1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
37 #define pr_fmt(fmt) "Memory failure: " fmt
39 #include <linux/kernel.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
65 #include "ras/ras_event.h"
67 static int sysctl_memory_failure_early_kill __read_mostly;
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
71 static int sysctl_enable_soft_offline __read_mostly = 1;
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75 static bool hw_memory_failure __read_mostly = false;
77 static DEFINE_MUTEX(mf_mutex);
79 void num_poisoned_pages_inc(unsigned long pfn)
81 atomic_long_inc(&num_poisoned_pages);
82 memblk_nr_poison_inc(pfn);
85 void num_poisoned_pages_sub(unsigned long pfn, long i)
87 atomic_long_sub(i, &num_poisoned_pages);
89 memblk_nr_poison_sub(pfn, i);
93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94 * @_name: name of the file in the per NUMA sysfs directory.
96 #define MF_ATTR_RO(_name) \
97 static ssize_t _name##_show(struct device *dev, \
98 struct device_attribute *attr, \
101 struct memory_failure_stats *mf_stats = \
102 &NODE_DATA(dev->id)->mf_stats; \
103 return sprintf(buf, "%lu\n", mf_stats->_name); \
105 static DEVICE_ATTR_RO(_name)
111 MF_ATTR_RO(recovered);
113 static struct attribute *memory_failure_attr[] = {
114 &dev_attr_total.attr,
115 &dev_attr_ignored.attr,
116 &dev_attr_failed.attr,
117 &dev_attr_delayed.attr,
118 &dev_attr_recovered.attr,
122 const struct attribute_group memory_failure_attr_group = {
123 .name = "memory_failure",
124 .attrs = memory_failure_attr,
127 static struct ctl_table memory_failure_table[] = {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
147 .procname = "enable_soft_offline",
148 .data = &sysctl_enable_soft_offline,
149 .maxlen = sizeof(sysctl_enable_soft_offline),
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 .extra2 = SYSCTL_ONE,
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
163 static int __page_handle_poison(struct page *page)
168 * zone_pcp_disable() can't be used here. It will
169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 * optimization is enabled. This will break current lock dependency
172 * chain and leads to deadlock.
173 * Disabling pcp before dissolving the page was a deterministic
174 * approach because we made sure that those pages cannot end up in any
175 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 * but nothing guarantees that those pages do not get back to a PCP
177 * queue if we need to refill those.
179 ret = dissolve_free_hugetlb_folio(page_folio(page));
181 drain_all_pages(page_zone(page));
182 ret = take_page_off_buddy(page);
188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
190 if (hugepage_or_freepage) {
192 * Doing this check for free pages is also fine since
193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
195 if (__page_handle_poison(page) <= 0)
197 * We could fail to take off the target page from buddy
198 * for example due to racy page allocation, but that's
199 * acceptable because soft-offlined page is not broken
200 * and if someone really want to use it, they should
206 SetPageHWPoison(page);
210 num_poisoned_pages_inc(page_to_pfn(page));
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
228 static int hwpoison_filter_dev(struct page *p)
230 struct folio *folio = page_folio(p);
231 struct address_space *mapping;
234 if (hwpoison_filter_dev_major == ~0U &&
235 hwpoison_filter_dev_minor == ~0U)
238 mapping = folio_mapping(folio);
239 if (mapping == NULL || mapping->host == NULL)
242 dev = mapping->host->i_sb->s_dev;
243 if (hwpoison_filter_dev_major != ~0U &&
244 hwpoison_filter_dev_major != MAJOR(dev))
246 if (hwpoison_filter_dev_minor != ~0U &&
247 hwpoison_filter_dev_minor != MINOR(dev))
253 static int hwpoison_filter_flags(struct page *p)
255 if (!hwpoison_filter_flags_mask)
258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 hwpoison_filter_flags_value)
266 * This allows stress tests to limit test scope to a collection of tasks
267 * by putting them under some memcg. This prevents killing unrelated/important
268 * processes such as /sbin/init. Note that the target task may share clean
269 * pages with init (eg. libc text), which is harmless. If the target task
270 * share _dirty_ pages with another task B, the test scheme must make sure B
271 * is also included in the memcg. At last, due to race conditions this filter
272 * can only guarantee that the page either belongs to the memcg tasks, or is
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278 static int hwpoison_filter_task(struct page *p)
280 if (!hwpoison_filter_memcg)
283 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
289 static int hwpoison_filter_task(struct page *p) { return 0; }
292 int hwpoison_filter(struct page *p)
294 if (!hwpoison_filter_enable)
297 if (hwpoison_filter_dev(p))
300 if (hwpoison_filter_flags(p))
303 if (hwpoison_filter_task(p))
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
310 int hwpoison_filter(struct page *p)
317 * Kill all processes that have a poisoned page mapped and then isolate
321 * Find all processes having the page mapped and kill them.
322 * But we keep a page reference around so that the page is not
323 * actually freed yet.
324 * Then stash the page away
326 * There's no convenient way to get back to mapped processes
327 * from the VMAs. So do a brute-force search over all
330 * Remember that machine checks are not common (or rather
331 * if they are common you have other problems), so this shouldn't
332 * be a performance issue.
334 * Also there are some races possible while we get from the
335 * error detection to actually handle it.
340 struct task_struct *tsk;
346 * Send all the processes who have the page mapped a signal.
347 * ``action optional'' if they are not immediately affected by the error
348 * ``action required'' if error happened in current execution context
350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
352 struct task_struct *t = tk->tsk;
353 short addr_lsb = tk->size_shift;
356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 pfn, t->comm, task_pid_nr(t));
359 if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 ret = force_sig_mceerr(BUS_MCEERR_AR,
361 (void __user *)tk->addr, addr_lsb);
364 * Signal other processes sharing the page if they have
366 * Don't use force here, it's convenient if the signal
367 * can be temporarily blocked.
369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
372 pr_info("Error sending signal to %s:%d: %d\n",
373 t->comm, task_pid_nr(t), ret);
378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
381 void shake_folio(struct folio *folio)
383 if (folio_test_hugetlb(folio))
386 * TODO: Could shrink slab caches here if a lightweight range-based
387 * shrinker will be available.
389 if (folio_test_slab(folio))
394 EXPORT_SYMBOL_GPL(shake_folio);
396 static void shake_page(struct page *page)
398 shake_folio(page_folio(page));
401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 unsigned long address)
404 unsigned long ret = 0;
412 VM_BUG_ON_VMA(address == -EFAULT, vma);
413 pgd = pgd_offset(vma->vm_mm, address);
414 if (!pgd_present(*pgd))
416 p4d = p4d_offset(pgd, address);
417 if (!p4d_present(*p4d))
419 pud = pud_offset(p4d, address);
420 if (!pud_present(*pud))
422 if (pud_devmap(*pud))
424 pmd = pmd_offset(pud, address);
425 if (!pmd_present(*pmd))
427 if (pmd_devmap(*pmd))
429 pte = pte_offset_map(pmd, address);
432 ptent = ptep_get(pte);
433 if (pte_present(ptent) && pte_devmap(ptent))
440 * Failure handling: if we can't find or can't kill a process there's
441 * not much we can do. We just print a message and ignore otherwise.
445 * Schedule a process for later kill.
446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
448 static void __add_to_kill(struct task_struct *tsk, struct page *p,
449 struct vm_area_struct *vma, struct list_head *to_kill,
454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
456 pr_err("Out of memory while machine check handling\n");
461 if (is_zone_device_page(p))
462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
464 tk->size_shift = page_shift(compound_head(p));
467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 * so "tk->size_shift == 0" effectively checks no mapping on
470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 * to a process' address space, it's possible not all N VMAs
472 * contain mappings for the page, but at least one VMA does.
473 * Only deliver SIGBUS with payload derived from the VMA that
474 * has a mapping for the page.
476 if (tk->addr == -EFAULT) {
477 pr_info("Unable to find user space address %lx in %s\n",
478 page_to_pfn(p), tsk->comm);
479 } else if (tk->size_shift == 0) {
484 get_task_struct(tsk);
486 list_add_tail(&tk->nd, to_kill);
489 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
490 struct vm_area_struct *vma, struct list_head *to_kill,
495 __add_to_kill(tsk, p, vma, to_kill, addr);
499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 struct task_struct *tsk)
502 struct to_kill *tk, *next;
504 list_for_each_entry_safe(tk, next, to_kill, nd) {
512 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
513 struct vm_area_struct *vma, struct list_head *to_kill,
516 if (!task_in_to_kill_list(to_kill, tsk))
517 __add_to_kill(tsk, p, vma, to_kill, addr);
521 * Kill the processes that have been collected earlier.
523 * Only do anything when FORCEKILL is set, otherwise just free the
524 * list (this is used for clean pages which do not need killing)
526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 unsigned long pfn, int flags)
529 struct to_kill *tk, *next;
531 list_for_each_entry_safe(tk, next, to_kill, nd) {
533 if (tk->addr == -EFAULT) {
534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 tk->tsk, PIDTYPE_PID);
541 * In theory the process could have mapped
542 * something else on the address in-between. We could
543 * check for that, but we need to tell the
546 else if (kill_proc(tk, pfn, flags) < 0)
547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
551 put_task_struct(tk->tsk);
557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558 * on behalf of the thread group. Return task_struct of the (first found)
559 * dedicated thread if found, and return NULL otherwise.
561 * We already hold rcu lock in the caller, so we don't have to call
562 * rcu_read_lock/unlock() in this function.
564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
566 struct task_struct *t;
568 for_each_thread(tsk, t) {
569 if (t->flags & PF_MCE_PROCESS) {
570 if (t->flags & PF_MCE_EARLY)
573 if (sysctl_memory_failure_early_kill)
581 * Determine whether a given process is "early kill" process which expects
582 * to be signaled when some page under the process is hwpoisoned.
583 * Return task_struct of the dedicated thread (main thread unless explicitly
584 * specified) if the process is "early kill" and otherwise returns NULL.
586 * Note that the above is true for Action Optional case. For Action Required
587 * case, it's only meaningful to the current thread which need to be signaled
588 * with SIGBUS, this error is Action Optional for other non current
589 * processes sharing the same error page,if the process is "early kill", the
590 * task_struct of the dedicated thread will also be returned.
592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
597 * Comparing ->mm here because current task might represent
598 * a subthread, while tsk always points to the main thread.
600 if (force_early && tsk->mm == current->mm)
603 return find_early_kill_thread(tsk);
607 * Collect processes when the error hit an anonymous page.
609 static void collect_procs_anon(struct folio *folio, struct page *page,
610 struct list_head *to_kill, int force_early)
612 struct task_struct *tsk;
616 av = folio_lock_anon_vma_read(folio, NULL);
617 if (av == NULL) /* Not actually mapped anymore */
620 pgoff = page_to_pgoff(page);
622 for_each_process(tsk) {
623 struct vm_area_struct *vma;
624 struct anon_vma_chain *vmac;
625 struct task_struct *t = task_early_kill(tsk, force_early);
630 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
633 if (vma->vm_mm != t->mm)
635 addr = page_mapped_in_vma(page, vma);
636 add_to_kill_anon_file(t, page, vma, to_kill, addr);
640 anon_vma_unlock_read(av);
644 * Collect processes when the error hit a file mapped page.
646 static void collect_procs_file(struct folio *folio, struct page *page,
647 struct list_head *to_kill, int force_early)
649 struct vm_area_struct *vma;
650 struct task_struct *tsk;
651 struct address_space *mapping = folio->mapping;
654 i_mmap_lock_read(mapping);
656 pgoff = page_to_pgoff(page);
657 for_each_process(tsk) {
658 struct task_struct *t = task_early_kill(tsk, force_early);
663 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 * Send early kill signal to tasks where a vma covers
667 * the page but the corrupted page is not necessarily
669 * Assume applications who requested early kill want
670 * to be informed of all such data corruptions.
672 if (vma->vm_mm != t->mm)
674 addr = page_address_in_vma(page, vma);
675 add_to_kill_anon_file(t, page, vma, to_kill, addr);
679 i_mmap_unlock_read(mapping);
683 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
684 struct vm_area_struct *vma,
685 struct list_head *to_kill, pgoff_t pgoff)
687 unsigned long addr = vma_address(vma, pgoff, 1);
688 __add_to_kill(tsk, p, vma, to_kill, addr);
692 * Collect processes when the error hit a fsdax page.
694 static void collect_procs_fsdax(struct page *page,
695 struct address_space *mapping, pgoff_t pgoff,
696 struct list_head *to_kill, bool pre_remove)
698 struct vm_area_struct *vma;
699 struct task_struct *tsk;
701 i_mmap_lock_read(mapping);
703 for_each_process(tsk) {
704 struct task_struct *t = tsk;
707 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
708 * the current may not be the one accessing the fsdax page.
709 * Otherwise, search for the current task.
712 t = task_early_kill(tsk, true);
715 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
716 if (vma->vm_mm == t->mm)
717 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
721 i_mmap_unlock_read(mapping);
723 #endif /* CONFIG_FS_DAX */
726 * Collect the processes who have the corrupted page mapped to kill.
728 static void collect_procs(struct folio *folio, struct page *page,
729 struct list_head *tokill, int force_early)
733 if (unlikely(folio_test_ksm(folio)))
734 collect_procs_ksm(folio, page, tokill, force_early);
735 else if (folio_test_anon(folio))
736 collect_procs_anon(folio, page, tokill, force_early);
738 collect_procs_file(folio, page, tokill, force_early);
741 struct hwpoison_walk {
747 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750 tk->size_shift = shift;
753 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
754 unsigned long poisoned_pfn, struct to_kill *tk)
756 unsigned long pfn = 0;
758 if (pte_present(pte)) {
761 swp_entry_t swp = pte_to_swp_entry(pte);
763 if (is_hwpoison_entry(swp))
764 pfn = swp_offset_pfn(swp);
767 if (!pfn || pfn != poisoned_pfn)
770 set_to_kill(tk, addr, shift);
774 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
775 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
776 struct hwpoison_walk *hwp)
780 unsigned long hwpoison_vaddr;
782 if (!pmd_present(pmd))
785 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
786 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
787 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
793 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
794 struct hwpoison_walk *hwp)
800 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
801 unsigned long end, struct mm_walk *walk)
803 struct hwpoison_walk *hwp = walk->private;
805 pte_t *ptep, *mapped_pte;
808 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
810 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
815 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
820 for (; addr != end; ptep++, addr += PAGE_SIZE) {
821 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
826 pte_unmap_unlock(mapped_pte, ptl);
832 #ifdef CONFIG_HUGETLB_PAGE
833 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
834 unsigned long addr, unsigned long end,
835 struct mm_walk *walk)
837 struct hwpoison_walk *hwp = walk->private;
838 pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
839 struct hstate *h = hstate_vma(walk->vma);
841 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
845 #define hwpoison_hugetlb_range NULL
848 static const struct mm_walk_ops hwpoison_walk_ops = {
849 .pmd_entry = hwpoison_pte_range,
850 .hugetlb_entry = hwpoison_hugetlb_range,
851 .walk_lock = PGWALK_RDLOCK,
855 * Sends SIGBUS to the current process with error info.
857 * This function is intended to handle "Action Required" MCEs on already
858 * hardware poisoned pages. They could happen, for example, when
859 * memory_failure() failed to unmap the error page at the first call, or
860 * when multiple local machine checks happened on different CPUs.
862 * MCE handler currently has no easy access to the error virtual address,
863 * so this function walks page table to find it. The returned virtual address
864 * is proper in most cases, but it could be wrong when the application
865 * process has multiple entries mapping the error page.
867 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
871 struct hwpoison_walk priv = {
879 mmap_read_lock(p->mm);
880 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
882 if (ret == 1 && priv.tk.addr)
883 kill_proc(&priv.tk, pfn, flags);
886 mmap_read_unlock(p->mm);
887 return ret > 0 ? -EHWPOISON : -EFAULT;
891 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
892 * But it could not do more to isolate the page from being accessed again,
893 * nor does it kill the process. This is extremely rare and one of the
894 * potential causes is that the page state has been changed due to
895 * underlying race condition. This is the most severe outcomes.
897 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
898 * It should have killed the process, but it can't isolate the page,
899 * due to conditions such as extra pin, unmap failure, etc. Accessing
900 * the page again may trigger another MCE and the process will be killed
901 * by the m-f() handler immediately.
903 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
904 * The page is unmapped, and is removed from the LRU or file mapping.
905 * An attempt to access the page again will trigger page fault and the
906 * PF handler will kill the process.
908 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
909 * The page has been completely isolated, that is, unmapped, taken out of
910 * the buddy system, or hole-punnched out of the file mapping.
912 static const char *action_name[] = {
913 [MF_IGNORED] = "Ignored",
914 [MF_FAILED] = "Failed",
915 [MF_DELAYED] = "Delayed",
916 [MF_RECOVERED] = "Recovered",
919 static const char * const action_page_types[] = {
920 [MF_MSG_KERNEL] = "reserved kernel page",
921 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
922 [MF_MSG_HUGE] = "huge page",
923 [MF_MSG_FREE_HUGE] = "free huge page",
924 [MF_MSG_GET_HWPOISON] = "get hwpoison page",
925 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
926 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
927 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
928 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
929 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
930 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
931 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
932 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
933 [MF_MSG_CLEAN_LRU] = "clean LRU page",
934 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
935 [MF_MSG_BUDDY] = "free buddy page",
936 [MF_MSG_DAX] = "dax page",
937 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
938 [MF_MSG_ALREADY_POISONED] = "already poisoned",
939 [MF_MSG_UNKNOWN] = "unknown page",
943 * XXX: It is possible that a page is isolated from LRU cache,
944 * and then kept in swap cache or failed to remove from page cache.
945 * The page count will stop it from being freed by unpoison.
946 * Stress tests should be aware of this memory leak problem.
948 static int delete_from_lru_cache(struct folio *folio)
950 if (folio_isolate_lru(folio)) {
952 * Clear sensible page flags, so that the buddy system won't
953 * complain when the folio is unpoison-and-freed.
955 folio_clear_active(folio);
956 folio_clear_unevictable(folio);
959 * Poisoned page might never drop its ref count to 0 so we have
960 * to uncharge it manually from its memcg.
962 mem_cgroup_uncharge(folio);
965 * drop the refcount elevated by folio_isolate_lru()
973 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
974 struct address_space *mapping)
978 if (mapping->a_ops->error_remove_folio) {
979 int err = mapping->a_ops->error_remove_folio(mapping, folio);
982 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
983 else if (!filemap_release_folio(folio, GFP_NOIO))
984 pr_info("%#lx: failed to release buffers\n", pfn);
989 * If the file system doesn't support it just invalidate
990 * This fails on dirty or anything with private pages
992 if (mapping_evict_folio(mapping, folio))
995 pr_info("%#lx: Failed to invalidate\n", pfn);
1004 enum mf_action_page_type type;
1006 /* Callback ->action() has to unlock the relevant page inside it. */
1007 int (*action)(struct page_state *ps, struct page *p);
1011 * Return true if page is still referenced by others, otherwise return
1014 * The extra_pins is true when one extra refcount is expected.
1016 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1019 int count = page_count(p) - 1;
1022 count -= folio_nr_pages(page_folio(p));
1025 pr_err("%#lx: %s still referenced by %d users\n",
1026 page_to_pfn(p), action_page_types[ps->type], count);
1034 * Error hit kernel page.
1035 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1036 * could be more sophisticated.
1038 static int me_kernel(struct page_state *ps, struct page *p)
1045 * Page in unknown state. Do nothing.
1046 * This is a catch-all in case we fail to make sense of the page state.
1048 static int me_unknown(struct page_state *ps, struct page *p)
1050 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1056 * Clean (or cleaned) page cache page.
1058 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1060 struct folio *folio = page_folio(p);
1062 struct address_space *mapping;
1065 delete_from_lru_cache(folio);
1068 * For anonymous folios the only reference left
1069 * should be the one m_f() holds.
1071 if (folio_test_anon(folio)) {
1077 * Now truncate the page in the page cache. This is really
1078 * more like a "temporary hole punch"
1079 * Don't do this for block devices when someone else
1080 * has a reference, because it could be file system metadata
1081 * and that's not safe to truncate.
1083 mapping = folio_mapping(folio);
1085 /* Folio has been torn down in the meantime */
1091 * The shmem page is kept in page cache instead of truncating
1092 * so is expected to have an extra refcount after error-handling.
1094 extra_pins = shmem_mapping(mapping);
1097 * Truncation is a bit tricky. Enable it per file system for now.
1099 * Open: to take i_rwsem or not for this? Right now we don't.
1101 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1102 if (has_extra_refcount(ps, p, extra_pins))
1106 folio_unlock(folio);
1112 * Dirty pagecache page
1113 * Issues: when the error hit a hole page the error is not properly
1116 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1118 struct folio *folio = page_folio(p);
1119 struct address_space *mapping = folio_mapping(folio);
1121 /* TBD: print more information about the file. */
1124 * IO error will be reported by write(), fsync(), etc.
1125 * who check the mapping.
1126 * This way the application knows that something went
1127 * wrong with its dirty file data.
1129 mapping_set_error(mapping, -EIO);
1132 return me_pagecache_clean(ps, p);
1136 * Clean and dirty swap cache.
1138 * Dirty swap cache page is tricky to handle. The page could live both in page
1139 * table and swap cache(ie. page is freshly swapped in). So it could be
1140 * referenced concurrently by 2 types of PTEs:
1141 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1142 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1144 * - clear dirty bit to prevent IO
1146 * - but keep in the swap cache, so that when we return to it on
1147 * a later page fault, we know the application is accessing
1148 * corrupted data and shall be killed (we installed simple
1149 * interception code in do_swap_page to catch it).
1151 * Clean swap cache pages can be directly isolated. A later page fault will
1152 * bring in the known good data from disk.
1154 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1156 struct folio *folio = page_folio(p);
1158 bool extra_pins = false;
1160 folio_clear_dirty(folio);
1161 /* Trigger EIO in shmem: */
1162 folio_clear_uptodate(folio);
1164 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1165 folio_unlock(folio);
1167 if (ret == MF_DELAYED)
1170 if (has_extra_refcount(ps, p, extra_pins))
1176 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1178 struct folio *folio = page_folio(p);
1181 delete_from_swap_cache(folio);
1183 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1184 folio_unlock(folio);
1186 if (has_extra_refcount(ps, p, false))
1193 * Huge pages. Needs work.
1195 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1196 * To narrow down kill region to one page, we need to break up pmd.
1198 static int me_huge_page(struct page_state *ps, struct page *p)
1200 struct folio *folio = page_folio(p);
1202 struct address_space *mapping;
1203 bool extra_pins = false;
1205 mapping = folio_mapping(folio);
1207 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1208 /* The page is kept in page cache. */
1210 folio_unlock(folio);
1212 folio_unlock(folio);
1214 * migration entry prevents later access on error hugepage,
1215 * so we can free and dissolve it into buddy to save healthy
1219 if (__page_handle_poison(p) > 0) {
1227 if (has_extra_refcount(ps, p, extra_pins))
1234 * Various page states we can handle.
1236 * A page state is defined by its current page->flags bits.
1237 * The table matches them in order and calls the right handler.
1239 * This is quite tricky because we can access page at any time
1240 * in its live cycle, so all accesses have to be extremely careful.
1242 * This is not complete. More states could be added.
1243 * For any missing state don't attempt recovery.
1246 #define dirty (1UL << PG_dirty)
1247 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1248 #define unevict (1UL << PG_unevictable)
1249 #define mlock (1UL << PG_mlocked)
1250 #define lru (1UL << PG_lru)
1251 #define head (1UL << PG_head)
1252 #define reserved (1UL << PG_reserved)
1254 static struct page_state error_states[] = {
1255 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1257 * free pages are specially detected outside this table:
1258 * PG_buddy pages only make a small fraction of all free pages.
1261 { head, head, MF_MSG_HUGE, me_huge_page },
1263 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1264 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1266 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1267 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1269 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1270 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1272 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1273 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1276 * Catchall entry: must be at end.
1278 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1289 static void update_per_node_mf_stats(unsigned long pfn,
1290 enum mf_result result)
1292 int nid = MAX_NUMNODES;
1293 struct memory_failure_stats *mf_stats = NULL;
1295 nid = pfn_to_nid(pfn);
1296 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1297 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1301 mf_stats = &NODE_DATA(nid)->mf_stats;
1304 ++mf_stats->ignored;
1310 ++mf_stats->delayed;
1313 ++mf_stats->recovered;
1316 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1323 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1324 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1326 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1327 enum mf_result result)
1329 trace_memory_failure_event(pfn, type, result);
1331 num_poisoned_pages_inc(pfn);
1333 update_per_node_mf_stats(pfn, result);
1335 pr_err("%#lx: recovery action for %s: %s\n",
1336 pfn, action_page_types[type], action_name[result]);
1338 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1341 static int page_action(struct page_state *ps, struct page *p,
1346 /* page p should be unlocked after returning from ps->action(). */
1347 result = ps->action(ps, p);
1349 /* Could do more checks here if page looks ok */
1351 * Could adjust zone counters here to correct for the missing page.
1354 return action_result(pfn, ps->type, result);
1357 static inline bool PageHWPoisonTakenOff(struct page *page)
1359 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1362 void SetPageHWPoisonTakenOff(struct page *page)
1364 set_page_private(page, MAGIC_HWPOISON);
1367 void ClearPageHWPoisonTakenOff(struct page *page)
1369 if (PageHWPoison(page))
1370 set_page_private(page, 0);
1374 * Return true if a page type of a given page is supported by hwpoison
1375 * mechanism (while handling could fail), otherwise false. This function
1376 * does not return true for hugetlb or device memory pages, so it's assumed
1377 * to be called only in the context where we never have such pages.
1379 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1384 /* Soft offline could migrate non-LRU movable pages */
1385 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1388 return PageLRU(page) || is_free_buddy_page(page);
1391 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1393 struct folio *folio = page_folio(page);
1395 bool hugetlb = false;
1397 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1399 /* Make sure hugetlb demotion did not happen from under us. */
1400 if (folio == page_folio(page))
1404 folio = page_folio(page);
1409 * This check prevents from calling folio_try_get() for any
1410 * unsupported type of folio in order to reduce the risk of unexpected
1411 * races caused by taking a folio refcount.
1413 if (!HWPoisonHandlable(&folio->page, flags))
1416 if (folio_try_get(folio)) {
1417 if (folio == page_folio(page))
1420 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1427 #define GET_PAGE_MAX_RETRY_NUM 3
1429 static int get_any_page(struct page *p, unsigned long flags)
1431 int ret = 0, pass = 0;
1432 bool count_increased = false;
1434 if (flags & MF_COUNT_INCREASED)
1435 count_increased = true;
1438 if (!count_increased) {
1439 ret = __get_hwpoison_page(p, flags);
1441 if (page_count(p)) {
1442 /* We raced with an allocation, retry. */
1443 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1446 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1447 /* We raced with put_page, retry. */
1448 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1453 } else if (ret == -EBUSY) {
1455 * We raced with (possibly temporary) unhandlable
1467 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1471 * A page we cannot handle. Check whether we can turn
1472 * it into something we can handle.
1474 if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1477 count_increased = false;
1485 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1490 static int __get_unpoison_page(struct page *page)
1492 struct folio *folio = page_folio(page);
1494 bool hugetlb = false;
1496 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1498 /* Make sure hugetlb demotion did not happen from under us. */
1499 if (folio == page_folio(page))
1506 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1507 * but also isolated from buddy freelist, so need to identify the
1508 * state and have to cancel both operations to unpoison.
1510 if (PageHWPoisonTakenOff(page))
1513 return get_page_unless_zero(page) ? 1 : 0;
1517 * get_hwpoison_page() - Get refcount for memory error handling
1518 * @p: Raw error page (hit by memory error)
1519 * @flags: Flags controlling behavior of error handling
1521 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1522 * error on it, after checking that the error page is in a well-defined state
1523 * (defined as a page-type we can successfully handle the memory error on it,
1524 * such as LRU page and hugetlb page).
1526 * Memory error handling could be triggered at any time on any type of page,
1527 * so it's prone to race with typical memory management lifecycle (like
1528 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1529 * extra care for the error page's state (as done in __get_hwpoison_page()),
1530 * and has some retry logic in get_any_page().
1532 * When called from unpoison_memory(), the caller should already ensure that
1533 * the given page has PG_hwpoison. So it's never reused for other page
1534 * allocations, and __get_unpoison_page() never races with them.
1536 * Return: 0 on failure or free buddy (hugetlb) page,
1537 * 1 on success for in-use pages in a well-defined state,
1538 * -EIO for pages on which we can not handle memory errors,
1539 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1540 * operations like allocation and free,
1541 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1543 static int get_hwpoison_page(struct page *p, unsigned long flags)
1547 zone_pcp_disable(page_zone(p));
1548 if (flags & MF_UNPOISON)
1549 ret = __get_unpoison_page(p);
1551 ret = get_any_page(p, flags);
1552 zone_pcp_enable(page_zone(p));
1557 void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu)
1559 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1560 struct address_space *mapping;
1563 * For hugetlb folios in shared mappings, try_to_unmap
1564 * could potentially call huge_pmd_unshare. Because of
1565 * this, take semaphore in write mode here and set
1566 * TTU_RMAP_LOCKED to indicate we have taken the lock
1567 * at this higher level.
1569 mapping = hugetlb_folio_mapping_lock_write(folio);
1571 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1576 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1577 i_mmap_unlock_write(mapping);
1579 try_to_unmap(folio, ttu);
1584 * Do all that is necessary to remove user space mappings. Unmap
1585 * the pages and send SIGBUS to the processes if the data was dirty.
1587 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1588 unsigned long pfn, int flags)
1590 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1591 struct address_space *mapping;
1595 bool mlocked = folio_test_mlocked(folio);
1598 * Here we are interested only in user-mapped pages, so skip any
1599 * other types of pages.
1601 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1602 folio_test_pgtable(folio) || folio_test_offline(folio))
1604 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1608 * This check implies we don't kill processes if their pages
1609 * are in the swap cache early. Those are always late kills.
1611 if (!folio_mapped(folio))
1614 if (folio_test_swapcache(folio)) {
1615 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1616 ttu &= ~TTU_HWPOISON;
1620 * Propagate the dirty bit from PTEs to struct page first, because we
1621 * need this to decide if we should kill or just drop the page.
1622 * XXX: the dirty test could be racy: set_page_dirty() may not always
1623 * be called inside page lock (it's recommended but not enforced).
1625 mapping = folio_mapping(folio);
1626 if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
1627 mapping_can_writeback(mapping)) {
1628 if (folio_mkclean(folio)) {
1629 folio_set_dirty(folio);
1631 ttu &= ~TTU_HWPOISON;
1632 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1638 * First collect all the processes that have the page
1639 * mapped in dirty form. This has to be done before try_to_unmap,
1640 * because ttu takes the rmap data structures down.
1642 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1644 unmap_poisoned_folio(folio, ttu);
1646 unmap_success = !folio_mapped(folio);
1648 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1649 pfn, folio_mapcount(folio));
1652 * try_to_unmap() might put mlocked page in lru cache, so call
1653 * shake_page() again to ensure that it's flushed.
1659 * Now that the dirty bit has been propagated to the
1660 * struct page and all unmaps done we can decide if
1661 * killing is needed or not. Only kill when the page
1662 * was dirty or the process is not restartable,
1663 * otherwise the tokill list is merely
1664 * freed. When there was a problem unmapping earlier
1665 * use a more force-full uncatchable kill to prevent
1666 * any accesses to the poisoned memory.
1668 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1670 kill_procs(&tokill, forcekill, pfn, flags);
1672 return unmap_success;
1675 static int identify_page_state(unsigned long pfn, struct page *p,
1676 unsigned long page_flags)
1678 struct page_state *ps;
1681 * The first check uses the current page flags which may not have any
1682 * relevant information. The second check with the saved page flags is
1683 * carried out only if the first check can't determine the page status.
1685 for (ps = error_states;; ps++)
1686 if ((p->flags & ps->mask) == ps->res)
1689 page_flags |= (p->flags & (1UL << PG_dirty));
1692 for (ps = error_states;; ps++)
1693 if ((page_flags & ps->mask) == ps->res)
1695 return page_action(ps, p, pfn);
1699 * When 'release' is 'false', it means that if thp split has failed,
1700 * there is still more to do, hence the page refcount we took earlier
1703 static int try_to_split_thp_page(struct page *page, bool release)
1708 ret = split_huge_page(page);
1717 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1718 struct address_space *mapping, pgoff_t index, int flags)
1721 unsigned long size = 0;
1723 list_for_each_entry(tk, to_kill, nd)
1725 size = max(size, 1UL << tk->size_shift);
1729 * Unmap the largest mapping to avoid breaking up device-dax
1730 * mappings which are constant size. The actual size of the
1731 * mapping being torn down is communicated in siginfo, see
1734 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1736 unmap_mapping_range(mapping, start, size, 0);
1739 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1743 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1744 * either do not claim or fails to claim a hwpoison event, or devdax.
1745 * The fsdax pages are initialized per base page, and the devdax pages
1746 * could be initialized either as base pages, or as compound pages with
1747 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1748 * hwpoison, such that, if a subpage of a compound page is poisoned,
1749 * simply mark the compound head page is by far sufficient.
1751 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1752 struct dev_pagemap *pgmap)
1754 struct folio *folio = pfn_folio(pfn);
1760 * Prevent the inode from being freed while we are interrogating
1761 * the address_space, typically this would be handled by
1762 * lock_page(), but dax pages do not use the page lock. This
1763 * also prevents changes to the mapping of this pfn until
1764 * poison signaling is complete.
1766 cookie = dax_lock_folio(folio);
1770 if (hwpoison_filter(&folio->page)) {
1775 switch (pgmap->type) {
1776 case MEMORY_DEVICE_PRIVATE:
1777 case MEMORY_DEVICE_COHERENT:
1779 * TODO: Handle device pages which may need coordination
1780 * with device-side memory.
1789 * Use this flag as an indication that the dax page has been
1790 * remapped UC to prevent speculative consumption of poison.
1792 SetPageHWPoison(&folio->page);
1795 * Unlike System-RAM there is no possibility to swap in a
1796 * different physical page at a given virtual address, so all
1797 * userspace consumption of ZONE_DEVICE memory necessitates
1798 * SIGBUS (i.e. MF_MUST_KILL)
1800 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1801 collect_procs(folio, &folio->page, &to_kill, true);
1803 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1805 dax_unlock_folio(folio, cookie);
1809 #ifdef CONFIG_FS_DAX
1811 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1812 * @mapping: address_space of the file in use
1813 * @index: start pgoff of the range within the file
1814 * @count: length of the range, in unit of PAGE_SIZE
1815 * @mf_flags: memory failure flags
1817 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1818 unsigned long count, int mf_flags)
1823 size_t end = index + count;
1824 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1826 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1828 for (; index < end; index++) {
1830 cookie = dax_lock_mapping_entry(mapping, index, &page);
1837 SetPageHWPoison(page);
1840 * The pre_remove case is revoking access, the memory is still
1841 * good and could theoretically be put back into service.
1843 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1844 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1847 dax_unlock_mapping_entry(mapping, index, cookie);
1851 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1852 #endif /* CONFIG_FS_DAX */
1854 #ifdef CONFIG_HUGETLB_PAGE
1857 * Struct raw_hwp_page represents information about "raw error page",
1858 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1860 struct raw_hwp_page {
1861 struct llist_node node;
1865 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1867 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1870 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1872 struct llist_head *raw_hwp_head;
1873 struct raw_hwp_page *p;
1874 struct folio *folio = page_folio(page);
1877 if (!folio_test_hwpoison(folio))
1880 if (!folio_test_hugetlb(folio))
1881 return PageHWPoison(page);
1884 * When RawHwpUnreliable is set, kernel lost track of which subpages
1885 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1887 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1890 mutex_lock(&mf_mutex);
1892 raw_hwp_head = raw_hwp_list_head(folio);
1893 llist_for_each_entry(p, raw_hwp_head->first, node) {
1894 if (page == p->page) {
1900 mutex_unlock(&mf_mutex);
1905 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1907 struct llist_node *head;
1908 struct raw_hwp_page *p, *next;
1909 unsigned long count = 0;
1911 head = llist_del_all(raw_hwp_list_head(folio));
1912 llist_for_each_entry_safe(p, next, head, node) {
1914 SetPageHWPoison(p->page);
1916 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1923 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1925 struct llist_head *head;
1926 struct raw_hwp_page *raw_hwp;
1927 struct raw_hwp_page *p;
1928 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1931 * Once the hwpoison hugepage has lost reliable raw error info,
1932 * there is little meaning to keep additional error info precisely,
1933 * so skip to add additional raw error info.
1935 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1937 head = raw_hwp_list_head(folio);
1938 llist_for_each_entry(p, head->first, node) {
1939 if (p->page == page)
1943 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1945 raw_hwp->page = page;
1946 llist_add(&raw_hwp->node, head);
1947 /* the first error event will be counted in action_result(). */
1949 num_poisoned_pages_inc(page_to_pfn(page));
1952 * Failed to save raw error info. We no longer trace all
1953 * hwpoisoned subpages, and we need refuse to free/dissolve
1954 * this hwpoisoned hugepage.
1956 folio_set_hugetlb_raw_hwp_unreliable(folio);
1958 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1959 * used any more, so free it.
1961 __folio_free_raw_hwp(folio, false);
1966 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1969 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1970 * pages for tail pages are required but they don't exist.
1972 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1976 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1979 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1982 return __folio_free_raw_hwp(folio, move_flag);
1985 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1987 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1989 if (folio_test_hugetlb_vmemmap_optimized(folio))
1991 folio_clear_hwpoison(folio);
1992 folio_free_raw_hwp(folio, true);
1996 * Called from hugetlb code with hugetlb_lock held.
2000 * 1 - in-use hugepage
2001 * 2 - not a hugepage
2002 * -EBUSY - the hugepage is busy (try to retry)
2003 * -EHWPOISON - the hugepage is already hwpoisoned
2005 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2006 bool *migratable_cleared)
2008 struct page *page = pfn_to_page(pfn);
2009 struct folio *folio = page_folio(page);
2010 int ret = 2; /* fallback to normal page handling */
2011 bool count_increased = false;
2013 if (!folio_test_hugetlb(folio))
2016 if (flags & MF_COUNT_INCREASED) {
2018 count_increased = true;
2019 } else if (folio_test_hugetlb_freed(folio)) {
2021 } else if (folio_test_hugetlb_migratable(folio)) {
2022 ret = folio_try_get(folio);
2024 count_increased = true;
2027 if (!(flags & MF_NO_RETRY))
2031 if (folio_set_hugetlb_hwpoison(folio, page)) {
2037 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2038 * from being migrated by memory hotremove.
2040 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2041 folio_clear_hugetlb_migratable(folio);
2042 *migratable_cleared = true;
2047 if (count_increased)
2053 * Taking refcount of hugetlb pages needs extra care about race conditions
2054 * with basic operations like hugepage allocation/free/demotion.
2055 * So some of prechecks for hwpoison (pinning, and testing/setting
2056 * PageHWPoison) should be done in single hugetlb_lock range.
2058 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2061 struct page *p = pfn_to_page(pfn);
2062 struct folio *folio;
2063 unsigned long page_flags;
2064 bool migratable_cleared = false;
2068 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2069 if (res == 2) { /* fallback to normal page handling */
2072 } else if (res == -EHWPOISON) {
2073 pr_err("%#lx: already hardware poisoned\n", pfn);
2074 if (flags & MF_ACTION_REQUIRED) {
2075 folio = page_folio(p);
2076 res = kill_accessing_process(current, folio_pfn(folio), flags);
2077 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2080 } else if (res == -EBUSY) {
2081 if (!(flags & MF_NO_RETRY)) {
2082 flags |= MF_NO_RETRY;
2085 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2088 folio = page_folio(p);
2091 if (hwpoison_filter(p)) {
2092 folio_clear_hugetlb_hwpoison(folio);
2093 if (migratable_cleared)
2094 folio_set_hugetlb_migratable(folio);
2095 folio_unlock(folio);
2102 * Handling free hugepage. The possible race with hugepage allocation
2103 * or demotion can be prevented by PageHWPoison flag.
2106 folio_unlock(folio);
2107 if (__page_handle_poison(p) > 0) {
2113 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2116 page_flags = folio->flags;
2118 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2119 folio_unlock(folio);
2120 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2123 return identify_page_state(pfn, p, page_flags);
2127 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2132 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2136 #endif /* CONFIG_HUGETLB_PAGE */
2138 /* Drop the extra refcount in case we come from madvise() */
2139 static void put_ref_page(unsigned long pfn, int flags)
2141 if (!(flags & MF_COUNT_INCREASED))
2144 put_page(pfn_to_page(pfn));
2147 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2148 struct dev_pagemap *pgmap)
2152 /* device metadata space is not recoverable */
2153 if (!pgmap_pfn_valid(pgmap, pfn))
2157 * Call driver's implementation to handle the memory failure, otherwise
2158 * fall back to generic handler.
2160 if (pgmap_has_memory_failure(pgmap)) {
2161 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2163 * Fall back to generic handler too if operation is not
2164 * supported inside the driver/device/filesystem.
2166 if (rc != -EOPNOTSUPP)
2170 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2172 /* drop pgmap ref acquired in caller */
2173 put_dev_pagemap(pgmap);
2174 if (rc != -EOPNOTSUPP)
2175 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2180 * The calling condition is as such: thp split failed, page might have
2181 * been RDMA pinned, not much can be done for recovery.
2182 * But a SIGBUS should be delivered with vaddr provided so that the user
2183 * application has a chance to recover. Also, application processes'
2184 * election for MCE early killed will be honored.
2186 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2187 struct folio *folio)
2191 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2192 kill_procs(&tokill, true, pfn, flags);
2196 * memory_failure - Handle memory failure of a page.
2197 * @pfn: Page Number of the corrupted page
2198 * @flags: fine tune action taken
2200 * This function is called by the low level machine check code
2201 * of an architecture when it detects hardware memory corruption
2202 * of a page. It tries its best to recover, which includes
2203 * dropping pages, killing processes etc.
2205 * The function is primarily of use for corruptions that
2206 * happen outside the current execution context (e.g. when
2207 * detected by a background scrubber)
2209 * Must run in process context (e.g. a work queue) with interrupts
2210 * enabled and no spinlocks held.
2212 * Return: 0 for successfully handled the memory error,
2213 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2214 * < 0(except -EOPNOTSUPP) on failure.
2216 int memory_failure(unsigned long pfn, int flags)
2219 struct folio *folio;
2220 struct dev_pagemap *pgmap;
2222 unsigned long page_flags;
2226 if (!sysctl_memory_failure_recovery)
2227 panic("Memory failure on page %lx", pfn);
2229 mutex_lock(&mf_mutex);
2231 if (!(flags & MF_SW_SIMULATED))
2232 hw_memory_failure = true;
2234 p = pfn_to_online_page(pfn);
2236 res = arch_memory_failure(pfn, flags);
2240 if (pfn_valid(pfn)) {
2241 pgmap = get_dev_pagemap(pfn, NULL);
2242 put_ref_page(pfn, flags);
2244 res = memory_failure_dev_pagemap(pfn, flags,
2249 pr_err("%#lx: memory outside kernel control\n", pfn);
2255 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2259 if (TestSetPageHWPoison(p)) {
2260 pr_err("%#lx: already hardware poisoned\n", pfn);
2262 if (flags & MF_ACTION_REQUIRED)
2263 res = kill_accessing_process(current, pfn, flags);
2264 if (flags & MF_COUNT_INCREASED)
2266 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2271 * We need/can do nothing about count=0 pages.
2272 * 1) it's a free page, and therefore in safe hand:
2273 * check_new_page() will be the gate keeper.
2274 * 2) it's part of a non-compound high order page.
2275 * Implies some kernel user: cannot stop them from
2276 * R/W the page; let's pray that the page has been
2277 * used and will be freed some time later.
2278 * In fact it's dangerous to directly bump up page count from 0,
2279 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2281 if (!(flags & MF_COUNT_INCREASED)) {
2282 res = get_hwpoison_page(p, flags);
2284 if (is_free_buddy_page(p)) {
2285 if (take_page_off_buddy(p)) {
2289 /* We lost the race, try again */
2291 ClearPageHWPoison(p);
2297 res = action_result(pfn, MF_MSG_BUDDY, res);
2299 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2302 } else if (res < 0) {
2303 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2308 folio = page_folio(p);
2310 /* filter pages that are protected from hwpoison test by users */
2312 if (hwpoison_filter(p)) {
2313 ClearPageHWPoison(p);
2314 folio_unlock(folio);
2319 folio_unlock(folio);
2321 if (folio_test_large(folio)) {
2323 * The flag must be set after the refcount is bumped
2324 * otherwise it may race with THP split.
2325 * And the flag can't be set in get_hwpoison_page() since
2326 * it is called by soft offline too and it is just called
2327 * for !MF_COUNT_INCREASED. So here seems to be the best
2330 * Don't need care about the above error handling paths for
2331 * get_hwpoison_page() since they handle either free page
2332 * or unhandlable page. The refcount is bumped iff the
2333 * page is a valid handlable page.
2335 folio_set_has_hwpoisoned(folio);
2336 if (try_to_split_thp_page(p, false) < 0) {
2338 kill_procs_now(p, pfn, flags, folio);
2340 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2343 VM_BUG_ON_PAGE(!page_count(p), p);
2344 folio = page_folio(p);
2348 * We ignore non-LRU pages for good reasons.
2349 * - PG_locked is only well defined for LRU pages and a few others
2350 * - to avoid races with __SetPageLocked()
2351 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2352 * The check (unnecessarily) ignores LRU pages being isolated and
2353 * walked by the page reclaim code, however that's not a big loss.
2360 * We're only intended to deal with the non-Compound page here.
2361 * The page cannot become compound pages again as folio has been
2362 * splited and extra refcnt is held.
2364 WARN_ON(folio_test_large(folio));
2367 * We use page flags to determine what action should be taken, but
2368 * the flags can be modified by the error containment action. One
2369 * example is an mlocked page, where PG_mlocked is cleared by
2370 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2371 * status correctly, we save a copy of the page flags at this time.
2373 page_flags = folio->flags;
2376 * __munlock_folio() may clear a writeback folio's LRU flag without
2377 * the folio lock. We need to wait for writeback completion for this
2378 * folio or it may trigger a vfs BUG while evicting inode.
2380 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2381 goto identify_page_state;
2384 * It's very difficult to mess with pages currently under IO
2385 * and in many cases impossible, so we just avoid it here.
2387 folio_wait_writeback(folio);
2390 * Now take care of user space mappings.
2391 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2393 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2394 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2399 * Torn down by someone else?
2401 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2402 folio->mapping == NULL) {
2403 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2407 identify_page_state:
2408 res = identify_page_state(pfn, p, page_flags);
2409 mutex_unlock(&mf_mutex);
2412 folio_unlock(folio);
2414 mutex_unlock(&mf_mutex);
2417 EXPORT_SYMBOL_GPL(memory_failure);
2419 #define MEMORY_FAILURE_FIFO_ORDER 4
2420 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2422 struct memory_failure_entry {
2427 struct memory_failure_cpu {
2428 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2429 MEMORY_FAILURE_FIFO_SIZE);
2430 raw_spinlock_t lock;
2431 struct work_struct work;
2434 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2437 * memory_failure_queue - Schedule handling memory failure of a page.
2438 * @pfn: Page Number of the corrupted page
2439 * @flags: Flags for memory failure handling
2441 * This function is called by the low level hardware error handler
2442 * when it detects hardware memory corruption of a page. It schedules
2443 * the recovering of error page, including dropping pages, killing
2446 * The function is primarily of use for corruptions that
2447 * happen outside the current execution context (e.g. when
2448 * detected by a background scrubber)
2450 * Can run in IRQ context.
2452 void memory_failure_queue(unsigned long pfn, int flags)
2454 struct memory_failure_cpu *mf_cpu;
2455 unsigned long proc_flags;
2456 bool buffer_overflow;
2457 struct memory_failure_entry entry = {
2462 mf_cpu = &get_cpu_var(memory_failure_cpu);
2463 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2464 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2465 if (!buffer_overflow)
2466 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2467 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2468 put_cpu_var(memory_failure_cpu);
2469 if (buffer_overflow)
2470 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2473 EXPORT_SYMBOL_GPL(memory_failure_queue);
2475 static void memory_failure_work_func(struct work_struct *work)
2477 struct memory_failure_cpu *mf_cpu;
2478 struct memory_failure_entry entry = { 0, };
2479 unsigned long proc_flags;
2482 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2484 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2485 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2486 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2489 if (entry.flags & MF_SOFT_OFFLINE)
2490 soft_offline_page(entry.pfn, entry.flags);
2492 memory_failure(entry.pfn, entry.flags);
2497 * Process memory_failure work queued on the specified CPU.
2498 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2500 void memory_failure_queue_kick(int cpu)
2502 struct memory_failure_cpu *mf_cpu;
2504 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2505 cancel_work_sync(&mf_cpu->work);
2506 memory_failure_work_func(&mf_cpu->work);
2509 static int __init memory_failure_init(void)
2511 struct memory_failure_cpu *mf_cpu;
2514 for_each_possible_cpu(cpu) {
2515 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2516 raw_spin_lock_init(&mf_cpu->lock);
2517 INIT_KFIFO(mf_cpu->fifo);
2518 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2521 register_sysctl_init("vm", memory_failure_table);
2525 core_initcall(memory_failure_init);
2528 #define pr_fmt(fmt) "Unpoison: " fmt
2529 #define unpoison_pr_info(fmt, pfn, rs) \
2531 if (__ratelimit(rs)) \
2532 pr_info(fmt, pfn); \
2536 * unpoison_memory - Unpoison a previously poisoned page
2537 * @pfn: Page number of the to be unpoisoned page
2539 * Software-unpoison a page that has been poisoned by
2540 * memory_failure() earlier.
2542 * This is only done on the software-level, so it only works
2543 * for linux injected failures, not real hardware failures
2545 * Returns 0 for success, otherwise -errno.
2547 int unpoison_memory(unsigned long pfn)
2549 struct folio *folio;
2551 int ret = -EBUSY, ghp;
2552 unsigned long count;
2554 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2555 DEFAULT_RATELIMIT_BURST);
2557 if (!pfn_valid(pfn))
2560 p = pfn_to_page(pfn);
2561 folio = page_folio(p);
2563 mutex_lock(&mf_mutex);
2565 if (hw_memory_failure) {
2566 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2572 if (is_huge_zero_folio(folio)) {
2573 unpoison_pr_info("%#lx: huge zero page is not supported\n",
2579 if (!PageHWPoison(p)) {
2580 unpoison_pr_info("%#lx: page was already unpoisoned\n",
2585 if (folio_ref_count(folio) > 1) {
2586 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2591 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2592 folio_test_reserved(folio) || folio_test_offline(folio))
2595 if (folio_mapped(folio)) {
2596 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2601 if (folio_mapping(folio)) {
2602 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2607 ghp = get_hwpoison_page(p, MF_UNPOISON);
2609 if (folio_test_hugetlb(folio)) {
2611 count = folio_free_raw_hwp(folio, false);
2615 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2616 } else if (ghp < 0) {
2617 if (ghp == -EHWPOISON) {
2618 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2621 unpoison_pr_info("%#lx: failed to grab page\n",
2625 if (folio_test_hugetlb(folio)) {
2627 count = folio_free_raw_hwp(folio, false);
2635 if (TestClearPageHWPoison(p)) {
2642 mutex_unlock(&mf_mutex);
2645 num_poisoned_pages_sub(pfn, 1);
2646 unpoison_pr_info("%#lx: software-unpoisoned page\n",
2647 page_to_pfn(p), &unpoison_rs);
2651 EXPORT_SYMBOL(unpoison_memory);
2654 #define pr_fmt(fmt) "Soft offline: " fmt
2657 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2658 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2659 * If the page is mapped, it migrates the contents over.
2661 static int soft_offline_in_use_page(struct page *page)
2664 unsigned long pfn = page_to_pfn(page);
2665 struct folio *folio = page_folio(page);
2666 char const *msg_page[] = {"page", "hugepage"};
2667 bool huge = folio_test_hugetlb(folio);
2669 LIST_HEAD(pagelist);
2670 struct migration_target_control mtc = {
2671 .nid = NUMA_NO_NODE,
2672 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2673 .reason = MR_MEMORY_FAILURE,
2676 if (!huge && folio_test_large(folio)) {
2677 if (try_to_split_thp_page(page, true)) {
2678 pr_info("%#lx: thp split failed\n", pfn);
2681 folio = page_folio(page);
2686 folio_wait_writeback(folio);
2687 if (PageHWPoison(page)) {
2688 folio_unlock(folio);
2690 pr_info("%#lx: page already poisoned\n", pfn);
2694 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2696 * Try to invalidate first. This should work for
2697 * non dirty unmapped page cache pages.
2699 ret = mapping_evict_folio(folio_mapping(folio), folio);
2700 folio_unlock(folio);
2703 pr_info("%#lx: invalidated\n", pfn);
2704 page_handle_poison(page, false, true);
2708 isolated = isolate_folio_to_list(folio, &pagelist);
2711 * If we succeed to isolate the folio, we grabbed another refcount on
2712 * the folio, so we can safely drop the one we got from get_any_page().
2713 * If we failed to isolate the folio, it means that we cannot go further
2714 * and we will return an error, so drop the reference we got from
2715 * get_any_page() as well.
2720 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2721 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2723 bool release = !huge;
2725 if (!page_handle_poison(page, huge, release))
2728 if (!list_empty(&pagelist))
2729 putback_movable_pages(&pagelist);
2731 pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2732 pfn, msg_page[huge], ret, &page->flags);
2737 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2738 pfn, msg_page[huge], page_count(page), &page->flags);
2745 * soft_offline_page - Soft offline a page.
2746 * @pfn: pfn to soft-offline
2747 * @flags: flags. Same as memory_failure().
2749 * Returns 0 on success,
2750 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2751 * disabled by /proc/sys/vm/enable_soft_offline,
2752 * < 0 otherwise negated errno.
2754 * Soft offline a page, by migration or invalidation,
2755 * without killing anything. This is for the case when
2756 * a page is not corrupted yet (so it's still valid to access),
2757 * but has had a number of corrected errors and is better taken
2760 * The actual policy on when to do that is maintained by
2763 * This should never impact any application or cause data loss,
2764 * however it might take some time.
2766 * This is not a 100% solution for all memory, but tries to be
2767 * ``good enough'' for the majority of memory.
2769 int soft_offline_page(unsigned long pfn, int flags)
2772 bool try_again = true;
2775 if (!pfn_valid(pfn)) {
2776 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2780 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2781 page = pfn_to_online_page(pfn);
2783 put_ref_page(pfn, flags);
2787 if (!sysctl_enable_soft_offline) {
2788 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2789 put_ref_page(pfn, flags);
2793 mutex_lock(&mf_mutex);
2795 if (PageHWPoison(page)) {
2796 pr_info("%#lx: page already poisoned\n", pfn);
2797 put_ref_page(pfn, flags);
2798 mutex_unlock(&mf_mutex);
2804 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2807 if (hwpoison_filter(page)) {
2811 mutex_unlock(&mf_mutex);
2816 ret = soft_offline_in_use_page(page);
2817 } else if (ret == 0) {
2818 if (!page_handle_poison(page, true, false)) {
2821 flags &= ~MF_COUNT_INCREASED;
2828 mutex_unlock(&mf_mutex);