2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/uaccess.h>
34 #include <drm/i915_drm.h>
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_frontbuffer.h"
41 #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
43 #define __EXEC_OBJECT_HAS_PIN (1<<31)
44 #define __EXEC_OBJECT_HAS_FENCE (1<<30)
45 #define __EXEC_OBJECT_NEEDS_MAP (1<<29)
46 #define __EXEC_OBJECT_NEEDS_BIAS (1<<28)
47 #define __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
49 #define BATCH_OFFSET_BIAS (256*1024)
51 struct i915_execbuffer_params {
52 struct drm_device *dev;
53 struct drm_file *file;
54 struct i915_vma *batch;
56 u32 args_batch_start_offset;
57 struct intel_engine_cs *engine;
58 struct i915_gem_context *ctx;
59 struct drm_i915_gem_request *request;
63 struct drm_i915_private *i915;
64 struct list_head vmas;
67 struct i915_vma *lut[0];
68 struct hlist_head buckets[0];
72 static struct eb_vmas *
73 eb_create(struct drm_i915_private *i915,
74 struct drm_i915_gem_execbuffer2 *args)
76 struct eb_vmas *eb = NULL;
78 if (args->flags & I915_EXEC_HANDLE_LUT) {
79 unsigned size = args->buffer_count;
80 size *= sizeof(struct i915_vma *);
81 size += sizeof(struct eb_vmas);
82 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
86 unsigned size = args->buffer_count;
87 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
88 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
89 while (count > 2*size)
91 eb = kzalloc(count*sizeof(struct hlist_head) +
92 sizeof(struct eb_vmas),
99 eb->and = -args->buffer_count;
102 INIT_LIST_HEAD(&eb->vmas);
107 eb_reset(struct eb_vmas *eb)
110 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
113 static struct i915_vma *
114 eb_get_batch(struct eb_vmas *eb)
116 struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
119 * SNA is doing fancy tricks with compressing batch buffers, which leads
120 * to negative relocation deltas. Usually that works out ok since the
121 * relocate address is still positive, except when the batch is placed
122 * very low in the GTT. Ensure this doesn't happen.
124 * Note that actual hangs have only been observed on gen7, but for
125 * paranoia do it everywhere.
127 if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
128 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
134 eb_lookup_vmas(struct eb_vmas *eb,
135 struct drm_i915_gem_exec_object2 *exec,
136 const struct drm_i915_gem_execbuffer2 *args,
137 struct i915_address_space *vm,
138 struct drm_file *file)
140 struct drm_i915_gem_object *obj;
141 struct list_head objects;
144 INIT_LIST_HEAD(&objects);
145 spin_lock(&file->table_lock);
146 /* Grab a reference to the object and release the lock so we can lookup
147 * or create the VMA without using GFP_ATOMIC */
148 for (i = 0; i < args->buffer_count; i++) {
149 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
151 spin_unlock(&file->table_lock);
152 DRM_DEBUG("Invalid object handle %d at index %d\n",
158 if (!list_empty(&obj->obj_exec_link)) {
159 spin_unlock(&file->table_lock);
160 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
161 obj, exec[i].handle, i);
166 i915_gem_object_get(obj);
167 list_add_tail(&obj->obj_exec_link, &objects);
169 spin_unlock(&file->table_lock);
172 while (!list_empty(&objects)) {
173 struct i915_vma *vma;
175 obj = list_first_entry(&objects,
176 struct drm_i915_gem_object,
180 * NOTE: We can leak any vmas created here when something fails
181 * later on. But that's no issue since vma_unbind can deal with
182 * vmas which are not actually bound. And since only
183 * lookup_or_create exists as an interface to get at the vma
184 * from the (obj, vm) we don't run the risk of creating
185 * duplicated vmas for the same vm.
187 vma = i915_vma_instance(obj, vm, NULL);
188 if (unlikely(IS_ERR(vma))) {
189 DRM_DEBUG("Failed to lookup VMA\n");
194 /* Transfer ownership from the objects list to the vmas list. */
195 list_add_tail(&vma->exec_list, &eb->vmas);
196 list_del_init(&obj->obj_exec_link);
198 vma->exec_entry = &exec[i];
202 uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
203 vma->exec_handle = handle;
204 hlist_add_head(&vma->exec_node,
205 &eb->buckets[handle & eb->and]);
214 while (!list_empty(&objects)) {
215 obj = list_first_entry(&objects,
216 struct drm_i915_gem_object,
218 list_del_init(&obj->obj_exec_link);
219 i915_gem_object_put(obj);
222 * Objects already transfered to the vmas list will be unreferenced by
229 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
232 if (handle >= -eb->and)
234 return eb->lut[handle];
236 struct hlist_head *head;
237 struct i915_vma *vma;
239 head = &eb->buckets[handle & eb->and];
240 hlist_for_each_entry(vma, head, exec_node) {
241 if (vma->exec_handle == handle)
249 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
251 struct drm_i915_gem_exec_object2 *entry;
253 if (!drm_mm_node_allocated(&vma->node))
256 entry = vma->exec_entry;
258 if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
259 i915_vma_unpin_fence(vma);
261 if (entry->flags & __EXEC_OBJECT_HAS_PIN)
262 __i915_vma_unpin(vma);
264 entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
267 static void eb_destroy(struct eb_vmas *eb)
269 while (!list_empty(&eb->vmas)) {
270 struct i915_vma *vma;
272 vma = list_first_entry(&eb->vmas,
275 list_del_init(&vma->exec_list);
276 i915_gem_execbuffer_unreserve_vma(vma);
277 vma->exec_entry = NULL;
283 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
285 if (!i915_gem_object_has_struct_page(obj))
288 if (DBG_USE_CPU_RELOC)
289 return DBG_USE_CPU_RELOC > 0;
291 return (HAS_LLC(to_i915(obj->base.dev)) ||
292 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
293 obj->cache_level != I915_CACHE_NONE);
296 /* Used to convert any address to canonical form.
297 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
298 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
299 * addresses to be in a canonical form:
300 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
301 * canonical form [63:48] == [47]."
303 #define GEN8_HIGH_ADDRESS_BIT 47
304 static inline uint64_t gen8_canonical_addr(uint64_t address)
306 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
309 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
311 return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
314 static inline uint64_t
315 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
316 uint64_t target_offset)
318 return gen8_canonical_addr((int)reloc->delta + target_offset);
322 struct drm_i915_private *i915;
323 struct drm_mm_node node;
326 bool use_64bit_reloc;
329 static void reloc_cache_init(struct reloc_cache *cache,
330 struct drm_i915_private *i915)
335 /* Must be a variable in the struct to allow GCC to unroll. */
336 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
337 cache->node.allocated = false;
340 static inline void *unmask_page(unsigned long p)
342 return (void *)(uintptr_t)(p & PAGE_MASK);
345 static inline unsigned int unmask_flags(unsigned long p)
347 return p & ~PAGE_MASK;
350 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
352 static void reloc_cache_fini(struct reloc_cache *cache)
359 vaddr = unmask_page(cache->vaddr);
360 if (cache->vaddr & KMAP) {
361 if (cache->vaddr & CLFLUSH_AFTER)
364 kunmap_atomic(vaddr);
365 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
368 io_mapping_unmap_atomic((void __iomem *)vaddr);
369 if (cache->node.allocated) {
370 struct i915_ggtt *ggtt = &cache->i915->ggtt;
372 ggtt->base.clear_range(&ggtt->base,
375 drm_mm_remove_node(&cache->node);
377 i915_vma_unpin((struct i915_vma *)cache->node.mm);
382 static void *reloc_kmap(struct drm_i915_gem_object *obj,
383 struct reloc_cache *cache,
389 kunmap_atomic(unmask_page(cache->vaddr));
391 unsigned int flushes;
394 ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
398 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
399 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
401 cache->vaddr = flushes | KMAP;
402 cache->node.mm = (void *)obj;
407 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
408 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
414 static void *reloc_iomap(struct drm_i915_gem_object *obj,
415 struct reloc_cache *cache,
418 struct i915_ggtt *ggtt = &cache->i915->ggtt;
419 unsigned long offset;
423 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
425 struct i915_vma *vma;
428 if (use_cpu_reloc(obj))
431 ret = i915_gem_object_set_to_gtt_domain(obj, true);
435 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
436 PIN_MAPPABLE | PIN_NONBLOCK);
438 memset(&cache->node, 0, sizeof(cache->node));
439 ret = drm_mm_insert_node_in_range
440 (&ggtt->base.mm, &cache->node,
441 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
442 0, ggtt->mappable_end,
444 if (ret) /* no inactive aperture space, use cpu reloc */
447 ret = i915_vma_put_fence(vma);
453 cache->node.start = vma->node.start;
454 cache->node.mm = (void *)vma;
458 offset = cache->node.start;
459 if (cache->node.allocated) {
461 ggtt->base.insert_page(&ggtt->base,
462 i915_gem_object_get_dma_address(obj, page),
463 offset, I915_CACHE_NONE, 0);
465 offset += page << PAGE_SHIFT;
468 vaddr = (void __force *) io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
470 cache->vaddr = (unsigned long)vaddr;
475 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
476 struct reloc_cache *cache,
481 if (cache->page == page) {
482 vaddr = unmask_page(cache->vaddr);
485 if ((cache->vaddr & KMAP) == 0)
486 vaddr = reloc_iomap(obj, cache, page);
488 vaddr = reloc_kmap(obj, cache, page);
494 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
496 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
497 if (flushes & CLFLUSH_BEFORE) {
504 /* Writes to the same cacheline are serialised by the CPU
505 * (including clflush). On the write path, we only require
506 * that it hits memory in an orderly fashion and place
507 * mb barriers at the start and end of the relocation phase
508 * to ensure ordering of clflush wrt to the system.
510 if (flushes & CLFLUSH_AFTER)
517 relocate_entry(struct drm_i915_gem_object *obj,
518 const struct drm_i915_gem_relocation_entry *reloc,
519 struct reloc_cache *cache,
522 u64 offset = reloc->offset;
523 bool wide = cache->use_64bit_reloc;
526 target_offset = relocation_target(reloc, target_offset);
528 vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
530 return PTR_ERR(vaddr);
532 clflush_write32(vaddr + offset_in_page(offset),
533 lower_32_bits(target_offset),
537 offset += sizeof(u32);
538 target_offset >>= 32;
547 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
549 struct drm_i915_gem_relocation_entry *reloc,
550 struct reloc_cache *cache)
552 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
553 struct drm_gem_object *target_obj;
554 struct drm_i915_gem_object *target_i915_obj;
555 struct i915_vma *target_vma;
556 uint64_t target_offset;
559 /* we've already hold a reference to all valid objects */
560 target_vma = eb_get_vma(eb, reloc->target_handle);
561 if (unlikely(target_vma == NULL))
563 target_i915_obj = target_vma->obj;
564 target_obj = &target_vma->obj->base;
566 target_offset = gen8_canonical_addr(target_vma->node.start);
568 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
569 * pipe_control writes because the gpu doesn't properly redirect them
570 * through the ppgtt for non_secure batchbuffers. */
571 if (unlikely(IS_GEN6(dev_priv) &&
572 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
573 ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
575 if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
579 /* Validate that the target is in a valid r/w GPU domain */
580 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
581 DRM_DEBUG("reloc with multiple write domains: "
582 "obj %p target %d offset %d "
583 "read %08x write %08x",
584 obj, reloc->target_handle,
587 reloc->write_domain);
590 if (unlikely((reloc->write_domain | reloc->read_domains)
591 & ~I915_GEM_GPU_DOMAINS)) {
592 DRM_DEBUG("reloc with read/write non-GPU domains: "
593 "obj %p target %d offset %d "
594 "read %08x write %08x",
595 obj, reloc->target_handle,
598 reloc->write_domain);
602 target_obj->pending_read_domains |= reloc->read_domains;
603 target_obj->pending_write_domain |= reloc->write_domain;
605 /* If the relocation already has the right value in it, no
606 * more work needs to be done.
608 if (target_offset == reloc->presumed_offset)
611 /* Check that the relocation address is valid... */
612 if (unlikely(reloc->offset >
613 obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
614 DRM_DEBUG("Relocation beyond object bounds: "
615 "obj %p target %d offset %d size %d.\n",
616 obj, reloc->target_handle,
618 (int) obj->base.size);
621 if (unlikely(reloc->offset & 3)) {
622 DRM_DEBUG("Relocation not 4-byte aligned: "
623 "obj %p target %d offset %d.\n",
624 obj, reloc->target_handle,
625 (int) reloc->offset);
629 ret = relocate_entry(obj, reloc, cache, target_offset);
633 /* and update the user's relocation entry */
634 reloc->presumed_offset = target_offset;
639 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
642 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
643 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
644 struct drm_i915_gem_relocation_entry __user *user_relocs;
645 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
646 struct reloc_cache cache;
649 user_relocs = u64_to_user_ptr(entry->relocs_ptr);
650 reloc_cache_init(&cache, eb->i915);
652 remain = entry->relocation_count;
654 struct drm_i915_gem_relocation_entry *r = stack_reloc;
655 unsigned long unwritten;
658 count = min_t(unsigned int, remain, ARRAY_SIZE(stack_reloc));
661 /* This is the fast path and we cannot handle a pagefault
662 * whilst holding the struct mutex lest the user pass in the
663 * relocations contained within a mmaped bo. For in such a case
664 * we, the page fault handler would call i915_gem_fault() and
665 * we would try to acquire the struct mutex again. Obviously
666 * this is bad and so lockdep complains vehemently.
669 unwritten = __copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]));
671 if (unlikely(unwritten)) {
677 u64 offset = r->presumed_offset;
679 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r, &cache);
683 if (r->presumed_offset != offset) {
685 unwritten = __put_user(r->presumed_offset,
686 &user_relocs->presumed_offset);
688 if (unlikely(unwritten)) {
689 /* Note that reporting an error now
690 * leaves everything in an inconsistent
691 * state as we have *already* changed
692 * the relocation value inside the
693 * object. As we have not changed the
694 * reloc.presumed_offset or will not
695 * change the execobject.offset, on the
696 * call we may not rewrite the value
697 * inside the object, leaving it
698 * dangling and causing a GPU hang.
711 reloc_cache_fini(&cache);
717 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
719 struct drm_i915_gem_relocation_entry *relocs)
721 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
722 struct reloc_cache cache;
725 reloc_cache_init(&cache, eb->i915);
726 for (i = 0; i < entry->relocation_count; i++) {
727 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i], &cache);
731 reloc_cache_fini(&cache);
737 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
739 struct i915_vma *vma;
742 list_for_each_entry(vma, &eb->vmas, exec_list) {
743 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
751 static bool only_mappable_for_reloc(unsigned int flags)
753 return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
754 __EXEC_OBJECT_NEEDS_MAP;
758 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
759 struct intel_engine_cs *engine,
762 struct drm_i915_gem_object *obj = vma->obj;
763 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
768 if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
771 if (!drm_mm_node_allocated(&vma->node)) {
772 /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
773 * limit address to the first 4GBs for unflagged objects.
775 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
776 flags |= PIN_ZONE_4G;
777 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
778 flags |= PIN_GLOBAL | PIN_MAPPABLE;
779 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
780 flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
781 if (entry->flags & EXEC_OBJECT_PINNED)
782 flags |= entry->offset | PIN_OFFSET_FIXED;
783 if ((flags & PIN_MAPPABLE) == 0)
787 ret = i915_vma_pin(vma,
791 if ((ret == -ENOSPC || ret == -E2BIG) &&
792 only_mappable_for_reloc(entry->flags))
793 ret = i915_vma_pin(vma,
796 flags & ~PIN_MAPPABLE);
800 entry->flags |= __EXEC_OBJECT_HAS_PIN;
802 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
803 ret = i915_vma_get_fence(vma);
807 if (i915_vma_pin_fence(vma))
808 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
811 if (entry->offset != vma->node.start) {
812 entry->offset = vma->node.start;
816 if (entry->flags & EXEC_OBJECT_WRITE) {
817 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
818 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
825 need_reloc_mappable(struct i915_vma *vma)
827 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
829 if (entry->relocation_count == 0)
832 if (!i915_vma_is_ggtt(vma))
835 /* See also use_cpu_reloc() */
836 if (HAS_LLC(to_i915(vma->obj->base.dev)))
839 if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
846 eb_vma_misplaced(struct i915_vma *vma)
848 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
850 WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
851 !i915_vma_is_ggtt(vma));
853 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
856 if (vma->node.size < entry->pad_to_size)
859 if (entry->flags & EXEC_OBJECT_PINNED &&
860 vma->node.start != entry->offset)
863 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
864 vma->node.start < BATCH_OFFSET_BIAS)
867 /* avoid costly ping-pong once a batch bo ended up non-mappable */
868 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
869 !i915_vma_is_map_and_fenceable(vma))
870 return !only_mappable_for_reloc(entry->flags);
872 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
873 (vma->node.start + vma->node.size - 1) >> 32)
880 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
881 struct list_head *vmas,
882 struct i915_gem_context *ctx,
885 struct drm_i915_gem_object *obj;
886 struct i915_vma *vma;
887 struct i915_address_space *vm;
888 struct list_head ordered_vmas;
889 struct list_head pinned_vmas;
890 bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
891 bool needs_unfenced_map = INTEL_INFO(engine->i915)->unfenced_needs_alignment;
894 vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
896 INIT_LIST_HEAD(&ordered_vmas);
897 INIT_LIST_HEAD(&pinned_vmas);
898 while (!list_empty(vmas)) {
899 struct drm_i915_gem_exec_object2 *entry;
900 bool need_fence, need_mappable;
902 vma = list_first_entry(vmas, struct i915_vma, exec_list);
904 entry = vma->exec_entry;
906 if (ctx->flags & CONTEXT_NO_ZEROMAP)
907 entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
909 if (!has_fenced_gpu_access)
910 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
912 (entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
913 needs_unfenced_map) &&
914 i915_gem_object_is_tiled(obj);
915 need_mappable = need_fence || need_reloc_mappable(vma);
917 if (entry->flags & EXEC_OBJECT_PINNED)
918 list_move_tail(&vma->exec_list, &pinned_vmas);
919 else if (need_mappable) {
920 entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
921 list_move(&vma->exec_list, &ordered_vmas);
923 list_move_tail(&vma->exec_list, &ordered_vmas);
925 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
926 obj->base.pending_write_domain = 0;
928 list_splice(&ordered_vmas, vmas);
929 list_splice(&pinned_vmas, vmas);
931 /* Attempt to pin all of the buffers into the GTT.
932 * This is done in 3 phases:
934 * 1a. Unbind all objects that do not match the GTT constraints for
935 * the execbuffer (fenceable, mappable, alignment etc).
936 * 1b. Increment pin count for already bound objects.
937 * 2. Bind new objects.
938 * 3. Decrement pin count.
940 * This avoid unnecessary unbinding of later objects in order to make
941 * room for the earlier objects *unless* we need to defragment.
947 /* Unbind any ill-fitting objects or pin. */
948 list_for_each_entry(vma, vmas, exec_list) {
949 if (!drm_mm_node_allocated(&vma->node))
952 if (eb_vma_misplaced(vma))
953 ret = i915_vma_unbind(vma);
955 ret = i915_gem_execbuffer_reserve_vma(vma,
962 /* Bind fresh objects */
963 list_for_each_entry(vma, vmas, exec_list) {
964 if (drm_mm_node_allocated(&vma->node))
967 ret = i915_gem_execbuffer_reserve_vma(vma, engine,
974 if (ret != -ENOSPC || retry++)
977 /* Decrement pin count for bound objects */
978 list_for_each_entry(vma, vmas, exec_list)
979 i915_gem_execbuffer_unreserve_vma(vma);
981 ret = i915_gem_evict_vm(vm, true);
988 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
989 struct drm_i915_gem_execbuffer2 *args,
990 struct drm_file *file,
991 struct intel_engine_cs *engine,
993 struct drm_i915_gem_exec_object2 *exec,
994 struct i915_gem_context *ctx)
996 struct drm_i915_gem_relocation_entry *reloc;
997 struct i915_address_space *vm;
998 struct i915_vma *vma;
1002 unsigned count = args->buffer_count;
1004 vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1006 /* We may process another execbuffer during the unlock... */
1007 while (!list_empty(&eb->vmas)) {
1008 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1009 list_del_init(&vma->exec_list);
1010 i915_gem_execbuffer_unreserve_vma(vma);
1014 mutex_unlock(&dev->struct_mutex);
1017 for (i = 0; i < count; i++)
1018 total += exec[i].relocation_count;
1020 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1021 reloc = drm_malloc_ab(total, sizeof(*reloc));
1022 if (reloc == NULL || reloc_offset == NULL) {
1023 drm_free_large(reloc);
1024 drm_free_large(reloc_offset);
1025 mutex_lock(&dev->struct_mutex);
1030 for (i = 0; i < count; i++) {
1031 struct drm_i915_gem_relocation_entry __user *user_relocs;
1032 u64 invalid_offset = (u64)-1;
1035 user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1037 if (copy_from_user(reloc+total, user_relocs,
1038 exec[i].relocation_count * sizeof(*reloc))) {
1040 mutex_lock(&dev->struct_mutex);
1044 /* As we do not update the known relocation offsets after
1045 * relocating (due to the complexities in lock handling),
1046 * we need to mark them as invalid now so that we force the
1047 * relocation processing next time. Just in case the target
1048 * object is evicted and then rebound into its old
1049 * presumed_offset before the next execbuffer - if that
1050 * happened we would make the mistake of assuming that the
1051 * relocations were valid.
1053 for (j = 0; j < exec[i].relocation_count; j++) {
1054 if (__copy_to_user(&user_relocs[j].presumed_offset,
1056 sizeof(invalid_offset))) {
1058 mutex_lock(&dev->struct_mutex);
1063 reloc_offset[i] = total;
1064 total += exec[i].relocation_count;
1067 ret = i915_mutex_lock_interruptible(dev);
1069 mutex_lock(&dev->struct_mutex);
1073 /* reacquire the objects */
1075 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1079 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1080 ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1085 list_for_each_entry(vma, &eb->vmas, exec_list) {
1086 int offset = vma->exec_entry - exec;
1087 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1088 reloc + reloc_offset[offset]);
1093 /* Leave the user relocations as are, this is the painfully slow path,
1094 * and we want to avoid the complication of dropping the lock whilst
1095 * having buffers reserved in the aperture and so causing spurious
1096 * ENOSPC for random operations.
1100 drm_free_large(reloc);
1101 drm_free_large(reloc_offset);
1106 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1107 struct list_head *vmas)
1109 struct i915_vma *vma;
1112 list_for_each_entry(vma, vmas, exec_list) {
1113 struct drm_i915_gem_object *obj = vma->obj;
1115 ret = i915_gem_request_await_object
1116 (req, obj, obj->base.pending_write_domain);
1120 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
1121 i915_gem_clflush_object(obj, false);
1124 /* Unconditionally flush any chipset caches (for streaming writes). */
1125 i915_gem_chipset_flush(req->engine->i915);
1127 /* Unconditionally invalidate GPU caches and TLBs. */
1128 return req->engine->emit_flush(req, EMIT_INVALIDATE);
1132 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1134 if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1137 /* Kernel clipping was a DRI1 misfeature */
1138 if (exec->num_cliprects || exec->cliprects_ptr)
1141 if (exec->DR4 == 0xffffffff) {
1142 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1145 if (exec->DR1 || exec->DR4)
1148 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1155 validate_exec_list(struct drm_device *dev,
1156 struct drm_i915_gem_exec_object2 *exec,
1159 unsigned relocs_total = 0;
1160 unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1161 unsigned invalid_flags;
1164 /* INTERNAL flags must not overlap with external ones */
1165 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1167 invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1168 if (USES_FULL_PPGTT(dev))
1169 invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1171 for (i = 0; i < count; i++) {
1172 char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1173 int length; /* limited by fault_in_pages_readable() */
1175 if (exec[i].flags & invalid_flags)
1178 /* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1179 * any non-page-aligned or non-canonical addresses.
1181 if (exec[i].flags & EXEC_OBJECT_PINNED) {
1182 if (exec[i].offset !=
1183 gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1187 /* From drm_mm perspective address space is continuous,
1188 * so from this point we're always using non-canonical
1191 exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1193 if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1196 /* pad_to_size was once a reserved field, so sanitize it */
1197 if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1198 if (offset_in_page(exec[i].pad_to_size))
1201 exec[i].pad_to_size = 0;
1204 /* First check for malicious input causing overflow in
1205 * the worst case where we need to allocate the entire
1206 * relocation tree as a single array.
1208 if (exec[i].relocation_count > relocs_max - relocs_total)
1210 relocs_total += exec[i].relocation_count;
1212 length = exec[i].relocation_count *
1213 sizeof(struct drm_i915_gem_relocation_entry);
1215 * We must check that the entire relocation array is safe
1216 * to read, but since we may need to update the presumed
1217 * offsets during execution, check for full write access.
1219 if (!access_ok(VERIFY_WRITE, ptr, length))
1222 if (likely(!i915.prefault_disable)) {
1223 if (fault_in_pages_readable(ptr, length))
1231 static struct i915_gem_context *
1232 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1233 struct intel_engine_cs *engine, const u32 ctx_id)
1235 struct i915_gem_context *ctx;
1237 ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1241 if (i915_gem_context_is_banned(ctx)) {
1242 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1243 return ERR_PTR(-EIO);
1249 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
1251 return !(obj->cache_level == I915_CACHE_NONE ||
1252 obj->cache_level == I915_CACHE_WT);
1255 void i915_vma_move_to_active(struct i915_vma *vma,
1256 struct drm_i915_gem_request *req,
1259 struct drm_i915_gem_object *obj = vma->obj;
1260 const unsigned int idx = req->engine->id;
1262 lockdep_assert_held(&req->i915->drm.struct_mutex);
1263 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1265 /* Add a reference if we're newly entering the active list.
1266 * The order in which we add operations to the retirement queue is
1267 * vital here: mark_active adds to the start of the callback list,
1268 * such that subsequent callbacks are called first. Therefore we
1269 * add the active reference first and queue for it to be dropped
1272 if (!i915_vma_is_active(vma))
1273 obj->active_count++;
1274 i915_vma_set_active(vma, idx);
1275 i915_gem_active_set(&vma->last_read[idx], req);
1276 list_move_tail(&vma->vm_link, &vma->vm->active_list);
1278 if (flags & EXEC_OBJECT_WRITE) {
1279 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1280 i915_gem_active_set(&obj->frontbuffer_write, req);
1282 /* update for the implicit flush after a batch */
1283 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1284 if (!obj->cache_dirty && gpu_write_needs_clflush(obj))
1285 obj->cache_dirty = true;
1288 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1289 i915_gem_active_set(&vma->last_fence, req);
1292 static void eb_export_fence(struct drm_i915_gem_object *obj,
1293 struct drm_i915_gem_request *req,
1296 struct reservation_object *resv = obj->resv;
1298 /* Ignore errors from failing to allocate the new fence, we can't
1299 * handle an error right now. Worst case should be missed
1300 * synchronisation leading to rendering corruption.
1302 ww_mutex_lock(&resv->lock, NULL);
1303 if (flags & EXEC_OBJECT_WRITE)
1304 reservation_object_add_excl_fence(resv, &req->fence);
1305 else if (reservation_object_reserve_shared(resv) == 0)
1306 reservation_object_add_shared_fence(resv, &req->fence);
1307 ww_mutex_unlock(&resv->lock);
1311 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1312 struct drm_i915_gem_request *req)
1314 struct i915_vma *vma;
1316 list_for_each_entry(vma, vmas, exec_list) {
1317 struct drm_i915_gem_object *obj = vma->obj;
1318 u32 old_read = obj->base.read_domains;
1319 u32 old_write = obj->base.write_domain;
1321 obj->base.write_domain = obj->base.pending_write_domain;
1322 if (obj->base.write_domain)
1323 vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1325 obj->base.pending_read_domains |= obj->base.read_domains;
1326 obj->base.read_domains = obj->base.pending_read_domains;
1328 i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1329 eb_export_fence(obj, req, vma->exec_entry->flags);
1330 trace_i915_gem_object_change_domain(obj, old_read, old_write);
1335 i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1337 struct intel_ring *ring = req->ring;
1340 if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1341 DRM_DEBUG("sol reset is gen7/rcs only\n");
1345 ret = intel_ring_begin(req, 4 * 3);
1349 for (i = 0; i < 4; i++) {
1350 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1351 intel_ring_emit_reg(ring, GEN7_SO_WRITE_OFFSET(i));
1352 intel_ring_emit(ring, 0);
1355 intel_ring_advance(ring);
1360 static struct i915_vma *
1361 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1362 struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1363 struct drm_i915_gem_object *batch_obj,
1365 u32 batch_start_offset,
1369 struct drm_i915_gem_object *shadow_batch_obj;
1370 struct i915_vma *vma;
1373 shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1374 PAGE_ALIGN(batch_len));
1375 if (IS_ERR(shadow_batch_obj))
1376 return ERR_CAST(shadow_batch_obj);
1378 ret = intel_engine_cmd_parser(engine,
1385 if (ret == -EACCES) /* unhandled chained batch */
1392 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1396 memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1398 vma->exec_entry = shadow_exec_entry;
1399 vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1400 i915_gem_object_get(shadow_batch_obj);
1401 list_add_tail(&vma->exec_list, &eb->vmas);
1404 i915_gem_object_unpin_pages(shadow_batch_obj);
1409 execbuf_submit(struct i915_execbuffer_params *params,
1410 struct drm_i915_gem_execbuffer2 *args,
1411 struct list_head *vmas)
1413 u64 exec_start, exec_len;
1416 ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1420 ret = i915_switch_context(params->request);
1424 if (args->flags & I915_EXEC_CONSTANTS_MASK) {
1425 DRM_DEBUG("I915_EXEC_CONSTANTS_* unsupported\n");
1429 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1430 ret = i915_reset_gen7_sol_offsets(params->request);
1435 exec_len = args->batch_len;
1436 exec_start = params->batch->node.start +
1437 params->args_batch_start_offset;
1440 exec_len = params->batch->size - params->args_batch_start_offset;
1442 ret = params->engine->emit_bb_start(params->request,
1443 exec_start, exec_len,
1444 params->dispatch_flags);
1448 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1450 i915_gem_execbuffer_move_to_active(vmas, params->request);
1456 * Find one BSD ring to dispatch the corresponding BSD command.
1457 * The engine index is returned.
1460 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1461 struct drm_file *file)
1463 struct drm_i915_file_private *file_priv = file->driver_priv;
1465 /* Check whether the file_priv has already selected one ring. */
1466 if ((int)file_priv->bsd_engine < 0)
1467 file_priv->bsd_engine = atomic_fetch_xor(1,
1468 &dev_priv->mm.bsd_engine_dispatch_index);
1470 return file_priv->bsd_engine;
1473 #define I915_USER_RINGS (4)
1475 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1476 [I915_EXEC_DEFAULT] = RCS,
1477 [I915_EXEC_RENDER] = RCS,
1478 [I915_EXEC_BLT] = BCS,
1479 [I915_EXEC_BSD] = VCS,
1480 [I915_EXEC_VEBOX] = VECS
1483 static struct intel_engine_cs *
1484 eb_select_engine(struct drm_i915_private *dev_priv,
1485 struct drm_file *file,
1486 struct drm_i915_gem_execbuffer2 *args)
1488 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1489 struct intel_engine_cs *engine;
1491 if (user_ring_id > I915_USER_RINGS) {
1492 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1496 if ((user_ring_id != I915_EXEC_BSD) &&
1497 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1498 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1499 "bsd dispatch flags: %d\n", (int)(args->flags));
1503 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1504 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1506 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1507 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1508 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1509 bsd_idx <= I915_EXEC_BSD_RING2) {
1510 bsd_idx >>= I915_EXEC_BSD_SHIFT;
1513 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1518 engine = dev_priv->engine[_VCS(bsd_idx)];
1520 engine = dev_priv->engine[user_ring_map[user_ring_id]];
1524 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1532 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1533 struct drm_file *file,
1534 struct drm_i915_gem_execbuffer2 *args,
1535 struct drm_i915_gem_exec_object2 *exec)
1537 struct drm_i915_private *dev_priv = to_i915(dev);
1538 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1540 struct drm_i915_gem_exec_object2 shadow_exec_entry;
1541 struct intel_engine_cs *engine;
1542 struct i915_gem_context *ctx;
1543 struct i915_address_space *vm;
1544 struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1545 struct i915_execbuffer_params *params = ¶ms_master;
1546 const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1551 if (!i915_gem_check_execbuffer(args))
1554 ret = validate_exec_list(dev, exec, args->buffer_count);
1559 if (args->flags & I915_EXEC_SECURE) {
1560 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1563 dispatch_flags |= I915_DISPATCH_SECURE;
1565 if (args->flags & I915_EXEC_IS_PINNED)
1566 dispatch_flags |= I915_DISPATCH_PINNED;
1568 engine = eb_select_engine(dev_priv, file, args);
1572 if (args->buffer_count < 1) {
1573 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1577 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1578 if (!HAS_RESOURCE_STREAMER(dev_priv)) {
1579 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1582 if (engine->id != RCS) {
1583 DRM_DEBUG("RS is not available on %s\n",
1588 dispatch_flags |= I915_DISPATCH_RS;
1591 /* Take a local wakeref for preparing to dispatch the execbuf as
1592 * we expect to access the hardware fairly frequently in the
1593 * process. Upon first dispatch, we acquire another prolonged
1594 * wakeref that we hold until the GPU has been idle for at least
1597 intel_runtime_pm_get(dev_priv);
1599 ret = i915_mutex_lock_interruptible(dev);
1603 ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1605 mutex_unlock(&dev->struct_mutex);
1610 i915_gem_context_get(ctx);
1613 vm = &ctx->ppgtt->base;
1617 memset(¶ms_master, 0x00, sizeof(params_master));
1619 eb = eb_create(dev_priv, args);
1621 i915_gem_context_put(ctx);
1622 mutex_unlock(&dev->struct_mutex);
1627 /* Look up object handles */
1628 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1632 /* take note of the batch buffer before we might reorder the lists */
1633 params->batch = eb_get_batch(eb);
1635 /* Move the objects en-masse into the GTT, evicting if necessary. */
1636 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1637 ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1642 /* The objects are in their final locations, apply the relocations. */
1644 ret = i915_gem_execbuffer_relocate(eb);
1646 if (ret == -EFAULT) {
1647 ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1650 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1656 /* Set the pending read domains for the batch buffer to COMMAND */
1657 if (params->batch->obj->base.pending_write_domain) {
1658 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1662 if (args->batch_start_offset > params->batch->size ||
1663 args->batch_len > params->batch->size - args->batch_start_offset) {
1664 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1669 params->args_batch_start_offset = args->batch_start_offset;
1670 if (engine->needs_cmd_parser && args->batch_len) {
1671 struct i915_vma *vma;
1673 vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1676 args->batch_start_offset,
1678 drm_is_current_master(file));
1686 * Batch parsed and accepted:
1688 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1689 * bit from MI_BATCH_BUFFER_START commands issued in
1690 * the dispatch_execbuffer implementations. We
1691 * specifically don't want that set on batches the
1692 * command parser has accepted.
1694 dispatch_flags |= I915_DISPATCH_SECURE;
1695 params->args_batch_start_offset = 0;
1696 params->batch = vma;
1700 params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1702 /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1703 * batch" bit. Hence we need to pin secure batches into the global gtt.
1704 * hsw should have this fixed, but bdw mucks it up again. */
1705 if (dispatch_flags & I915_DISPATCH_SECURE) {
1706 struct drm_i915_gem_object *obj = params->batch->obj;
1707 struct i915_vma *vma;
1710 * So on first glance it looks freaky that we pin the batch here
1711 * outside of the reservation loop. But:
1712 * - The batch is already pinned into the relevant ppgtt, so we
1713 * already have the backing storage fully allocated.
1714 * - No other BO uses the global gtt (well contexts, but meh),
1715 * so we don't really have issues with multiple objects not
1716 * fitting due to fragmentation.
1717 * So this is actually safe.
1719 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1725 params->batch = vma;
1728 /* Allocate a request for this batch buffer nice and early. */
1729 params->request = i915_gem_request_alloc(engine, ctx);
1730 if (IS_ERR(params->request)) {
1731 ret = PTR_ERR(params->request);
1732 goto err_batch_unpin;
1735 /* Whilst this request exists, batch_obj will be on the
1736 * active_list, and so will hold the active reference. Only when this
1737 * request is retired will the the batch_obj be moved onto the
1738 * inactive_list and lose its active reference. Hence we do not need
1739 * to explicitly hold another reference here.
1741 params->request->batch = params->batch;
1743 ret = i915_gem_request_add_to_client(params->request, file);
1748 * Save assorted stuff away to pass through to *_submission().
1749 * NB: This data should be 'persistent' and not local as it will
1750 * kept around beyond the duration of the IOCTL once the GPU
1751 * scheduler arrives.
1754 params->file = file;
1755 params->engine = engine;
1756 params->dispatch_flags = dispatch_flags;
1759 ret = execbuf_submit(params, args, &eb->vmas);
1761 __i915_add_request(params->request, ret == 0);
1765 * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1766 * batch vma for correctness. For less ugly and less fragility this
1767 * needs to be adjusted to also track the ggtt batch vma properly as
1770 if (dispatch_flags & I915_DISPATCH_SECURE)
1771 i915_vma_unpin(params->batch);
1773 /* the request owns the ref now */
1774 i915_gem_context_put(ctx);
1777 mutex_unlock(&dev->struct_mutex);
1780 /* intel_gpu_busy should also get a ref, so it will free when the device
1781 * is really idle. */
1782 intel_runtime_pm_put(dev_priv);
1787 * Legacy execbuffer just creates an exec2 list from the original exec object
1788 * list array and passes it to the real function.
1791 i915_gem_execbuffer(struct drm_device *dev, void *data,
1792 struct drm_file *file)
1794 struct drm_i915_gem_execbuffer *args = data;
1795 struct drm_i915_gem_execbuffer2 exec2;
1796 struct drm_i915_gem_exec_object *exec_list = NULL;
1797 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1800 if (args->buffer_count < 1) {
1801 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1805 /* Copy in the exec list from userland */
1806 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1807 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1808 if (exec_list == NULL || exec2_list == NULL) {
1809 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1810 args->buffer_count);
1811 drm_free_large(exec_list);
1812 drm_free_large(exec2_list);
1815 ret = copy_from_user(exec_list,
1816 u64_to_user_ptr(args->buffers_ptr),
1817 sizeof(*exec_list) * args->buffer_count);
1819 DRM_DEBUG("copy %d exec entries failed %d\n",
1820 args->buffer_count, ret);
1821 drm_free_large(exec_list);
1822 drm_free_large(exec2_list);
1826 for (i = 0; i < args->buffer_count; i++) {
1827 exec2_list[i].handle = exec_list[i].handle;
1828 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1829 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1830 exec2_list[i].alignment = exec_list[i].alignment;
1831 exec2_list[i].offset = exec_list[i].offset;
1832 if (INTEL_GEN(to_i915(dev)) < 4)
1833 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1835 exec2_list[i].flags = 0;
1838 exec2.buffers_ptr = args->buffers_ptr;
1839 exec2.buffer_count = args->buffer_count;
1840 exec2.batch_start_offset = args->batch_start_offset;
1841 exec2.batch_len = args->batch_len;
1842 exec2.DR1 = args->DR1;
1843 exec2.DR4 = args->DR4;
1844 exec2.num_cliprects = args->num_cliprects;
1845 exec2.cliprects_ptr = args->cliprects_ptr;
1846 exec2.flags = I915_EXEC_RENDER;
1847 i915_execbuffer2_set_context_id(exec2, 0);
1849 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1851 struct drm_i915_gem_exec_object __user *user_exec_list =
1852 u64_to_user_ptr(args->buffers_ptr);
1854 /* Copy the new buffer offsets back to the user's exec list. */
1855 for (i = 0; i < args->buffer_count; i++) {
1856 exec2_list[i].offset =
1857 gen8_canonical_addr(exec2_list[i].offset);
1858 ret = __copy_to_user(&user_exec_list[i].offset,
1859 &exec2_list[i].offset,
1860 sizeof(user_exec_list[i].offset));
1863 DRM_DEBUG("failed to copy %d exec entries "
1864 "back to user (%d)\n",
1865 args->buffer_count, ret);
1871 drm_free_large(exec_list);
1872 drm_free_large(exec2_list);
1877 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1878 struct drm_file *file)
1880 struct drm_i915_gem_execbuffer2 *args = data;
1881 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1884 if (args->buffer_count < 1 ||
1885 args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1886 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1890 if (args->rsvd2 != 0) {
1891 DRM_DEBUG("dirty rvsd2 field\n");
1895 exec2_list = drm_malloc_gfp(args->buffer_count,
1896 sizeof(*exec2_list),
1898 if (exec2_list == NULL) {
1899 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1900 args->buffer_count);
1903 ret = copy_from_user(exec2_list,
1904 u64_to_user_ptr(args->buffers_ptr),
1905 sizeof(*exec2_list) * args->buffer_count);
1907 DRM_DEBUG("copy %d exec entries failed %d\n",
1908 args->buffer_count, ret);
1909 drm_free_large(exec2_list);
1913 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1915 /* Copy the new buffer offsets back to the user's exec list. */
1916 struct drm_i915_gem_exec_object2 __user *user_exec_list =
1917 u64_to_user_ptr(args->buffers_ptr);
1920 for (i = 0; i < args->buffer_count; i++) {
1921 exec2_list[i].offset =
1922 gen8_canonical_addr(exec2_list[i].offset);
1923 ret = __copy_to_user(&user_exec_list[i].offset,
1924 &exec2_list[i].offset,
1925 sizeof(user_exec_list[i].offset));
1928 DRM_DEBUG("failed to copy %d exec entries "
1930 args->buffer_count);
1936 drm_free_large(exec2_list);