2 * Shared crypto simd helpers
6 * Copyright (c) 2019 Google LLC
8 * Based on aesni-intel_glue.c by:
9 * Copyright (C) 2008, Intel Corp.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program. If not, see <http://www.gnu.org/licenses/>.
27 * Shared crypto SIMD helpers. These functions dynamically create and register
28 * an skcipher or AEAD algorithm that wraps another, internal algorithm. The
29 * wrapper ensures that the internal algorithm is only executed in a context
30 * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
31 * If SIMD is already usable, the wrapper directly calls the internal algorithm.
32 * Otherwise it defers execution to a workqueue via cryptd.
34 * This is an alternative to the internal algorithm implementing a fallback for
35 * the !may_use_simd() case itself.
37 * Note that the wrapper algorithm is asynchronous, i.e. it has the
38 * CRYPTO_ALG_ASYNC flag set. Therefore it won't be found by users who
39 * explicitly allocate a synchronous algorithm.
42 #include <crypto/cryptd.h>
43 #include <crypto/internal/aead.h>
44 #include <crypto/internal/simd.h>
45 #include <crypto/internal/skcipher.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/preempt.h>
51 /* skcipher support */
53 struct simd_skcipher_alg {
54 const char *ialg_name;
55 struct skcipher_alg alg;
58 struct simd_skcipher_ctx {
59 struct cryptd_skcipher *cryptd_tfm;
62 static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
65 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
66 struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
69 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
70 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
72 err = crypto_skcipher_setkey(child, key, key_len);
73 crypto_skcipher_set_flags(tfm, crypto_skcipher_get_flags(child) &
78 static int simd_skcipher_encrypt(struct skcipher_request *req)
80 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
81 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
82 struct skcipher_request *subreq;
83 struct crypto_skcipher *child;
85 subreq = skcipher_request_ctx(req);
88 if (!crypto_simd_usable() ||
89 (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
90 child = &ctx->cryptd_tfm->base;
92 child = cryptd_skcipher_child(ctx->cryptd_tfm);
94 skcipher_request_set_tfm(subreq, child);
96 return crypto_skcipher_encrypt(subreq);
99 static int simd_skcipher_decrypt(struct skcipher_request *req)
101 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
102 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
103 struct skcipher_request *subreq;
104 struct crypto_skcipher *child;
106 subreq = skcipher_request_ctx(req);
109 if (!crypto_simd_usable() ||
110 (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
111 child = &ctx->cryptd_tfm->base;
113 child = cryptd_skcipher_child(ctx->cryptd_tfm);
115 skcipher_request_set_tfm(subreq, child);
117 return crypto_skcipher_decrypt(subreq);
120 static void simd_skcipher_exit(struct crypto_skcipher *tfm)
122 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
124 cryptd_free_skcipher(ctx->cryptd_tfm);
127 static int simd_skcipher_init(struct crypto_skcipher *tfm)
129 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
130 struct cryptd_skcipher *cryptd_tfm;
131 struct simd_skcipher_alg *salg;
132 struct skcipher_alg *alg;
135 alg = crypto_skcipher_alg(tfm);
136 salg = container_of(alg, struct simd_skcipher_alg, alg);
138 cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
140 CRYPTO_ALG_INTERNAL);
141 if (IS_ERR(cryptd_tfm))
142 return PTR_ERR(cryptd_tfm);
144 ctx->cryptd_tfm = cryptd_tfm;
146 reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
147 reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
148 reqsize += sizeof(struct skcipher_request);
150 crypto_skcipher_set_reqsize(tfm, reqsize);
155 struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
157 const char *basename)
159 struct simd_skcipher_alg *salg;
160 struct crypto_skcipher *tfm;
161 struct skcipher_alg *ialg;
162 struct skcipher_alg *alg;
165 tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
166 CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
168 return ERR_CAST(tfm);
170 ialg = crypto_skcipher_alg(tfm);
172 salg = kzalloc(sizeof(*salg), GFP_KERNEL);
174 salg = ERR_PTR(-ENOMEM);
178 salg->ialg_name = basename;
182 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
186 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
187 drvname) >= CRYPTO_MAX_ALG_NAME)
190 alg->base.cra_flags = CRYPTO_ALG_ASYNC;
191 alg->base.cra_priority = ialg->base.cra_priority;
192 alg->base.cra_blocksize = ialg->base.cra_blocksize;
193 alg->base.cra_alignmask = ialg->base.cra_alignmask;
194 alg->base.cra_module = ialg->base.cra_module;
195 alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
197 alg->ivsize = ialg->ivsize;
198 alg->chunksize = ialg->chunksize;
199 alg->min_keysize = ialg->min_keysize;
200 alg->max_keysize = ialg->max_keysize;
202 alg->init = simd_skcipher_init;
203 alg->exit = simd_skcipher_exit;
205 alg->setkey = simd_skcipher_setkey;
206 alg->encrypt = simd_skcipher_encrypt;
207 alg->decrypt = simd_skcipher_decrypt;
209 err = crypto_register_skcipher(alg);
214 crypto_free_skcipher(tfm);
222 EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
224 struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
225 const char *basename)
227 char drvname[CRYPTO_MAX_ALG_NAME];
229 if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
231 return ERR_PTR(-ENAMETOOLONG);
233 return simd_skcipher_create_compat(algname, drvname, basename);
235 EXPORT_SYMBOL_GPL(simd_skcipher_create);
237 void simd_skcipher_free(struct simd_skcipher_alg *salg)
239 crypto_unregister_skcipher(&salg->alg);
242 EXPORT_SYMBOL_GPL(simd_skcipher_free);
244 int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
245 struct simd_skcipher_alg **simd_algs)
251 const char *basename;
252 struct simd_skcipher_alg *simd;
254 err = crypto_register_skciphers(algs, count);
258 for (i = 0; i < count; i++) {
259 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
260 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
261 algname = algs[i].base.cra_name + 2;
262 drvname = algs[i].base.cra_driver_name + 2;
263 basename = algs[i].base.cra_driver_name;
264 simd = simd_skcipher_create_compat(algname, drvname, basename);
273 simd_unregister_skciphers(algs, count, simd_algs);
276 EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
278 void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
279 struct simd_skcipher_alg **simd_algs)
283 crypto_unregister_skciphers(algs, count);
285 for (i = 0; i < count; i++) {
287 simd_skcipher_free(simd_algs[i]);
292 EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
296 struct simd_aead_alg {
297 const char *ialg_name;
301 struct simd_aead_ctx {
302 struct cryptd_aead *cryptd_tfm;
305 static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
306 unsigned int key_len)
308 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
309 struct crypto_aead *child = &ctx->cryptd_tfm->base;
312 crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
313 crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
314 CRYPTO_TFM_REQ_MASK);
315 err = crypto_aead_setkey(child, key, key_len);
316 crypto_aead_set_flags(tfm, crypto_aead_get_flags(child) &
317 CRYPTO_TFM_RES_MASK);
321 static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
323 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
324 struct crypto_aead *child = &ctx->cryptd_tfm->base;
326 return crypto_aead_setauthsize(child, authsize);
329 static int simd_aead_encrypt(struct aead_request *req)
331 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
332 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
333 struct aead_request *subreq;
334 struct crypto_aead *child;
336 subreq = aead_request_ctx(req);
339 if (!crypto_simd_usable() ||
340 (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
341 child = &ctx->cryptd_tfm->base;
343 child = cryptd_aead_child(ctx->cryptd_tfm);
345 aead_request_set_tfm(subreq, child);
347 return crypto_aead_encrypt(subreq);
350 static int simd_aead_decrypt(struct aead_request *req)
352 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
353 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
354 struct aead_request *subreq;
355 struct crypto_aead *child;
357 subreq = aead_request_ctx(req);
360 if (!crypto_simd_usable() ||
361 (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
362 child = &ctx->cryptd_tfm->base;
364 child = cryptd_aead_child(ctx->cryptd_tfm);
366 aead_request_set_tfm(subreq, child);
368 return crypto_aead_decrypt(subreq);
371 static void simd_aead_exit(struct crypto_aead *tfm)
373 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
375 cryptd_free_aead(ctx->cryptd_tfm);
378 static int simd_aead_init(struct crypto_aead *tfm)
380 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
381 struct cryptd_aead *cryptd_tfm;
382 struct simd_aead_alg *salg;
383 struct aead_alg *alg;
386 alg = crypto_aead_alg(tfm);
387 salg = container_of(alg, struct simd_aead_alg, alg);
389 cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
390 CRYPTO_ALG_INTERNAL);
391 if (IS_ERR(cryptd_tfm))
392 return PTR_ERR(cryptd_tfm);
394 ctx->cryptd_tfm = cryptd_tfm;
396 reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
397 reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
398 reqsize += sizeof(struct aead_request);
400 crypto_aead_set_reqsize(tfm, reqsize);
405 struct simd_aead_alg *simd_aead_create_compat(const char *algname,
407 const char *basename)
409 struct simd_aead_alg *salg;
410 struct crypto_aead *tfm;
411 struct aead_alg *ialg;
412 struct aead_alg *alg;
415 tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
416 CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
418 return ERR_CAST(tfm);
420 ialg = crypto_aead_alg(tfm);
422 salg = kzalloc(sizeof(*salg), GFP_KERNEL);
424 salg = ERR_PTR(-ENOMEM);
428 salg->ialg_name = basename;
432 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
436 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
437 drvname) >= CRYPTO_MAX_ALG_NAME)
440 alg->base.cra_flags = CRYPTO_ALG_ASYNC;
441 alg->base.cra_priority = ialg->base.cra_priority;
442 alg->base.cra_blocksize = ialg->base.cra_blocksize;
443 alg->base.cra_alignmask = ialg->base.cra_alignmask;
444 alg->base.cra_module = ialg->base.cra_module;
445 alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
447 alg->ivsize = ialg->ivsize;
448 alg->maxauthsize = ialg->maxauthsize;
449 alg->chunksize = ialg->chunksize;
451 alg->init = simd_aead_init;
452 alg->exit = simd_aead_exit;
454 alg->setkey = simd_aead_setkey;
455 alg->setauthsize = simd_aead_setauthsize;
456 alg->encrypt = simd_aead_encrypt;
457 alg->decrypt = simd_aead_decrypt;
459 err = crypto_register_aead(alg);
464 crypto_free_aead(tfm);
472 EXPORT_SYMBOL_GPL(simd_aead_create_compat);
474 struct simd_aead_alg *simd_aead_create(const char *algname,
475 const char *basename)
477 char drvname[CRYPTO_MAX_ALG_NAME];
479 if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
481 return ERR_PTR(-ENAMETOOLONG);
483 return simd_aead_create_compat(algname, drvname, basename);
485 EXPORT_SYMBOL_GPL(simd_aead_create);
487 void simd_aead_free(struct simd_aead_alg *salg)
489 crypto_unregister_aead(&salg->alg);
492 EXPORT_SYMBOL_GPL(simd_aead_free);
494 int simd_register_aeads_compat(struct aead_alg *algs, int count,
495 struct simd_aead_alg **simd_algs)
501 const char *basename;
502 struct simd_aead_alg *simd;
504 err = crypto_register_aeads(algs, count);
508 for (i = 0; i < count; i++) {
509 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
510 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
511 algname = algs[i].base.cra_name + 2;
512 drvname = algs[i].base.cra_driver_name + 2;
513 basename = algs[i].base.cra_driver_name;
514 simd = simd_aead_create_compat(algname, drvname, basename);
523 simd_unregister_aeads(algs, count, simd_algs);
526 EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
528 void simd_unregister_aeads(struct aead_alg *algs, int count,
529 struct simd_aead_alg **simd_algs)
533 crypto_unregister_aeads(algs, count);
535 for (i = 0; i < count; i++) {
537 simd_aead_free(simd_algs[i]);
542 EXPORT_SYMBOL_GPL(simd_unregister_aeads);
544 MODULE_LICENSE("GPL");