]> Git Repo - linux.git/blob - arch/x86/mm/tlb.c
powerpc: split compat syscall table out from native table
[linux.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10 #include <linux/ptrace.h>
11
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/uv/uv.h>
18
19 /*
20  *      TLB flushing, formerly SMP-only
21  *              c/o Linus Torvalds.
22  *
23  *      These mean you can really definitely utterly forget about
24  *      writing to user space from interrupts. (Its not allowed anyway).
25  *
26  *      Optimizations Manfred Spraul <[email protected]>
27  *
28  *      More scalable flush, from Andi Kleen
29  *
30  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
31  */
32
33 /*
34  * We get here when we do something requiring a TLB invalidation
35  * but could not go invalidate all of the contexts.  We do the
36  * necessary invalidation by clearing out the 'ctx_id' which
37  * forces a TLB flush when the context is loaded.
38  */
39 static void clear_asid_other(void)
40 {
41         u16 asid;
42
43         /*
44          * This is only expected to be set if we have disabled
45          * kernel _PAGE_GLOBAL pages.
46          */
47         if (!static_cpu_has(X86_FEATURE_PTI)) {
48                 WARN_ON_ONCE(1);
49                 return;
50         }
51
52         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
53                 /* Do not need to flush the current asid */
54                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
55                         continue;
56                 /*
57                  * Make sure the next time we go to switch to
58                  * this asid, we do a flush:
59                  */
60                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
61         }
62         this_cpu_write(cpu_tlbstate.invalidate_other, false);
63 }
64
65 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
66
67
68 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
69                             u16 *new_asid, bool *need_flush)
70 {
71         u16 asid;
72
73         if (!static_cpu_has(X86_FEATURE_PCID)) {
74                 *new_asid = 0;
75                 *need_flush = true;
76                 return;
77         }
78
79         if (this_cpu_read(cpu_tlbstate.invalidate_other))
80                 clear_asid_other();
81
82         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
83                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
84                     next->context.ctx_id)
85                         continue;
86
87                 *new_asid = asid;
88                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
89                                next_tlb_gen);
90                 return;
91         }
92
93         /*
94          * We don't currently own an ASID slot on this CPU.
95          * Allocate a slot.
96          */
97         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
98         if (*new_asid >= TLB_NR_DYN_ASIDS) {
99                 *new_asid = 0;
100                 this_cpu_write(cpu_tlbstate.next_asid, 1);
101         }
102         *need_flush = true;
103 }
104
105 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
106 {
107         unsigned long new_mm_cr3;
108
109         if (need_flush) {
110                 invalidate_user_asid(new_asid);
111                 new_mm_cr3 = build_cr3(pgdir, new_asid);
112         } else {
113                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
114         }
115
116         /*
117          * Caution: many callers of this function expect
118          * that load_cr3() is serializing and orders TLB
119          * fills with respect to the mm_cpumask writes.
120          */
121         write_cr3(new_mm_cr3);
122 }
123
124 void leave_mm(int cpu)
125 {
126         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
127
128         /*
129          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
130          * If so, our callers still expect us to flush the TLB, but there
131          * aren't any user TLB entries in init_mm to worry about.
132          *
133          * This needs to happen before any other sanity checks due to
134          * intel_idle's shenanigans.
135          */
136         if (loaded_mm == &init_mm)
137                 return;
138
139         /* Warn if we're not lazy. */
140         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
141
142         switch_mm(NULL, &init_mm, NULL);
143 }
144 EXPORT_SYMBOL_GPL(leave_mm);
145
146 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
147                struct task_struct *tsk)
148 {
149         unsigned long flags;
150
151         local_irq_save(flags);
152         switch_mm_irqs_off(prev, next, tsk);
153         local_irq_restore(flags);
154 }
155
156 static void sync_current_stack_to_mm(struct mm_struct *mm)
157 {
158         unsigned long sp = current_stack_pointer;
159         pgd_t *pgd = pgd_offset(mm, sp);
160
161         if (pgtable_l5_enabled()) {
162                 if (unlikely(pgd_none(*pgd))) {
163                         pgd_t *pgd_ref = pgd_offset_k(sp);
164
165                         set_pgd(pgd, *pgd_ref);
166                 }
167         } else {
168                 /*
169                  * "pgd" is faked.  The top level entries are "p4d"s, so sync
170                  * the p4d.  This compiles to approximately the same code as
171                  * the 5-level case.
172                  */
173                 p4d_t *p4d = p4d_offset(pgd, sp);
174
175                 if (unlikely(p4d_none(*p4d))) {
176                         pgd_t *pgd_ref = pgd_offset_k(sp);
177                         p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
178
179                         set_p4d(p4d, *p4d_ref);
180                 }
181         }
182 }
183
184 static bool ibpb_needed(struct task_struct *tsk, u64 last_ctx_id)
185 {
186         /*
187          * Check if the current (previous) task has access to the memory
188          * of the @tsk (next) task. If access is denied, make sure to
189          * issue a IBPB to stop user->user Spectre-v2 attacks.
190          *
191          * Note: __ptrace_may_access() returns 0 or -ERRNO.
192          */
193         return (tsk && tsk->mm && tsk->mm->context.ctx_id != last_ctx_id &&
194                 ptrace_may_access_sched(tsk, PTRACE_MODE_SPEC_IBPB));
195 }
196
197 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
198                         struct task_struct *tsk)
199 {
200         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
201         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
202         bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
203         unsigned cpu = smp_processor_id();
204         u64 next_tlb_gen;
205         bool need_flush;
206         u16 new_asid;
207
208         /*
209          * NB: The scheduler will call us with prev == next when switching
210          * from lazy TLB mode to normal mode if active_mm isn't changing.
211          * When this happens, we don't assume that CR3 (and hence
212          * cpu_tlbstate.loaded_mm) matches next.
213          *
214          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
215          */
216
217         /* We don't want flush_tlb_func_* to run concurrently with us. */
218         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
219                 WARN_ON_ONCE(!irqs_disabled());
220
221         /*
222          * Verify that CR3 is what we think it is.  This will catch
223          * hypothetical buggy code that directly switches to swapper_pg_dir
224          * without going through leave_mm() / switch_mm_irqs_off() or that
225          * does something like write_cr3(read_cr3_pa()).
226          *
227          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
228          * isn't free.
229          */
230 #ifdef CONFIG_DEBUG_VM
231         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
232                 /*
233                  * If we were to BUG here, we'd be very likely to kill
234                  * the system so hard that we don't see the call trace.
235                  * Try to recover instead by ignoring the error and doing
236                  * a global flush to minimize the chance of corruption.
237                  *
238                  * (This is far from being a fully correct recovery.
239                  *  Architecturally, the CPU could prefetch something
240                  *  back into an incorrect ASID slot and leave it there
241                  *  to cause trouble down the road.  It's better than
242                  *  nothing, though.)
243                  */
244                 __flush_tlb_all();
245         }
246 #endif
247         this_cpu_write(cpu_tlbstate.is_lazy, false);
248
249         /*
250          * The membarrier system call requires a full memory barrier and
251          * core serialization before returning to user-space, after
252          * storing to rq->curr. Writing to CR3 provides that full
253          * memory barrier and core serializing instruction.
254          */
255         if (real_prev == next) {
256                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
257                            next->context.ctx_id);
258
259                 /*
260                  * Even in lazy TLB mode, the CPU should stay set in the
261                  * mm_cpumask. The TLB shootdown code can figure out from
262                  * from cpu_tlbstate.is_lazy whether or not to send an IPI.
263                  */
264                 if (WARN_ON_ONCE(real_prev != &init_mm &&
265                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
266                         cpumask_set_cpu(cpu, mm_cpumask(next));
267
268                 /*
269                  * If the CPU is not in lazy TLB mode, we are just switching
270                  * from one thread in a process to another thread in the same
271                  * process. No TLB flush required.
272                  */
273                 if (!was_lazy)
274                         return;
275
276                 /*
277                  * Read the tlb_gen to check whether a flush is needed.
278                  * If the TLB is up to date, just use it.
279                  * The barrier synchronizes with the tlb_gen increment in
280                  * the TLB shootdown code.
281                  */
282                 smp_mb();
283                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
284                 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
285                                 next_tlb_gen)
286                         return;
287
288                 /*
289                  * TLB contents went out of date while we were in lazy
290                  * mode. Fall through to the TLB switching code below.
291                  */
292                 new_asid = prev_asid;
293                 need_flush = true;
294         } else {
295                 u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
296
297                 /*
298                  * Avoid user/user BTB poisoning by flushing the branch
299                  * predictor when switching between processes. This stops
300                  * one process from doing Spectre-v2 attacks on another.
301                  *
302                  * As an optimization, flush indirect branches only when
303                  * switching into a processes that can't be ptrace by the
304                  * current one (as in such case, attacker has much more
305                  * convenient way how to tamper with the next process than
306                  * branch buffer poisoning).
307                  */
308                 if (static_cpu_has(X86_FEATURE_USE_IBPB) &&
309                                 ibpb_needed(tsk, last_ctx_id))
310                         indirect_branch_prediction_barrier();
311
312                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
313                         /*
314                          * If our current stack is in vmalloc space and isn't
315                          * mapped in the new pgd, we'll double-fault.  Forcibly
316                          * map it.
317                          */
318                         sync_current_stack_to_mm(next);
319                 }
320
321                 /*
322                  * Stop remote flushes for the previous mm.
323                  * Skip kernel threads; we never send init_mm TLB flushing IPIs,
324                  * but the bitmap manipulation can cause cache line contention.
325                  */
326                 if (real_prev != &init_mm) {
327                         VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
328                                                 mm_cpumask(real_prev)));
329                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
330                 }
331
332                 /*
333                  * Start remote flushes and then read tlb_gen.
334                  */
335                 if (next != &init_mm)
336                         cpumask_set_cpu(cpu, mm_cpumask(next));
337                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
338
339                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
340
341                 /* Let nmi_uaccess_okay() know that we're changing CR3. */
342                 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
343                 barrier();
344         }
345
346         if (need_flush) {
347                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
348                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
349                 load_new_mm_cr3(next->pgd, new_asid, true);
350
351                 /*
352                  * NB: This gets called via leave_mm() in the idle path
353                  * where RCU functions differently.  Tracing normally
354                  * uses RCU, so we need to use the _rcuidle variant.
355                  *
356                  * (There is no good reason for this.  The idle code should
357                  *  be rearranged to call this before rcu_idle_enter().)
358                  */
359                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
360         } else {
361                 /* The new ASID is already up to date. */
362                 load_new_mm_cr3(next->pgd, new_asid, false);
363
364                 /* See above wrt _rcuidle. */
365                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
366         }
367
368         /*
369          * Record last user mm's context id, so we can avoid
370          * flushing branch buffer with IBPB if we switch back
371          * to the same user.
372          */
373         if (next != &init_mm)
374                 this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
375
376         /* Make sure we write CR3 before loaded_mm. */
377         barrier();
378
379         this_cpu_write(cpu_tlbstate.loaded_mm, next);
380         this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
381
382         if (next != real_prev) {
383                 load_mm_cr4(next);
384                 switch_ldt(real_prev, next);
385         }
386 }
387
388 /*
389  * Please ignore the name of this function.  It should be called
390  * switch_to_kernel_thread().
391  *
392  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
393  * kernel thread or other context without an mm.  Acceptable implementations
394  * include doing nothing whatsoever, switching to init_mm, or various clever
395  * lazy tricks to try to minimize TLB flushes.
396  *
397  * The scheduler reserves the right to call enter_lazy_tlb() several times
398  * in a row.  It will notify us that we're going back to a real mm by
399  * calling switch_mm_irqs_off().
400  */
401 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
402 {
403         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
404                 return;
405
406         this_cpu_write(cpu_tlbstate.is_lazy, true);
407 }
408
409 /*
410  * Call this when reinitializing a CPU.  It fixes the following potential
411  * problems:
412  *
413  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
414  *   because the CPU was taken down and came back up with CR3's PCID
415  *   bits clear.  CPU hotplug can do this.
416  *
417  * - The TLB contains junk in slots corresponding to inactive ASIDs.
418  *
419  * - The CPU went so far out to lunch that it may have missed a TLB
420  *   flush.
421  */
422 void initialize_tlbstate_and_flush(void)
423 {
424         int i;
425         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
426         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
427         unsigned long cr3 = __read_cr3();
428
429         /* Assert that CR3 already references the right mm. */
430         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
431
432         /*
433          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
434          * doesn't work like other CR4 bits because it can only be set from
435          * long mode.)
436          */
437         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
438                 !(cr4_read_shadow() & X86_CR4_PCIDE));
439
440         /* Force ASID 0 and force a TLB flush. */
441         write_cr3(build_cr3(mm->pgd, 0));
442
443         /* Reinitialize tlbstate. */
444         this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
445         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
446         this_cpu_write(cpu_tlbstate.next_asid, 1);
447         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
448         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
449
450         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
451                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
452 }
453
454 /*
455  * flush_tlb_func_common()'s memory ordering requirement is that any
456  * TLB fills that happen after we flush the TLB are ordered after we
457  * read active_mm's tlb_gen.  We don't need any explicit barriers
458  * because all x86 flush operations are serializing and the
459  * atomic64_read operation won't be reordered by the compiler.
460  */
461 static void flush_tlb_func_common(const struct flush_tlb_info *f,
462                                   bool local, enum tlb_flush_reason reason)
463 {
464         /*
465          * We have three different tlb_gen values in here.  They are:
466          *
467          * - mm_tlb_gen:     the latest generation.
468          * - local_tlb_gen:  the generation that this CPU has already caught
469          *                   up to.
470          * - f->new_tlb_gen: the generation that the requester of the flush
471          *                   wants us to catch up to.
472          */
473         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
474         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
475         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
476         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
477
478         /* This code cannot presently handle being reentered. */
479         VM_WARN_ON(!irqs_disabled());
480
481         if (unlikely(loaded_mm == &init_mm))
482                 return;
483
484         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
485                    loaded_mm->context.ctx_id);
486
487         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
488                 /*
489                  * We're in lazy mode.  We need to at least flush our
490                  * paging-structure cache to avoid speculatively reading
491                  * garbage into our TLB.  Since switching to init_mm is barely
492                  * slower than a minimal flush, just switch to init_mm.
493                  *
494                  * This should be rare, with native_flush_tlb_others skipping
495                  * IPIs to lazy TLB mode CPUs.
496                  */
497                 switch_mm_irqs_off(NULL, &init_mm, NULL);
498                 return;
499         }
500
501         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
502                 /*
503                  * There's nothing to do: we're already up to date.  This can
504                  * happen if two concurrent flushes happen -- the first flush to
505                  * be handled can catch us all the way up, leaving no work for
506                  * the second flush.
507                  */
508                 trace_tlb_flush(reason, 0);
509                 return;
510         }
511
512         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
513         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
514
515         /*
516          * If we get to this point, we know that our TLB is out of date.
517          * This does not strictly imply that we need to flush (it's
518          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
519          * going to need to flush in the very near future, so we might
520          * as well get it over with.
521          *
522          * The only question is whether to do a full or partial flush.
523          *
524          * We do a partial flush if requested and two extra conditions
525          * are met:
526          *
527          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
528          *    we've always done all needed flushes to catch up to
529          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
530          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
531          *    us up to date for tlb_gen 3 is the partial flush we're
532          *    processing.
533          *
534          *    As an example of why this check is needed, suppose that there
535          *    are two concurrent flushes.  The first is a full flush that
536          *    changes context.tlb_gen from 1 to 2.  The second is a partial
537          *    flush that changes context.tlb_gen from 2 to 3.  If they get
538          *    processed on this CPU in reverse order, we'll see
539          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
540          *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
541          *    3, we'd be break the invariant: we'd update local_tlb_gen above
542          *    1 without the full flush that's needed for tlb_gen 2.
543          *
544          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
545          *    Partial TLB flushes are not all that much cheaper than full TLB
546          *    flushes, so it seems unlikely that it would be a performance win
547          *    to do a partial flush if that won't bring our TLB fully up to
548          *    date.  By doing a full flush instead, we can increase
549          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
550          *    avoid another flush in the very near future.
551          */
552         if (f->end != TLB_FLUSH_ALL &&
553             f->new_tlb_gen == local_tlb_gen + 1 &&
554             f->new_tlb_gen == mm_tlb_gen) {
555                 /* Partial flush */
556                 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
557                 unsigned long addr = f->start;
558
559                 while (addr < f->end) {
560                         __flush_tlb_one_user(addr);
561                         addr += 1UL << f->stride_shift;
562                 }
563                 if (local)
564                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
565                 trace_tlb_flush(reason, nr_invalidate);
566         } else {
567                 /* Full flush. */
568                 local_flush_tlb();
569                 if (local)
570                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
571                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
572         }
573
574         /* Both paths above update our state to mm_tlb_gen. */
575         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
576 }
577
578 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
579 {
580         const struct flush_tlb_info *f = info;
581
582         flush_tlb_func_common(f, true, reason);
583 }
584
585 static void flush_tlb_func_remote(void *info)
586 {
587         const struct flush_tlb_info *f = info;
588
589         inc_irq_stat(irq_tlb_count);
590
591         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
592                 return;
593
594         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
595         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
596 }
597
598 static bool tlb_is_not_lazy(int cpu, void *data)
599 {
600         return !per_cpu(cpu_tlbstate.is_lazy, cpu);
601 }
602
603 void native_flush_tlb_others(const struct cpumask *cpumask,
604                              const struct flush_tlb_info *info)
605 {
606         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
607         if (info->end == TLB_FLUSH_ALL)
608                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
609         else
610                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
611                                 (info->end - info->start) >> PAGE_SHIFT);
612
613         if (is_uv_system()) {
614                 /*
615                  * This whole special case is confused.  UV has a "Broadcast
616                  * Assist Unit", which seems to be a fancy way to send IPIs.
617                  * Back when x86 used an explicit TLB flush IPI, UV was
618                  * optimized to use its own mechanism.  These days, x86 uses
619                  * smp_call_function_many(), but UV still uses a manual IPI,
620                  * and that IPI's action is out of date -- it does a manual
621                  * flush instead of calling flush_tlb_func_remote().  This
622                  * means that the percpu tlb_gen variables won't be updated
623                  * and we'll do pointless flushes on future context switches.
624                  *
625                  * Rather than hooking native_flush_tlb_others() here, I think
626                  * that UV should be updated so that smp_call_function_many(),
627                  * etc, are optimal on UV.
628                  */
629                 unsigned int cpu;
630
631                 cpu = smp_processor_id();
632                 cpumask = uv_flush_tlb_others(cpumask, info);
633                 if (cpumask)
634                         smp_call_function_many(cpumask, flush_tlb_func_remote,
635                                                (void *)info, 1);
636                 return;
637         }
638
639         /*
640          * If no page tables were freed, we can skip sending IPIs to
641          * CPUs in lazy TLB mode. They will flush the CPU themselves
642          * at the next context switch.
643          *
644          * However, if page tables are getting freed, we need to send the
645          * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
646          * up on the new contents of what used to be page tables, while
647          * doing a speculative memory access.
648          */
649         if (info->freed_tables)
650                 smp_call_function_many(cpumask, flush_tlb_func_remote,
651                                (void *)info, 1);
652         else
653                 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
654                                 (void *)info, 1, GFP_ATOMIC, cpumask);
655 }
656
657 /*
658  * See Documentation/x86/tlb.txt for details.  We choose 33
659  * because it is large enough to cover the vast majority (at
660  * least 95%) of allocations, and is small enough that we are
661  * confident it will not cause too much overhead.  Each single
662  * flush is about 100 ns, so this caps the maximum overhead at
663  * _about_ 3,000 ns.
664  *
665  * This is in units of pages.
666  */
667 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
668
669 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
670                                 unsigned long end, unsigned int stride_shift,
671                                 bool freed_tables)
672 {
673         int cpu;
674
675         struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
676                 .mm = mm,
677                 .stride_shift = stride_shift,
678                 .freed_tables = freed_tables,
679         };
680
681         cpu = get_cpu();
682
683         /* This is also a barrier that synchronizes with switch_mm(). */
684         info.new_tlb_gen = inc_mm_tlb_gen(mm);
685
686         /* Should we flush just the requested range? */
687         if ((end != TLB_FLUSH_ALL) &&
688             ((end - start) >> stride_shift) <= tlb_single_page_flush_ceiling) {
689                 info.start = start;
690                 info.end = end;
691         } else {
692                 info.start = 0UL;
693                 info.end = TLB_FLUSH_ALL;
694         }
695
696         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
697                 VM_WARN_ON(irqs_disabled());
698                 local_irq_disable();
699                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
700                 local_irq_enable();
701         }
702
703         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
704                 flush_tlb_others(mm_cpumask(mm), &info);
705
706         put_cpu();
707 }
708
709
710 static void do_flush_tlb_all(void *info)
711 {
712         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
713         __flush_tlb_all();
714 }
715
716 void flush_tlb_all(void)
717 {
718         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
719         on_each_cpu(do_flush_tlb_all, NULL, 1);
720 }
721
722 static void do_kernel_range_flush(void *info)
723 {
724         struct flush_tlb_info *f = info;
725         unsigned long addr;
726
727         /* flush range by one by one 'invlpg' */
728         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
729                 __flush_tlb_one_kernel(addr);
730 }
731
732 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
733 {
734
735         /* Balance as user space task's flush, a bit conservative */
736         if (end == TLB_FLUSH_ALL ||
737             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
738                 on_each_cpu(do_flush_tlb_all, NULL, 1);
739         } else {
740                 struct flush_tlb_info info;
741                 info.start = start;
742                 info.end = end;
743                 on_each_cpu(do_kernel_range_flush, &info, 1);
744         }
745 }
746
747 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
748 {
749         struct flush_tlb_info info = {
750                 .mm = NULL,
751                 .start = 0UL,
752                 .end = TLB_FLUSH_ALL,
753         };
754
755         int cpu = get_cpu();
756
757         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
758                 VM_WARN_ON(irqs_disabled());
759                 local_irq_disable();
760                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
761                 local_irq_enable();
762         }
763
764         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
765                 flush_tlb_others(&batch->cpumask, &info);
766
767         cpumask_clear(&batch->cpumask);
768
769         put_cpu();
770 }
771
772 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
773                              size_t count, loff_t *ppos)
774 {
775         char buf[32];
776         unsigned int len;
777
778         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
779         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
780 }
781
782 static ssize_t tlbflush_write_file(struct file *file,
783                  const char __user *user_buf, size_t count, loff_t *ppos)
784 {
785         char buf[32];
786         ssize_t len;
787         int ceiling;
788
789         len = min(count, sizeof(buf) - 1);
790         if (copy_from_user(buf, user_buf, len))
791                 return -EFAULT;
792
793         buf[len] = '\0';
794         if (kstrtoint(buf, 0, &ceiling))
795                 return -EINVAL;
796
797         if (ceiling < 0)
798                 return -EINVAL;
799
800         tlb_single_page_flush_ceiling = ceiling;
801         return count;
802 }
803
804 static const struct file_operations fops_tlbflush = {
805         .read = tlbflush_read_file,
806         .write = tlbflush_write_file,
807         .llseek = default_llseek,
808 };
809
810 static int __init create_tlb_single_page_flush_ceiling(void)
811 {
812         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
813                             arch_debugfs_dir, NULL, &fops_tlbflush);
814         return 0;
815 }
816 late_initcall(create_tlb_single_page_flush_ceiling);
This page took 0.072882 seconds and 4 git commands to generate.