2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 #include <linux/log2.h>
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
40 #define LEGACY_REQUEST_SIZE 200
42 int __intel_ring_space(int head, int tail, int size)
44 int space = head - tail;
47 return space - I915_RING_FREE_SPACE;
50 void intel_ring_update_space(struct intel_ring *ring)
52 if (ring->last_retired_head != -1) {
53 ring->head = ring->last_retired_head;
54 ring->last_retired_head = -1;
57 ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
58 ring->tail, ring->size);
62 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
64 struct intel_ring *ring = req->ring;
70 if (mode & EMIT_INVALIDATE)
73 ret = intel_ring_begin(req, 2);
77 intel_ring_emit(ring, cmd);
78 intel_ring_emit(ring, MI_NOOP);
79 intel_ring_advance(ring);
85 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
87 struct intel_ring *ring = req->ring;
94 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
96 * also flushed at 2d versus 3d pipeline switches.
100 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101 * MI_READ_FLUSH is set, and is always flushed on 965.
103 * I915_GEM_DOMAIN_COMMAND may not exist?
105 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106 * invalidated when MI_EXE_FLUSH is set.
108 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109 * invalidated with every MI_FLUSH.
113 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116 * are flushed at any MI_FLUSH.
120 if (mode & EMIT_INVALIDATE) {
122 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123 cmd |= MI_INVALIDATE_ISP;
126 ret = intel_ring_begin(req, 2);
130 intel_ring_emit(ring, cmd);
131 intel_ring_emit(ring, MI_NOOP);
132 intel_ring_advance(ring);
138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139 * implementing two workarounds on gen6. From section 1.4.7.1
140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143 * produced by non-pipelined state commands), software needs to first
144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 * And the workaround for these two requires this workaround first:
152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153 * BEFORE the pipe-control with a post-sync op and no write-cache
156 * And this last workaround is tricky because of the requirements on
157 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
160 * "1 of the following must also be set:
161 * - Render Target Cache Flush Enable ([12] of DW1)
162 * - Depth Cache Flush Enable ([0] of DW1)
163 * - Stall at Pixel Scoreboard ([1] of DW1)
164 * - Depth Stall ([13] of DW1)
165 * - Post-Sync Operation ([13] of DW1)
166 * - Notify Enable ([8] of DW1)"
168 * The cache flushes require the workaround flush that triggered this
169 * one, so we can't use it. Depth stall would trigger the same.
170 * Post-sync nonzero is what triggered this second workaround, so we
171 * can't use that one either. Notify enable is IRQs, which aren't
172 * really our business. That leaves only stall at scoreboard.
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
177 struct intel_ring *ring = req->ring;
179 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
182 ret = intel_ring_begin(req, 6);
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
195 ret = intel_ring_begin(req, 6);
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
211 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
213 struct intel_ring *ring = req->ring;
215 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
219 /* Force SNB workarounds for PIPE_CONTROL flushes */
220 ret = intel_emit_post_sync_nonzero_flush(req);
224 /* Just flush everything. Experiments have shown that reducing the
225 * number of bits based on the write domains has little performance
228 if (mode & EMIT_FLUSH) {
229 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 * Ensure that any following seqno writes only happen
233 * when the render cache is indeed flushed.
235 flags |= PIPE_CONTROL_CS_STALL;
237 if (mode & EMIT_INVALIDATE) {
238 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 * TLB invalidate requires a post-sync write.
247 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
250 ret = intel_ring_begin(req, 4);
254 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
255 intel_ring_emit(ring, flags);
256 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
257 intel_ring_emit(ring, 0);
258 intel_ring_advance(ring);
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
266 struct intel_ring *ring = req->ring;
269 ret = intel_ring_begin(req, 4);
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring,
275 PIPE_CONTROL_CS_STALL |
276 PIPE_CONTROL_STALL_AT_SCOREBOARD);
277 intel_ring_emit(ring, 0);
278 intel_ring_emit(ring, 0);
279 intel_ring_advance(ring);
285 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
287 struct intel_ring *ring = req->ring;
289 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
294 * Ensure that any following seqno writes only happen when the render
295 * cache is indeed flushed.
297 * Workaround: 4th PIPE_CONTROL command (except the ones with only
298 * read-cache invalidate bits set) must have the CS_STALL bit set. We
299 * don't try to be clever and just set it unconditionally.
301 flags |= PIPE_CONTROL_CS_STALL;
303 /* Just flush everything. Experiments have shown that reducing the
304 * number of bits based on the write domains has little performance
307 if (mode & EMIT_FLUSH) {
308 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
309 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311 flags |= PIPE_CONTROL_FLUSH_ENABLE;
313 if (mode & EMIT_INVALIDATE) {
314 flags |= PIPE_CONTROL_TLB_INVALIDATE;
315 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
317 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
318 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
319 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
322 * TLB invalidate requires a post-sync write.
324 flags |= PIPE_CONTROL_QW_WRITE;
325 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
327 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
329 /* Workaround: we must issue a pipe_control with CS-stall bit
330 * set before a pipe_control command that has the state cache
331 * invalidate bit set. */
332 gen7_render_ring_cs_stall_wa(req);
335 ret = intel_ring_begin(req, 4);
339 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
340 intel_ring_emit(ring, flags);
341 intel_ring_emit(ring, scratch_addr);
342 intel_ring_emit(ring, 0);
343 intel_ring_advance(ring);
349 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 u32 flags, u32 scratch_addr)
352 struct intel_ring *ring = req->ring;
355 ret = intel_ring_begin(req, 6);
359 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
360 intel_ring_emit(ring, flags);
361 intel_ring_emit(ring, scratch_addr);
362 intel_ring_emit(ring, 0);
363 intel_ring_emit(ring, 0);
364 intel_ring_emit(ring, 0);
365 intel_ring_advance(ring);
371 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
374 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
378 flags |= PIPE_CONTROL_CS_STALL;
380 if (mode & EMIT_FLUSH) {
381 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
382 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384 flags |= PIPE_CONTROL_FLUSH_ENABLE;
386 if (mode & EMIT_INVALIDATE) {
387 flags |= PIPE_CONTROL_TLB_INVALIDATE;
388 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
389 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
390 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
391 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
392 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
393 flags |= PIPE_CONTROL_QW_WRITE;
394 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
396 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397 ret = gen8_emit_pipe_control(req,
398 PIPE_CONTROL_CS_STALL |
399 PIPE_CONTROL_STALL_AT_SCOREBOARD,
405 return gen8_emit_pipe_control(req, flags, scratch_addr);
408 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
410 struct drm_i915_private *dev_priv = engine->i915;
413 addr = dev_priv->status_page_dmah->busaddr;
414 if (INTEL_GEN(dev_priv) >= 4)
415 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
416 I915_WRITE(HWS_PGA, addr);
419 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
421 struct drm_i915_private *dev_priv = engine->i915;
424 /* The ring status page addresses are no longer next to the rest of
425 * the ring registers as of gen7.
427 if (IS_GEN7(dev_priv)) {
428 switch (engine->id) {
430 mmio = RENDER_HWS_PGA_GEN7;
433 mmio = BLT_HWS_PGA_GEN7;
436 * VCS2 actually doesn't exist on Gen7. Only shut up
437 * gcc switch check warning
441 mmio = BSD_HWS_PGA_GEN7;
444 mmio = VEBOX_HWS_PGA_GEN7;
447 } else if (IS_GEN6(dev_priv)) {
448 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
450 /* XXX: gen8 returns to sanity */
451 mmio = RING_HWS_PGA(engine->mmio_base);
454 I915_WRITE(mmio, engine->status_page.ggtt_offset);
458 * Flush the TLB for this page
460 * FIXME: These two bits have disappeared on gen8, so a question
461 * arises: do we still need this and if so how should we go about
462 * invalidating the TLB?
464 if (IS_GEN(dev_priv, 6, 7)) {
465 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
467 /* ring should be idle before issuing a sync flush*/
468 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
471 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
473 if (intel_wait_for_register(dev_priv,
474 reg, INSTPM_SYNC_FLUSH, 0,
476 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
481 static bool stop_ring(struct intel_engine_cs *engine)
483 struct drm_i915_private *dev_priv = engine->i915;
485 if (INTEL_GEN(dev_priv) > 2) {
486 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487 if (intel_wait_for_register(dev_priv,
488 RING_MI_MODE(engine->mmio_base),
492 DRM_ERROR("%s : timed out trying to stop ring\n",
494 /* Sometimes we observe that the idle flag is not
495 * set even though the ring is empty. So double
496 * check before giving up.
498 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
503 I915_WRITE_CTL(engine, 0);
504 I915_WRITE_HEAD(engine, 0);
505 I915_WRITE_TAIL(engine, 0);
507 if (INTEL_GEN(dev_priv) > 2) {
508 (void)I915_READ_CTL(engine);
509 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
512 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
515 static int init_ring_common(struct intel_engine_cs *engine)
517 struct drm_i915_private *dev_priv = engine->i915;
518 struct intel_ring *ring = engine->buffer;
521 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
523 if (!stop_ring(engine)) {
524 /* G45 ring initialization often fails to reset head to zero */
525 DRM_DEBUG_KMS("%s head not reset to zero "
526 "ctl %08x head %08x tail %08x start %08x\n",
528 I915_READ_CTL(engine),
529 I915_READ_HEAD(engine),
530 I915_READ_TAIL(engine),
531 I915_READ_START(engine));
533 if (!stop_ring(engine)) {
534 DRM_ERROR("failed to set %s head to zero "
535 "ctl %08x head %08x tail %08x start %08x\n",
537 I915_READ_CTL(engine),
538 I915_READ_HEAD(engine),
539 I915_READ_TAIL(engine),
540 I915_READ_START(engine));
546 if (HWS_NEEDS_PHYSICAL(dev_priv))
547 ring_setup_phys_status_page(engine);
549 intel_ring_setup_status_page(engine);
551 intel_engine_reset_breadcrumbs(engine);
553 /* Enforce ordering by reading HEAD register back */
554 I915_READ_HEAD(engine);
556 /* Initialize the ring. This must happen _after_ we've cleared the ring
557 * registers with the above sequence (the readback of the HEAD registers
558 * also enforces ordering), otherwise the hw might lose the new ring
559 * register values. */
560 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
562 /* WaClearRingBufHeadRegAtInit:ctg,elk */
563 if (I915_READ_HEAD(engine))
564 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565 engine->name, I915_READ_HEAD(engine));
567 intel_ring_update_space(ring);
568 I915_WRITE_HEAD(engine, ring->head);
569 I915_WRITE_TAIL(engine, ring->tail);
570 (void)I915_READ_TAIL(engine);
572 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
574 /* If the head is still not zero, the ring is dead */
575 if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
576 RING_VALID, RING_VALID,
578 DRM_ERROR("%s initialization failed "
579 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
581 I915_READ_CTL(engine),
582 I915_READ_CTL(engine) & RING_VALID,
583 I915_READ_HEAD(engine), ring->head,
584 I915_READ_TAIL(engine), ring->tail,
585 I915_READ_START(engine),
586 i915_ggtt_offset(ring->vma));
591 intel_engine_init_hangcheck(engine);
594 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
599 static void reset_ring_common(struct intel_engine_cs *engine,
600 struct drm_i915_gem_request *request)
602 /* Try to restore the logical GPU state to match the continuation
603 * of the request queue. If we skip the context/PD restore, then
604 * the next request may try to execute assuming that its context
605 * is valid and loaded on the GPU and so may try to access invalid
606 * memory, prompting repeated GPU hangs.
608 * If the request was guilty, we still restore the logical state
609 * in case the next request requires it (e.g. the aliasing ppgtt),
610 * but skip over the hung batch.
612 * If the request was innocent, we try to replay the request with
613 * the restored context.
616 struct drm_i915_private *dev_priv = request->i915;
617 struct intel_context *ce = &request->ctx->engine[engine->id];
618 struct i915_hw_ppgtt *ppgtt;
620 /* FIXME consider gen8 reset */
624 i915_ggtt_offset(ce->state) |
625 BIT(8) /* must be set! */ |
626 CCID_EXTENDED_STATE_SAVE |
627 CCID_EXTENDED_STATE_RESTORE |
631 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
633 u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
635 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
636 I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
638 /* Wait for the PD reload to complete */
639 if (intel_wait_for_register(dev_priv,
640 RING_PP_DIR_BASE(engine),
643 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
645 ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
648 /* If the rq hung, jump to its breadcrumb and skip the batch */
649 if (request->fence.error == -EIO) {
650 struct intel_ring *ring = request->ring;
652 ring->head = request->postfix;
653 ring->last_retired_head = -1;
656 engine->legacy_active_context = NULL;
660 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
662 struct intel_ring *ring = req->ring;
663 struct i915_workarounds *w = &req->i915->workarounds;
669 ret = req->engine->emit_flush(req, EMIT_BARRIER);
673 ret = intel_ring_begin(req, (w->count * 2 + 2));
677 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
678 for (i = 0; i < w->count; i++) {
679 intel_ring_emit_reg(ring, w->reg[i].addr);
680 intel_ring_emit(ring, w->reg[i].value);
682 intel_ring_emit(ring, MI_NOOP);
684 intel_ring_advance(ring);
686 ret = req->engine->emit_flush(req, EMIT_BARRIER);
690 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
695 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
699 ret = intel_ring_workarounds_emit(req);
703 ret = i915_gem_render_state_emit(req);
710 static int wa_add(struct drm_i915_private *dev_priv,
712 const u32 mask, const u32 val)
714 const u32 idx = dev_priv->workarounds.count;
716 if (WARN_ON(idx >= I915_MAX_WA_REGS))
719 dev_priv->workarounds.reg[idx].addr = addr;
720 dev_priv->workarounds.reg[idx].value = val;
721 dev_priv->workarounds.reg[idx].mask = mask;
723 dev_priv->workarounds.count++;
728 #define WA_REG(addr, mask, val) do { \
729 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
734 #define WA_SET_BIT_MASKED(addr, mask) \
735 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
737 #define WA_CLR_BIT_MASKED(addr, mask) \
738 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
740 #define WA_SET_FIELD_MASKED(addr, mask, value) \
741 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
743 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
744 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
746 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
748 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
751 struct drm_i915_private *dev_priv = engine->i915;
752 struct i915_workarounds *wa = &dev_priv->workarounds;
753 const uint32_t index = wa->hw_whitelist_count[engine->id];
755 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
758 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
759 i915_mmio_reg_offset(reg));
760 wa->hw_whitelist_count[engine->id]++;
765 static int gen8_init_workarounds(struct intel_engine_cs *engine)
767 struct drm_i915_private *dev_priv = engine->i915;
769 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
771 /* WaDisableAsyncFlipPerfMode:bdw,chv */
772 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
774 /* WaDisablePartialInstShootdown:bdw,chv */
775 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
776 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
778 /* Use Force Non-Coherent whenever executing a 3D context. This is a
779 * workaround for for a possible hang in the unlikely event a TLB
780 * invalidation occurs during a PSD flush.
782 /* WaForceEnableNonCoherent:bdw,chv */
783 /* WaHdcDisableFetchWhenMasked:bdw,chv */
784 WA_SET_BIT_MASKED(HDC_CHICKEN0,
785 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
786 HDC_FORCE_NON_COHERENT);
788 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
789 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
790 * polygons in the same 8x4 pixel/sample area to be processed without
791 * stalling waiting for the earlier ones to write to Hierarchical Z
794 * This optimization is off by default for BDW and CHV; turn it on.
796 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
798 /* Wa4x4STCOptimizationDisable:bdw,chv */
799 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
802 * BSpec recommends 8x4 when MSAA is used,
803 * however in practice 16x4 seems fastest.
805 * Note that PS/WM thread counts depend on the WIZ hashing
806 * disable bit, which we don't touch here, but it's good
807 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
809 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
810 GEN6_WIZ_HASHING_MASK,
811 GEN6_WIZ_HASHING_16x4);
816 static int bdw_init_workarounds(struct intel_engine_cs *engine)
818 struct drm_i915_private *dev_priv = engine->i915;
821 ret = gen8_init_workarounds(engine);
825 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
826 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
828 /* WaDisableDopClockGating:bdw */
829 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
830 DOP_CLOCK_GATING_DISABLE);
832 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
833 GEN8_SAMPLER_POWER_BYPASS_DIS);
835 WA_SET_BIT_MASKED(HDC_CHICKEN0,
836 /* WaForceContextSaveRestoreNonCoherent:bdw */
837 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
838 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
839 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
844 static int chv_init_workarounds(struct intel_engine_cs *engine)
846 struct drm_i915_private *dev_priv = engine->i915;
849 ret = gen8_init_workarounds(engine);
853 /* WaDisableThreadStallDopClockGating:chv */
854 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
856 /* Improve HiZ throughput on CHV. */
857 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
862 static int gen9_init_workarounds(struct intel_engine_cs *engine)
864 struct drm_i915_private *dev_priv = engine->i915;
867 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
868 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
870 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
871 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
872 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
874 /* WaDisableKillLogic:bxt,skl,kbl */
875 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
878 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
879 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
880 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
881 FLOW_CONTROL_ENABLE |
882 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
884 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
885 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
886 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
888 /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
889 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
890 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
891 GEN9_DG_MIRROR_FIX_ENABLE);
893 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
894 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
895 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
896 GEN9_RHWO_OPTIMIZATION_DISABLE);
898 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
899 * but we do that in per ctx batchbuffer as there is an issue
900 * with this register not getting restored on ctx restore
904 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
905 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
906 GEN9_ENABLE_GPGPU_PREEMPTION);
908 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
909 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
910 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
911 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
913 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
914 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
915 GEN9_CCS_TLB_PREFETCH_ENABLE);
917 /* WaDisableMaskBasedCammingInRCC:bxt */
918 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
919 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
920 PIXEL_MASK_CAMMING_DISABLE);
922 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
923 WA_SET_BIT_MASKED(HDC_CHICKEN0,
924 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
925 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
927 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
928 * both tied to WaForceContextSaveRestoreNonCoherent
929 * in some hsds for skl. We keep the tie for all gen9. The
930 * documentation is a bit hazy and so we want to get common behaviour,
931 * even though there is no clear evidence we would need both on kbl/bxt.
932 * This area has been source of system hangs so we play it safe
933 * and mimic the skl regardless of what bspec says.
935 * Use Force Non-Coherent whenever executing a 3D context. This
936 * is a workaround for a possible hang in the unlikely event
937 * a TLB invalidation occurs during a PSD flush.
940 /* WaForceEnableNonCoherent:skl,bxt,kbl */
941 WA_SET_BIT_MASKED(HDC_CHICKEN0,
942 HDC_FORCE_NON_COHERENT);
944 /* WaDisableHDCInvalidation:skl,bxt,kbl */
945 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
946 BDW_DISABLE_HDC_INVALIDATION);
948 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
949 if (IS_SKYLAKE(dev_priv) ||
950 IS_KABYLAKE(dev_priv) ||
951 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
952 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
953 GEN8_SAMPLER_POWER_BYPASS_DIS);
955 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
956 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
958 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
959 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
960 GEN8_LQSC_FLUSH_COHERENT_LINES));
962 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
963 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
967 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
968 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
972 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
973 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
980 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
982 struct drm_i915_private *dev_priv = engine->i915;
983 u8 vals[3] = { 0, 0, 0 };
986 for (i = 0; i < 3; i++) {
990 * Only consider slices where one, and only one, subslice has 7
993 if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
997 * subslice_7eu[i] != 0 (because of the check above) and
998 * ss_max == 4 (maximum number of subslices possible per slice)
1002 ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
1006 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1009 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1010 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1011 GEN9_IZ_HASHING_MASK(2) |
1012 GEN9_IZ_HASHING_MASK(1) |
1013 GEN9_IZ_HASHING_MASK(0),
1014 GEN9_IZ_HASHING(2, vals[2]) |
1015 GEN9_IZ_HASHING(1, vals[1]) |
1016 GEN9_IZ_HASHING(0, vals[0]));
1021 static int skl_init_workarounds(struct intel_engine_cs *engine)
1023 struct drm_i915_private *dev_priv = engine->i915;
1026 ret = gen9_init_workarounds(engine);
1031 * Actual WA is to disable percontext preemption granularity control
1032 * until D0 which is the default case so this is equivalent to
1033 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1035 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1036 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1038 /* WaEnableGapsTsvCreditFix:skl */
1039 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1040 GEN9_GAPS_TSV_CREDIT_DISABLE));
1042 /* WaDisableGafsUnitClkGating:skl */
1043 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1045 /* WaInPlaceDecompressionHang:skl */
1046 if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1047 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1048 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1050 /* WaDisableLSQCROPERFforOCL:skl */
1051 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1055 return skl_tune_iz_hashing(engine);
1058 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1060 struct drm_i915_private *dev_priv = engine->i915;
1063 ret = gen9_init_workarounds(engine);
1067 /* WaStoreMultiplePTEenable:bxt */
1068 /* This is a requirement according to Hardware specification */
1069 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1070 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1072 /* WaSetClckGatingDisableMedia:bxt */
1073 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1074 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1075 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1078 /* WaDisableThreadStallDopClockGating:bxt */
1079 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1080 STALL_DOP_GATING_DISABLE);
1082 /* WaDisablePooledEuLoadBalancingFix:bxt */
1083 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1084 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1085 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1088 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1089 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1091 GEN7_HALF_SLICE_CHICKEN1,
1092 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1095 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1096 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1097 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1098 /* WaDisableLSQCROPERFforOCL:bxt */
1099 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1100 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1104 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1109 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1110 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1111 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1112 L3_HIGH_PRIO_CREDITS(2));
1114 /* WaToEnableHwFixForPushConstHWBug:bxt */
1115 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1116 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1117 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1119 /* WaInPlaceDecompressionHang:bxt */
1120 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1121 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1122 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1127 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1129 struct drm_i915_private *dev_priv = engine->i915;
1132 ret = gen9_init_workarounds(engine);
1136 /* WaEnableGapsTsvCreditFix:kbl */
1137 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1138 GEN9_GAPS_TSV_CREDIT_DISABLE));
1140 /* WaDisableDynamicCreditSharing:kbl */
1141 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1142 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1143 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1145 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1146 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1147 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1148 HDC_FENCE_DEST_SLM_DISABLE);
1150 /* WaToEnableHwFixForPushConstHWBug:kbl */
1151 if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1152 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1153 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1155 /* WaDisableGafsUnitClkGating:kbl */
1156 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1158 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1160 GEN7_HALF_SLICE_CHICKEN1,
1161 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1163 /* WaInPlaceDecompressionHang:kbl */
1164 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1165 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1167 /* WaDisableLSQCROPERFforOCL:kbl */
1168 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1175 int init_workarounds_ring(struct intel_engine_cs *engine)
1177 struct drm_i915_private *dev_priv = engine->i915;
1179 WARN_ON(engine->id != RCS);
1181 dev_priv->workarounds.count = 0;
1182 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1184 if (IS_BROADWELL(dev_priv))
1185 return bdw_init_workarounds(engine);
1187 if (IS_CHERRYVIEW(dev_priv))
1188 return chv_init_workarounds(engine);
1190 if (IS_SKYLAKE(dev_priv))
1191 return skl_init_workarounds(engine);
1193 if (IS_BROXTON(dev_priv))
1194 return bxt_init_workarounds(engine);
1196 if (IS_KABYLAKE(dev_priv))
1197 return kbl_init_workarounds(engine);
1202 static int init_render_ring(struct intel_engine_cs *engine)
1204 struct drm_i915_private *dev_priv = engine->i915;
1205 int ret = init_ring_common(engine);
1209 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1210 if (IS_GEN(dev_priv, 4, 6))
1211 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1213 /* We need to disable the AsyncFlip performance optimisations in order
1214 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1215 * programmed to '1' on all products.
1217 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1219 if (IS_GEN(dev_priv, 6, 7))
1220 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1222 /* Required for the hardware to program scanline values for waiting */
1223 /* WaEnableFlushTlbInvalidationMode:snb */
1224 if (IS_GEN6(dev_priv))
1225 I915_WRITE(GFX_MODE,
1226 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1228 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1229 if (IS_GEN7(dev_priv))
1230 I915_WRITE(GFX_MODE_GEN7,
1231 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1232 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1234 if (IS_GEN6(dev_priv)) {
1235 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1236 * "If this bit is set, STCunit will have LRA as replacement
1237 * policy. [...] This bit must be reset. LRA replacement
1238 * policy is not supported."
1240 I915_WRITE(CACHE_MODE_0,
1241 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1244 if (IS_GEN(dev_priv, 6, 7))
1245 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1247 if (INTEL_INFO(dev_priv)->gen >= 6)
1248 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1250 return init_workarounds_ring(engine);
1253 static void render_ring_cleanup(struct intel_engine_cs *engine)
1255 struct drm_i915_private *dev_priv = engine->i915;
1257 i915_vma_unpin_and_release(&dev_priv->semaphore);
1260 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
1262 struct drm_i915_private *dev_priv = req->i915;
1263 struct intel_engine_cs *waiter;
1264 enum intel_engine_id id;
1266 for_each_engine(waiter, dev_priv, id) {
1267 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1268 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1271 *out++ = GFX_OP_PIPE_CONTROL(6);
1272 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1273 PIPE_CONTROL_QW_WRITE |
1274 PIPE_CONTROL_CS_STALL);
1275 *out++ = lower_32_bits(gtt_offset);
1276 *out++ = upper_32_bits(gtt_offset);
1277 *out++ = req->global_seqno;
1279 *out++ = (MI_SEMAPHORE_SIGNAL |
1280 MI_SEMAPHORE_TARGET(waiter->hw_id));
1287 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
1289 struct drm_i915_private *dev_priv = req->i915;
1290 struct intel_engine_cs *waiter;
1291 enum intel_engine_id id;
1293 for_each_engine(waiter, dev_priv, id) {
1294 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1295 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1298 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1299 *out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
1300 *out++ = upper_32_bits(gtt_offset);
1301 *out++ = req->global_seqno;
1302 *out++ = (MI_SEMAPHORE_SIGNAL |
1303 MI_SEMAPHORE_TARGET(waiter->hw_id));
1310 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
1312 struct drm_i915_private *dev_priv = req->i915;
1313 struct intel_engine_cs *engine;
1314 enum intel_engine_id id;
1317 for_each_engine(engine, dev_priv, id) {
1318 i915_reg_t mbox_reg;
1320 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
1323 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1324 if (i915_mmio_reg_valid(mbox_reg)) {
1325 *out++ = MI_LOAD_REGISTER_IMM(1);
1326 *out++ = i915_mmio_reg_offset(mbox_reg);
1327 *out++ = req->global_seqno;
1337 static void i9xx_submit_request(struct drm_i915_gem_request *request)
1339 struct drm_i915_private *dev_priv = request->i915;
1341 i915_gem_request_submit(request);
1343 I915_WRITE_TAIL(request->engine, request->tail);
1346 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
1349 *out++ = MI_STORE_DWORD_INDEX;
1350 *out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
1351 *out++ = req->global_seqno;
1352 *out++ = MI_USER_INTERRUPT;
1354 req->tail = intel_ring_offset(req->ring, out);
1357 static const int i9xx_emit_breadcrumb_sz = 4;
1360 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
1362 * @request - request to write to the ring
1364 * Update the mailbox registers in the *other* rings with the current seqno.
1365 * This acts like a signal in the canonical semaphore.
1367 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
1370 return i9xx_emit_breadcrumb(req,
1371 req->engine->semaphore.signal(req, out));
1374 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
1377 struct intel_engine_cs *engine = req->engine;
1379 if (engine->semaphore.signal)
1380 out = engine->semaphore.signal(req, out);
1382 *out++ = GFX_OP_PIPE_CONTROL(6);
1383 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1384 PIPE_CONTROL_CS_STALL |
1385 PIPE_CONTROL_QW_WRITE);
1386 *out++ = intel_hws_seqno_address(engine);
1388 *out++ = req->global_seqno;
1389 /* We're thrashing one dword of HWS. */
1391 *out++ = MI_USER_INTERRUPT;
1394 req->tail = intel_ring_offset(req->ring, out);
1397 static const int gen8_render_emit_breadcrumb_sz = 8;
1400 * intel_ring_sync - sync the waiter to the signaller on seqno
1402 * @waiter - ring that is waiting
1403 * @signaller - ring which has, or will signal
1404 * @seqno - seqno which the waiter will block on
1408 gen8_ring_sync_to(struct drm_i915_gem_request *req,
1409 struct drm_i915_gem_request *signal)
1411 struct intel_ring *ring = req->ring;
1412 struct drm_i915_private *dev_priv = req->i915;
1413 u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1414 struct i915_hw_ppgtt *ppgtt;
1417 ret = intel_ring_begin(req, 4);
1421 intel_ring_emit(ring,
1423 MI_SEMAPHORE_GLOBAL_GTT |
1424 MI_SEMAPHORE_SAD_GTE_SDD);
1425 intel_ring_emit(ring, signal->global_seqno);
1426 intel_ring_emit(ring, lower_32_bits(offset));
1427 intel_ring_emit(ring, upper_32_bits(offset));
1428 intel_ring_advance(ring);
1430 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1431 * pagetables and we must reload them before executing the batch.
1432 * We do this on the i915_switch_context() following the wait and
1433 * before the dispatch.
1435 ppgtt = req->ctx->ppgtt;
1436 if (ppgtt && req->engine->id != RCS)
1437 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1442 gen6_ring_sync_to(struct drm_i915_gem_request *req,
1443 struct drm_i915_gem_request *signal)
1445 struct intel_ring *ring = req->ring;
1446 u32 dw1 = MI_SEMAPHORE_MBOX |
1447 MI_SEMAPHORE_COMPARE |
1448 MI_SEMAPHORE_REGISTER;
1449 u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1452 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1454 ret = intel_ring_begin(req, 4);
1458 intel_ring_emit(ring, dw1 | wait_mbox);
1459 /* Throughout all of the GEM code, seqno passed implies our current
1460 * seqno is >= the last seqno executed. However for hardware the
1461 * comparison is strictly greater than.
1463 intel_ring_emit(ring, signal->global_seqno - 1);
1464 intel_ring_emit(ring, 0);
1465 intel_ring_emit(ring, MI_NOOP);
1466 intel_ring_advance(ring);
1472 gen5_seqno_barrier(struct intel_engine_cs *engine)
1474 /* MI_STORE are internally buffered by the GPU and not flushed
1475 * either by MI_FLUSH or SyncFlush or any other combination of
1478 * "Only the submission of the store operation is guaranteed.
1479 * The write result will be complete (coherent) some time later
1480 * (this is practically a finite period but there is no guaranteed
1483 * Empirically, we observe that we need a delay of at least 75us to
1484 * be sure that the seqno write is visible by the CPU.
1486 usleep_range(125, 250);
1490 gen6_seqno_barrier(struct intel_engine_cs *engine)
1492 struct drm_i915_private *dev_priv = engine->i915;
1494 /* Workaround to force correct ordering between irq and seqno writes on
1495 * ivb (and maybe also on snb) by reading from a CS register (like
1496 * ACTHD) before reading the status page.
1498 * Note that this effectively stalls the read by the time it takes to
1499 * do a memory transaction, which more or less ensures that the write
1500 * from the GPU has sufficient time to invalidate the CPU cacheline.
1501 * Alternatively we could delay the interrupt from the CS ring to give
1502 * the write time to land, but that would incur a delay after every
1503 * batch i.e. much more frequent than a delay when waiting for the
1504 * interrupt (with the same net latency).
1506 * Also note that to prevent whole machine hangs on gen7, we have to
1507 * take the spinlock to guard against concurrent cacheline access.
1509 spin_lock_irq(&dev_priv->uncore.lock);
1510 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1511 spin_unlock_irq(&dev_priv->uncore.lock);
1515 gen5_irq_enable(struct intel_engine_cs *engine)
1517 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1521 gen5_irq_disable(struct intel_engine_cs *engine)
1523 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1527 i9xx_irq_enable(struct intel_engine_cs *engine)
1529 struct drm_i915_private *dev_priv = engine->i915;
1531 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1532 I915_WRITE(IMR, dev_priv->irq_mask);
1533 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1537 i9xx_irq_disable(struct intel_engine_cs *engine)
1539 struct drm_i915_private *dev_priv = engine->i915;
1541 dev_priv->irq_mask |= engine->irq_enable_mask;
1542 I915_WRITE(IMR, dev_priv->irq_mask);
1546 i8xx_irq_enable(struct intel_engine_cs *engine)
1548 struct drm_i915_private *dev_priv = engine->i915;
1550 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1551 I915_WRITE16(IMR, dev_priv->irq_mask);
1552 POSTING_READ16(RING_IMR(engine->mmio_base));
1556 i8xx_irq_disable(struct intel_engine_cs *engine)
1558 struct drm_i915_private *dev_priv = engine->i915;
1560 dev_priv->irq_mask |= engine->irq_enable_mask;
1561 I915_WRITE16(IMR, dev_priv->irq_mask);
1565 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1567 struct intel_ring *ring = req->ring;
1570 ret = intel_ring_begin(req, 2);
1574 intel_ring_emit(ring, MI_FLUSH);
1575 intel_ring_emit(ring, MI_NOOP);
1576 intel_ring_advance(ring);
1581 gen6_irq_enable(struct intel_engine_cs *engine)
1583 struct drm_i915_private *dev_priv = engine->i915;
1585 I915_WRITE_IMR(engine,
1586 ~(engine->irq_enable_mask |
1587 engine->irq_keep_mask));
1588 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1592 gen6_irq_disable(struct intel_engine_cs *engine)
1594 struct drm_i915_private *dev_priv = engine->i915;
1596 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1597 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1601 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1603 struct drm_i915_private *dev_priv = engine->i915;
1605 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1606 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1610 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1612 struct drm_i915_private *dev_priv = engine->i915;
1614 I915_WRITE_IMR(engine, ~0);
1615 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1619 gen8_irq_enable(struct intel_engine_cs *engine)
1621 struct drm_i915_private *dev_priv = engine->i915;
1623 I915_WRITE_IMR(engine,
1624 ~(engine->irq_enable_mask |
1625 engine->irq_keep_mask));
1626 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1630 gen8_irq_disable(struct intel_engine_cs *engine)
1632 struct drm_i915_private *dev_priv = engine->i915;
1634 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1638 i965_emit_bb_start(struct drm_i915_gem_request *req,
1639 u64 offset, u32 length,
1640 unsigned int dispatch_flags)
1642 struct intel_ring *ring = req->ring;
1645 ret = intel_ring_begin(req, 2);
1649 intel_ring_emit(ring,
1650 MI_BATCH_BUFFER_START |
1652 (dispatch_flags & I915_DISPATCH_SECURE ?
1653 0 : MI_BATCH_NON_SECURE_I965));
1654 intel_ring_emit(ring, offset);
1655 intel_ring_advance(ring);
1660 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1661 #define I830_BATCH_LIMIT (256*1024)
1662 #define I830_TLB_ENTRIES (2)
1663 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1665 i830_emit_bb_start(struct drm_i915_gem_request *req,
1666 u64 offset, u32 len,
1667 unsigned int dispatch_flags)
1669 struct intel_ring *ring = req->ring;
1670 u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1673 ret = intel_ring_begin(req, 6);
1677 /* Evict the invalid PTE TLBs */
1678 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1679 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1680 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1681 intel_ring_emit(ring, cs_offset);
1682 intel_ring_emit(ring, 0xdeadbeef);
1683 intel_ring_emit(ring, MI_NOOP);
1684 intel_ring_advance(ring);
1686 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1687 if (len > I830_BATCH_LIMIT)
1690 ret = intel_ring_begin(req, 6 + 2);
1694 /* Blit the batch (which has now all relocs applied) to the
1695 * stable batch scratch bo area (so that the CS never
1696 * stumbles over its tlb invalidation bug) ...
1698 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1699 intel_ring_emit(ring,
1700 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1701 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1702 intel_ring_emit(ring, cs_offset);
1703 intel_ring_emit(ring, 4096);
1704 intel_ring_emit(ring, offset);
1706 intel_ring_emit(ring, MI_FLUSH);
1707 intel_ring_emit(ring, MI_NOOP);
1708 intel_ring_advance(ring);
1710 /* ... and execute it. */
1714 ret = intel_ring_begin(req, 2);
1718 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1719 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1720 0 : MI_BATCH_NON_SECURE));
1721 intel_ring_advance(ring);
1727 i915_emit_bb_start(struct drm_i915_gem_request *req,
1728 u64 offset, u32 len,
1729 unsigned int dispatch_flags)
1731 struct intel_ring *ring = req->ring;
1734 ret = intel_ring_begin(req, 2);
1738 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1739 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1740 0 : MI_BATCH_NON_SECURE));
1741 intel_ring_advance(ring);
1746 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1748 struct drm_i915_private *dev_priv = engine->i915;
1750 if (!dev_priv->status_page_dmah)
1753 drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1754 engine->status_page.page_addr = NULL;
1757 static void cleanup_status_page(struct intel_engine_cs *engine)
1759 struct i915_vma *vma;
1760 struct drm_i915_gem_object *obj;
1762 vma = fetch_and_zero(&engine->status_page.vma);
1768 i915_vma_unpin(vma);
1769 i915_vma_close(vma);
1771 i915_gem_object_unpin_map(obj);
1772 __i915_gem_object_release_unless_active(obj);
1775 static int init_status_page(struct intel_engine_cs *engine)
1777 struct drm_i915_gem_object *obj;
1778 struct i915_vma *vma;
1783 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1785 DRM_ERROR("Failed to allocate status page\n");
1786 return PTR_ERR(obj);
1789 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1793 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1800 if (!HAS_LLC(engine->i915))
1801 /* On g33, we cannot place HWS above 256MiB, so
1802 * restrict its pinning to the low mappable arena.
1803 * Though this restriction is not documented for
1804 * gen4, gen5, or byt, they also behave similarly
1805 * and hang if the HWS is placed at the top of the
1806 * GTT. To generalise, it appears that all !llc
1807 * platforms have issues with us placing the HWS
1808 * above the mappable region (even though we never
1811 flags |= PIN_MAPPABLE;
1812 ret = i915_vma_pin(vma, 0, 4096, flags);
1816 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1817 if (IS_ERR(vaddr)) {
1818 ret = PTR_ERR(vaddr);
1822 engine->status_page.vma = vma;
1823 engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1824 engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1826 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1827 engine->name, i915_ggtt_offset(vma));
1831 i915_vma_unpin(vma);
1833 i915_gem_object_put(obj);
1837 static int init_phys_status_page(struct intel_engine_cs *engine)
1839 struct drm_i915_private *dev_priv = engine->i915;
1841 dev_priv->status_page_dmah =
1842 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1843 if (!dev_priv->status_page_dmah)
1846 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1847 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1852 int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias)
1855 enum i915_map_type map;
1856 struct i915_vma *vma = ring->vma;
1860 GEM_BUG_ON(ring->vaddr);
1862 map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
1866 flags |= PIN_OFFSET_BIAS | offset_bias;
1867 if (vma->obj->stolen)
1868 flags |= PIN_MAPPABLE;
1870 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1871 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1872 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1874 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1879 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1883 if (i915_vma_is_map_and_fenceable(vma))
1884 addr = (void __force *)i915_vma_pin_iomap(vma);
1886 addr = i915_gem_object_pin_map(vma->obj, map);
1894 i915_vma_unpin(vma);
1895 return PTR_ERR(addr);
1898 void intel_ring_unpin(struct intel_ring *ring)
1900 GEM_BUG_ON(!ring->vma);
1901 GEM_BUG_ON(!ring->vaddr);
1903 if (i915_vma_is_map_and_fenceable(ring->vma))
1904 i915_vma_unpin_iomap(ring->vma);
1906 i915_gem_object_unpin_map(ring->vma->obj);
1909 i915_vma_unpin(ring->vma);
1912 static struct i915_vma *
1913 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1915 struct drm_i915_gem_object *obj;
1916 struct i915_vma *vma;
1918 obj = i915_gem_object_create_stolen(dev_priv, size);
1920 obj = i915_gem_object_create(dev_priv, size);
1922 return ERR_CAST(obj);
1924 /* mark ring buffers as read-only from GPU side by default */
1927 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1934 i915_gem_object_put(obj);
1939 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1941 struct intel_ring *ring;
1942 struct i915_vma *vma;
1944 GEM_BUG_ON(!is_power_of_2(size));
1945 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1947 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1949 return ERR_PTR(-ENOMEM);
1951 ring->engine = engine;
1953 INIT_LIST_HEAD(&ring->request_list);
1956 /* Workaround an erratum on the i830 which causes a hang if
1957 * the TAIL pointer points to within the last 2 cachelines
1960 ring->effective_size = size;
1961 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1962 ring->effective_size -= 2 * CACHELINE_BYTES;
1964 ring->last_retired_head = -1;
1965 intel_ring_update_space(ring);
1967 vma = intel_ring_create_vma(engine->i915, size);
1970 return ERR_CAST(vma);
1978 intel_ring_free(struct intel_ring *ring)
1980 struct drm_i915_gem_object *obj = ring->vma->obj;
1982 i915_vma_close(ring->vma);
1983 __i915_gem_object_release_unless_active(obj);
1988 static int context_pin(struct i915_gem_context *ctx, unsigned int flags)
1990 struct i915_vma *vma = ctx->engine[RCS].state;
1993 /* Clear this page out of any CPU caches for coherent swap-in/out.
1994 * We only want to do this on the first bind so that we do not stall
1995 * on an active context (which by nature is already on the GPU).
1997 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1998 ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
2003 return i915_vma_pin(vma, 0, ctx->ggtt_alignment, PIN_GLOBAL | flags);
2006 static int intel_ring_context_pin(struct intel_engine_cs *engine,
2007 struct i915_gem_context *ctx)
2009 struct intel_context *ce = &ctx->engine[engine->id];
2012 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2014 if (ce->pin_count++)
2021 if (i915_gem_context_is_kernel(ctx))
2024 ret = context_pin(ctx, flags);
2028 ce->state->obj->mm.dirty = true;
2031 /* The kernel context is only used as a placeholder for flushing the
2032 * active context. It is never used for submitting user rendering and
2033 * as such never requires the golden render context, and so we can skip
2034 * emitting it when we switch to the kernel context. This is required
2035 * as during eviction we cannot allocate and pin the renderstate in
2036 * order to initialise the context.
2038 if (i915_gem_context_is_kernel(ctx))
2039 ce->initialised = true;
2041 i915_gem_context_get(ctx);
2049 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
2050 struct i915_gem_context *ctx)
2052 struct intel_context *ce = &ctx->engine[engine->id];
2054 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2055 GEM_BUG_ON(ce->pin_count == 0);
2057 if (--ce->pin_count)
2061 i915_vma_unpin(ce->state);
2063 i915_gem_context_put(ctx);
2066 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2068 struct drm_i915_private *dev_priv = engine->i915;
2069 struct intel_ring *ring;
2072 WARN_ON(engine->buffer);
2074 intel_engine_setup_common(engine);
2076 ret = intel_engine_init_common(engine);
2080 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2082 ret = PTR_ERR(ring);
2086 if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2087 WARN_ON(engine->id != RCS);
2088 ret = init_phys_status_page(engine);
2092 ret = init_status_page(engine);
2097 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2098 ret = intel_ring_pin(ring, I915_GTT_PAGE_SIZE);
2100 intel_ring_free(ring);
2103 engine->buffer = ring;
2108 intel_engine_cleanup(engine);
2112 void intel_engine_cleanup(struct intel_engine_cs *engine)
2114 struct drm_i915_private *dev_priv;
2116 dev_priv = engine->i915;
2118 if (engine->buffer) {
2119 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2120 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2122 intel_ring_unpin(engine->buffer);
2123 intel_ring_free(engine->buffer);
2124 engine->buffer = NULL;
2127 if (engine->cleanup)
2128 engine->cleanup(engine);
2130 if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2131 WARN_ON(engine->id != RCS);
2132 cleanup_phys_status_page(engine);
2134 cleanup_status_page(engine);
2137 intel_engine_cleanup_common(engine);
2139 engine->i915 = NULL;
2140 dev_priv->engine[engine->id] = NULL;
2144 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
2146 struct intel_engine_cs *engine;
2147 enum intel_engine_id id;
2149 for_each_engine(engine, dev_priv, id) {
2150 engine->buffer->head = engine->buffer->tail;
2151 engine->buffer->last_retired_head = -1;
2155 static int ring_request_alloc(struct drm_i915_gem_request *request)
2159 GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
2161 /* Flush enough space to reduce the likelihood of waiting after
2162 * we start building the request - in which case we will just
2163 * have to repeat work.
2165 request->reserved_space += LEGACY_REQUEST_SIZE;
2167 GEM_BUG_ON(!request->engine->buffer);
2168 request->ring = request->engine->buffer;
2170 ret = intel_ring_begin(request, 0);
2174 request->reserved_space -= LEGACY_REQUEST_SIZE;
2178 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2180 struct intel_ring *ring = req->ring;
2181 struct drm_i915_gem_request *target;
2184 lockdep_assert_held(&req->i915->drm.struct_mutex);
2186 intel_ring_update_space(ring);
2187 if (ring->space >= bytes)
2191 * Space is reserved in the ringbuffer for finalising the request,
2192 * as that cannot be allowed to fail. During request finalisation,
2193 * reserved_space is set to 0 to stop the overallocation and the
2194 * assumption is that then we never need to wait (which has the
2195 * risk of failing with EINTR).
2197 * See also i915_gem_request_alloc() and i915_add_request().
2199 GEM_BUG_ON(!req->reserved_space);
2201 list_for_each_entry(target, &ring->request_list, ring_link) {
2204 /* Would completion of this request free enough space? */
2205 space = __intel_ring_space(target->postfix, ring->tail,
2211 if (WARN_ON(&target->ring_link == &ring->request_list))
2214 timeout = i915_wait_request(target,
2215 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2216 MAX_SCHEDULE_TIMEOUT);
2220 i915_gem_request_retire_upto(target);
2222 intel_ring_update_space(ring);
2223 GEM_BUG_ON(ring->space < bytes);
2227 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2229 struct intel_ring *ring = req->ring;
2230 int remain_actual = ring->size - ring->tail;
2231 int remain_usable = ring->effective_size - ring->tail;
2232 int bytes = num_dwords * sizeof(u32);
2233 int total_bytes, wait_bytes;
2234 bool need_wrap = false;
2236 total_bytes = bytes + req->reserved_space;
2238 if (unlikely(bytes > remain_usable)) {
2240 * Not enough space for the basic request. So need to flush
2241 * out the remainder and then wait for base + reserved.
2243 wait_bytes = remain_actual + total_bytes;
2245 } else if (unlikely(total_bytes > remain_usable)) {
2247 * The base request will fit but the reserved space
2248 * falls off the end. So we don't need an immediate wrap
2249 * and only need to effectively wait for the reserved
2250 * size space from the start of ringbuffer.
2252 wait_bytes = remain_actual + req->reserved_space;
2254 /* No wrapping required, just waiting. */
2255 wait_bytes = total_bytes;
2258 if (wait_bytes > ring->space) {
2259 int ret = wait_for_space(req, wait_bytes);
2264 if (unlikely(need_wrap)) {
2265 GEM_BUG_ON(remain_actual > ring->space);
2266 GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2268 /* Fill the tail with MI_NOOP */
2269 memset(ring->vaddr + ring->tail, 0, remain_actual);
2271 ring->space -= remain_actual;
2274 ring->space -= bytes;
2275 GEM_BUG_ON(ring->space < 0);
2279 /* Align the ring tail to a cacheline boundary */
2280 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2282 struct intel_ring *ring = req->ring;
2284 (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2287 if (num_dwords == 0)
2290 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2291 ret = intel_ring_begin(req, num_dwords);
2295 while (num_dwords--)
2296 intel_ring_emit(ring, MI_NOOP);
2298 intel_ring_advance(ring);
2303 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2305 struct drm_i915_private *dev_priv = request->i915;
2307 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2309 /* Every tail move must follow the sequence below */
2311 /* Disable notification that the ring is IDLE. The GT
2312 * will then assume that it is busy and bring it out of rc6.
2314 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2315 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2317 /* Clear the context id. Here be magic! */
2318 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2320 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2321 if (intel_wait_for_register_fw(dev_priv,
2322 GEN6_BSD_SLEEP_PSMI_CONTROL,
2323 GEN6_BSD_SLEEP_INDICATOR,
2326 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2328 /* Now that the ring is fully powered up, update the tail */
2329 i9xx_submit_request(request);
2331 /* Let the ring send IDLE messages to the GT again,
2332 * and so let it sleep to conserve power when idle.
2334 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2335 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2337 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2340 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2342 struct intel_ring *ring = req->ring;
2346 ret = intel_ring_begin(req, 4);
2351 if (INTEL_GEN(req->i915) >= 8)
2354 /* We always require a command barrier so that subsequent
2355 * commands, such as breadcrumb interrupts, are strictly ordered
2356 * wrt the contents of the write cache being flushed to memory
2357 * (and thus being coherent from the CPU).
2359 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2362 * Bspec vol 1c.5 - video engine command streamer:
2363 * "If ENABLED, all TLBs will be invalidated once the flush
2364 * operation is complete. This bit is only valid when the
2365 * Post-Sync Operation field is a value of 1h or 3h."
2367 if (mode & EMIT_INVALIDATE)
2368 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2370 intel_ring_emit(ring, cmd);
2371 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2372 if (INTEL_GEN(req->i915) >= 8) {
2373 intel_ring_emit(ring, 0); /* upper addr */
2374 intel_ring_emit(ring, 0); /* value */
2376 intel_ring_emit(ring, 0);
2377 intel_ring_emit(ring, MI_NOOP);
2379 intel_ring_advance(ring);
2384 gen8_emit_bb_start(struct drm_i915_gem_request *req,
2385 u64 offset, u32 len,
2386 unsigned int dispatch_flags)
2388 struct intel_ring *ring = req->ring;
2389 bool ppgtt = USES_PPGTT(req->i915) &&
2390 !(dispatch_flags & I915_DISPATCH_SECURE);
2393 ret = intel_ring_begin(req, 4);
2397 /* FIXME(BDW): Address space and security selectors. */
2398 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2399 (dispatch_flags & I915_DISPATCH_RS ?
2400 MI_BATCH_RESOURCE_STREAMER : 0));
2401 intel_ring_emit(ring, lower_32_bits(offset));
2402 intel_ring_emit(ring, upper_32_bits(offset));
2403 intel_ring_emit(ring, MI_NOOP);
2404 intel_ring_advance(ring);
2410 hsw_emit_bb_start(struct drm_i915_gem_request *req,
2411 u64 offset, u32 len,
2412 unsigned int dispatch_flags)
2414 struct intel_ring *ring = req->ring;
2417 ret = intel_ring_begin(req, 2);
2421 intel_ring_emit(ring,
2422 MI_BATCH_BUFFER_START |
2423 (dispatch_flags & I915_DISPATCH_SECURE ?
2424 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2425 (dispatch_flags & I915_DISPATCH_RS ?
2426 MI_BATCH_RESOURCE_STREAMER : 0));
2427 /* bit0-7 is the length on GEN6+ */
2428 intel_ring_emit(ring, offset);
2429 intel_ring_advance(ring);
2435 gen6_emit_bb_start(struct drm_i915_gem_request *req,
2436 u64 offset, u32 len,
2437 unsigned int dispatch_flags)
2439 struct intel_ring *ring = req->ring;
2442 ret = intel_ring_begin(req, 2);
2446 intel_ring_emit(ring,
2447 MI_BATCH_BUFFER_START |
2448 (dispatch_flags & I915_DISPATCH_SECURE ?
2449 0 : MI_BATCH_NON_SECURE_I965));
2450 /* bit0-7 is the length on GEN6+ */
2451 intel_ring_emit(ring, offset);
2452 intel_ring_advance(ring);
2457 /* Blitter support (SandyBridge+) */
2459 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2461 struct intel_ring *ring = req->ring;
2465 ret = intel_ring_begin(req, 4);
2470 if (INTEL_GEN(req->i915) >= 8)
2473 /* We always require a command barrier so that subsequent
2474 * commands, such as breadcrumb interrupts, are strictly ordered
2475 * wrt the contents of the write cache being flushed to memory
2476 * (and thus being coherent from the CPU).
2478 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2481 * Bspec vol 1c.3 - blitter engine command streamer:
2482 * "If ENABLED, all TLBs will be invalidated once the flush
2483 * operation is complete. This bit is only valid when the
2484 * Post-Sync Operation field is a value of 1h or 3h."
2486 if (mode & EMIT_INVALIDATE)
2487 cmd |= MI_INVALIDATE_TLB;
2488 intel_ring_emit(ring, cmd);
2489 intel_ring_emit(ring,
2490 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2491 if (INTEL_GEN(req->i915) >= 8) {
2492 intel_ring_emit(ring, 0); /* upper addr */
2493 intel_ring_emit(ring, 0); /* value */
2495 intel_ring_emit(ring, 0);
2496 intel_ring_emit(ring, MI_NOOP);
2498 intel_ring_advance(ring);
2503 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2504 struct intel_engine_cs *engine)
2506 struct drm_i915_gem_object *obj;
2509 if (!i915.semaphores)
2512 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
2513 struct i915_vma *vma;
2515 obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
2519 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
2523 ret = i915_gem_object_set_to_gtt_domain(obj, false);
2527 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2531 dev_priv->semaphore = vma;
2534 if (INTEL_GEN(dev_priv) >= 8) {
2535 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2537 engine->semaphore.sync_to = gen8_ring_sync_to;
2538 engine->semaphore.signal = gen8_xcs_signal;
2540 for (i = 0; i < I915_NUM_ENGINES; i++) {
2543 if (i != engine->id)
2544 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2546 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2548 engine->semaphore.signal_ggtt[i] = ring_offset;
2550 } else if (INTEL_GEN(dev_priv) >= 6) {
2551 engine->semaphore.sync_to = gen6_ring_sync_to;
2552 engine->semaphore.signal = gen6_signal;
2555 * The current semaphore is only applied on pre-gen8
2556 * platform. And there is no VCS2 ring on the pre-gen8
2557 * platform. So the semaphore between RCS and VCS2 is
2558 * initialized as INVALID. Gen8 will initialize the
2559 * sema between VCS2 and RCS later.
2561 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2562 static const struct {
2564 i915_reg_t mbox_reg;
2565 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2567 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2568 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2569 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2572 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2573 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2574 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2577 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2578 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2579 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2582 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2583 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2584 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2588 i915_reg_t mbox_reg;
2590 if (i == engine->hw_id) {
2591 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2592 mbox_reg = GEN6_NOSYNC;
2594 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2595 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2598 engine->semaphore.mbox.wait[i] = wait_mbox;
2599 engine->semaphore.mbox.signal[i] = mbox_reg;
2606 i915_gem_object_put(obj);
2608 DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2609 i915.semaphores = 0;
2612 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2613 struct intel_engine_cs *engine)
2615 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2617 if (INTEL_GEN(dev_priv) >= 8) {
2618 engine->irq_enable = gen8_irq_enable;
2619 engine->irq_disable = gen8_irq_disable;
2620 engine->irq_seqno_barrier = gen6_seqno_barrier;
2621 } else if (INTEL_GEN(dev_priv) >= 6) {
2622 engine->irq_enable = gen6_irq_enable;
2623 engine->irq_disable = gen6_irq_disable;
2624 engine->irq_seqno_barrier = gen6_seqno_barrier;
2625 } else if (INTEL_GEN(dev_priv) >= 5) {
2626 engine->irq_enable = gen5_irq_enable;
2627 engine->irq_disable = gen5_irq_disable;
2628 engine->irq_seqno_barrier = gen5_seqno_barrier;
2629 } else if (INTEL_GEN(dev_priv) >= 3) {
2630 engine->irq_enable = i9xx_irq_enable;
2631 engine->irq_disable = i9xx_irq_disable;
2633 engine->irq_enable = i8xx_irq_enable;
2634 engine->irq_disable = i8xx_irq_disable;
2638 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2639 struct intel_engine_cs *engine)
2641 intel_ring_init_irq(dev_priv, engine);
2642 intel_ring_init_semaphores(dev_priv, engine);
2644 engine->init_hw = init_ring_common;
2645 engine->reset_hw = reset_ring_common;
2647 engine->context_pin = intel_ring_context_pin;
2648 engine->context_unpin = intel_ring_context_unpin;
2650 engine->request_alloc = ring_request_alloc;
2652 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2653 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2654 if (i915.semaphores) {
2657 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2659 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2660 if (INTEL_GEN(dev_priv) >= 8) {
2661 engine->emit_breadcrumb_sz += num_rings * 6;
2663 engine->emit_breadcrumb_sz += num_rings * 3;
2665 engine->emit_breadcrumb_sz++;
2668 engine->submit_request = i9xx_submit_request;
2670 if (INTEL_GEN(dev_priv) >= 8)
2671 engine->emit_bb_start = gen8_emit_bb_start;
2672 else if (INTEL_GEN(dev_priv) >= 6)
2673 engine->emit_bb_start = gen6_emit_bb_start;
2674 else if (INTEL_GEN(dev_priv) >= 4)
2675 engine->emit_bb_start = i965_emit_bb_start;
2676 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2677 engine->emit_bb_start = i830_emit_bb_start;
2679 engine->emit_bb_start = i915_emit_bb_start;
2682 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2684 struct drm_i915_private *dev_priv = engine->i915;
2687 intel_ring_default_vfuncs(dev_priv, engine);
2689 if (HAS_L3_DPF(dev_priv))
2690 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2692 if (INTEL_GEN(dev_priv) >= 8) {
2693 engine->init_context = intel_rcs_ctx_init;
2694 engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2695 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2696 engine->emit_flush = gen8_render_ring_flush;
2697 if (i915.semaphores) {
2700 engine->semaphore.signal = gen8_rcs_signal;
2703 hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2704 engine->emit_breadcrumb_sz += num_rings * 6;
2706 } else if (INTEL_GEN(dev_priv) >= 6) {
2707 engine->init_context = intel_rcs_ctx_init;
2708 engine->emit_flush = gen7_render_ring_flush;
2709 if (IS_GEN6(dev_priv))
2710 engine->emit_flush = gen6_render_ring_flush;
2711 } else if (IS_GEN5(dev_priv)) {
2712 engine->emit_flush = gen4_render_ring_flush;
2714 if (INTEL_GEN(dev_priv) < 4)
2715 engine->emit_flush = gen2_render_ring_flush;
2717 engine->emit_flush = gen4_render_ring_flush;
2718 engine->irq_enable_mask = I915_USER_INTERRUPT;
2721 if (IS_HASWELL(dev_priv))
2722 engine->emit_bb_start = hsw_emit_bb_start;
2724 engine->init_hw = init_render_ring;
2725 engine->cleanup = render_ring_cleanup;
2727 ret = intel_init_ring_buffer(engine);
2731 if (INTEL_GEN(dev_priv) >= 6) {
2732 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2735 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2736 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2744 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2746 struct drm_i915_private *dev_priv = engine->i915;
2748 intel_ring_default_vfuncs(dev_priv, engine);
2750 if (INTEL_GEN(dev_priv) >= 6) {
2751 /* gen6 bsd needs a special wa for tail updates */
2752 if (IS_GEN6(dev_priv))
2753 engine->submit_request = gen6_bsd_submit_request;
2754 engine->emit_flush = gen6_bsd_ring_flush;
2755 if (INTEL_GEN(dev_priv) < 8)
2756 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2758 engine->mmio_base = BSD_RING_BASE;
2759 engine->emit_flush = bsd_ring_flush;
2760 if (IS_GEN5(dev_priv))
2761 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2763 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2766 return intel_init_ring_buffer(engine);
2770 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2772 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2774 struct drm_i915_private *dev_priv = engine->i915;
2776 intel_ring_default_vfuncs(dev_priv, engine);
2778 engine->emit_flush = gen6_bsd_ring_flush;
2780 return intel_init_ring_buffer(engine);
2783 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2785 struct drm_i915_private *dev_priv = engine->i915;
2787 intel_ring_default_vfuncs(dev_priv, engine);
2789 engine->emit_flush = gen6_ring_flush;
2790 if (INTEL_GEN(dev_priv) < 8)
2791 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2793 return intel_init_ring_buffer(engine);
2796 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2798 struct drm_i915_private *dev_priv = engine->i915;
2800 intel_ring_default_vfuncs(dev_priv, engine);
2802 engine->emit_flush = gen6_ring_flush;
2804 if (INTEL_GEN(dev_priv) < 8) {
2805 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2806 engine->irq_enable = hsw_vebox_irq_enable;
2807 engine->irq_disable = hsw_vebox_irq_disable;
2810 return intel_init_ring_buffer(engine);