2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
54 static void set_sr(struct fsldma_chan *chan, u32 val)
56 DMA_OUT(chan, &chan->regs->sr, val, 32);
59 static u32 get_sr(struct fsldma_chan *chan)
61 return DMA_IN(chan, &chan->regs->sr, 32);
64 static void set_mr(struct fsldma_chan *chan, u32 val)
66 DMA_OUT(chan, &chan->regs->mr, val, 32);
69 static u32 get_mr(struct fsldma_chan *chan)
71 return DMA_IN(chan, &chan->regs->mr, 32);
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
86 DMA_OUT(chan, &chan->regs->bcr, val, 32);
89 static u32 get_bcr(struct fsldma_chan *chan)
91 return DMA_IN(chan, &chan->regs->bcr, 32);
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 struct fsl_dma_ld_hw *hw, u32 count)
101 hw->count = CPU_TO_DMA(chan, count, 32);
104 static void set_desc_src(struct fsldma_chan *chan,
105 struct fsl_dma_ld_hw *hw, dma_addr_t src)
109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
114 static void set_desc_dst(struct fsldma_chan *chan,
115 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
124 static void set_desc_next(struct fsldma_chan *chan,
125 struct fsl_dma_ld_hw *hw, dma_addr_t next)
129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
141 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
147 * DMA Engine Hardware Control Helpers
150 static void dma_init(struct fsldma_chan *chan)
152 /* Reset the channel */
155 switch (chan->feature & FSL_DMA_IP_MASK) {
156 case FSL_DMA_IP_85XX:
157 /* Set the channel to below modes:
158 * EIE - Error interrupt enable
159 * EOLNIE - End of links interrupt enable
160 * BWC - Bandwidth sharing among channels
162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 | FSL_DMA_MR_EOLNIE);
165 case FSL_DMA_IP_83XX:
166 /* Set the channel to below modes:
167 * EOTIE - End-of-transfer interrupt enable
168 * PRC_RM - PCI read multiple
170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
175 static int dma_is_idle(struct fsldma_chan *chan)
177 u32 sr = get_sr(chan);
178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
182 * Start the DMA controller
185 * - the CDAR register must point to the start descriptor
186 * - the MRn[CS] bit must be cleared
188 static void dma_start(struct fsldma_chan *chan)
194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
196 mode |= FSL_DMA_MR_EMP_EN;
198 mode &= ~FSL_DMA_MR_EMP_EN;
201 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 mode |= FSL_DMA_MR_EMS_EN;
204 mode &= ~FSL_DMA_MR_EMS_EN;
205 mode |= FSL_DMA_MR_CS;
211 static void dma_halt(struct fsldma_chan *chan)
216 /* read the mode register */
220 * The 85xx controller supports channel abort, which will stop
221 * the current transfer. On 83xx, this bit is the transfer error
222 * mask bit, which should not be changed.
224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 mode |= FSL_DMA_MR_CA;
228 mode &= ~FSL_DMA_MR_CA;
231 /* stop the DMA controller */
232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
235 /* wait for the DMA controller to become idle */
236 for (i = 0; i < 100; i++) {
237 if (dma_is_idle(chan))
243 if (!dma_is_idle(chan))
244 chan_err(chan, "DMA halt timeout!\n");
248 * fsl_chan_set_src_loop_size - Set source address hold transfer size
249 * @chan : Freescale DMA channel
250 * @size : Address loop size, 0 for disable loop
252 * The set source address hold transfer size. The source
253 * address hold or loop transfer size is when the DMA transfer
254 * data from source address (SA), if the loop size is 4, the DMA will
255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256 * SA + 1 ... and so on.
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
266 mode &= ~FSL_DMA_MR_SAHE;
272 mode &= ~FSL_DMA_MR_SAHTS_MASK;
273 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
281 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
282 * @chan : Freescale DMA channel
283 * @size : Address loop size, 0 for disable loop
285 * The set destination address hold transfer size. The destination
286 * address hold or loop transfer size is when the DMA transfer
287 * data to destination address (TA), if the loop size is 4, the DMA will
288 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
289 * TA + 1 ... and so on.
291 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
299 mode &= ~FSL_DMA_MR_DAHE;
305 mode &= ~FSL_DMA_MR_DAHTS_MASK;
306 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
314 * fsl_chan_set_request_count - Set DMA Request Count for external control
315 * @chan : Freescale DMA channel
316 * @size : Number of bytes to transfer in a single request
318 * The Freescale DMA channel can be controlled by the external signal DREQ#.
319 * The DMA request count is how many bytes are allowed to transfer before
320 * pausing the channel, after which a new assertion of DREQ# resumes channel
323 * A size of 0 disables external pause control. The maximum size is 1024.
325 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
332 mode &= ~FSL_DMA_MR_BWC_MASK;
333 mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
339 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
340 * @chan : Freescale DMA channel
341 * @enable : 0 is disabled, 1 is enabled.
343 * The Freescale DMA channel can be controlled by the external signal DREQ#.
344 * The DMA Request Count feature should be used in addition to this feature
345 * to set the number of bytes to transfer before pausing the channel.
347 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
350 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
352 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
356 * fsl_chan_toggle_ext_start - Toggle channel external start status
357 * @chan : Freescale DMA channel
358 * @enable : 0 is disabled, 1 is enabled.
360 * If enable the external start, the channel can be started by an
361 * external DMA start pin. So the dma_start() does not start the
362 * transfer immediately. The DMA channel will wait for the
363 * control pin asserted.
365 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
368 chan->feature |= FSL_DMA_CHAN_START_EXT;
370 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
373 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
375 struct fsldma_chan *chan;
380 chan = to_fsl_chan(dchan);
382 fsl_chan_toggle_ext_start(chan, enable);
385 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
387 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
389 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
391 if (list_empty(&chan->ld_pending))
395 * Add the hardware descriptor to the chain of hardware descriptors
396 * that already exists in memory.
398 * This will un-set the EOL bit of the existing transaction, and the
399 * last link in this transaction will become the EOL descriptor.
401 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
404 * Add the software descriptor and all children to the list
405 * of pending transactions
408 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
411 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
413 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
414 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
415 struct fsl_desc_sw *child;
416 dma_cookie_t cookie = -EINVAL;
418 spin_lock_bh(&chan->desc_lock);
421 if (unlikely(chan->pm_state != RUNNING)) {
422 chan_dbg(chan, "cannot submit due to suspend\n");
423 spin_unlock_bh(&chan->desc_lock);
429 * assign cookies to all of the software descriptors
430 * that make up this transaction
432 list_for_each_entry(child, &desc->tx_list, node) {
433 cookie = dma_cookie_assign(&child->async_tx);
436 /* put this transaction onto the tail of the pending queue */
437 append_ld_queue(chan, desc);
439 spin_unlock_bh(&chan->desc_lock);
445 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
446 * @chan : Freescale DMA channel
447 * @desc: descriptor to be freed
449 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
450 struct fsl_desc_sw *desc)
452 list_del(&desc->node);
453 chan_dbg(chan, "LD %p free\n", desc);
454 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
458 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
459 * @chan : Freescale DMA channel
461 * Return - The descriptor allocated. NULL for failed.
463 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
465 struct fsl_desc_sw *desc;
468 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
470 chan_dbg(chan, "out of memory for link descriptor\n");
474 INIT_LIST_HEAD(&desc->tx_list);
475 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
476 desc->async_tx.tx_submit = fsl_dma_tx_submit;
477 desc->async_tx.phys = pdesc;
479 chan_dbg(chan, "LD %p allocated\n", desc);
485 * fsldma_clean_completed_descriptor - free all descriptors which
486 * has been completed and acked
487 * @chan: Freescale DMA channel
489 * This function is used on all completed and acked descriptors.
490 * All descriptors should only be freed in this function.
492 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
494 struct fsl_desc_sw *desc, *_desc;
496 /* Run the callback for each descriptor, in order */
497 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
498 if (async_tx_test_ack(&desc->async_tx))
499 fsl_dma_free_descriptor(chan, desc);
503 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
504 * @chan: Freescale DMA channel
505 * @desc: descriptor to cleanup and free
506 * @cookie: Freescale DMA transaction identifier
508 * This function is used on a descriptor which has been executed by the DMA
509 * controller. It will run any callbacks, submit any dependencies.
511 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
512 struct fsl_desc_sw *desc, dma_cookie_t cookie)
514 struct dma_async_tx_descriptor *txd = &desc->async_tx;
515 dma_cookie_t ret = cookie;
517 BUG_ON(txd->cookie < 0);
519 if (txd->cookie > 0) {
522 dma_descriptor_unmap(txd);
523 /* Run the link descriptor callback function */
524 dmaengine_desc_get_callback_invoke(txd, NULL);
527 /* Run any dependencies */
528 dma_run_dependencies(txd);
534 * fsldma_clean_running_descriptor - move the completed descriptor from
535 * ld_running to ld_completed
536 * @chan: Freescale DMA channel
537 * @desc: the descriptor which is completed
539 * Free the descriptor directly if acked by async_tx api, or move it to
540 * queue ld_completed.
542 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
543 struct fsl_desc_sw *desc)
545 /* Remove from the list of transactions */
546 list_del(&desc->node);
549 * the client is allowed to attach dependent operations
552 if (!async_tx_test_ack(&desc->async_tx)) {
554 * Move this descriptor to the list of descriptors which is
555 * completed, but still awaiting the 'ack' bit to be set.
557 list_add_tail(&desc->node, &chan->ld_completed);
561 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
565 * fsl_chan_xfer_ld_queue - transfer any pending transactions
566 * @chan : Freescale DMA channel
568 * HARDWARE STATE: idle
569 * LOCKING: must hold chan->desc_lock
571 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
573 struct fsl_desc_sw *desc;
576 * If the list of pending descriptors is empty, then we
577 * don't need to do any work at all
579 if (list_empty(&chan->ld_pending)) {
580 chan_dbg(chan, "no pending LDs\n");
585 * The DMA controller is not idle, which means that the interrupt
586 * handler will start any queued transactions when it runs after
587 * this transaction finishes
590 chan_dbg(chan, "DMA controller still busy\n");
595 * If there are some link descriptors which have not been
596 * transferred, we need to start the controller
600 * Move all elements from the queue of pending transactions
601 * onto the list of running transactions
603 chan_dbg(chan, "idle, starting controller\n");
604 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
605 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
608 * The 85xx DMA controller doesn't clear the channel start bit
609 * automatically at the end of a transfer. Therefore we must clear
610 * it in software before starting the transfer.
612 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
616 mode &= ~FSL_DMA_MR_CS;
621 * Program the descriptor's address into the DMA controller,
622 * then start the DMA transaction
624 set_cdar(chan, desc->async_tx.phys);
632 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
633 * and move them to ld_completed to free until flag 'ack' is set
634 * @chan: Freescale DMA channel
636 * This function is used on descriptors which have been executed by the DMA
637 * controller. It will run any callbacks, submit any dependencies, then
638 * free these descriptors if flag 'ack' is set.
640 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
642 struct fsl_desc_sw *desc, *_desc;
643 dma_cookie_t cookie = 0;
644 dma_addr_t curr_phys = get_cdar(chan);
645 int seen_current = 0;
647 fsldma_clean_completed_descriptor(chan);
649 /* Run the callback for each descriptor, in order */
650 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
652 * do not advance past the current descriptor loaded into the
653 * hardware channel, subsequent descriptors are either in
654 * process or have not been submitted
660 * stop the search if we reach the current descriptor and the
663 if (desc->async_tx.phys == curr_phys) {
665 if (!dma_is_idle(chan))
669 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
671 fsldma_clean_running_descriptor(chan, desc);
675 * Start any pending transactions automatically
677 * In the ideal case, we keep the DMA controller busy while we go
678 * ahead and free the descriptors below.
680 fsl_chan_xfer_ld_queue(chan);
683 chan->common.completed_cookie = cookie;
687 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
688 * @chan : Freescale DMA channel
690 * This function will create a dma pool for descriptor allocation.
692 * Return - The number of descriptors allocated.
694 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
696 struct fsldma_chan *chan = to_fsl_chan(dchan);
698 /* Has this channel already been allocated? */
703 * We need the descriptor to be aligned to 32bytes
704 * for meeting FSL DMA specification requirement.
706 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
707 sizeof(struct fsl_desc_sw),
708 __alignof__(struct fsl_desc_sw), 0);
709 if (!chan->desc_pool) {
710 chan_err(chan, "unable to allocate descriptor pool\n");
714 /* there is at least one descriptor free to be allocated */
719 * fsldma_free_desc_list - Free all descriptors in a queue
720 * @chan: Freescae DMA channel
721 * @list: the list to free
723 * LOCKING: must hold chan->desc_lock
725 static void fsldma_free_desc_list(struct fsldma_chan *chan,
726 struct list_head *list)
728 struct fsl_desc_sw *desc, *_desc;
730 list_for_each_entry_safe(desc, _desc, list, node)
731 fsl_dma_free_descriptor(chan, desc);
734 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
735 struct list_head *list)
737 struct fsl_desc_sw *desc, *_desc;
739 list_for_each_entry_safe_reverse(desc, _desc, list, node)
740 fsl_dma_free_descriptor(chan, desc);
744 * fsl_dma_free_chan_resources - Free all resources of the channel.
745 * @chan : Freescale DMA channel
747 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
749 struct fsldma_chan *chan = to_fsl_chan(dchan);
751 chan_dbg(chan, "free all channel resources\n");
752 spin_lock_bh(&chan->desc_lock);
753 fsldma_cleanup_descriptors(chan);
754 fsldma_free_desc_list(chan, &chan->ld_pending);
755 fsldma_free_desc_list(chan, &chan->ld_running);
756 fsldma_free_desc_list(chan, &chan->ld_completed);
757 spin_unlock_bh(&chan->desc_lock);
759 dma_pool_destroy(chan->desc_pool);
760 chan->desc_pool = NULL;
763 static struct dma_async_tx_descriptor *
764 fsl_dma_prep_memcpy(struct dma_chan *dchan,
765 dma_addr_t dma_dst, dma_addr_t dma_src,
766 size_t len, unsigned long flags)
768 struct fsldma_chan *chan;
769 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
778 chan = to_fsl_chan(dchan);
782 /* Allocate the link descriptor from DMA pool */
783 new = fsl_dma_alloc_descriptor(chan);
785 chan_err(chan, "%s\n", msg_ld_oom);
789 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
791 set_desc_cnt(chan, &new->hw, copy);
792 set_desc_src(chan, &new->hw, dma_src);
793 set_desc_dst(chan, &new->hw, dma_dst);
798 set_desc_next(chan, &prev->hw, new->async_tx.phys);
800 new->async_tx.cookie = 0;
801 async_tx_ack(&new->async_tx);
808 /* Insert the link descriptor to the LD ring */
809 list_add_tail(&new->node, &first->tx_list);
812 new->async_tx.flags = flags; /* client is in control of this ack */
813 new->async_tx.cookie = -EBUSY;
815 /* Set End-of-link to the last link descriptor of new list */
816 set_ld_eol(chan, new);
818 return &first->async_tx;
824 fsldma_free_desc_list_reverse(chan, &first->tx_list);
828 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
830 struct fsldma_chan *chan;
835 chan = to_fsl_chan(dchan);
837 spin_lock_bh(&chan->desc_lock);
839 /* Halt the DMA engine */
842 /* Remove and free all of the descriptors in the LD queue */
843 fsldma_free_desc_list(chan, &chan->ld_pending);
844 fsldma_free_desc_list(chan, &chan->ld_running);
845 fsldma_free_desc_list(chan, &chan->ld_completed);
848 spin_unlock_bh(&chan->desc_lock);
852 static int fsl_dma_device_config(struct dma_chan *dchan,
853 struct dma_slave_config *config)
855 struct fsldma_chan *chan;
861 chan = to_fsl_chan(dchan);
863 /* make sure the channel supports setting burst size */
864 if (!chan->set_request_count)
867 /* we set the controller burst size depending on direction */
868 if (config->direction == DMA_MEM_TO_DEV)
869 size = config->dst_addr_width * config->dst_maxburst;
871 size = config->src_addr_width * config->src_maxburst;
873 chan->set_request_count(chan, size);
879 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
880 * @chan : Freescale DMA channel
882 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
884 struct fsldma_chan *chan = to_fsl_chan(dchan);
886 spin_lock_bh(&chan->desc_lock);
887 fsl_chan_xfer_ld_queue(chan);
888 spin_unlock_bh(&chan->desc_lock);
892 * fsl_tx_status - Determine the DMA status
893 * @chan : Freescale DMA channel
895 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
897 struct dma_tx_state *txstate)
899 struct fsldma_chan *chan = to_fsl_chan(dchan);
902 ret = dma_cookie_status(dchan, cookie, txstate);
903 if (ret == DMA_COMPLETE)
906 spin_lock_bh(&chan->desc_lock);
907 fsldma_cleanup_descriptors(chan);
908 spin_unlock_bh(&chan->desc_lock);
910 return dma_cookie_status(dchan, cookie, txstate);
913 /*----------------------------------------------------------------------------*/
914 /* Interrupt Handling */
915 /*----------------------------------------------------------------------------*/
917 static irqreturn_t fsldma_chan_irq(int irq, void *data)
919 struct fsldma_chan *chan = data;
922 /* save and clear the status register */
925 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
927 /* check that this was really our device */
928 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
932 if (stat & FSL_DMA_SR_TE)
933 chan_err(chan, "Transfer Error!\n");
937 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
938 * trigger a PE interrupt.
940 if (stat & FSL_DMA_SR_PE) {
941 chan_dbg(chan, "irq: Programming Error INT\n");
942 stat &= ~FSL_DMA_SR_PE;
943 if (get_bcr(chan) != 0)
944 chan_err(chan, "Programming Error!\n");
948 * For MPC8349, EOCDI event need to update cookie
949 * and start the next transfer if it exist.
951 if (stat & FSL_DMA_SR_EOCDI) {
952 chan_dbg(chan, "irq: End-of-Chain link INT\n");
953 stat &= ~FSL_DMA_SR_EOCDI;
957 * If it current transfer is the end-of-transfer,
958 * we should clear the Channel Start bit for
959 * prepare next transfer.
961 if (stat & FSL_DMA_SR_EOLNI) {
962 chan_dbg(chan, "irq: End-of-link INT\n");
963 stat &= ~FSL_DMA_SR_EOLNI;
966 /* check that the DMA controller is really idle */
967 if (!dma_is_idle(chan))
968 chan_err(chan, "irq: controller not idle!\n");
970 /* check that we handled all of the bits */
972 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
975 * Schedule the tasklet to handle all cleanup of the current
976 * transaction. It will start a new transaction if there is
979 tasklet_schedule(&chan->tasklet);
980 chan_dbg(chan, "irq: Exit\n");
984 static void dma_do_tasklet(unsigned long data)
986 struct fsldma_chan *chan = (struct fsldma_chan *)data;
988 chan_dbg(chan, "tasklet entry\n");
990 spin_lock(&chan->desc_lock);
992 /* the hardware is now idle and ready for more */
995 /* Run all cleanup for descriptors which have been completed */
996 fsldma_cleanup_descriptors(chan);
998 spin_unlock(&chan->desc_lock);
1000 chan_dbg(chan, "tasklet exit\n");
1003 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1005 struct fsldma_device *fdev = data;
1006 struct fsldma_chan *chan;
1007 unsigned int handled = 0;
1011 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1012 : in_le32(fdev->regs);
1014 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1016 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1017 chan = fdev->chan[i];
1022 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1023 fsldma_chan_irq(irq, chan);
1031 return IRQ_RETVAL(handled);
1034 static void fsldma_free_irqs(struct fsldma_device *fdev)
1036 struct fsldma_chan *chan;
1040 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1041 free_irq(fdev->irq, fdev);
1045 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1046 chan = fdev->chan[i];
1047 if (chan && chan->irq) {
1048 chan_dbg(chan, "free per-channel IRQ\n");
1049 free_irq(chan->irq, chan);
1054 static int fsldma_request_irqs(struct fsldma_device *fdev)
1056 struct fsldma_chan *chan;
1060 /* if we have a per-controller IRQ, use that */
1062 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1063 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1064 "fsldma-controller", fdev);
1068 /* no per-controller IRQ, use the per-channel IRQs */
1069 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1070 chan = fdev->chan[i];
1075 chan_err(chan, "interrupts property missing in device tree\n");
1080 chan_dbg(chan, "request per-channel IRQ\n");
1081 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1082 "fsldma-chan", chan);
1084 chan_err(chan, "unable to request per-channel IRQ\n");
1092 for (/* none */; i >= 0; i--) {
1093 chan = fdev->chan[i];
1100 free_irq(chan->irq, chan);
1106 /*----------------------------------------------------------------------------*/
1107 /* OpenFirmware Subsystem */
1108 /*----------------------------------------------------------------------------*/
1110 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1111 struct device_node *node, u32 feature, const char *compatible)
1113 struct fsldma_chan *chan;
1114 struct resource res;
1118 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1124 /* ioremap registers for use */
1125 chan->regs = of_iomap(node, 0);
1127 dev_err(fdev->dev, "unable to ioremap registers\n");
1132 err = of_address_to_resource(node, 0, &res);
1134 dev_err(fdev->dev, "unable to find 'reg' property\n");
1135 goto out_iounmap_regs;
1138 chan->feature = feature;
1140 fdev->feature = chan->feature;
1143 * If the DMA device's feature is different than the feature
1144 * of its channels, report the bug
1146 WARN_ON(fdev->feature != chan->feature);
1148 chan->dev = fdev->dev;
1149 chan->id = (res.start & 0xfff) < 0x300 ?
1150 ((res.start - 0x100) & 0xfff) >> 7 :
1151 ((res.start - 0x200) & 0xfff) >> 7;
1152 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1153 dev_err(fdev->dev, "too many channels for device\n");
1155 goto out_iounmap_regs;
1158 fdev->chan[chan->id] = chan;
1159 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1160 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1162 /* Initialize the channel */
1165 /* Clear cdar registers */
1168 switch (chan->feature & FSL_DMA_IP_MASK) {
1169 case FSL_DMA_IP_85XX:
1170 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1171 case FSL_DMA_IP_83XX:
1172 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1173 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1174 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1175 chan->set_request_count = fsl_chan_set_request_count;
1178 spin_lock_init(&chan->desc_lock);
1179 INIT_LIST_HEAD(&chan->ld_pending);
1180 INIT_LIST_HEAD(&chan->ld_running);
1181 INIT_LIST_HEAD(&chan->ld_completed);
1184 chan->pm_state = RUNNING;
1187 chan->common.device = &fdev->common;
1188 dma_cookie_init(&chan->common);
1190 /* find the IRQ line, if it exists in the device tree */
1191 chan->irq = irq_of_parse_and_map(node, 0);
1193 /* Add the channel to DMA device channel list */
1194 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1196 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1197 chan->irq ? chan->irq : fdev->irq);
1202 iounmap(chan->regs);
1209 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1211 irq_dispose_mapping(chan->irq);
1212 list_del(&chan->common.device_node);
1213 iounmap(chan->regs);
1217 static int fsldma_of_probe(struct platform_device *op)
1219 struct fsldma_device *fdev;
1220 struct device_node *child;
1223 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1229 fdev->dev = &op->dev;
1230 INIT_LIST_HEAD(&fdev->common.channels);
1232 /* ioremap the registers for use */
1233 fdev->regs = of_iomap(op->dev.of_node, 0);
1235 dev_err(&op->dev, "unable to ioremap registers\n");
1240 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1241 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1243 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1244 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1245 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1246 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1247 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1248 fdev->common.device_tx_status = fsl_tx_status;
1249 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1250 fdev->common.device_config = fsl_dma_device_config;
1251 fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1252 fdev->common.dev = &op->dev;
1254 fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1255 fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1256 fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1257 fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1259 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1261 platform_set_drvdata(op, fdev);
1264 * We cannot use of_platform_bus_probe() because there is no
1265 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1268 for_each_child_of_node(op->dev.of_node, child) {
1269 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1270 fsl_dma_chan_probe(fdev, child,
1271 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1272 "fsl,eloplus-dma-channel");
1275 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1276 fsl_dma_chan_probe(fdev, child,
1277 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1278 "fsl,elo-dma-channel");
1283 * Hookup the IRQ handler(s)
1285 * If we have a per-controller interrupt, we prefer that to the
1286 * per-channel interrupts to reduce the number of shared interrupt
1287 * handlers on the same IRQ line
1289 err = fsldma_request_irqs(fdev);
1291 dev_err(fdev->dev, "unable to request IRQs\n");
1295 dma_async_device_register(&fdev->common);
1299 irq_dispose_mapping(fdev->irq);
1300 iounmap(fdev->regs);
1307 static int fsldma_of_remove(struct platform_device *op)
1309 struct fsldma_device *fdev;
1312 fdev = platform_get_drvdata(op);
1313 dma_async_device_unregister(&fdev->common);
1315 fsldma_free_irqs(fdev);
1317 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1319 fsl_dma_chan_remove(fdev->chan[i]);
1322 iounmap(fdev->regs);
1329 static int fsldma_suspend_late(struct device *dev)
1331 struct fsldma_device *fdev = dev_get_drvdata(dev);
1332 struct fsldma_chan *chan;
1335 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1336 chan = fdev->chan[i];
1340 spin_lock_bh(&chan->desc_lock);
1341 if (unlikely(!chan->idle))
1343 chan->regs_save.mr = get_mr(chan);
1344 chan->pm_state = SUSPENDED;
1345 spin_unlock_bh(&chan->desc_lock);
1350 for (; i >= 0; i--) {
1351 chan = fdev->chan[i];
1354 chan->pm_state = RUNNING;
1355 spin_unlock_bh(&chan->desc_lock);
1360 static int fsldma_resume_early(struct device *dev)
1362 struct fsldma_device *fdev = dev_get_drvdata(dev);
1363 struct fsldma_chan *chan;
1367 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1368 chan = fdev->chan[i];
1372 spin_lock_bh(&chan->desc_lock);
1373 mode = chan->regs_save.mr
1374 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1376 chan->pm_state = RUNNING;
1377 spin_unlock_bh(&chan->desc_lock);
1383 static const struct dev_pm_ops fsldma_pm_ops = {
1384 .suspend_late = fsldma_suspend_late,
1385 .resume_early = fsldma_resume_early,
1389 static const struct of_device_id fsldma_of_ids[] = {
1390 { .compatible = "fsl,elo3-dma", },
1391 { .compatible = "fsl,eloplus-dma", },
1392 { .compatible = "fsl,elo-dma", },
1395 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1397 static struct platform_driver fsldma_of_driver = {
1399 .name = "fsl-elo-dma",
1400 .of_match_table = fsldma_of_ids,
1402 .pm = &fsldma_pm_ops,
1405 .probe = fsldma_of_probe,
1406 .remove = fsldma_of_remove,
1409 /*----------------------------------------------------------------------------*/
1410 /* Module Init / Exit */
1411 /*----------------------------------------------------------------------------*/
1413 static __init int fsldma_init(void)
1415 pr_info("Freescale Elo series DMA driver\n");
1416 return platform_driver_register(&fsldma_of_driver);
1419 static void __exit fsldma_exit(void)
1421 platform_driver_unregister(&fsldma_of_driver);
1424 subsys_initcall(fsldma_init);
1425 module_exit(fsldma_exit);
1427 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1428 MODULE_LICENSE("GPL");