]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v7.c
Merge tag 'for-linus-bhb' of git://git.armlinux.org.uk/~rmk/linux-arm
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v7.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "cikd.h"
26 #include "cik_sdma.h"
27 #include "gfx_v7_0.h"
28 #include "gca/gfx_7_2_d.h"
29 #include "gca/gfx_7_2_enum.h"
30 #include "gca/gfx_7_2_sh_mask.h"
31 #include "oss/oss_2_0_d.h"
32 #include "oss/oss_2_0_sh_mask.h"
33 #include "gmc/gmc_7_1_d.h"
34 #include "gmc/gmc_7_1_sh_mask.h"
35 #include "cik_structs.h"
36
37 enum hqd_dequeue_request_type {
38         NO_ACTION = 0,
39         DRAIN_PIPE,
40         RESET_WAVES
41 };
42
43 enum {
44         MAX_TRAPID = 8,         /* 3 bits in the bitfield. */
45         MAX_WATCH_ADDRESSES = 4
46 };
47
48 enum {
49         ADDRESS_WATCH_REG_ADDR_HI = 0,
50         ADDRESS_WATCH_REG_ADDR_LO,
51         ADDRESS_WATCH_REG_CNTL,
52         ADDRESS_WATCH_REG_MAX
53 };
54
55 /*  not defined in the CI/KV reg file  */
56 enum {
57         ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
58         ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
59         ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
60         /* extend the mask to 26 bits to match the low address field */
61         ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
62         ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
63 };
64
65 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
66         mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
67         mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
68         mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
69         mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
70 };
71
72 union TCP_WATCH_CNTL_BITS {
73         struct {
74                 uint32_t mask:24;
75                 uint32_t vmid:4;
76                 uint32_t atc:1;
77                 uint32_t mode:2;
78                 uint32_t valid:1;
79         } bitfields, bits;
80         uint32_t u32All;
81         signed int i32All;
82         float f32All;
83 };
84
85 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
86                         uint32_t queue, uint32_t vmid)
87 {
88         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
89
90         mutex_lock(&adev->srbm_mutex);
91         WREG32(mmSRBM_GFX_CNTL, value);
92 }
93
94 static void unlock_srbm(struct amdgpu_device *adev)
95 {
96         WREG32(mmSRBM_GFX_CNTL, 0);
97         mutex_unlock(&adev->srbm_mutex);
98 }
99
100 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
101                                 uint32_t queue_id)
102 {
103         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
104         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
105
106         lock_srbm(adev, mec, pipe, queue_id, 0);
107 }
108
109 static void release_queue(struct amdgpu_device *adev)
110 {
111         unlock_srbm(adev);
112 }
113
114 static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
115                                         uint32_t sh_mem_config,
116                                         uint32_t sh_mem_ape1_base,
117                                         uint32_t sh_mem_ape1_limit,
118                                         uint32_t sh_mem_bases)
119 {
120         lock_srbm(adev, 0, 0, 0, vmid);
121
122         WREG32(mmSH_MEM_CONFIG, sh_mem_config);
123         WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
124         WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
125         WREG32(mmSH_MEM_BASES, sh_mem_bases);
126
127         unlock_srbm(adev);
128 }
129
130 static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
131                                         unsigned int vmid)
132 {
133         /*
134          * We have to assume that there is no outstanding mapping.
135          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
136          * a mapping is in progress or because a mapping finished and the
137          * SW cleared it. So the protocol is to always wait & clear.
138          */
139         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
140                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
141
142         WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
143
144         while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
145                 cpu_relax();
146         WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
147
148         /* Mapping vmid to pasid also for IH block */
149         WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
150
151         return 0;
152 }
153
154 static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id)
155 {
156         uint32_t mec;
157         uint32_t pipe;
158
159         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
160         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
161
162         lock_srbm(adev, mec, pipe, 0, 0);
163
164         WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
165                         CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
166
167         unlock_srbm(adev);
168
169         return 0;
170 }
171
172 static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
173 {
174         uint32_t retval;
175
176         retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
177                         m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
178
179         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
180                         m->sdma_engine_id, m->sdma_queue_id, retval);
181
182         return retval;
183 }
184
185 static inline struct cik_mqd *get_mqd(void *mqd)
186 {
187         return (struct cik_mqd *)mqd;
188 }
189
190 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
191 {
192         return (struct cik_sdma_rlc_registers *)mqd;
193 }
194
195 static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd,
196                         uint32_t pipe_id, uint32_t queue_id,
197                         uint32_t __user *wptr, uint32_t wptr_shift,
198                         uint32_t wptr_mask, struct mm_struct *mm)
199 {
200         struct cik_mqd *m;
201         uint32_t *mqd_hqd;
202         uint32_t reg, wptr_val, data;
203         bool valid_wptr = false;
204
205         m = get_mqd(mqd);
206
207         acquire_queue(adev, pipe_id, queue_id);
208
209         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
210         mqd_hqd = &m->cp_mqd_base_addr_lo;
211
212         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
213                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
214
215         /* Copy userspace write pointer value to register.
216          * Activate doorbell logic to monitor subsequent changes.
217          */
218         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
219                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
220         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
221
222         /* read_user_ptr may take the mm->mmap_lock.
223          * release srbm_mutex to avoid circular dependency between
224          * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
225          */
226         release_queue(adev);
227         valid_wptr = read_user_wptr(mm, wptr, wptr_val);
228         acquire_queue(adev, pipe_id, queue_id);
229         if (valid_wptr)
230                 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
231
232         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
233         WREG32(mmCP_HQD_ACTIVE, data);
234
235         release_queue(adev);
236
237         return 0;
238 }
239
240 static int kgd_hqd_dump(struct amdgpu_device *adev,
241                         uint32_t pipe_id, uint32_t queue_id,
242                         uint32_t (**dump)[2], uint32_t *n_regs)
243 {
244         uint32_t i = 0, reg;
245 #define HQD_N_REGS (35+4)
246 #define DUMP_REG(addr) do {                             \
247                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
248                         break;                          \
249                 (*dump)[i][0] = (addr) << 2;            \
250                 (*dump)[i++][1] = RREG32(addr);         \
251         } while (0)
252
253         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
254         if (*dump == NULL)
255                 return -ENOMEM;
256
257         acquire_queue(adev, pipe_id, queue_id);
258
259         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
260         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
261         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
262         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
263
264         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
265                 DUMP_REG(reg);
266
267         release_queue(adev);
268
269         WARN_ON_ONCE(i != HQD_N_REGS);
270         *n_regs = i;
271
272         return 0;
273 }
274
275 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
276                              uint32_t __user *wptr, struct mm_struct *mm)
277 {
278         struct cik_sdma_rlc_registers *m;
279         unsigned long end_jiffies;
280         uint32_t sdma_rlc_reg_offset;
281         uint32_t data;
282
283         m = get_sdma_mqd(mqd);
284         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
285
286         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
287                 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
288
289         end_jiffies = msecs_to_jiffies(2000) + jiffies;
290         while (true) {
291                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
292                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
293                         break;
294                 if (time_after(jiffies, end_jiffies)) {
295                         pr_err("SDMA RLC not idle in %s\n", __func__);
296                         return -ETIME;
297                 }
298                 usleep_range(500, 1000);
299         }
300
301         data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
302                              ENABLE, 1);
303         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
304         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
305                                 m->sdma_rlc_rb_rptr);
306
307         if (read_user_wptr(mm, wptr, data))
308                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
309         else
310                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
311                        m->sdma_rlc_rb_rptr);
312
313         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
314                                 m->sdma_rlc_virtual_addr);
315         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
316         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
317                         m->sdma_rlc_rb_base_hi);
318         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
319                         m->sdma_rlc_rb_rptr_addr_lo);
320         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
321                         m->sdma_rlc_rb_rptr_addr_hi);
322
323         data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
324                              RB_ENABLE, 1);
325         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
326
327         return 0;
328 }
329
330 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
331                              uint32_t engine_id, uint32_t queue_id,
332                              uint32_t (**dump)[2], uint32_t *n_regs)
333 {
334         uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
335                 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
336         uint32_t i = 0, reg;
337 #undef HQD_N_REGS
338 #define HQD_N_REGS (19+4)
339
340         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
341         if (*dump == NULL)
342                 return -ENOMEM;
343
344         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
345                 DUMP_REG(sdma_offset + reg);
346         for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
347              reg++)
348                 DUMP_REG(sdma_offset + reg);
349
350         WARN_ON_ONCE(i != HQD_N_REGS);
351         *n_regs = i;
352
353         return 0;
354 }
355
356 static bool kgd_hqd_is_occupied(struct amdgpu_device *adev,
357                                 uint64_t queue_address, uint32_t pipe_id,
358                                 uint32_t queue_id)
359 {
360         uint32_t act;
361         bool retval = false;
362         uint32_t low, high;
363
364         acquire_queue(adev, pipe_id, queue_id);
365         act = RREG32(mmCP_HQD_ACTIVE);
366         if (act) {
367                 low = lower_32_bits(queue_address >> 8);
368                 high = upper_32_bits(queue_address >> 8);
369
370                 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
371                                 high == RREG32(mmCP_HQD_PQ_BASE_HI))
372                         retval = true;
373         }
374         release_queue(adev);
375         return retval;
376 }
377
378 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
379 {
380         struct cik_sdma_rlc_registers *m;
381         uint32_t sdma_rlc_reg_offset;
382         uint32_t sdma_rlc_rb_cntl;
383
384         m = get_sdma_mqd(mqd);
385         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
386
387         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
388
389         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
390                 return true;
391
392         return false;
393 }
394
395 static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd,
396                                 enum kfd_preempt_type reset_type,
397                                 unsigned int utimeout, uint32_t pipe_id,
398                                 uint32_t queue_id)
399 {
400         uint32_t temp;
401         enum hqd_dequeue_request_type type;
402         unsigned long flags, end_jiffies;
403         int retry;
404
405         if (amdgpu_in_reset(adev))
406                 return -EIO;
407
408         acquire_queue(adev, pipe_id, queue_id);
409         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
410
411         switch (reset_type) {
412         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
413                 type = DRAIN_PIPE;
414                 break;
415         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
416                 type = RESET_WAVES;
417                 break;
418         default:
419                 type = DRAIN_PIPE;
420                 break;
421         }
422
423         /* Workaround: If IQ timer is active and the wait time is close to or
424          * equal to 0, dequeueing is not safe. Wait until either the wait time
425          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
426          * cleared before continuing. Also, ensure wait times are set to at
427          * least 0x3.
428          */
429         local_irq_save(flags);
430         preempt_disable();
431         retry = 5000; /* wait for 500 usecs at maximum */
432         while (true) {
433                 temp = RREG32(mmCP_HQD_IQ_TIMER);
434                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
435                         pr_debug("HW is processing IQ\n");
436                         goto loop;
437                 }
438                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
439                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
440                                         == 3) /* SEM-rearm is safe */
441                                 break;
442                         /* Wait time 3 is safe for CP, but our MMIO read/write
443                          * time is close to 1 microsecond, so check for 10 to
444                          * leave more buffer room
445                          */
446                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
447                                         >= 10)
448                                 break;
449                         pr_debug("IQ timer is active\n");
450                 } else
451                         break;
452 loop:
453                 if (!retry) {
454                         pr_err("CP HQD IQ timer status time out\n");
455                         break;
456                 }
457                 ndelay(100);
458                 --retry;
459         }
460         retry = 1000;
461         while (true) {
462                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
463                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
464                         break;
465                 pr_debug("Dequeue request is pending\n");
466
467                 if (!retry) {
468                         pr_err("CP HQD dequeue request time out\n");
469                         break;
470                 }
471                 ndelay(100);
472                 --retry;
473         }
474         local_irq_restore(flags);
475         preempt_enable();
476
477         WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
478
479         end_jiffies = (utimeout * HZ / 1000) + jiffies;
480         while (true) {
481                 temp = RREG32(mmCP_HQD_ACTIVE);
482                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
483                         break;
484                 if (time_after(jiffies, end_jiffies)) {
485                         pr_err("cp queue preemption time out\n");
486                         release_queue(adev);
487                         return -ETIME;
488                 }
489                 usleep_range(500, 1000);
490         }
491
492         release_queue(adev);
493         return 0;
494 }
495
496 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
497                                 unsigned int utimeout)
498 {
499         struct cik_sdma_rlc_registers *m;
500         uint32_t sdma_rlc_reg_offset;
501         uint32_t temp;
502         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
503
504         m = get_sdma_mqd(mqd);
505         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
506
507         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
508         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
509         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
510
511         while (true) {
512                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
513                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
514                         break;
515                 if (time_after(jiffies, end_jiffies)) {
516                         pr_err("SDMA RLC not idle in %s\n", __func__);
517                         return -ETIME;
518                 }
519                 usleep_range(500, 1000);
520         }
521
522         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
523         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
524                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
525                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
526
527         m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
528
529         return 0;
530 }
531
532 static int kgd_address_watch_disable(struct amdgpu_device *adev)
533 {
534         union TCP_WATCH_CNTL_BITS cntl;
535         unsigned int i;
536
537         cntl.u32All = 0;
538
539         cntl.bitfields.valid = 0;
540         cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
541         cntl.bitfields.atc = 1;
542
543         /* Turning off this address until we set all the registers */
544         for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
545                 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
546                         ADDRESS_WATCH_REG_CNTL], cntl.u32All);
547
548         return 0;
549 }
550
551 static int kgd_address_watch_execute(struct amdgpu_device *adev,
552                                         unsigned int watch_point_id,
553                                         uint32_t cntl_val,
554                                         uint32_t addr_hi,
555                                         uint32_t addr_lo)
556 {
557         union TCP_WATCH_CNTL_BITS cntl;
558
559         cntl.u32All = cntl_val;
560
561         /* Turning off this watch point until we set all the registers */
562         cntl.bitfields.valid = 0;
563         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
564                 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
565
566         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
567                 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
568
569         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
570                 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
571
572         /* Enable the watch point */
573         cntl.bitfields.valid = 1;
574
575         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
576                 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
577
578         return 0;
579 }
580
581 static int kgd_wave_control_execute(struct amdgpu_device *adev,
582                                         uint32_t gfx_index_val,
583                                         uint32_t sq_cmd)
584 {
585         uint32_t data;
586
587         mutex_lock(&adev->grbm_idx_mutex);
588
589         WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
590         WREG32(mmSQ_CMD, sq_cmd);
591
592         /*  Restore the GRBM_GFX_INDEX register  */
593
594         data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
595                 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
596                 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
597
598         WREG32(mmGRBM_GFX_INDEX, data);
599
600         mutex_unlock(&adev->grbm_idx_mutex);
601
602         return 0;
603 }
604
605 static uint32_t kgd_address_watch_get_offset(struct amdgpu_device *adev,
606                                         unsigned int watch_point_id,
607                                         unsigned int reg_offset)
608 {
609         return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
610 }
611
612 static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
613                                         uint8_t vmid, uint16_t *p_pasid)
614 {
615         uint32_t value;
616
617         value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
618         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
619
620         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
621 }
622
623 static void set_scratch_backing_va(struct amdgpu_device *adev,
624                                         uint64_t va, uint32_t vmid)
625 {
626         lock_srbm(adev, 0, 0, 0, vmid);
627         WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
628         unlock_srbm(adev);
629 }
630
631 static void set_vm_context_page_table_base(struct amdgpu_device *adev,
632                         uint32_t vmid, uint64_t page_table_base)
633 {
634         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
635                 pr_err("trying to set page table base for wrong VMID\n");
636                 return;
637         }
638         WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
639                 lower_32_bits(page_table_base));
640 }
641
642  /**
643   * read_vmid_from_vmfault_reg - read vmid from register
644   *
645   * adev: amdgpu_device pointer
646   * @vmid: vmid pointer
647   * read vmid from register (CIK).
648   */
649 static uint32_t read_vmid_from_vmfault_reg(struct amdgpu_device *adev)
650 {
651         uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
652
653         return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
654 }
655
656 const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
657         .program_sh_mem_settings = kgd_program_sh_mem_settings,
658         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
659         .init_interrupts = kgd_init_interrupts,
660         .hqd_load = kgd_hqd_load,
661         .hqd_sdma_load = kgd_hqd_sdma_load,
662         .hqd_dump = kgd_hqd_dump,
663         .hqd_sdma_dump = kgd_hqd_sdma_dump,
664         .hqd_is_occupied = kgd_hqd_is_occupied,
665         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
666         .hqd_destroy = kgd_hqd_destroy,
667         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
668         .address_watch_disable = kgd_address_watch_disable,
669         .address_watch_execute = kgd_address_watch_execute,
670         .wave_control_execute = kgd_wave_control_execute,
671         .address_watch_get_offset = kgd_address_watch_get_offset,
672         .get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
673         .set_scratch_backing_va = set_scratch_backing_va,
674         .set_vm_context_page_table_base = set_vm_context_page_table_base,
675         .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
676 };
This page took 0.073028 seconds and 4 git commands to generate.