204         if (!np) {
205                 pr_err("Failed to find cpu%d device node\n", cpu);
206                 return -ENOENT;
207         }
208
209         prev = np;
210
211         while (index < cache_leaves(cpu)) {
212                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
213                 if (this_leaf->level != 1) {
214                         np = of_find_next_cache_node(np);
215                         of_node_put(prev);
216                         prev = np;
217                         if (!np)
218                                 break;
219                 }
220                 cache_of_set_props(this_leaf, np);
221                 this_leaf->fw_token = np;
222                 index++;
223         }
224
225         of_node_put(np);
226
227         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
228                 return -ENOENT;
229
230         return 0;
231 }
232 #else
233 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
234 #endif
235
236 int __weak cache_setup_acpi(unsigned int cpu)
237 {
238         return -ENOTSUPP;
239 }
240
241 unsigned int coherency_max_size;
242
243 static int cache_setup_properties(unsigned int cpu)
244 {
245         int ret = 0;
246
247         if (of_have_populated_dt())
248                 ret = cache_setup_of_node(cpu);
249         else if (!acpi_disabled)
250                 ret = cache_setup_acpi(cpu);
251
252         return ret;
253 }
254
255 static int cache_shared_cpu_map_setup(unsigned int cpu)
256 {
257         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
258         struct cacheinfo *this_leaf, *sib_leaf;
259         unsigned int index;
260         int ret = 0;
261
262         if (this_cpu_ci->cpu_map_populated)
263                 return 0;
264
265         /*
266          * skip setting up cache properties if LLC is valid, just need
267          * to update the shared cpu_map if the cache attributes were
268          * populated early before all the cpus are brought online
269          */
270         if (!last_level_cache_is_valid(cpu)) {
271                 ret = cache_setup_properties(cpu);
272                 if (ret)
273                         return ret;
274         }
275
276         for (index = 0; index < cache_leaves(cpu); index++) {
277                 unsigned int i;
278
279                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
280
281                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
282                 for_each_online_cpu(i) {
283                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
284
285                         if (i == cpu || !sib_cpu_ci->info_list)
286                                 continue;/* skip if itself or no cacheinfo */
287
288                         sib_leaf = per_cpu_cacheinfo_idx(i, index);
289                         if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
290                                 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
291                                 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
292                         }
293                 }
294                 /* record the maximum cache line size */
295                 if (this_leaf->coherency_line_size > coherency_max_size)
296                         coherency_max_size = this_leaf->coherency_line_size;
297         }
298
299         return 0;
300 }
301
302 static void cache_shared_cpu_map_remove(unsigned int cpu)
303 {
304         struct cacheinfo *this_leaf, *sib_leaf;
305         unsigned int sibling, index;
306
307         for (index = 0; index < cache_leaves(cpu); index++) {
308                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
309                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
310                         struct cpu_cacheinfo *sib_cpu_ci =
311                                                 get_cpu_cacheinfo(sibling);
312
313                         if (sibling == cpu || !sib_cpu_ci->info_list)
314                                 continue;/* skip if itself or no cacheinfo */
315
316                         sib_leaf = per_cpu_cacheinfo_idx(sibling, index);
317                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
318                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
319                 }
320         }
321 }
322
323 static void free_cache_attributes(unsigned int cpu)
324 {
325         if (!per_cpu_cacheinfo(cpu))
326                 return;
327
328         cache_shared_cpu_map_remove(cpu);
329
330         kfree(per_cpu_cacheinfo(cpu));
331         per_cpu_cacheinfo(cpu) = NULL;
332         cache_leaves(cpu) = 0;
333 }
334
335 int __weak init_cache_level(unsigned int cpu)
336 {
337         return -ENOENT;
338 }
339
340 int __weak populate_cache_leaves(unsigned int cpu)
341 {
342         return -ENOENT;
343 }
344
345 int detect_cache_attributes(unsigned int cpu)
346 {
347         int ret;
348
349         /* Since early detection of the cacheinfo is allowed via this
350          * function and this also gets called as CPU hotplug callbacks via
351          * cacheinfo_cpu_online, the initialisation can be skipped and only
352          * CPU maps can be updated as the CPU online status would be update
353          * if called via cacheinfo_cpu_online path.
354          */
355         if (per_cpu_cacheinfo(cpu))
356                 goto update_cpu_map;
357
358         if (init_cache_level(cpu) || !cache_leaves(cpu))
359                 return -ENOENT;
360
361         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
362                                          sizeof(struct cacheinfo), GFP_ATOMIC);
363         if (per_cpu_cacheinfo(cpu) == NULL) {
364                 cache_leaves(cpu) = 0;
365                 return -ENOMEM;
366         }
367
368         /*
369          * populate_cache_leaves() may completely setup the cache leaves and
370          * shared_cpu_map or it may leave it partially setup.
371          */
372         ret = populate_cache_leaves(cpu);
373         if (ret)
374                 goto free_ci;
375
376 update_cpu_map:
377         /*
378          * For systems using DT for cache hierarchy, fw_token
379          * and shared_cpu_map will be set up here only if they are
380          * not populated already
381          */
382         ret = cache_shared_cpu_map_setup(cpu);
383         if (ret) {
384                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
385                 goto free_ci;
386         }
387
388         return 0;
389
390 free_ci:
391         free_cache_attributes(cpu);
392         return ret;
393 }
394
395 /* pointer to cpuX/cache device */
396 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
397 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
398
399 static cpumask_t cache_dev_map;
400
401 /* pointer to array of devices for cpuX/cache/indexY */
402 static DEFINE_PER_CPU(struct device **, ci_index_dev);
403 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
404 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
405
406 #define show_one(file_name, object)                             \
407 static ssize_t file_name##_show(struct device *dev,             \
408                 struct device_attribute *attr, char *buf)       \
409 {                                                               \
410         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
411         return sysfs_emit(buf, "%u\n", this_leaf->object);      \
412 }
413
414 show_one(id, id);
415 show_one(level, level);
416 show_one(coherency_line_size, coherency_line_size);
417 show_one(number_of_sets, number_of_sets);
418 show_one(physical_line_partition, physical_line_partition);
419 show_one(ways_of_associativity, ways_of_associativity);
420
421 static ssize_t size_show(struct device *dev,
422                          struct device_attribute *attr, char *buf)
423 {
424         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
425
426         return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
427 }
428
429 static ssize_t shared_cpu_map_show(struct device *dev,
430                                    struct device_attribute *attr, char *buf)
431 {
432         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
433         const struct cpumask *mask = &this_leaf->shared_cpu_map;
434
435         return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
436 }
437
438 static ssize_t shared_cpu_list_show(struct device *dev,
439                                     struct device_attribute *attr, char *buf)
440 {
441         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
442         const struct cpumask *mask = &this_leaf->shared_cpu_map;
443
444         return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
445 }
446
447 static ssize_t type_show(struct device *dev,
448                          struct device_attribute *attr, char *buf)
449 {
450         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
451         const char *output;
452
453         switch (this_leaf->type) {
454         case CACHE_TYPE_DATA:
455                 output = "Data";
456                 break;
457         case CACHE_TYPE_INST:
458                 output = "Instruction";
459                 break;
460         case CACHE_TYPE_UNIFIED:
461                 output = "Unified";
462                 break;
463         default:
464                 return -EINVAL;
465         }
466
467         return sysfs_emit(buf, "%s\n", output);
468 }
469
470 static ssize_t allocation_policy_show(struct device *dev,
471                                       struct device_attribute *attr, char *buf)
472 {
473         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
474         unsigned int ci_attr = this_leaf->attributes;
475         const char *output;
476
477         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
478                 output = "ReadWriteAllocate";
479         else if (ci_attr & CACHE_READ_ALLOCATE)
480                 output = "ReadAllocate";
481         else if (ci_attr & CACHE_WRITE_ALLOCATE)
482                 output = "WriteAllocate";
483         else
484                 return 0;
485
486         return sysfs_emit(buf, "%s\n", output);
487 }
488
489 static ssize_t write_policy_show(struct device *dev,
490                                  struct device_attribute *attr, char *buf)
491 {
492         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
493         unsigned int ci_attr = this_leaf->attributes;
494         int n = 0;
495
496         if (ci_attr & CACHE_WRITE_THROUGH)
497                 n = sysfs_emit(buf, "WriteThrough\n");
498         else if (ci_attr & CACHE_WRITE_BACK)
499                 n = sysfs_emit(buf, "WriteBack\n");
500         return n;
501 }
502
503 static DEVICE_ATTR_RO(id);
504 static DEVICE_ATTR_RO(level);
505 static DEVICE_ATTR_RO(type);
506 static DEVICE_ATTR_RO(coherency_line_size);
507 static DEVICE_ATTR_RO(ways_of_associativity);
508 static DEVICE_ATTR_RO(number_of_sets);
509 static DEVICE_ATTR_RO(size);
510 static DEVICE_ATTR_RO(allocation_policy);
511 static DEVICE_ATTR_RO(write_policy);
512 static DEVICE_ATTR_RO(shared_cpu_map);
513 static DEVICE_ATTR_RO(shared_cpu_list);
514 static DEVICE_ATTR_RO(physical_line_partition);
515
516 static struct attribute *cache_default_attrs[] = {
517         &dev_attr_id.attr,
518         &dev_attr_type.attr,
519         &dev_attr_level.attr,
520         &dev_attr_shared_cpu_map.attr,
521         &dev_attr_shared_cpu_list.attr,
522         &dev_attr_coherency_line_size.attr,
523         &dev_attr_ways_of_associativity.attr,
524         &dev_attr_number_of_sets.attr,
525         &dev_attr_size.attr,
526         &dev_attr_allocation_policy.attr,
527         &dev_attr_write_policy.attr,
528         &dev_attr_physical_line_partition.attr,
529         NULL
530 };
531
532 static umode_t
533 cache_default_attrs_is_visible(struct kobject *kobj,
534                                struct attribute *attr, int unused)
535 {
536         struct device *dev = kobj_to_dev(kobj);
537         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
538         const struct cpumask *mask = &this_leaf->shared_cpu_map;
539         umode_t mode = attr->mode;
540
541         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
542                 return mode;
543         if ((attr == &dev_attr_type.attr) && this_leaf->type)
544                 return mode;
545         if ((attr == &dev_attr_level.attr) && this_leaf->level)
546                 return mode;
547         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
548                 return mode;
549         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
550                 return mode;
551         if ((attr == &dev_attr_coherency_line_size.attr) &&
552             this_leaf->coherency_line_size)
553                 return mode;
554         if ((attr == &dev_attr_ways_of_associativity.attr) &&
555             this_leaf->size) /* allow 0 = full associativity */
556                 return mode;
557         if ((attr == &dev_attr_number_of_sets.attr) &&
558             this_leaf->number_of_sets)
559                 return mode;
560         if ((attr == &dev_attr_size.attr) && this_leaf->size)
561                 return mode;
562         if ((attr == &dev_attr_write_policy.attr) &&
563             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
564                 return mode;
565         if ((attr == &dev_attr_allocation_policy.attr) &&
566             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
567                 return mode;
568         if ((attr == &dev_attr_physical_line_partition.attr) &&
569             this_leaf->physical_line_partition)
570                 return mode;
571
572         return 0;
573 }
574
575 static const struct attribute_group cache_default_group = {
576         .attrs = cache_default_attrs,
577         .is_visible = cache_default_attrs_is_visible,
578 };
579
580 static const struct attribute_group *cache_default_groups[] = {
581         &cache_default_group,
582         NULL,
583 };
584
585 static const struct attribute_group *cache_private_groups[] = {
586         &cache_default_group,
587         NULL, /* Place holder for private group */
588         NULL,
589 };
590
591 const struct attribute_group *
592 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
593 {
594         return NULL;
595 }
596
597 static const struct attribute_group **
598 cache_get_attribute_groups(struct cacheinfo *this_leaf)
599 {
600         const struct attribute_group *priv_group =
601                         cache_get_priv_group(this_leaf);
602
603         if (!priv_group)
604                 return cache_default_groups;
605
606         if (!cache_private_groups[1])
607                 cache_private_groups[1] = priv_group;
608
609         return cache_private_groups;
610 }
611
612 /* Add/Remove cache interface for CPU device */
613 static void cpu_cache_sysfs_exit(unsigned int cpu)
614 {
615         int i;
616         struct device *ci_dev;
617
618         if (per_cpu_index_dev(cpu)) {
619                 for (i = 0; i < cache_leaves(cpu); i++) {
620                         ci_dev = per_cache_index_dev(cpu, i);
621                         if (!ci_dev)
622                                 continue;
623                         device_unregister(ci_dev);
624                 }
625                 kfree(per_cpu_index_dev(cpu));
626                 per_cpu_index_dev(cpu) = NULL;
627         }
628         device_unregister(per_cpu_cache_dev(cpu));
629         per_cpu_cache_dev(cpu) = NULL;
630 }
631
632 static int cpu_cache_sysfs_init(unsigned int cpu)
633 {
634         struct device *dev = get_cpu_device(cpu);
635
636         if (per_cpu_cacheinfo(cpu) == NULL)
637                 return -ENOENT;
638
639         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
640         if (IS_ERR(per_cpu_cache_dev(cpu)))
641                 return PTR_ERR(per_cpu_cache_dev(cpu));
642
643         /* Allocate all required memory */
644         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
645                                          sizeof(struct device *), GFP_KERNEL);
646         if (unlikely(per_cpu_index_dev(cpu) == NULL))
647                 goto err_out;
648
649         return 0;
650
651 err_out:
652         cpu_cache_sysfs_exit(cpu);
653         return -ENOMEM;
654 }
655
656 static int cache_add_dev(unsigned int cpu)
657 {
658         unsigned int i;
659         int rc;
660         struct device *ci_dev, *parent;
661         struct cacheinfo *this_leaf;
662         const struct attribute_group **cache_groups;
663
664         rc = cpu_cache_sysfs_init(cpu);
665         if (unlikely(rc < 0))
666                 return rc;
667
668         parent = per_cpu_cache_dev(cpu);
669         for (i = 0; i < cache_leaves(cpu); i++) {
670                 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
671                 if (this_leaf->disable_sysfs)
672                         continue;
673                 if (this_leaf->type == CACHE_TYPE_NOCACHE)
674                         break;
675                 cache_groups = cache_get_attribute_groups(this_leaf);
676                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
677                                            "index%1u", i);
678                 if (IS_ERR(ci_dev)) {
679                         rc = PTR_ERR(ci_dev);
680                         goto err;
681                 }
682                 per_cache_index_dev(cpu, i) = ci_dev;
683         }
684         cpumask_set_cpu(cpu, &cache_dev_map);
685
686         return 0;
687 err:
688         cpu_cache_sysfs_exit(cpu);
689         return rc;
690 }
691
692 static int cacheinfo_cpu_online(unsigned int cpu)
693 {
694         int rc = detect_cache_attributes(cpu);
695
696         if (rc)
697                 return rc;
698         rc = cache_add_dev(cpu);
699         if (rc)
700                 free_cache_attributes(cpu);
701         return rc;
702 }
703
704 static int cacheinfo_cpu_pre_down(unsigned int cpu)
705 {
706         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
707                 cpu_cache_sysfs_exit(cpu);
708
709         free_cache_attributes(cpu);
710         return 0;
711 }
712
713 static int __init cacheinfo_sysfs_init(void)
714 {
715         return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
716                                  "base/cacheinfo:online",
717                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
718 }
719 device_initcall(cacheinfo_sysfs_init);
This page took 0.071931 seconds and 4 git commands to generate.