2 * Copyright (C) 1995 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * Memory region support
9 * Added E820 sanitization routine (removes overlapping memory regions);
12 * Moved CPU detection code to cpu/${cpu}.c
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
21 * This file handles the architecture-dependent parts of initialization
24 #include <linux/sched.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/memblock.h>
34 #include <linux/seq_file.h>
35 #include <linux/console.h>
36 #include <linux/root_dev.h>
37 #include <linux/highmem.h>
38 #include <linux/export.h>
39 #include <linux/efi.h>
40 #include <linux/init.h>
41 #include <linux/edd.h>
42 #include <linux/iscsi_ibft.h>
43 #include <linux/nodemask.h>
44 #include <linux/kexec.h>
45 #include <linux/dmi.h>
46 #include <linux/pfn.h>
47 #include <linux/pci.h>
48 #include <asm/pci-direct.h>
49 #include <linux/init_ohci1394_dma.h>
50 #include <linux/kvm_para.h>
51 #include <linux/dma-contiguous.h>
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 #include <linux/mem_encrypt.h>
74 #include <linux/usb/xhci-dbgp.h>
75 #include <video/edid.h>
79 #include <asm/realmode.h>
80 #include <asm/e820/api.h>
81 #include <asm/mpspec.h>
82 #include <asm/setup.h>
84 #include <asm/timer.h>
85 #include <asm/i8259.h>
86 #include <asm/sections.h>
87 #include <asm/io_apic.h>
89 #include <asm/setup_arch.h>
90 #include <asm/bios_ebda.h>
91 #include <asm/cacheflush.h>
92 #include <asm/processor.h>
94 #include <asm/kasan.h>
96 #include <asm/vsyscall.h>
100 #include <asm/iommu.h>
101 #include <asm/gart.h>
102 #include <asm/mmu_context.h>
103 #include <asm/proto.h>
105 #include <asm/paravirt.h>
106 #include <asm/hypervisor.h>
107 #include <asm/olpc_ofw.h>
109 #include <asm/percpu.h>
110 #include <asm/topology.h>
111 #include <asm/apicdef.h>
112 #include <asm/amd_nb.h>
114 #include <asm/alternative.h>
115 #include <asm/prom.h>
116 #include <asm/microcode.h>
117 #include <asm/kaslr.h>
118 #include <asm/unwind.h>
121 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
122 * max_pfn_mapped: highest direct mapped pfn over 4GB
124 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
125 * represented by pfn_mapped
127 unsigned long max_low_pfn_mapped;
128 unsigned long max_pfn_mapped;
131 RESERVE_BRK(dmi_alloc, 65536);
135 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
136 unsigned long _brk_end = (unsigned long)__brk_base;
138 struct boot_params boot_params;
143 static struct resource data_resource = {
144 .name = "Kernel data",
147 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
150 static struct resource code_resource = {
151 .name = "Kernel code",
154 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
157 static struct resource bss_resource = {
158 .name = "Kernel bss",
161 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
166 /* cpu data as detected by the assembly code in head_32.S */
167 struct cpuinfo_x86 new_cpu_data;
169 /* common cpu data for all cpus */
170 struct cpuinfo_x86 boot_cpu_data __read_mostly;
171 EXPORT_SYMBOL(boot_cpu_data);
173 unsigned int def_to_bigsmp;
175 /* for MCA, but anyone else can use it if they want */
176 unsigned int machine_id;
177 unsigned int machine_submodel_id;
178 unsigned int BIOS_revision;
180 struct apm_info apm_info;
181 EXPORT_SYMBOL(apm_info);
183 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
184 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
185 struct ist_info ist_info;
186 EXPORT_SYMBOL(ist_info);
188 struct ist_info ist_info;
192 struct cpuinfo_x86 boot_cpu_data __read_mostly;
193 EXPORT_SYMBOL(boot_cpu_data);
197 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
198 __visible unsigned long mmu_cr4_features __ro_after_init;
200 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
203 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
204 int bootloader_type, bootloader_version;
209 struct screen_info screen_info;
210 EXPORT_SYMBOL(screen_info);
211 struct edid_info edid_info;
212 EXPORT_SYMBOL_GPL(edid_info);
214 extern int root_mountflags;
216 unsigned long saved_video_mode;
218 #define RAMDISK_IMAGE_START_MASK 0x07FF
219 #define RAMDISK_PROMPT_FLAG 0x8000
220 #define RAMDISK_LOAD_FLAG 0x4000
222 static char __initdata command_line[COMMAND_LINE_SIZE];
223 #ifdef CONFIG_CMDLINE_BOOL
224 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
227 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
229 #ifdef CONFIG_EDD_MODULE
233 * copy_edd() - Copy the BIOS EDD information
234 * from boot_params into a safe place.
237 static inline void __init copy_edd(void)
239 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
240 sizeof(edd.mbr_signature));
241 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
242 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
243 edd.edd_info_nr = boot_params.eddbuf_entries;
246 static inline void __init copy_edd(void)
251 void * __init extend_brk(size_t size, size_t align)
253 size_t mask = align - 1;
256 BUG_ON(_brk_start == 0);
257 BUG_ON(align & mask);
259 _brk_end = (_brk_end + mask) & ~mask;
260 BUG_ON((char *)(_brk_end + size) > __brk_limit);
262 ret = (void *)_brk_end;
265 memset(ret, 0, size);
271 static void __init cleanup_highmap(void)
276 static void __init reserve_brk(void)
278 if (_brk_end > _brk_start)
279 memblock_reserve(__pa_symbol(_brk_start),
280 _brk_end - _brk_start);
282 /* Mark brk area as locked down and no longer taking any
287 u64 relocated_ramdisk;
289 #ifdef CONFIG_BLK_DEV_INITRD
291 static u64 __init get_ramdisk_image(void)
293 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
295 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
297 return ramdisk_image;
299 static u64 __init get_ramdisk_size(void)
301 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
303 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
308 static void __init relocate_initrd(void)
310 /* Assume only end is not page aligned */
311 u64 ramdisk_image = get_ramdisk_image();
312 u64 ramdisk_size = get_ramdisk_size();
313 u64 area_size = PAGE_ALIGN(ramdisk_size);
315 /* We need to move the initrd down into directly mapped mem */
316 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
317 area_size, PAGE_SIZE);
319 if (!relocated_ramdisk)
320 panic("Cannot find place for new RAMDISK of size %lld\n",
323 /* Note: this includes all the mem currently occupied by
324 the initrd, we rely on that fact to keep the data intact. */
325 memblock_reserve(relocated_ramdisk, area_size);
326 initrd_start = relocated_ramdisk + PAGE_OFFSET;
327 initrd_end = initrd_start + ramdisk_size;
328 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
329 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
331 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
333 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
334 " [mem %#010llx-%#010llx]\n",
335 ramdisk_image, ramdisk_image + ramdisk_size - 1,
336 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
339 static void __init early_reserve_initrd(void)
341 /* Assume only end is not page aligned */
342 u64 ramdisk_image = get_ramdisk_image();
343 u64 ramdisk_size = get_ramdisk_size();
344 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
346 if (!boot_params.hdr.type_of_loader ||
347 !ramdisk_image || !ramdisk_size)
348 return; /* No initrd provided by bootloader */
350 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
352 static void __init reserve_initrd(void)
354 /* Assume only end is not page aligned */
355 u64 ramdisk_image = get_ramdisk_image();
356 u64 ramdisk_size = get_ramdisk_size();
357 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
360 if (!boot_params.hdr.type_of_loader ||
361 !ramdisk_image || !ramdisk_size)
362 return; /* No initrd provided by bootloader */
366 mapped_size = memblock_mem_size(max_pfn_mapped);
367 if (ramdisk_size >= (mapped_size>>1))
368 panic("initrd too large to handle, "
369 "disabling initrd (%lld needed, %lld available)\n",
370 ramdisk_size, mapped_size>>1);
372 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
375 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
376 PFN_DOWN(ramdisk_end))) {
377 /* All are mapped, easy case */
378 initrd_start = ramdisk_image + PAGE_OFFSET;
379 initrd_end = initrd_start + ramdisk_size;
385 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
389 static void __init early_reserve_initrd(void)
392 static void __init reserve_initrd(void)
395 #endif /* CONFIG_BLK_DEV_INITRD */
397 static void __init parse_setup_data(void)
399 struct setup_data *data;
400 u64 pa_data, pa_next;
402 pa_data = boot_params.hdr.setup_data;
404 u32 data_len, data_type;
406 data = early_memremap(pa_data, sizeof(*data));
407 data_len = data->len + sizeof(struct setup_data);
408 data_type = data->type;
409 pa_next = data->next;
410 early_memunmap(data, sizeof(*data));
414 e820__memory_setup_extended(pa_data, data_len);
420 parse_efi_setup(pa_data, data_len);
429 static void __init memblock_x86_reserve_range_setup_data(void)
431 struct setup_data *data;
434 pa_data = boot_params.hdr.setup_data;
436 data = early_memremap(pa_data, sizeof(*data));
437 memblock_reserve(pa_data, sizeof(*data) + data->len);
438 pa_data = data->next;
439 early_memunmap(data, sizeof(*data));
444 * --------- Crashkernel reservation ------------------------------
447 #ifdef CONFIG_KEXEC_CORE
449 /* 16M alignment for crash kernel regions */
450 #define CRASH_ALIGN (16 << 20)
453 * Keep the crash kernel below this limit. On 32 bits earlier kernels
454 * would limit the kernel to the low 512 MiB due to mapping restrictions.
455 * On 64bit, old kexec-tools need to under 896MiB.
458 # define CRASH_ADDR_LOW_MAX (512 << 20)
459 # define CRASH_ADDR_HIGH_MAX (512 << 20)
461 # define CRASH_ADDR_LOW_MAX (896UL << 20)
462 # define CRASH_ADDR_HIGH_MAX MAXMEM
465 static int __init reserve_crashkernel_low(void)
468 unsigned long long base, low_base = 0, low_size = 0;
469 unsigned long total_low_mem;
472 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
474 /* crashkernel=Y,low */
475 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
478 * two parts from lib/swiotlb.c:
479 * -swiotlb size: user-specified with swiotlb= or default.
481 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
482 * to 8M for other buffers that may need to stay low too. Also
483 * make sure we allocate enough extra low memory so that we
484 * don't run out of DMA buffers for 32-bit devices.
486 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
488 /* passed with crashkernel=0,low ? */
493 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
495 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
496 (unsigned long)(low_size >> 20));
500 ret = memblock_reserve(low_base, low_size);
502 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
506 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
507 (unsigned long)(low_size >> 20),
508 (unsigned long)(low_base >> 20),
509 (unsigned long)(total_low_mem >> 20));
511 crashk_low_res.start = low_base;
512 crashk_low_res.end = low_base + low_size - 1;
513 insert_resource(&iomem_resource, &crashk_low_res);
518 static void __init reserve_crashkernel(void)
520 unsigned long long crash_size, crash_base, total_mem;
524 total_mem = memblock_phys_mem_size();
527 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
528 if (ret != 0 || crash_size <= 0) {
529 /* crashkernel=X,high */
530 ret = parse_crashkernel_high(boot_command_line, total_mem,
531 &crash_size, &crash_base);
532 if (ret != 0 || crash_size <= 0)
537 if (xen_pv_domain()) {
538 pr_info("Ignoring crashkernel for a Xen PV domain\n");
542 /* 0 means: find the address automatically */
543 if (crash_base <= 0) {
545 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
546 * as old kexec-tools loads bzImage below that, unless
547 * "crashkernel=size[KMG],high" is specified.
549 crash_base = memblock_find_in_range(CRASH_ALIGN,
550 high ? CRASH_ADDR_HIGH_MAX
551 : CRASH_ADDR_LOW_MAX,
552 crash_size, CRASH_ALIGN);
554 pr_info("crashkernel reservation failed - No suitable area found.\n");
559 unsigned long long start;
561 start = memblock_find_in_range(crash_base,
562 crash_base + crash_size,
563 crash_size, 1 << 20);
564 if (start != crash_base) {
565 pr_info("crashkernel reservation failed - memory is in use.\n");
569 ret = memblock_reserve(crash_base, crash_size);
571 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
575 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
576 memblock_free(crash_base, crash_size);
580 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
581 (unsigned long)(crash_size >> 20),
582 (unsigned long)(crash_base >> 20),
583 (unsigned long)(total_mem >> 20));
585 crashk_res.start = crash_base;
586 crashk_res.end = crash_base + crash_size - 1;
587 insert_resource(&iomem_resource, &crashk_res);
590 static void __init reserve_crashkernel(void)
595 static struct resource standard_io_resources[] = {
596 { .name = "dma1", .start = 0x00, .end = 0x1f,
597 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
598 { .name = "pic1", .start = 0x20, .end = 0x21,
599 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
600 { .name = "timer0", .start = 0x40, .end = 0x43,
601 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
602 { .name = "timer1", .start = 0x50, .end = 0x53,
603 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
604 { .name = "keyboard", .start = 0x60, .end = 0x60,
605 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
606 { .name = "keyboard", .start = 0x64, .end = 0x64,
607 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
608 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
609 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
610 { .name = "pic2", .start = 0xa0, .end = 0xa1,
611 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
612 { .name = "dma2", .start = 0xc0, .end = 0xdf,
613 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
614 { .name = "fpu", .start = 0xf0, .end = 0xff,
615 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
618 void __init reserve_standard_io_resources(void)
622 /* request I/O space for devices used on all i[345]86 PCs */
623 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
624 request_resource(&ioport_resource, &standard_io_resources[i]);
628 static __init void reserve_ibft_region(void)
630 unsigned long addr, size = 0;
632 addr = find_ibft_region(&size);
635 memblock_reserve(addr, size);
638 static bool __init snb_gfx_workaround_needed(void)
643 static const __initconst u16 snb_ids[] = {
653 /* Assume no if something weird is going on with PCI */
654 if (!early_pci_allowed())
657 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
658 if (vendor != 0x8086)
661 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
662 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
663 if (devid == snb_ids[i])
671 * Sandy Bridge graphics has trouble with certain ranges, exclude
672 * them from allocation.
674 static void __init trim_snb_memory(void)
676 static const __initconst unsigned long bad_pages[] = {
685 if (!snb_gfx_workaround_needed())
688 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
691 * Reserve all memory below the 1 MB mark that has not
692 * already been reserved.
694 memblock_reserve(0, 1<<20);
696 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
697 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
698 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
704 * Here we put platform-specific memory range workarounds, i.e.
705 * memory known to be corrupt or otherwise in need to be reserved on
706 * specific platforms.
708 * If this gets used more widely it could use a real dispatch mechanism.
710 static void __init trim_platform_memory_ranges(void)
715 static void __init trim_bios_range(void)
718 * A special case is the first 4Kb of memory;
719 * This is a BIOS owned area, not kernel ram, but generally
720 * not listed as such in the E820 table.
722 * This typically reserves additional memory (64KiB by default)
723 * since some BIOSes are known to corrupt low memory. See the
724 * Kconfig help text for X86_RESERVE_LOW.
726 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
729 * special case: Some BIOSen report the PC BIOS
730 * area (640->1Mb) as ram even though it is not.
733 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
735 e820__update_table(e820_table);
738 /* called before trim_bios_range() to spare extra sanitize */
739 static void __init e820_add_kernel_range(void)
741 u64 start = __pa_symbol(_text);
742 u64 size = __pa_symbol(_end) - start;
745 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
746 * attempt to fix it by adding the range. We may have a confused BIOS,
747 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
748 * exclude kernel range. If we really are running on top non-RAM,
749 * we will crash later anyways.
751 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
754 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
755 e820__range_remove(start, size, E820_TYPE_RAM, 0);
756 e820__range_add(start, size, E820_TYPE_RAM);
759 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
761 static int __init parse_reservelow(char *p)
763 unsigned long long size;
768 size = memparse(p, &p);
781 early_param("reservelow", parse_reservelow);
783 static void __init trim_low_memory_range(void)
785 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
789 * Dump out kernel offset information on panic.
792 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
794 if (kaslr_enabled()) {
795 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
801 pr_emerg("Kernel Offset: disabled\n");
808 * Determine if we were loaded by an EFI loader. If so, then we have also been
809 * passed the efi memmap, systab, etc., so we should use these data structures
810 * for initialization. Note, the efi init code path is determined by the
811 * global efi_enabled. This allows the same kernel image to be used on existing
812 * systems (with a traditional BIOS) as well as on EFI systems.
815 * setup_arch - architecture-specific boot-time initializations
817 * Note: On x86_64, fixmaps are ready for use even before this is called.
820 void __init setup_arch(char **cmdline_p)
822 memblock_reserve(__pa_symbol(_text),
823 (unsigned long)__bss_stop - (unsigned long)_text);
826 * Make sure page 0 is always reserved because on systems with
827 * L1TF its contents can be leaked to user processes.
829 memblock_reserve(0, PAGE_SIZE);
831 early_reserve_initrd();
834 * At this point everything still needed from the boot loader
835 * or BIOS or kernel text should be early reserved or marked not
836 * RAM in e820. All other memory is free game.
840 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
843 * copy kernel address range established so far and switch
844 * to the proper swapper page table
846 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
847 initial_page_table + KERNEL_PGD_BOUNDARY,
850 load_cr3(swapper_pg_dir);
852 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
853 * a cr3 based tlb flush, so the following __flush_tlb_all()
854 * will not flush anything because the cpu quirk which clears
855 * X86_FEATURE_PGE has not been invoked yet. Though due to the
856 * load_cr3() above the TLB has been flushed already. The
857 * quirk is invoked before subsequent calls to __flush_tlb_all()
858 * so proper operation is guaranteed.
862 printk(KERN_INFO "Command line: %s\n", boot_command_line);
863 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
867 * If we have OLPC OFW, we might end up relocating the fixmap due to
868 * reserve_top(), so do this before touching the ioremap area.
872 idt_setup_early_traps();
874 arch_init_ideal_nops();
876 early_ioremap_init();
878 setup_olpc_ofw_pgd();
880 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
881 screen_info = boot_params.screen_info;
882 edid_info = boot_params.edid_info;
884 apm_info.bios = boot_params.apm_bios_info;
885 ist_info = boot_params.ist_info;
887 saved_video_mode = boot_params.hdr.vid_mode;
888 bootloader_type = boot_params.hdr.type_of_loader;
889 if ((bootloader_type >> 4) == 0xe) {
890 bootloader_type &= 0xf;
891 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
893 bootloader_version = bootloader_type & 0xf;
894 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
896 #ifdef CONFIG_BLK_DEV_RAM
897 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
898 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
899 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
902 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
903 EFI32_LOADER_SIGNATURE, 4)) {
904 set_bit(EFI_BOOT, &efi.flags);
905 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
906 EFI64_LOADER_SIGNATURE, 4)) {
907 set_bit(EFI_BOOT, &efi.flags);
908 set_bit(EFI_64BIT, &efi.flags);
912 x86_init.oem.arch_setup();
914 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
915 e820__memory_setup();
920 if (!boot_params.hdr.root_flags)
921 root_mountflags &= ~MS_RDONLY;
922 init_mm.start_code = (unsigned long) _text;
923 init_mm.end_code = (unsigned long) _etext;
924 init_mm.end_data = (unsigned long) _edata;
925 init_mm.brk = _brk_end;
927 mpx_mm_init(&init_mm);
929 code_resource.start = __pa_symbol(_text);
930 code_resource.end = __pa_symbol(_etext)-1;
931 data_resource.start = __pa_symbol(_etext);
932 data_resource.end = __pa_symbol(_edata)-1;
933 bss_resource.start = __pa_symbol(__bss_start);
934 bss_resource.end = __pa_symbol(__bss_stop)-1;
936 #ifdef CONFIG_CMDLINE_BOOL
937 #ifdef CONFIG_CMDLINE_OVERRIDE
938 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
940 if (builtin_cmdline[0]) {
941 /* append boot loader cmdline to builtin */
942 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
943 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
944 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
949 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
950 *cmdline_p = command_line;
953 * x86_configure_nx() is called before parse_early_param() to detect
954 * whether hardware doesn't support NX (so that the early EHCI debug
955 * console setup can safely call set_fixmap()). It may then be called
956 * again from within noexec_setup() during parsing early parameters
957 * to honor the respective command line option.
963 if (efi_enabled(EFI_BOOT))
964 efi_memblock_x86_reserve_range();
965 #ifdef CONFIG_MEMORY_HOTPLUG
967 * Memory used by the kernel cannot be hot-removed because Linux
968 * cannot migrate the kernel pages. When memory hotplug is
969 * enabled, we should prevent memblock from allocating memory
972 * ACPI SRAT records all hotpluggable memory ranges. But before
973 * SRAT is parsed, we don't know about it.
975 * The kernel image is loaded into memory at very early time. We
976 * cannot prevent this anyway. So on NUMA system, we set any
977 * node the kernel resides in as un-hotpluggable.
979 * Since on modern servers, one node could have double-digit
980 * gigabytes memory, we can assume the memory around the kernel
981 * image is also un-hotpluggable. So before SRAT is parsed, just
982 * allocate memory near the kernel image to try the best to keep
983 * the kernel away from hotpluggable memory.
985 if (movable_node_is_enabled())
986 memblock_set_bottom_up(true);
991 /* after early param, so could get panic from serial */
992 memblock_x86_reserve_range_setup_data();
994 if (acpi_mps_check()) {
995 #ifdef CONFIG_X86_LOCAL_APIC
998 setup_clear_cpu_cap(X86_FEATURE_APIC);
1001 e820__reserve_setup_data();
1002 e820__finish_early_params();
1004 if (efi_enabled(EFI_BOOT))
1009 dmi_set_dump_stack_arch_desc();
1012 * VMware detection requires dmi to be available, so this
1013 * needs to be done after dmi_scan_machine(), for the boot CPU.
1015 init_hypervisor_platform();
1018 x86_init.resources.probe_roms();
1020 /* after parse_early_param, so could debug it */
1021 insert_resource(&iomem_resource, &code_resource);
1022 insert_resource(&iomem_resource, &data_resource);
1023 insert_resource(&iomem_resource, &bss_resource);
1025 e820_add_kernel_range();
1027 #ifdef CONFIG_X86_32
1028 if (ppro_with_ram_bug()) {
1029 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1030 E820_TYPE_RESERVED);
1031 e820__update_table(e820_table);
1032 printk(KERN_INFO "fixed physical RAM map:\n");
1033 e820__print_table("bad_ppro");
1036 early_gart_iommu_check();
1040 * partially used pages are not usable - thus
1041 * we are rounding upwards:
1043 max_pfn = e820__end_of_ram_pfn();
1045 /* update e820 for memory not covered by WB MTRRs */
1047 if (mtrr_trim_uncached_memory(max_pfn))
1048 max_pfn = e820__end_of_ram_pfn();
1050 max_possible_pfn = max_pfn;
1053 * This call is required when the CPU does not support PAT. If
1054 * mtrr_bp_init() invoked it already via pat_init() the call has no
1060 * Define random base addresses for memory sections after max_pfn is
1061 * defined and before each memory section base is used.
1063 kernel_randomize_memory();
1065 #ifdef CONFIG_X86_32
1066 /* max_low_pfn get updated here */
1067 find_low_pfn_range();
1071 /* How many end-of-memory variables you have, grandma! */
1072 /* need this before calling reserve_initrd */
1073 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1074 max_low_pfn = e820__end_of_low_ram_pfn();
1076 max_low_pfn = max_pfn;
1078 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1082 * Find and reserve possible boot-time SMP configuration:
1086 reserve_ibft_region();
1088 early_alloc_pgt_buf();
1091 * Need to conclude brk, before e820__memblock_setup()
1092 * it could use memblock_find_in_range, could overlap with
1099 memblock_set_current_limit(ISA_END_ADDRESS);
1100 e820__memblock_setup();
1102 reserve_bios_regions();
1104 if (efi_enabled(EFI_MEMMAP)) {
1110 * The EFI specification says that boot service code won't be
1111 * called after ExitBootServices(). This is, in fact, a lie.
1113 efi_reserve_boot_services();
1116 /* preallocate 4k for mptable mpc */
1117 e820__memblock_alloc_reserved_mpc_new();
1119 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1120 setup_bios_corruption_check();
1123 #ifdef CONFIG_X86_32
1124 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1125 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1128 reserve_real_mode();
1130 trim_platform_memory_ranges();
1131 trim_low_memory_range();
1135 idt_setup_early_pf();
1138 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1139 * with the current CR4 value. This may not be necessary, but
1140 * auditing all the early-boot CR4 manipulation would be needed to
1143 * Mask off features that don't work outside long mode (just
1146 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1148 memblock_set_current_limit(get_max_mapped());
1151 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1154 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1155 if (init_ohci1394_dma_early)
1156 init_ohci1394_dma_on_all_controllers();
1158 /* Allocate bigger log buffer */
1161 if (efi_enabled(EFI_BOOT)) {
1162 switch (boot_params.secure_boot) {
1163 case efi_secureboot_mode_disabled:
1164 pr_info("Secure boot disabled\n");
1166 case efi_secureboot_mode_enabled:
1167 pr_info("Secure boot enabled\n");
1170 pr_info("Secure boot could not be determined\n");
1177 acpi_table_upgrade();
1183 early_platform_quirks();
1186 * Parse the ACPI tables for possible boot-time SMP configuration.
1188 acpi_boot_table_init();
1190 early_acpi_boot_init();
1193 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1196 * Reserve memory for crash kernel after SRAT is parsed so that it
1197 * won't consume hotpluggable memory.
1199 reserve_crashkernel();
1201 memblock_find_dma_reserve();
1203 if (!early_xdbc_setup_hardware())
1204 early_xdbc_register_console();
1206 x86_init.paging.pagetable_init();
1211 * Sync back kernel address range.
1213 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1216 sync_initial_page_table();
1222 generic_apic_probe();
1227 * Read APIC and some other early information from ACPI tables.
1234 * get boot-time SMP configuration:
1239 * Systems w/o ACPI and mptables might not have it mapped the local
1240 * APIC yet, but prefill_possible_map() might need to access it.
1242 init_apic_mappings();
1244 prefill_possible_map();
1248 io_apic_init_mappings();
1250 x86_init.hyper.guest_late_init();
1252 e820__reserve_resources();
1253 e820__register_nosave_regions(max_pfn);
1255 x86_init.resources.reserve_resources();
1257 e820__setup_pci_gap();
1260 #if defined(CONFIG_VGA_CONSOLE)
1261 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1262 conswitchp = &vga_con;
1263 #elif defined(CONFIG_DUMMY_CONSOLE)
1264 conswitchp = &dummy_con;
1267 x86_init.oem.banner();
1269 x86_init.timers.wallclock_init();
1273 register_refined_jiffies(CLOCK_TICK_RATE);
1276 if (efi_enabled(EFI_BOOT))
1277 efi_apply_memmap_quirks();
1284 * From boot protocol 2.14 onwards we expect the bootloader to set the
1285 * version to "0x8000 | <used version>". In case we find a version >= 2.14
1286 * without the 0x8000 we assume the boot loader supports 2.13 only and
1287 * reset the version accordingly. The 0x8000 flag is removed in any case.
1289 void __init x86_verify_bootdata_version(void)
1291 if (boot_params.hdr.version & VERSION_WRITTEN)
1292 boot_params.hdr.version &= ~VERSION_WRITTEN;
1293 else if (boot_params.hdr.version >= 0x020e)
1294 boot_params.hdr.version = 0x020d;
1296 if (boot_params.hdr.version < 0x020e)
1297 boot_params.hdr.acpi_rsdp_addr = 0;
1300 #ifdef CONFIG_X86_32
1302 static struct resource video_ram_resource = {
1303 .name = "Video RAM area",
1306 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1309 void __init i386_reserve_resources(void)
1311 request_resource(&iomem_resource, &video_ram_resource);
1312 reserve_standard_io_resources();
1315 #endif /* CONFIG_X86_32 */
1317 static struct notifier_block kernel_offset_notifier = {
1318 .notifier_call = dump_kernel_offset
1321 static int __init register_kernel_offset_dumper(void)
1323 atomic_notifier_chain_register(&panic_notifier_list,
1324 &kernel_offset_notifier);
1327 __initcall(register_kernel_offset_dumper);