2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
40 /* The timeline struct (as part of the ppgtt underneath a context)
41 * may be freed when the request is no longer in use by the GPU.
42 * We could extend the life of a context to beyond that of all
43 * fences, possibly keeping the hw resource around indefinitely,
44 * or we just give them a false name. Since
45 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46 * lie seems justifiable.
48 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
51 return to_request(fence)->timeline->common->name;
54 static bool i915_fence_signaled(struct dma_fence *fence)
56 return i915_gem_request_completed(to_request(fence));
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
61 if (i915_fence_signaled(fence))
64 intel_engine_enable_signaling(to_request(fence));
68 static signed long i915_fence_wait(struct dma_fence *fence,
72 return i915_wait_request(to_request(fence), interruptible, timeout);
75 static void i915_fence_release(struct dma_fence *fence)
77 struct drm_i915_gem_request *req = to_request(fence);
79 /* The request is put onto a RCU freelist (i.e. the address
80 * is immediately reused), mark the fences as being freed now.
81 * Otherwise the debugobjects for the fences are only marked as
82 * freed when the slab cache itself is freed, and so we would get
83 * caught trying to reuse dead objects.
85 i915_sw_fence_fini(&req->submit);
86 i915_sw_fence_fini(&req->execute);
88 kmem_cache_free(req->i915->requests, req);
91 const struct dma_fence_ops i915_fence_ops = {
92 .get_driver_name = i915_fence_get_driver_name,
93 .get_timeline_name = i915_fence_get_timeline_name,
94 .enable_signaling = i915_fence_enable_signaling,
95 .signaled = i915_fence_signaled,
96 .wait = i915_fence_wait,
97 .release = i915_fence_release,
100 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
101 struct drm_file *file)
103 struct drm_i915_private *dev_private;
104 struct drm_i915_file_private *file_priv;
106 WARN_ON(!req || !file || req->file_priv);
114 dev_private = req->i915;
115 file_priv = file->driver_priv;
117 spin_lock(&file_priv->mm.lock);
118 req->file_priv = file_priv;
119 list_add_tail(&req->client_list, &file_priv->mm.request_list);
120 spin_unlock(&file_priv->mm.lock);
126 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
128 struct drm_i915_file_private *file_priv = request->file_priv;
133 spin_lock(&file_priv->mm.lock);
134 list_del(&request->client_list);
135 request->file_priv = NULL;
136 spin_unlock(&file_priv->mm.lock);
139 static struct i915_dependency *
140 i915_dependency_alloc(struct drm_i915_private *i915)
142 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
146 i915_dependency_free(struct drm_i915_private *i915,
147 struct i915_dependency *dep)
149 kmem_cache_free(i915->dependencies, dep);
153 __i915_priotree_add_dependency(struct i915_priotree *pt,
154 struct i915_priotree *signal,
155 struct i915_dependency *dep,
158 INIT_LIST_HEAD(&dep->dfs_link);
159 list_add(&dep->wait_link, &signal->waiters_list);
160 list_add(&dep->signal_link, &pt->signalers_list);
161 dep->signaler = signal;
166 i915_priotree_add_dependency(struct drm_i915_private *i915,
167 struct i915_priotree *pt,
168 struct i915_priotree *signal)
170 struct i915_dependency *dep;
172 dep = i915_dependency_alloc(i915);
176 __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
181 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
183 struct i915_dependency *dep, *next;
185 GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
187 /* Everyone we depended upon (the fences we wait to be signaled)
188 * should retire before us and remove themselves from our list.
189 * However, retirement is run independently on each timeline and
190 * so we may be called out-of-order.
192 list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
193 list_del(&dep->wait_link);
194 if (dep->flags & I915_DEPENDENCY_ALLOC)
195 i915_dependency_free(i915, dep);
198 /* Remove ourselves from everyone who depends upon us */
199 list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
200 list_del(&dep->signal_link);
201 if (dep->flags & I915_DEPENDENCY_ALLOC)
202 i915_dependency_free(i915, dep);
207 i915_priotree_init(struct i915_priotree *pt)
209 INIT_LIST_HEAD(&pt->signalers_list);
210 INIT_LIST_HEAD(&pt->waiters_list);
211 RB_CLEAR_NODE(&pt->node);
212 pt->priority = INT_MIN;
215 void i915_gem_retire_noop(struct i915_gem_active *active,
216 struct drm_i915_gem_request *request)
218 /* Space left intentionally blank */
221 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
223 struct intel_engine_cs *engine = request->engine;
224 struct i915_gem_active *active, *next;
226 lockdep_assert_held(&request->i915->drm.struct_mutex);
227 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
228 GEM_BUG_ON(!i915_sw_fence_signaled(&request->execute));
229 GEM_BUG_ON(!i915_gem_request_completed(request));
230 GEM_BUG_ON(!request->i915->gt.active_requests);
232 trace_i915_gem_request_retire(request);
234 spin_lock_irq(&engine->timeline->lock);
235 list_del_init(&request->link);
236 spin_unlock_irq(&engine->timeline->lock);
238 /* We know the GPU must have read the request to have
239 * sent us the seqno + interrupt, so use the position
240 * of tail of the request to update the last known position
243 * Note this requires that we are always called in request
246 list_del(&request->ring_link);
247 request->ring->last_retired_head = request->postfix;
248 if (!--request->i915->gt.active_requests) {
249 GEM_BUG_ON(!request->i915->gt.awake);
250 mod_delayed_work(request->i915->wq,
251 &request->i915->gt.idle_work,
252 msecs_to_jiffies(100));
255 /* Walk through the active list, calling retire on each. This allows
256 * objects to track their GPU activity and mark themselves as idle
257 * when their *last* active request is completed (updating state
258 * tracking lists for eviction, active references for GEM, etc).
260 * As the ->retire() may free the node, we decouple it first and
261 * pass along the auxiliary information (to avoid dereferencing
262 * the node after the callback).
264 list_for_each_entry_safe(active, next, &request->active_list, link) {
265 /* In microbenchmarks or focusing upon time inside the kernel,
266 * we may spend an inordinate amount of time simply handling
267 * the retirement of requests and processing their callbacks.
268 * Of which, this loop itself is particularly hot due to the
269 * cache misses when jumping around the list of i915_gem_active.
270 * So we try to keep this loop as streamlined as possible and
271 * also prefetch the next i915_gem_active to try and hide
272 * the likely cache miss.
276 INIT_LIST_HEAD(&active->link);
277 RCU_INIT_POINTER(active->request, NULL);
279 active->retire(active, request);
282 i915_gem_request_remove_from_client(request);
284 /* Retirement decays the ban score as it is a sign of ctx progress */
285 if (request->ctx->ban_score > 0)
286 request->ctx->ban_score--;
288 /* The backing object for the context is done after switching to the
289 * *next* context. Therefore we cannot retire the previous context until
290 * the next context has already started running. However, since we
291 * cannot take the required locks at i915_gem_request_submit() we
292 * defer the unpinning of the active context to now, retirement of
293 * the subsequent request.
295 if (engine->last_retired_context)
296 engine->context_unpin(engine, engine->last_retired_context);
297 engine->last_retired_context = request->ctx;
299 dma_fence_signal(&request->fence);
301 i915_priotree_fini(request->i915, &request->priotree);
302 i915_gem_request_put(request);
305 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
307 struct intel_engine_cs *engine = req->engine;
308 struct drm_i915_gem_request *tmp;
310 lockdep_assert_held(&req->i915->drm.struct_mutex);
311 GEM_BUG_ON(!i915_gem_request_completed(req));
313 if (list_empty(&req->link))
317 tmp = list_first_entry(&engine->timeline->requests,
320 i915_gem_request_retire(tmp);
321 } while (tmp != req);
324 static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
326 struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
327 struct intel_engine_cs *engine;
328 enum intel_engine_id id;
331 /* Carefully retire all requests without writing to the rings */
332 ret = i915_gem_wait_for_idle(i915,
333 I915_WAIT_INTERRUPTIBLE |
338 i915_gem_retire_requests(i915);
339 GEM_BUG_ON(i915->gt.active_requests > 1);
341 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
342 if (!i915_seqno_passed(seqno, atomic_read(&timeline->seqno))) {
343 while (intel_breadcrumbs_busy(i915))
344 cond_resched(); /* spin until threads are complete */
346 atomic_set(&timeline->seqno, seqno);
348 /* Finally reset hw state */
349 for_each_engine(engine, i915, id)
350 intel_engine_init_global_seqno(engine, seqno);
352 list_for_each_entry(timeline, &i915->gt.timelines, link) {
353 for_each_engine(engine, i915, id) {
354 struct intel_timeline *tl = &timeline->engine[id];
356 memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
363 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
365 struct drm_i915_private *dev_priv = to_i915(dev);
367 lockdep_assert_held(&dev_priv->drm.struct_mutex);
372 /* HWS page needs to be set less than what we
373 * will inject to ring
375 return i915_gem_init_global_seqno(dev_priv, seqno - 1);
378 static int reserve_global_seqno(struct drm_i915_private *i915)
380 u32 active_requests = ++i915->gt.active_requests;
381 u32 seqno = atomic_read(&i915->gt.global_timeline.seqno);
384 /* Reservation is fine until we need to wrap around */
385 if (likely(seqno + active_requests > seqno))
388 ret = i915_gem_init_global_seqno(i915, 0);
390 i915->gt.active_requests--;
397 static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
399 /* seqno only incremented under a mutex */
400 return ++tl->seqno.counter;
403 static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
405 return atomic_inc_return(&tl->seqno);
408 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
410 struct intel_engine_cs *engine = request->engine;
411 struct intel_timeline *timeline;
414 /* Transfer from per-context onto the global per-engine timeline */
415 timeline = engine->timeline;
416 GEM_BUG_ON(timeline == request->timeline);
417 assert_spin_locked(&timeline->lock);
419 seqno = timeline_get_seqno(timeline->common);
421 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
423 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
424 request->previous_seqno = timeline->last_submitted_seqno;
425 timeline->last_submitted_seqno = seqno;
427 /* We may be recursing from the signal callback of another i915 fence */
428 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
429 request->global_seqno = seqno;
430 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
431 intel_engine_enable_signaling(request);
432 spin_unlock(&request->lock);
434 GEM_BUG_ON(!request->global_seqno);
435 engine->emit_breadcrumb(request,
436 request->ring->vaddr + request->postfix);
438 spin_lock(&request->timeline->lock);
439 list_move_tail(&request->link, &timeline->requests);
440 spin_unlock(&request->timeline->lock);
442 i915_sw_fence_commit(&request->execute);
445 void i915_gem_request_submit(struct drm_i915_gem_request *request)
447 struct intel_engine_cs *engine = request->engine;
450 /* Will be called from irq-context when using foreign fences. */
451 spin_lock_irqsave(&engine->timeline->lock, flags);
453 __i915_gem_request_submit(request);
455 spin_unlock_irqrestore(&engine->timeline->lock, flags);
458 static int __i915_sw_fence_call
459 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
461 struct drm_i915_gem_request *request =
462 container_of(fence, typeof(*request), submit);
466 request->engine->submit_request(request);
470 i915_gem_request_put(request);
477 static int __i915_sw_fence_call
478 execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
480 struct drm_i915_gem_request *request =
481 container_of(fence, typeof(*request), execute);
488 i915_gem_request_put(request);
496 * i915_gem_request_alloc - allocate a request structure
498 * @engine: engine that we wish to issue the request on.
499 * @ctx: context that the request will be associated with.
500 * This can be NULL if the request is not directly related to
501 * any specific user context, in which case this function will
502 * choose an appropriate context to use.
504 * Returns a pointer to the allocated request if successful,
505 * or an error code if not.
507 struct drm_i915_gem_request *
508 i915_gem_request_alloc(struct intel_engine_cs *engine,
509 struct i915_gem_context *ctx)
511 struct drm_i915_private *dev_priv = engine->i915;
512 struct drm_i915_gem_request *req;
515 lockdep_assert_held(&dev_priv->drm.struct_mutex);
517 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
518 * EIO if the GPU is already wedged.
520 if (i915_terminally_wedged(&dev_priv->gpu_error))
521 return ERR_PTR(-EIO);
523 /* Pinning the contexts may generate requests in order to acquire
524 * GGTT space, so do this first before we reserve a seqno for
527 ret = engine->context_pin(engine, ctx);
531 ret = reserve_global_seqno(dev_priv);
535 /* Move the oldest request to the slab-cache (if not in use!) */
536 req = list_first_entry_or_null(&engine->timeline->requests,
538 if (req && __i915_gem_request_completed(req))
539 i915_gem_request_retire(req);
541 /* Beware: Dragons be flying overhead.
543 * We use RCU to look up requests in flight. The lookups may
544 * race with the request being allocated from the slab freelist.
545 * That is the request we are writing to here, may be in the process
546 * of being read by __i915_gem_active_get_rcu(). As such,
547 * we have to be very careful when overwriting the contents. During
548 * the RCU lookup, we change chase the request->engine pointer,
549 * read the request->global_seqno and increment the reference count.
551 * The reference count is incremented atomically. If it is zero,
552 * the lookup knows the request is unallocated and complete. Otherwise,
553 * it is either still in use, or has been reallocated and reset
554 * with dma_fence_init(). This increment is safe for release as we
555 * check that the request we have a reference to and matches the active
558 * Before we increment the refcount, we chase the request->engine
559 * pointer. We must not call kmem_cache_zalloc() or else we set
560 * that pointer to NULL and cause a crash during the lookup. If
561 * we see the request is completed (based on the value of the
562 * old engine and seqno), the lookup is complete and reports NULL.
563 * If we decide the request is not completed (new engine or seqno),
564 * then we grab a reference and double check that it is still the
565 * active request - which it won't be and restart the lookup.
567 * Do not use kmem_cache_zalloc() here!
569 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
575 req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
576 GEM_BUG_ON(req->timeline == engine->timeline);
578 spin_lock_init(&req->lock);
579 dma_fence_init(&req->fence,
582 req->timeline->fence_context,
583 __timeline_get_seqno(req->timeline->common));
585 /* We bump the ref for the fence chain */
586 i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
587 i915_sw_fence_init(&i915_gem_request_get(req)->execute, execute_notify);
589 /* Ensure that the execute fence completes after the submit fence -
590 * as we complete the execute fence from within the submit fence
591 * callback, its completion would otherwise be visible first.
593 i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
595 i915_priotree_init(&req->priotree);
597 INIT_LIST_HEAD(&req->active_list);
598 req->i915 = dev_priv;
599 req->engine = engine;
602 /* No zalloc, must clear what we need by hand */
603 req->global_seqno = 0;
604 req->file_priv = NULL;
608 * Reserve space in the ring buffer for all the commands required to
609 * eventually emit this request. This is to guarantee that the
610 * i915_add_request() call can't fail. Note that the reserve may need
611 * to be redone if the request is not actually submitted straight
612 * away, e.g. because a GPU scheduler has deferred it.
614 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
615 GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
617 ret = engine->request_alloc(req);
621 /* Record the position of the start of the request so that
622 * should we detect the updated seqno part-way through the
623 * GPU processing the request, we never over-estimate the
624 * position of the head.
626 req->head = req->ring->tail;
631 /* Make sure we didn't add ourselves to external state before freeing */
632 GEM_BUG_ON(!list_empty(&req->active_list));
633 GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
634 GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
636 kmem_cache_free(dev_priv->requests, req);
638 dev_priv->gt.active_requests--;
640 engine->context_unpin(engine, ctx);
645 i915_gem_request_await_request(struct drm_i915_gem_request *to,
646 struct drm_i915_gem_request *from)
650 GEM_BUG_ON(to == from);
652 if (to->engine->schedule) {
653 ret = i915_priotree_add_dependency(to->i915,
660 if (to->timeline == from->timeline)
663 if (to->engine == from->engine) {
664 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
667 return ret < 0 ? ret : 0;
670 if (!from->global_seqno) {
671 ret = i915_sw_fence_await_dma_fence(&to->submit,
674 return ret < 0 ? ret : 0;
677 if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
680 trace_i915_gem_ring_sync_to(to, from);
681 if (!i915.semaphores) {
682 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
683 ret = i915_sw_fence_await_dma_fence(&to->submit,
690 ret = to->engine->semaphore.sync_to(to, from);
695 to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
700 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
701 struct dma_fence *fence)
703 struct dma_fence_array *array;
707 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
710 if (dma_fence_is_i915(fence))
711 return i915_gem_request_await_request(req, to_request(fence));
713 if (!dma_fence_is_array(fence)) {
714 ret = i915_sw_fence_await_dma_fence(&req->submit,
715 fence, I915_FENCE_TIMEOUT,
717 return ret < 0 ? ret : 0;
720 /* Note that if the fence-array was created in signal-on-any mode,
721 * we should *not* decompose it into its individual fences. However,
722 * we don't currently store which mode the fence-array is operating
723 * in. Fortunately, the only user of signal-on-any is private to
724 * amdgpu and we should not see any incoming fence-array from
725 * sync-file being in signal-on-any mode.
728 array = to_dma_fence_array(fence);
729 for (i = 0; i < array->num_fences; i++) {
730 struct dma_fence *child = array->fences[i];
732 if (dma_fence_is_i915(child))
733 ret = i915_gem_request_await_request(req,
736 ret = i915_sw_fence_await_dma_fence(&req->submit,
737 child, I915_FENCE_TIMEOUT,
747 * i915_gem_request_await_object - set this request to (async) wait upon a bo
749 * @to: request we are wishing to use
750 * @obj: object which may be in use on another ring.
752 * This code is meant to abstract object synchronization with the GPU.
753 * Conceptually we serialise writes between engines inside the GPU.
754 * We only allow one engine to write into a buffer at any time, but
755 * multiple readers. To ensure each has a coherent view of memory, we must:
757 * - If there is an outstanding write request to the object, the new
758 * request must wait for it to complete (either CPU or in hw, requests
759 * on the same ring will be naturally ordered).
761 * - If we are a write request (pending_write_domain is set), the new
762 * request must wait for outstanding read requests to complete.
764 * Returns 0 if successful, else propagates up the lower layer error.
767 i915_gem_request_await_object(struct drm_i915_gem_request *to,
768 struct drm_i915_gem_object *obj,
771 struct dma_fence *excl;
775 struct dma_fence **shared;
776 unsigned int count, i;
778 ret = reservation_object_get_fences_rcu(obj->resv,
779 &excl, &count, &shared);
783 for (i = 0; i < count; i++) {
784 ret = i915_gem_request_await_dma_fence(to, shared[i]);
788 dma_fence_put(shared[i]);
791 for (; i < count; i++)
792 dma_fence_put(shared[i]);
795 excl = reservation_object_get_excl_rcu(obj->resv);
800 ret = i915_gem_request_await_dma_fence(to, excl);
808 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
810 struct drm_i915_private *dev_priv = engine->i915;
812 if (dev_priv->gt.awake)
815 GEM_BUG_ON(!dev_priv->gt.active_requests);
817 intel_runtime_pm_get_noresume(dev_priv);
818 dev_priv->gt.awake = true;
820 intel_enable_gt_powersave(dev_priv);
821 i915_update_gfx_val(dev_priv);
822 if (INTEL_GEN(dev_priv) >= 6)
823 gen6_rps_busy(dev_priv);
825 queue_delayed_work(dev_priv->wq,
826 &dev_priv->gt.retire_work,
827 round_jiffies_up_relative(HZ));
831 * NB: This function is not allowed to fail. Doing so would mean the the
832 * request is not being tracked for completion but the work itself is
833 * going to happen on the hardware. This would be a Bad Thing(tm).
835 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
837 struct intel_engine_cs *engine = request->engine;
838 struct intel_ring *ring = request->ring;
839 struct intel_timeline *timeline = request->timeline;
840 struct drm_i915_gem_request *prev;
843 lockdep_assert_held(&request->i915->drm.struct_mutex);
844 trace_i915_gem_request_add(request);
846 /* Make sure that no request gazumped us - if it was allocated after
847 * our i915_gem_request_alloc() and called __i915_add_request() before
848 * us, the timeline will hold its seqno which is later than ours.
850 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
851 request->fence.seqno));
854 * To ensure that this call will not fail, space for its emissions
855 * should already have been reserved in the ring buffer. Let the ring
856 * know that it is time to use that space up.
858 request->reserved_space = 0;
861 * Emit any outstanding flushes - execbuf can fail to emit the flush
862 * after having emitted the batchbuffer command. Hence we need to fix
863 * things up similar to emitting the lazy request. The difference here
864 * is that the flush _must_ happen before the next request, no matter
868 err = engine->emit_flush(request, EMIT_FLUSH);
870 /* Not allowed to fail! */
871 WARN(err, "engine->emit_flush() failed: %d!\n", err);
874 /* Record the position of the start of the breadcrumb so that
875 * should we detect the updated seqno part-way through the
876 * GPU processing the request, we never over-estimate the
877 * position of the ring's HEAD.
879 err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
881 request->postfix = ring->tail;
882 ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
884 /* Seal the request and mark it as pending execution. Note that
885 * we may inspect this state, without holding any locks, during
886 * hangcheck. Hence we apply the barrier to ensure that we do not
887 * see a more recent value in the hws than we are tracking.
890 prev = i915_gem_active_raw(&timeline->last_request,
891 &request->i915->drm.struct_mutex);
893 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
895 if (engine->schedule)
896 __i915_priotree_add_dependency(&request->priotree,
902 spin_lock_irq(&timeline->lock);
903 list_add_tail(&request->link, &timeline->requests);
904 spin_unlock_irq(&timeline->lock);
906 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
907 request->fence.seqno));
909 timeline->last_submitted_seqno = request->fence.seqno;
910 i915_gem_active_set(&timeline->last_request, request);
912 list_add_tail(&request->ring_link, &ring->request_list);
913 request->emitted_jiffies = jiffies;
915 i915_gem_mark_busy(engine);
917 /* Let the backend know a new request has arrived that may need
918 * to adjust the existing execution schedule due to a high priority
919 * request - i.e. we may want to preempt the current request in order
920 * to run a high priority dependency chain *before* we can execute this
923 * This is called before the request is ready to run so that we can
924 * decide whether to preempt the entire chain so that it is ready to
925 * run at the earliest possible convenience.
927 if (engine->schedule)
928 engine->schedule(request, request->ctx->priority);
931 i915_sw_fence_commit(&request->submit);
932 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
935 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
939 spin_lock_irqsave(&q->lock, flags);
940 if (list_empty(&wait->task_list))
941 __add_wait_queue(q, wait);
942 spin_unlock_irqrestore(&q->lock, flags);
945 static unsigned long local_clock_us(unsigned int *cpu)
949 /* Cheaply and approximately convert from nanoseconds to microseconds.
950 * The result and subsequent calculations are also defined in the same
951 * approximate microseconds units. The principal source of timing
952 * error here is from the simple truncation.
954 * Note that local_clock() is only defined wrt to the current CPU;
955 * the comparisons are no longer valid if we switch CPUs. Instead of
956 * blocking preemption for the entire busywait, we can detect the CPU
957 * switch and use that as indicator of system load and a reason to
958 * stop busywaiting, see busywait_stop().
961 t = local_clock() >> 10;
967 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
969 unsigned int this_cpu;
971 if (time_after(local_clock_us(&this_cpu), timeout))
974 return this_cpu != cpu;
977 bool __i915_spin_request(const struct drm_i915_gem_request *req,
978 int state, unsigned long timeout_us)
982 /* When waiting for high frequency requests, e.g. during synchronous
983 * rendering split between the CPU and GPU, the finite amount of time
984 * required to set up the irq and wait upon it limits the response
985 * rate. By busywaiting on the request completion for a short while we
986 * can service the high frequency waits as quick as possible. However,
987 * if it is a slow request, we want to sleep as quickly as possible.
988 * The tradeoff between waiting and sleeping is roughly the time it
989 * takes to sleep on a request, on the order of a microsecond.
992 timeout_us += local_clock_us(&cpu);
994 if (__i915_gem_request_completed(req))
997 if (signal_pending_state(state, current))
1000 if (busywait_stop(timeout_us, cpu))
1004 } while (!need_resched());
1010 __i915_request_wait_for_execute(struct drm_i915_gem_request *request,
1014 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1015 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1016 wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
1020 if (flags & I915_WAIT_LOCKED)
1021 add_wait_queue(q, &reset);
1024 prepare_to_wait(&request->execute.wait, &wait, state);
1026 if (i915_sw_fence_done(&request->execute))
1029 if (flags & I915_WAIT_LOCKED &&
1030 i915_reset_in_progress(&request->i915->gpu_error)) {
1031 __set_current_state(TASK_RUNNING);
1032 i915_reset(request->i915);
1033 reset_wait_queue(q, &reset);
1037 if (signal_pending_state(state, current)) {
1038 timeout = -ERESTARTSYS;
1047 timeout = io_schedule_timeout(timeout);
1049 finish_wait(&request->execute.wait, &wait);
1051 if (flags & I915_WAIT_LOCKED)
1052 remove_wait_queue(q, &reset);
1058 * i915_wait_request - wait until execution of request has finished
1059 * @req: the request to wait upon
1060 * @flags: how to wait
1061 * @timeout: how long to wait in jiffies
1063 * i915_wait_request() waits for the request to be completed, for a
1064 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1067 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1068 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1069 * must not specify that the wait is locked.
1071 * Returns the remaining time (in jiffies) if the request completed, which may
1072 * be zero or -ETIME if the request is unfinished after the timeout expires.
1073 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1074 * pending before the request completes.
1076 long i915_wait_request(struct drm_i915_gem_request *req,
1080 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1081 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1083 struct intel_wait wait;
1086 #if IS_ENABLED(CONFIG_LOCKDEP)
1087 GEM_BUG_ON(debug_locks &&
1088 !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1089 !!(flags & I915_WAIT_LOCKED));
1091 GEM_BUG_ON(timeout < 0);
1093 if (i915_gem_request_completed(req))
1099 trace_i915_gem_request_wait_begin(req);
1101 if (!i915_sw_fence_done(&req->execute)) {
1102 timeout = __i915_request_wait_for_execute(req, flags, timeout);
1106 GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1108 GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1109 GEM_BUG_ON(!req->global_seqno);
1111 /* Optimistic short spin before touching IRQs */
1112 if (i915_spin_request(req, state, 5))
1115 set_current_state(state);
1116 if (flags & I915_WAIT_LOCKED)
1117 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1119 intel_wait_init(&wait, req->global_seqno);
1120 if (intel_engine_add_wait(req->engine, &wait))
1121 /* In order to check that we haven't missed the interrupt
1122 * as we enabled it, we need to kick ourselves to do a
1123 * coherent check on the seqno before we sleep.
1128 if (signal_pending_state(state, current)) {
1129 timeout = -ERESTARTSYS;
1138 timeout = io_schedule_timeout(timeout);
1140 if (intel_wait_complete(&wait))
1143 set_current_state(state);
1146 /* Carefully check if the request is complete, giving time
1147 * for the seqno to be visible following the interrupt.
1148 * We also have to check in case we are kicked by the GPU
1149 * reset in order to drop the struct_mutex.
1151 if (__i915_request_irq_complete(req))
1154 /* If the GPU is hung, and we hold the lock, reset the GPU
1155 * and then check for completion. On a full reset, the engine's
1156 * HW seqno will be advanced passed us and we are complete.
1157 * If we do a partial reset, we have to wait for the GPU to
1158 * resume and update the breadcrumb.
1160 * If we don't hold the mutex, we can just wait for the worker
1161 * to come along and update the breadcrumb (either directly
1162 * itself, or indirectly by recovering the GPU).
1164 if (flags & I915_WAIT_LOCKED &&
1165 i915_reset_in_progress(&req->i915->gpu_error)) {
1166 __set_current_state(TASK_RUNNING);
1167 i915_reset(req->i915);
1168 reset_wait_queue(&req->i915->gpu_error.wait_queue,
1173 /* Only spin if we know the GPU is processing this request */
1174 if (i915_spin_request(req, state, 2))
1178 intel_engine_remove_wait(req->engine, &wait);
1179 if (flags & I915_WAIT_LOCKED)
1180 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1181 __set_current_state(TASK_RUNNING);
1184 trace_i915_gem_request_wait_end(req);
1189 static void engine_retire_requests(struct intel_engine_cs *engine)
1191 struct drm_i915_gem_request *request, *next;
1193 list_for_each_entry_safe(request, next,
1194 &engine->timeline->requests, link) {
1195 if (!__i915_gem_request_completed(request))
1198 i915_gem_request_retire(request);
1202 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1204 struct intel_engine_cs *engine;
1205 enum intel_engine_id id;
1207 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1209 if (!dev_priv->gt.active_requests)
1212 for_each_engine(engine, dev_priv, id)
1213 engine_retire_requests(engine);