]> Git Repo - linux.git/blob - mm/memory-failure.c
Merge tag 'phy-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/phy/linux-phy
[linux.git] / mm / memory-failure.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.  The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66
67 static int sysctl_memory_failure_early_kill __read_mostly;
68
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74
75 static bool hw_memory_failure __read_mostly = false;
76
77 static DEFINE_MUTEX(mf_mutex);
78
79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81         atomic_long_inc(&num_poisoned_pages);
82         memblk_nr_poison_inc(pfn);
83 }
84
85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87         atomic_long_sub(i, &num_poisoned_pages);
88         if (pfn != -1UL)
89                 memblk_nr_poison_sub(pfn, i);
90 }
91
92 /**
93  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94  * @_name: name of the file in the per NUMA sysfs directory.
95  */
96 #define MF_ATTR_RO(_name)                                       \
97 static ssize_t _name##_show(struct device *dev,                 \
98                             struct device_attribute *attr,      \
99                             char *buf)                          \
100 {                                                               \
101         struct memory_failure_stats *mf_stats =                 \
102                 &NODE_DATA(dev->id)->mf_stats;                  \
103         return sprintf(buf, "%lu\n", mf_stats->_name);          \
104 }                                                               \
105 static DEVICE_ATTR_RO(_name)
106
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112
113 static struct attribute *memory_failure_attr[] = {
114         &dev_attr_total.attr,
115         &dev_attr_ignored.attr,
116         &dev_attr_failed.attr,
117         &dev_attr_delayed.attr,
118         &dev_attr_recovered.attr,
119         NULL,
120 };
121
122 const struct attribute_group memory_failure_attr_group = {
123         .name = "memory_failure",
124         .attrs = memory_failure_attr,
125 };
126
127 static struct ctl_table memory_failure_table[] = {
128         {
129                 .procname       = "memory_failure_early_kill",
130                 .data           = &sysctl_memory_failure_early_kill,
131                 .maxlen         = sizeof(sysctl_memory_failure_early_kill),
132                 .mode           = 0644,
133                 .proc_handler   = proc_dointvec_minmax,
134                 .extra1         = SYSCTL_ZERO,
135                 .extra2         = SYSCTL_ONE,
136         },
137         {
138                 .procname       = "memory_failure_recovery",
139                 .data           = &sysctl_memory_failure_recovery,
140                 .maxlen         = sizeof(sysctl_memory_failure_recovery),
141                 .mode           = 0644,
142                 .proc_handler   = proc_dointvec_minmax,
143                 .extra1         = SYSCTL_ZERO,
144                 .extra2         = SYSCTL_ONE,
145         },
146         {
147                 .procname       = "enable_soft_offline",
148                 .data           = &sysctl_enable_soft_offline,
149                 .maxlen         = sizeof(sysctl_enable_soft_offline),
150                 .mode           = 0644,
151                 .proc_handler   = proc_dointvec_minmax,
152                 .extra1         = SYSCTL_ZERO,
153                 .extra2         = SYSCTL_ONE,
154         }
155 };
156
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
163 static int __page_handle_poison(struct page *page)
164 {
165         int ret;
166
167         /*
168          * zone_pcp_disable() can't be used here. It will
169          * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170          * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171          * optimization is enabled. This will break current lock dependency
172          * chain and leads to deadlock.
173          * Disabling pcp before dissolving the page was a deterministic
174          * approach because we made sure that those pages cannot end up in any
175          * PCP list. Draining PCP lists expels those pages to the buddy system,
176          * but nothing guarantees that those pages do not get back to a PCP
177          * queue if we need to refill those.
178          */
179         ret = dissolve_free_hugetlb_folio(page_folio(page));
180         if (!ret) {
181                 drain_all_pages(page_zone(page));
182                 ret = take_page_off_buddy(page);
183         }
184
185         return ret;
186 }
187
188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190         if (hugepage_or_freepage) {
191                 /*
192                  * Doing this check for free pages is also fine since
193                  * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194                  */
195                 if (__page_handle_poison(page) <= 0)
196                         /*
197                          * We could fail to take off the target page from buddy
198                          * for example due to racy page allocation, but that's
199                          * acceptable because soft-offlined page is not broken
200                          * and if someone really want to use it, they should
201                          * take it.
202                          */
203                         return false;
204         }
205
206         SetPageHWPoison(page);
207         if (release)
208                 put_page(page);
209         page_ref_inc(page);
210         num_poisoned_pages_inc(page_to_pfn(page));
211
212         return true;
213 }
214
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227
228 static int hwpoison_filter_dev(struct page *p)
229 {
230         struct folio *folio = page_folio(p);
231         struct address_space *mapping;
232         dev_t dev;
233
234         if (hwpoison_filter_dev_major == ~0U &&
235             hwpoison_filter_dev_minor == ~0U)
236                 return 0;
237
238         mapping = folio_mapping(folio);
239         if (mapping == NULL || mapping->host == NULL)
240                 return -EINVAL;
241
242         dev = mapping->host->i_sb->s_dev;
243         if (hwpoison_filter_dev_major != ~0U &&
244             hwpoison_filter_dev_major != MAJOR(dev))
245                 return -EINVAL;
246         if (hwpoison_filter_dev_minor != ~0U &&
247             hwpoison_filter_dev_minor != MINOR(dev))
248                 return -EINVAL;
249
250         return 0;
251 }
252
253 static int hwpoison_filter_flags(struct page *p)
254 {
255         if (!hwpoison_filter_flags_mask)
256                 return 0;
257
258         if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259                                     hwpoison_filter_flags_value)
260                 return 0;
261         else
262                 return -EINVAL;
263 }
264
265 /*
266  * This allows stress tests to limit test scope to a collection of tasks
267  * by putting them under some memcg. This prevents killing unrelated/important
268  * processes such as /sbin/init. Note that the target task may share clean
269  * pages with init (eg. libc text), which is harmless. If the target task
270  * share _dirty_ pages with another task B, the test scheme must make sure B
271  * is also included in the memcg. At last, due to race conditions this filter
272  * can only guarantee that the page either belongs to the memcg tasks, or is
273  * a freed page.
274  */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278 static int hwpoison_filter_task(struct page *p)
279 {
280         if (!hwpoison_filter_memcg)
281                 return 0;
282
283         if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284                 return -EINVAL;
285
286         return 0;
287 }
288 #else
289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291
292 int hwpoison_filter(struct page *p)
293 {
294         if (!hwpoison_filter_enable)
295                 return 0;
296
297         if (hwpoison_filter_dev(p))
298                 return -EINVAL;
299
300         if (hwpoison_filter_flags(p))
301                 return -EINVAL;
302
303         if (hwpoison_filter_task(p))
304                 return -EINVAL;
305
306         return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
310 int hwpoison_filter(struct page *p)
311 {
312         return 0;
313 }
314 #endif
315
316 /*
317  * Kill all processes that have a poisoned page mapped and then isolate
318  * the page.
319  *
320  * General strategy:
321  * Find all processes having the page mapped and kill them.
322  * But we keep a page reference around so that the page is not
323  * actually freed yet.
324  * Then stash the page away
325  *
326  * There's no convenient way to get back to mapped processes
327  * from the VMAs. So do a brute-force search over all
328  * running processes.
329  *
330  * Remember that machine checks are not common (or rather
331  * if they are common you have other problems), so this shouldn't
332  * be a performance issue.
333  *
334  * Also there are some races possible while we get from the
335  * error detection to actually handle it.
336  */
337
338 struct to_kill {
339         struct list_head nd;
340         struct task_struct *tsk;
341         unsigned long addr;
342         short size_shift;
343 };
344
345 /*
346  * Send all the processes who have the page mapped a signal.
347  * ``action optional'' if they are not immediately affected by the error
348  * ``action required'' if error happened in current execution context
349  */
350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352         struct task_struct *t = tk->tsk;
353         short addr_lsb = tk->size_shift;
354         int ret = 0;
355
356         pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357                         pfn, t->comm, task_pid_nr(t));
358
359         if ((flags & MF_ACTION_REQUIRED) && (t == current))
360                 ret = force_sig_mceerr(BUS_MCEERR_AR,
361                                  (void __user *)tk->addr, addr_lsb);
362         else
363                 /*
364                  * Signal other processes sharing the page if they have
365                  * PF_MCE_EARLY set.
366                  * Don't use force here, it's convenient if the signal
367                  * can be temporarily blocked.
368                  */
369                 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370                                       addr_lsb, t);
371         if (ret < 0)
372                 pr_info("Error sending signal to %s:%d: %d\n",
373                         t->comm, task_pid_nr(t), ret);
374         return ret;
375 }
376
377 /*
378  * Unknown page type encountered. Try to check whether it can turn PageLRU by
379  * lru_add_drain_all.
380  */
381 void shake_folio(struct folio *folio)
382 {
383         if (folio_test_hugetlb(folio))
384                 return;
385         /*
386          * TODO: Could shrink slab caches here if a lightweight range-based
387          * shrinker will be available.
388          */
389         if (folio_test_slab(folio))
390                 return;
391
392         lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395
396 static void shake_page(struct page *page)
397 {
398         shake_folio(page_folio(page));
399 }
400
401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402                 unsigned long address)
403 {
404         unsigned long ret = 0;
405         pgd_t *pgd;
406         p4d_t *p4d;
407         pud_t *pud;
408         pmd_t *pmd;
409         pte_t *pte;
410         pte_t ptent;
411
412         VM_BUG_ON_VMA(address == -EFAULT, vma);
413         pgd = pgd_offset(vma->vm_mm, address);
414         if (!pgd_present(*pgd))
415                 return 0;
416         p4d = p4d_offset(pgd, address);
417         if (!p4d_present(*p4d))
418                 return 0;
419         pud = pud_offset(p4d, address);
420         if (!pud_present(*pud))
421                 return 0;
422         if (pud_devmap(*pud))
423                 return PUD_SHIFT;
424         pmd = pmd_offset(pud, address);
425         if (!pmd_present(*pmd))
426                 return 0;
427         if (pmd_devmap(*pmd))
428                 return PMD_SHIFT;
429         pte = pte_offset_map(pmd, address);
430         if (!pte)
431                 return 0;
432         ptent = ptep_get(pte);
433         if (pte_present(ptent) && pte_devmap(ptent))
434                 ret = PAGE_SHIFT;
435         pte_unmap(pte);
436         return ret;
437 }
438
439 /*
440  * Failure handling: if we can't find or can't kill a process there's
441  * not much we can do.  We just print a message and ignore otherwise.
442  */
443
444 /*
445  * Schedule a process for later kill.
446  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447  */
448 static void __add_to_kill(struct task_struct *tsk, struct page *p,
449                           struct vm_area_struct *vma, struct list_head *to_kill,
450                           unsigned long addr)
451 {
452         struct to_kill *tk;
453
454         tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455         if (!tk) {
456                 pr_err("Out of memory while machine check handling\n");
457                 return;
458         }
459
460         tk->addr = addr;
461         if (is_zone_device_page(p))
462                 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463         else
464                 tk->size_shift = page_shift(compound_head(p));
465
466         /*
467          * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468          * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469          * so "tk->size_shift == 0" effectively checks no mapping on
470          * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471          * to a process' address space, it's possible not all N VMAs
472          * contain mappings for the page, but at least one VMA does.
473          * Only deliver SIGBUS with payload derived from the VMA that
474          * has a mapping for the page.
475          */
476         if (tk->addr == -EFAULT) {
477                 pr_info("Unable to find user space address %lx in %s\n",
478                         page_to_pfn(p), tsk->comm);
479         } else if (tk->size_shift == 0) {
480                 kfree(tk);
481                 return;
482         }
483
484         get_task_struct(tsk);
485         tk->tsk = tsk;
486         list_add_tail(&tk->nd, to_kill);
487 }
488
489 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
490                 struct vm_area_struct *vma, struct list_head *to_kill,
491                 unsigned long addr)
492 {
493         if (addr == -EFAULT)
494                 return;
495         __add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497
498 #ifdef CONFIG_KSM
499 static bool task_in_to_kill_list(struct list_head *to_kill,
500                                  struct task_struct *tsk)
501 {
502         struct to_kill *tk, *next;
503
504         list_for_each_entry_safe(tk, next, to_kill, nd) {
505                 if (tk->tsk == tsk)
506                         return true;
507         }
508
509         return false;
510 }
511
512 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
513                      struct vm_area_struct *vma, struct list_head *to_kill,
514                      unsigned long addr)
515 {
516         if (!task_in_to_kill_list(to_kill, tsk))
517                 __add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521  * Kill the processes that have been collected earlier.
522  *
523  * Only do anything when FORCEKILL is set, otherwise just free the
524  * list (this is used for clean pages which do not need killing)
525  */
526 static void kill_procs(struct list_head *to_kill, int forcekill,
527                 unsigned long pfn, int flags)
528 {
529         struct to_kill *tk, *next;
530
531         list_for_each_entry_safe(tk, next, to_kill, nd) {
532                 if (forcekill) {
533                         if (tk->addr == -EFAULT) {
534                                 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535                                        pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536                                 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537                                                  tk->tsk, PIDTYPE_PID);
538                         }
539
540                         /*
541                          * In theory the process could have mapped
542                          * something else on the address in-between. We could
543                          * check for that, but we need to tell the
544                          * process anyways.
545                          */
546                         else if (kill_proc(tk, pfn, flags) < 0)
547                                 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548                                        pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549                 }
550                 list_del(&tk->nd);
551                 put_task_struct(tk->tsk);
552                 kfree(tk);
553         }
554 }
555
556 /*
557  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558  * on behalf of the thread group. Return task_struct of the (first found)
559  * dedicated thread if found, and return NULL otherwise.
560  *
561  * We already hold rcu lock in the caller, so we don't have to call
562  * rcu_read_lock/unlock() in this function.
563  */
564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566         struct task_struct *t;
567
568         for_each_thread(tsk, t) {
569                 if (t->flags & PF_MCE_PROCESS) {
570                         if (t->flags & PF_MCE_EARLY)
571                                 return t;
572                 } else {
573                         if (sysctl_memory_failure_early_kill)
574                                 return t;
575                 }
576         }
577         return NULL;
578 }
579
580 /*
581  * Determine whether a given process is "early kill" process which expects
582  * to be signaled when some page under the process is hwpoisoned.
583  * Return task_struct of the dedicated thread (main thread unless explicitly
584  * specified) if the process is "early kill" and otherwise returns NULL.
585  *
586  * Note that the above is true for Action Optional case. For Action Required
587  * case, it's only meaningful to the current thread which need to be signaled
588  * with SIGBUS, this error is Action Optional for other non current
589  * processes sharing the same error page,if the process is "early kill", the
590  * task_struct of the dedicated thread will also be returned.
591  */
592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594         if (!tsk->mm)
595                 return NULL;
596         /*
597          * Comparing ->mm here because current task might represent
598          * a subthread, while tsk always points to the main thread.
599          */
600         if (force_early && tsk->mm == current->mm)
601                 return current;
602
603         return find_early_kill_thread(tsk);
604 }
605
606 /*
607  * Collect processes when the error hit an anonymous page.
608  */
609 static void collect_procs_anon(struct folio *folio, struct page *page,
610                 struct list_head *to_kill, int force_early)
611 {
612         struct task_struct *tsk;
613         struct anon_vma *av;
614         pgoff_t pgoff;
615
616         av = folio_lock_anon_vma_read(folio, NULL);
617         if (av == NULL) /* Not actually mapped anymore */
618                 return;
619
620         pgoff = page_to_pgoff(page);
621         rcu_read_lock();
622         for_each_process(tsk) {
623                 struct vm_area_struct *vma;
624                 struct anon_vma_chain *vmac;
625                 struct task_struct *t = task_early_kill(tsk, force_early);
626                 unsigned long addr;
627
628                 if (!t)
629                         continue;
630                 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631                                                pgoff, pgoff) {
632                         vma = vmac->vma;
633                         if (vma->vm_mm != t->mm)
634                                 continue;
635                         addr = page_mapped_in_vma(page, vma);
636                         add_to_kill_anon_file(t, page, vma, to_kill, addr);
637                 }
638         }
639         rcu_read_unlock();
640         anon_vma_unlock_read(av);
641 }
642
643 /*
644  * Collect processes when the error hit a file mapped page.
645  */
646 static void collect_procs_file(struct folio *folio, struct page *page,
647                 struct list_head *to_kill, int force_early)
648 {
649         struct vm_area_struct *vma;
650         struct task_struct *tsk;
651         struct address_space *mapping = folio->mapping;
652         pgoff_t pgoff;
653
654         i_mmap_lock_read(mapping);
655         rcu_read_lock();
656         pgoff = page_to_pgoff(page);
657         for_each_process(tsk) {
658                 struct task_struct *t = task_early_kill(tsk, force_early);
659                 unsigned long addr;
660
661                 if (!t)
662                         continue;
663                 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664                                       pgoff) {
665                         /*
666                          * Send early kill signal to tasks where a vma covers
667                          * the page but the corrupted page is not necessarily
668                          * mapped in its pte.
669                          * Assume applications who requested early kill want
670                          * to be informed of all such data corruptions.
671                          */
672                         if (vma->vm_mm != t->mm)
673                                 continue;
674                         addr = page_address_in_vma(page, vma);
675                         add_to_kill_anon_file(t, page, vma, to_kill, addr);
676                 }
677         }
678         rcu_read_unlock();
679         i_mmap_unlock_read(mapping);
680 }
681
682 #ifdef CONFIG_FS_DAX
683 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
684                               struct vm_area_struct *vma,
685                               struct list_head *to_kill, pgoff_t pgoff)
686 {
687         unsigned long addr = vma_address(vma, pgoff, 1);
688         __add_to_kill(tsk, p, vma, to_kill, addr);
689 }
690
691 /*
692  * Collect processes when the error hit a fsdax page.
693  */
694 static void collect_procs_fsdax(struct page *page,
695                 struct address_space *mapping, pgoff_t pgoff,
696                 struct list_head *to_kill, bool pre_remove)
697 {
698         struct vm_area_struct *vma;
699         struct task_struct *tsk;
700
701         i_mmap_lock_read(mapping);
702         rcu_read_lock();
703         for_each_process(tsk) {
704                 struct task_struct *t = tsk;
705
706                 /*
707                  * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
708                  * the current may not be the one accessing the fsdax page.
709                  * Otherwise, search for the current task.
710                  */
711                 if (!pre_remove)
712                         t = task_early_kill(tsk, true);
713                 if (!t)
714                         continue;
715                 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
716                         if (vma->vm_mm == t->mm)
717                                 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
718                 }
719         }
720         rcu_read_unlock();
721         i_mmap_unlock_read(mapping);
722 }
723 #endif /* CONFIG_FS_DAX */
724
725 /*
726  * Collect the processes who have the corrupted page mapped to kill.
727  */
728 static void collect_procs(struct folio *folio, struct page *page,
729                 struct list_head *tokill, int force_early)
730 {
731         if (!folio->mapping)
732                 return;
733         if (unlikely(folio_test_ksm(folio)))
734                 collect_procs_ksm(folio, page, tokill, force_early);
735         else if (folio_test_anon(folio))
736                 collect_procs_anon(folio, page, tokill, force_early);
737         else
738                 collect_procs_file(folio, page, tokill, force_early);
739 }
740
741 struct hwpoison_walk {
742         struct to_kill tk;
743         unsigned long pfn;
744         int flags;
745 };
746
747 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
748 {
749         tk->addr = addr;
750         tk->size_shift = shift;
751 }
752
753 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
754                                 unsigned long poisoned_pfn, struct to_kill *tk)
755 {
756         unsigned long pfn = 0;
757
758         if (pte_present(pte)) {
759                 pfn = pte_pfn(pte);
760         } else {
761                 swp_entry_t swp = pte_to_swp_entry(pte);
762
763                 if (is_hwpoison_entry(swp))
764                         pfn = swp_offset_pfn(swp);
765         }
766
767         if (!pfn || pfn != poisoned_pfn)
768                 return 0;
769
770         set_to_kill(tk, addr, shift);
771         return 1;
772 }
773
774 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
775 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
776                                       struct hwpoison_walk *hwp)
777 {
778         pmd_t pmd = *pmdp;
779         unsigned long pfn;
780         unsigned long hwpoison_vaddr;
781
782         if (!pmd_present(pmd))
783                 return 0;
784         pfn = pmd_pfn(pmd);
785         if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
786                 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
787                 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
788                 return 1;
789         }
790         return 0;
791 }
792 #else
793 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
794                                       struct hwpoison_walk *hwp)
795 {
796         return 0;
797 }
798 #endif
799
800 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
801                               unsigned long end, struct mm_walk *walk)
802 {
803         struct hwpoison_walk *hwp = walk->private;
804         int ret = 0;
805         pte_t *ptep, *mapped_pte;
806         spinlock_t *ptl;
807
808         ptl = pmd_trans_huge_lock(pmdp, walk->vma);
809         if (ptl) {
810                 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
811                 spin_unlock(ptl);
812                 goto out;
813         }
814
815         mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
816                                                 addr, &ptl);
817         if (!ptep)
818                 goto out;
819
820         for (; addr != end; ptep++, addr += PAGE_SIZE) {
821                 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
822                                              hwp->pfn, &hwp->tk);
823                 if (ret == 1)
824                         break;
825         }
826         pte_unmap_unlock(mapped_pte, ptl);
827 out:
828         cond_resched();
829         return ret;
830 }
831
832 #ifdef CONFIG_HUGETLB_PAGE
833 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
834                             unsigned long addr, unsigned long end,
835                             struct mm_walk *walk)
836 {
837         struct hwpoison_walk *hwp = walk->private;
838         pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
839         struct hstate *h = hstate_vma(walk->vma);
840
841         return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
842                                       hwp->pfn, &hwp->tk);
843 }
844 #else
845 #define hwpoison_hugetlb_range  NULL
846 #endif
847
848 static const struct mm_walk_ops hwpoison_walk_ops = {
849         .pmd_entry = hwpoison_pte_range,
850         .hugetlb_entry = hwpoison_hugetlb_range,
851         .walk_lock = PGWALK_RDLOCK,
852 };
853
854 /*
855  * Sends SIGBUS to the current process with error info.
856  *
857  * This function is intended to handle "Action Required" MCEs on already
858  * hardware poisoned pages. They could happen, for example, when
859  * memory_failure() failed to unmap the error page at the first call, or
860  * when multiple local machine checks happened on different CPUs.
861  *
862  * MCE handler currently has no easy access to the error virtual address,
863  * so this function walks page table to find it. The returned virtual address
864  * is proper in most cases, but it could be wrong when the application
865  * process has multiple entries mapping the error page.
866  */
867 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
868                                   int flags)
869 {
870         int ret;
871         struct hwpoison_walk priv = {
872                 .pfn = pfn,
873         };
874         priv.tk.tsk = p;
875
876         if (!p->mm)
877                 return -EFAULT;
878
879         mmap_read_lock(p->mm);
880         ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
881                               (void *)&priv);
882         if (ret == 1 && priv.tk.addr)
883                 kill_proc(&priv.tk, pfn, flags);
884         else
885                 ret = 0;
886         mmap_read_unlock(p->mm);
887         return ret > 0 ? -EHWPOISON : -EFAULT;
888 }
889
890 /*
891  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
892  * But it could not do more to isolate the page from being accessed again,
893  * nor does it kill the process. This is extremely rare and one of the
894  * potential causes is that the page state has been changed due to
895  * underlying race condition. This is the most severe outcomes.
896  *
897  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
898  * It should have killed the process, but it can't isolate the page,
899  * due to conditions such as extra pin, unmap failure, etc. Accessing
900  * the page again may trigger another MCE and the process will be killed
901  * by the m-f() handler immediately.
902  *
903  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
904  * The page is unmapped, and is removed from the LRU or file mapping.
905  * An attempt to access the page again will trigger page fault and the
906  * PF handler will kill the process.
907  *
908  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
909  * The page has been completely isolated, that is, unmapped, taken out of
910  * the buddy system, or hole-punnched out of the file mapping.
911  */
912 static const char *action_name[] = {
913         [MF_IGNORED] = "Ignored",
914         [MF_FAILED] = "Failed",
915         [MF_DELAYED] = "Delayed",
916         [MF_RECOVERED] = "Recovered",
917 };
918
919 static const char * const action_page_types[] = {
920         [MF_MSG_KERNEL]                 = "reserved kernel page",
921         [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
922         [MF_MSG_HUGE]                   = "huge page",
923         [MF_MSG_FREE_HUGE]              = "free huge page",
924         [MF_MSG_GET_HWPOISON]           = "get hwpoison page",
925         [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
926         [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
927         [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
928         [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
929         [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
930         [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
931         [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
932         [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
933         [MF_MSG_CLEAN_LRU]              = "clean LRU page",
934         [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
935         [MF_MSG_BUDDY]                  = "free buddy page",
936         [MF_MSG_DAX]                    = "dax page",
937         [MF_MSG_UNSPLIT_THP]            = "unsplit thp",
938         [MF_MSG_ALREADY_POISONED]       = "already poisoned",
939         [MF_MSG_UNKNOWN]                = "unknown page",
940 };
941
942 /*
943  * XXX: It is possible that a page is isolated from LRU cache,
944  * and then kept in swap cache or failed to remove from page cache.
945  * The page count will stop it from being freed by unpoison.
946  * Stress tests should be aware of this memory leak problem.
947  */
948 static int delete_from_lru_cache(struct folio *folio)
949 {
950         if (folio_isolate_lru(folio)) {
951                 /*
952                  * Clear sensible page flags, so that the buddy system won't
953                  * complain when the folio is unpoison-and-freed.
954                  */
955                 folio_clear_active(folio);
956                 folio_clear_unevictable(folio);
957
958                 /*
959                  * Poisoned page might never drop its ref count to 0 so we have
960                  * to uncharge it manually from its memcg.
961                  */
962                 mem_cgroup_uncharge(folio);
963
964                 /*
965                  * drop the refcount elevated by folio_isolate_lru()
966                  */
967                 folio_put(folio);
968                 return 0;
969         }
970         return -EIO;
971 }
972
973 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
974                                 struct address_space *mapping)
975 {
976         int ret = MF_FAILED;
977
978         if (mapping->a_ops->error_remove_folio) {
979                 int err = mapping->a_ops->error_remove_folio(mapping, folio);
980
981                 if (err != 0)
982                         pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
983                 else if (!filemap_release_folio(folio, GFP_NOIO))
984                         pr_info("%#lx: failed to release buffers\n", pfn);
985                 else
986                         ret = MF_RECOVERED;
987         } else {
988                 /*
989                  * If the file system doesn't support it just invalidate
990                  * This fails on dirty or anything with private pages
991                  */
992                 if (mapping_evict_folio(mapping, folio))
993                         ret = MF_RECOVERED;
994                 else
995                         pr_info("%#lx: Failed to invalidate\n", pfn);
996         }
997
998         return ret;
999 }
1000
1001 struct page_state {
1002         unsigned long mask;
1003         unsigned long res;
1004         enum mf_action_page_type type;
1005
1006         /* Callback ->action() has to unlock the relevant page inside it. */
1007         int (*action)(struct page_state *ps, struct page *p);
1008 };
1009
1010 /*
1011  * Return true if page is still referenced by others, otherwise return
1012  * false.
1013  *
1014  * The extra_pins is true when one extra refcount is expected.
1015  */
1016 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1017                                bool extra_pins)
1018 {
1019         int count = page_count(p) - 1;
1020
1021         if (extra_pins)
1022                 count -= folio_nr_pages(page_folio(p));
1023
1024         if (count > 0) {
1025                 pr_err("%#lx: %s still referenced by %d users\n",
1026                        page_to_pfn(p), action_page_types[ps->type], count);
1027                 return true;
1028         }
1029
1030         return false;
1031 }
1032
1033 /*
1034  * Error hit kernel page.
1035  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1036  * could be more sophisticated.
1037  */
1038 static int me_kernel(struct page_state *ps, struct page *p)
1039 {
1040         unlock_page(p);
1041         return MF_IGNORED;
1042 }
1043
1044 /*
1045  * Page in unknown state. Do nothing.
1046  * This is a catch-all in case we fail to make sense of the page state.
1047  */
1048 static int me_unknown(struct page_state *ps, struct page *p)
1049 {
1050         pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1051         unlock_page(p);
1052         return MF_IGNORED;
1053 }
1054
1055 /*
1056  * Clean (or cleaned) page cache page.
1057  */
1058 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1059 {
1060         struct folio *folio = page_folio(p);
1061         int ret;
1062         struct address_space *mapping;
1063         bool extra_pins;
1064
1065         delete_from_lru_cache(folio);
1066
1067         /*
1068          * For anonymous folios the only reference left
1069          * should be the one m_f() holds.
1070          */
1071         if (folio_test_anon(folio)) {
1072                 ret = MF_RECOVERED;
1073                 goto out;
1074         }
1075
1076         /*
1077          * Now truncate the page in the page cache. This is really
1078          * more like a "temporary hole punch"
1079          * Don't do this for block devices when someone else
1080          * has a reference, because it could be file system metadata
1081          * and that's not safe to truncate.
1082          */
1083         mapping = folio_mapping(folio);
1084         if (!mapping) {
1085                 /* Folio has been torn down in the meantime */
1086                 ret = MF_FAILED;
1087                 goto out;
1088         }
1089
1090         /*
1091          * The shmem page is kept in page cache instead of truncating
1092          * so is expected to have an extra refcount after error-handling.
1093          */
1094         extra_pins = shmem_mapping(mapping);
1095
1096         /*
1097          * Truncation is a bit tricky. Enable it per file system for now.
1098          *
1099          * Open: to take i_rwsem or not for this? Right now we don't.
1100          */
1101         ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1102         if (has_extra_refcount(ps, p, extra_pins))
1103                 ret = MF_FAILED;
1104
1105 out:
1106         folio_unlock(folio);
1107
1108         return ret;
1109 }
1110
1111 /*
1112  * Dirty pagecache page
1113  * Issues: when the error hit a hole page the error is not properly
1114  * propagated.
1115  */
1116 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1117 {
1118         struct folio *folio = page_folio(p);
1119         struct address_space *mapping = folio_mapping(folio);
1120
1121         /* TBD: print more information about the file. */
1122         if (mapping) {
1123                 /*
1124                  * IO error will be reported by write(), fsync(), etc.
1125                  * who check the mapping.
1126                  * This way the application knows that something went
1127                  * wrong with its dirty file data.
1128                  */
1129                 mapping_set_error(mapping, -EIO);
1130         }
1131
1132         return me_pagecache_clean(ps, p);
1133 }
1134
1135 /*
1136  * Clean and dirty swap cache.
1137  *
1138  * Dirty swap cache page is tricky to handle. The page could live both in page
1139  * table and swap cache(ie. page is freshly swapped in). So it could be
1140  * referenced concurrently by 2 types of PTEs:
1141  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1142  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1143  * and then
1144  *      - clear dirty bit to prevent IO
1145  *      - remove from LRU
1146  *      - but keep in the swap cache, so that when we return to it on
1147  *        a later page fault, we know the application is accessing
1148  *        corrupted data and shall be killed (we installed simple
1149  *        interception code in do_swap_page to catch it).
1150  *
1151  * Clean swap cache pages can be directly isolated. A later page fault will
1152  * bring in the known good data from disk.
1153  */
1154 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1155 {
1156         struct folio *folio = page_folio(p);
1157         int ret;
1158         bool extra_pins = false;
1159
1160         folio_clear_dirty(folio);
1161         /* Trigger EIO in shmem: */
1162         folio_clear_uptodate(folio);
1163
1164         ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1165         folio_unlock(folio);
1166
1167         if (ret == MF_DELAYED)
1168                 extra_pins = true;
1169
1170         if (has_extra_refcount(ps, p, extra_pins))
1171                 ret = MF_FAILED;
1172
1173         return ret;
1174 }
1175
1176 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1177 {
1178         struct folio *folio = page_folio(p);
1179         int ret;
1180
1181         delete_from_swap_cache(folio);
1182
1183         ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1184         folio_unlock(folio);
1185
1186         if (has_extra_refcount(ps, p, false))
1187                 ret = MF_FAILED;
1188
1189         return ret;
1190 }
1191
1192 /*
1193  * Huge pages. Needs work.
1194  * Issues:
1195  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1196  *   To narrow down kill region to one page, we need to break up pmd.
1197  */
1198 static int me_huge_page(struct page_state *ps, struct page *p)
1199 {
1200         struct folio *folio = page_folio(p);
1201         int res;
1202         struct address_space *mapping;
1203         bool extra_pins = false;
1204
1205         mapping = folio_mapping(folio);
1206         if (mapping) {
1207                 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1208                 /* The page is kept in page cache. */
1209                 extra_pins = true;
1210                 folio_unlock(folio);
1211         } else {
1212                 folio_unlock(folio);
1213                 /*
1214                  * migration entry prevents later access on error hugepage,
1215                  * so we can free and dissolve it into buddy to save healthy
1216                  * subpages.
1217                  */
1218                 folio_put(folio);
1219                 if (__page_handle_poison(p) > 0) {
1220                         page_ref_inc(p);
1221                         res = MF_RECOVERED;
1222                 } else {
1223                         res = MF_FAILED;
1224                 }
1225         }
1226
1227         if (has_extra_refcount(ps, p, extra_pins))
1228                 res = MF_FAILED;
1229
1230         return res;
1231 }
1232
1233 /*
1234  * Various page states we can handle.
1235  *
1236  * A page state is defined by its current page->flags bits.
1237  * The table matches them in order and calls the right handler.
1238  *
1239  * This is quite tricky because we can access page at any time
1240  * in its live cycle, so all accesses have to be extremely careful.
1241  *
1242  * This is not complete. More states could be added.
1243  * For any missing state don't attempt recovery.
1244  */
1245
1246 #define dirty           (1UL << PG_dirty)
1247 #define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1248 #define unevict         (1UL << PG_unevictable)
1249 #define mlock           (1UL << PG_mlocked)
1250 #define lru             (1UL << PG_lru)
1251 #define head            (1UL << PG_head)
1252 #define reserved        (1UL << PG_reserved)
1253
1254 static struct page_state error_states[] = {
1255         { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
1256         /*
1257          * free pages are specially detected outside this table:
1258          * PG_buddy pages only make a small fraction of all free pages.
1259          */
1260
1261         { head,         head,           MF_MSG_HUGE,            me_huge_page },
1262
1263         { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1264         { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1265
1266         { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
1267         { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
1268
1269         { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
1270         { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
1271
1272         { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
1273         { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
1274
1275         /*
1276          * Catchall entry: must be at end.
1277          */
1278         { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
1279 };
1280
1281 #undef dirty
1282 #undef sc
1283 #undef unevict
1284 #undef mlock
1285 #undef lru
1286 #undef head
1287 #undef reserved
1288
1289 static void update_per_node_mf_stats(unsigned long pfn,
1290                                      enum mf_result result)
1291 {
1292         int nid = MAX_NUMNODES;
1293         struct memory_failure_stats *mf_stats = NULL;
1294
1295         nid = pfn_to_nid(pfn);
1296         if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1297                 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1298                 return;
1299         }
1300
1301         mf_stats = &NODE_DATA(nid)->mf_stats;
1302         switch (result) {
1303         case MF_IGNORED:
1304                 ++mf_stats->ignored;
1305                 break;
1306         case MF_FAILED:
1307                 ++mf_stats->failed;
1308                 break;
1309         case MF_DELAYED:
1310                 ++mf_stats->delayed;
1311                 break;
1312         case MF_RECOVERED:
1313                 ++mf_stats->recovered;
1314                 break;
1315         default:
1316                 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1317                 break;
1318         }
1319         ++mf_stats->total;
1320 }
1321
1322 /*
1323  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1324  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1325  */
1326 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1327                          enum mf_result result)
1328 {
1329         trace_memory_failure_event(pfn, type, result);
1330
1331         num_poisoned_pages_inc(pfn);
1332
1333         update_per_node_mf_stats(pfn, result);
1334
1335         pr_err("%#lx: recovery action for %s: %s\n",
1336                 pfn, action_page_types[type], action_name[result]);
1337
1338         return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1339 }
1340
1341 static int page_action(struct page_state *ps, struct page *p,
1342                         unsigned long pfn)
1343 {
1344         int result;
1345
1346         /* page p should be unlocked after returning from ps->action().  */
1347         result = ps->action(ps, p);
1348
1349         /* Could do more checks here if page looks ok */
1350         /*
1351          * Could adjust zone counters here to correct for the missing page.
1352          */
1353
1354         return action_result(pfn, ps->type, result);
1355 }
1356
1357 static inline bool PageHWPoisonTakenOff(struct page *page)
1358 {
1359         return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1360 }
1361
1362 void SetPageHWPoisonTakenOff(struct page *page)
1363 {
1364         set_page_private(page, MAGIC_HWPOISON);
1365 }
1366
1367 void ClearPageHWPoisonTakenOff(struct page *page)
1368 {
1369         if (PageHWPoison(page))
1370                 set_page_private(page, 0);
1371 }
1372
1373 /*
1374  * Return true if a page type of a given page is supported by hwpoison
1375  * mechanism (while handling could fail), otherwise false.  This function
1376  * does not return true for hugetlb or device memory pages, so it's assumed
1377  * to be called only in the context where we never have such pages.
1378  */
1379 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1380 {
1381         if (PageSlab(page))
1382                 return false;
1383
1384         /* Soft offline could migrate non-LRU movable pages */
1385         if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1386                 return true;
1387
1388         return PageLRU(page) || is_free_buddy_page(page);
1389 }
1390
1391 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1392 {
1393         struct folio *folio = page_folio(page);
1394         int ret = 0;
1395         bool hugetlb = false;
1396
1397         ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1398         if (hugetlb) {
1399                 /* Make sure hugetlb demotion did not happen from under us. */
1400                 if (folio == page_folio(page))
1401                         return ret;
1402                 if (ret > 0) {
1403                         folio_put(folio);
1404                         folio = page_folio(page);
1405                 }
1406         }
1407
1408         /*
1409          * This check prevents from calling folio_try_get() for any
1410          * unsupported type of folio in order to reduce the risk of unexpected
1411          * races caused by taking a folio refcount.
1412          */
1413         if (!HWPoisonHandlable(&folio->page, flags))
1414                 return -EBUSY;
1415
1416         if (folio_try_get(folio)) {
1417                 if (folio == page_folio(page))
1418                         return 1;
1419
1420                 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1421                 folio_put(folio);
1422         }
1423
1424         return 0;
1425 }
1426
1427 #define GET_PAGE_MAX_RETRY_NUM 3
1428
1429 static int get_any_page(struct page *p, unsigned long flags)
1430 {
1431         int ret = 0, pass = 0;
1432         bool count_increased = false;
1433
1434         if (flags & MF_COUNT_INCREASED)
1435                 count_increased = true;
1436
1437 try_again:
1438         if (!count_increased) {
1439                 ret = __get_hwpoison_page(p, flags);
1440                 if (!ret) {
1441                         if (page_count(p)) {
1442                                 /* We raced with an allocation, retry. */
1443                                 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1444                                         goto try_again;
1445                                 ret = -EBUSY;
1446                         } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1447                                 /* We raced with put_page, retry. */
1448                                 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1449                                         goto try_again;
1450                                 ret = -EIO;
1451                         }
1452                         goto out;
1453                 } else if (ret == -EBUSY) {
1454                         /*
1455                          * We raced with (possibly temporary) unhandlable
1456                          * page, retry.
1457                          */
1458                         if (pass++ < 3) {
1459                                 shake_page(p);
1460                                 goto try_again;
1461                         }
1462                         ret = -EIO;
1463                         goto out;
1464                 }
1465         }
1466
1467         if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1468                 ret = 1;
1469         } else {
1470                 /*
1471                  * A page we cannot handle. Check whether we can turn
1472                  * it into something we can handle.
1473                  */
1474                 if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1475                         put_page(p);
1476                         shake_page(p);
1477                         count_increased = false;
1478                         goto try_again;
1479                 }
1480                 put_page(p);
1481                 ret = -EIO;
1482         }
1483 out:
1484         if (ret == -EIO)
1485                 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1486
1487         return ret;
1488 }
1489
1490 static int __get_unpoison_page(struct page *page)
1491 {
1492         struct folio *folio = page_folio(page);
1493         int ret = 0;
1494         bool hugetlb = false;
1495
1496         ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1497         if (hugetlb) {
1498                 /* Make sure hugetlb demotion did not happen from under us. */
1499                 if (folio == page_folio(page))
1500                         return ret;
1501                 if (ret > 0)
1502                         folio_put(folio);
1503         }
1504
1505         /*
1506          * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1507          * but also isolated from buddy freelist, so need to identify the
1508          * state and have to cancel both operations to unpoison.
1509          */
1510         if (PageHWPoisonTakenOff(page))
1511                 return -EHWPOISON;
1512
1513         return get_page_unless_zero(page) ? 1 : 0;
1514 }
1515
1516 /**
1517  * get_hwpoison_page() - Get refcount for memory error handling
1518  * @p:          Raw error page (hit by memory error)
1519  * @flags:      Flags controlling behavior of error handling
1520  *
1521  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1522  * error on it, after checking that the error page is in a well-defined state
1523  * (defined as a page-type we can successfully handle the memory error on it,
1524  * such as LRU page and hugetlb page).
1525  *
1526  * Memory error handling could be triggered at any time on any type of page,
1527  * so it's prone to race with typical memory management lifecycle (like
1528  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1529  * extra care for the error page's state (as done in __get_hwpoison_page()),
1530  * and has some retry logic in get_any_page().
1531  *
1532  * When called from unpoison_memory(), the caller should already ensure that
1533  * the given page has PG_hwpoison. So it's never reused for other page
1534  * allocations, and __get_unpoison_page() never races with them.
1535  *
1536  * Return: 0 on failure or free buddy (hugetlb) page,
1537  *         1 on success for in-use pages in a well-defined state,
1538  *         -EIO for pages on which we can not handle memory errors,
1539  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1540  *         operations like allocation and free,
1541  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1542  */
1543 static int get_hwpoison_page(struct page *p, unsigned long flags)
1544 {
1545         int ret;
1546
1547         zone_pcp_disable(page_zone(p));
1548         if (flags & MF_UNPOISON)
1549                 ret = __get_unpoison_page(p);
1550         else
1551                 ret = get_any_page(p, flags);
1552         zone_pcp_enable(page_zone(p));
1553
1554         return ret;
1555 }
1556
1557 void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu)
1558 {
1559         if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1560                 struct address_space *mapping;
1561
1562                 /*
1563                  * For hugetlb folios in shared mappings, try_to_unmap
1564                  * could potentially call huge_pmd_unshare.  Because of
1565                  * this, take semaphore in write mode here and set
1566                  * TTU_RMAP_LOCKED to indicate we have taken the lock
1567                  * at this higher level.
1568                  */
1569                 mapping = hugetlb_folio_mapping_lock_write(folio);
1570                 if (!mapping) {
1571                         pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1572                                 folio_pfn(folio));
1573                         return;
1574                 }
1575
1576                 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1577                 i_mmap_unlock_write(mapping);
1578         } else {
1579                 try_to_unmap(folio, ttu);
1580         }
1581 }
1582
1583 /*
1584  * Do all that is necessary to remove user space mappings. Unmap
1585  * the pages and send SIGBUS to the processes if the data was dirty.
1586  */
1587 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1588                 unsigned long pfn, int flags)
1589 {
1590         enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1591         struct address_space *mapping;
1592         LIST_HEAD(tokill);
1593         bool unmap_success;
1594         int forcekill;
1595         bool mlocked = folio_test_mlocked(folio);
1596
1597         /*
1598          * Here we are interested only in user-mapped pages, so skip any
1599          * other types of pages.
1600          */
1601         if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1602             folio_test_pgtable(folio) || folio_test_offline(folio))
1603                 return true;
1604         if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1605                 return true;
1606
1607         /*
1608          * This check implies we don't kill processes if their pages
1609          * are in the swap cache early. Those are always late kills.
1610          */
1611         if (!folio_mapped(folio))
1612                 return true;
1613
1614         if (folio_test_swapcache(folio)) {
1615                 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1616                 ttu &= ~TTU_HWPOISON;
1617         }
1618
1619         /*
1620          * Propagate the dirty bit from PTEs to struct page first, because we
1621          * need this to decide if we should kill or just drop the page.
1622          * XXX: the dirty test could be racy: set_page_dirty() may not always
1623          * be called inside page lock (it's recommended but not enforced).
1624          */
1625         mapping = folio_mapping(folio);
1626         if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
1627             mapping_can_writeback(mapping)) {
1628                 if (folio_mkclean(folio)) {
1629                         folio_set_dirty(folio);
1630                 } else {
1631                         ttu &= ~TTU_HWPOISON;
1632                         pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1633                                 pfn);
1634                 }
1635         }
1636
1637         /*
1638          * First collect all the processes that have the page
1639          * mapped in dirty form.  This has to be done before try_to_unmap,
1640          * because ttu takes the rmap data structures down.
1641          */
1642         collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1643
1644         unmap_poisoned_folio(folio, ttu);
1645
1646         unmap_success = !folio_mapped(folio);
1647         if (!unmap_success)
1648                 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1649                        pfn, folio_mapcount(folio));
1650
1651         /*
1652          * try_to_unmap() might put mlocked page in lru cache, so call
1653          * shake_page() again to ensure that it's flushed.
1654          */
1655         if (mlocked)
1656                 shake_folio(folio);
1657
1658         /*
1659          * Now that the dirty bit has been propagated to the
1660          * struct page and all unmaps done we can decide if
1661          * killing is needed or not.  Only kill when the page
1662          * was dirty or the process is not restartable,
1663          * otherwise the tokill list is merely
1664          * freed.  When there was a problem unmapping earlier
1665          * use a more force-full uncatchable kill to prevent
1666          * any accesses to the poisoned memory.
1667          */
1668         forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1669                     !unmap_success;
1670         kill_procs(&tokill, forcekill, pfn, flags);
1671
1672         return unmap_success;
1673 }
1674
1675 static int identify_page_state(unsigned long pfn, struct page *p,
1676                                 unsigned long page_flags)
1677 {
1678         struct page_state *ps;
1679
1680         /*
1681          * The first check uses the current page flags which may not have any
1682          * relevant information. The second check with the saved page flags is
1683          * carried out only if the first check can't determine the page status.
1684          */
1685         for (ps = error_states;; ps++)
1686                 if ((p->flags & ps->mask) == ps->res)
1687                         break;
1688
1689         page_flags |= (p->flags & (1UL << PG_dirty));
1690
1691         if (!ps->mask)
1692                 for (ps = error_states;; ps++)
1693                         if ((page_flags & ps->mask) == ps->res)
1694                                 break;
1695         return page_action(ps, p, pfn);
1696 }
1697
1698 /*
1699  * When 'release' is 'false', it means that if thp split has failed,
1700  * there is still more to do, hence the page refcount we took earlier
1701  * is still needed.
1702  */
1703 static int try_to_split_thp_page(struct page *page, bool release)
1704 {
1705         int ret;
1706
1707         lock_page(page);
1708         ret = split_huge_page(page);
1709         unlock_page(page);
1710
1711         if (ret && release)
1712                 put_page(page);
1713
1714         return ret;
1715 }
1716
1717 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1718                 struct address_space *mapping, pgoff_t index, int flags)
1719 {
1720         struct to_kill *tk;
1721         unsigned long size = 0;
1722
1723         list_for_each_entry(tk, to_kill, nd)
1724                 if (tk->size_shift)
1725                         size = max(size, 1UL << tk->size_shift);
1726
1727         if (size) {
1728                 /*
1729                  * Unmap the largest mapping to avoid breaking up device-dax
1730                  * mappings which are constant size. The actual size of the
1731                  * mapping being torn down is communicated in siginfo, see
1732                  * kill_proc()
1733                  */
1734                 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1735
1736                 unmap_mapping_range(mapping, start, size, 0);
1737         }
1738
1739         kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1740 }
1741
1742 /*
1743  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1744  * either do not claim or fails to claim a hwpoison event, or devdax.
1745  * The fsdax pages are initialized per base page, and the devdax pages
1746  * could be initialized either as base pages, or as compound pages with
1747  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1748  * hwpoison, such that, if a subpage of a compound page is poisoned,
1749  * simply mark the compound head page is by far sufficient.
1750  */
1751 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1752                 struct dev_pagemap *pgmap)
1753 {
1754         struct folio *folio = pfn_folio(pfn);
1755         LIST_HEAD(to_kill);
1756         dax_entry_t cookie;
1757         int rc = 0;
1758
1759         /*
1760          * Prevent the inode from being freed while we are interrogating
1761          * the address_space, typically this would be handled by
1762          * lock_page(), but dax pages do not use the page lock. This
1763          * also prevents changes to the mapping of this pfn until
1764          * poison signaling is complete.
1765          */
1766         cookie = dax_lock_folio(folio);
1767         if (!cookie)
1768                 return -EBUSY;
1769
1770         if (hwpoison_filter(&folio->page)) {
1771                 rc = -EOPNOTSUPP;
1772                 goto unlock;
1773         }
1774
1775         switch (pgmap->type) {
1776         case MEMORY_DEVICE_PRIVATE:
1777         case MEMORY_DEVICE_COHERENT:
1778                 /*
1779                  * TODO: Handle device pages which may need coordination
1780                  * with device-side memory.
1781                  */
1782                 rc = -ENXIO;
1783                 goto unlock;
1784         default:
1785                 break;
1786         }
1787
1788         /*
1789          * Use this flag as an indication that the dax page has been
1790          * remapped UC to prevent speculative consumption of poison.
1791          */
1792         SetPageHWPoison(&folio->page);
1793
1794         /*
1795          * Unlike System-RAM there is no possibility to swap in a
1796          * different physical page at a given virtual address, so all
1797          * userspace consumption of ZONE_DEVICE memory necessitates
1798          * SIGBUS (i.e. MF_MUST_KILL)
1799          */
1800         flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1801         collect_procs(folio, &folio->page, &to_kill, true);
1802
1803         unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1804 unlock:
1805         dax_unlock_folio(folio, cookie);
1806         return rc;
1807 }
1808
1809 #ifdef CONFIG_FS_DAX
1810 /**
1811  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1812  * @mapping:    address_space of the file in use
1813  * @index:      start pgoff of the range within the file
1814  * @count:      length of the range, in unit of PAGE_SIZE
1815  * @mf_flags:   memory failure flags
1816  */
1817 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1818                 unsigned long count, int mf_flags)
1819 {
1820         LIST_HEAD(to_kill);
1821         dax_entry_t cookie;
1822         struct page *page;
1823         size_t end = index + count;
1824         bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1825
1826         mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1827
1828         for (; index < end; index++) {
1829                 page = NULL;
1830                 cookie = dax_lock_mapping_entry(mapping, index, &page);
1831                 if (!cookie)
1832                         return -EBUSY;
1833                 if (!page)
1834                         goto unlock;
1835
1836                 if (!pre_remove)
1837                         SetPageHWPoison(page);
1838
1839                 /*
1840                  * The pre_remove case is revoking access, the memory is still
1841                  * good and could theoretically be put back into service.
1842                  */
1843                 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1844                 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1845                                 index, mf_flags);
1846 unlock:
1847                 dax_unlock_mapping_entry(mapping, index, cookie);
1848         }
1849         return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1852 #endif /* CONFIG_FS_DAX */
1853
1854 #ifdef CONFIG_HUGETLB_PAGE
1855
1856 /*
1857  * Struct raw_hwp_page represents information about "raw error page",
1858  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1859  */
1860 struct raw_hwp_page {
1861         struct llist_node node;
1862         struct page *page;
1863 };
1864
1865 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1866 {
1867         return (struct llist_head *)&folio->_hugetlb_hwpoison;
1868 }
1869
1870 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1871 {
1872         struct llist_head *raw_hwp_head;
1873         struct raw_hwp_page *p;
1874         struct folio *folio = page_folio(page);
1875         bool ret = false;
1876
1877         if (!folio_test_hwpoison(folio))
1878                 return false;
1879
1880         if (!folio_test_hugetlb(folio))
1881                 return PageHWPoison(page);
1882
1883         /*
1884          * When RawHwpUnreliable is set, kernel lost track of which subpages
1885          * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1886          */
1887         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1888                 return true;
1889
1890         mutex_lock(&mf_mutex);
1891
1892         raw_hwp_head = raw_hwp_list_head(folio);
1893         llist_for_each_entry(p, raw_hwp_head->first, node) {
1894                 if (page == p->page) {
1895                         ret = true;
1896                         break;
1897                 }
1898         }
1899
1900         mutex_unlock(&mf_mutex);
1901
1902         return ret;
1903 }
1904
1905 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1906 {
1907         struct llist_node *head;
1908         struct raw_hwp_page *p, *next;
1909         unsigned long count = 0;
1910
1911         head = llist_del_all(raw_hwp_list_head(folio));
1912         llist_for_each_entry_safe(p, next, head, node) {
1913                 if (move_flag)
1914                         SetPageHWPoison(p->page);
1915                 else
1916                         num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1917                 kfree(p);
1918                 count++;
1919         }
1920         return count;
1921 }
1922
1923 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1924 {
1925         struct llist_head *head;
1926         struct raw_hwp_page *raw_hwp;
1927         struct raw_hwp_page *p;
1928         int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1929
1930         /*
1931          * Once the hwpoison hugepage has lost reliable raw error info,
1932          * there is little meaning to keep additional error info precisely,
1933          * so skip to add additional raw error info.
1934          */
1935         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1936                 return -EHWPOISON;
1937         head = raw_hwp_list_head(folio);
1938         llist_for_each_entry(p, head->first, node) {
1939                 if (p->page == page)
1940                         return -EHWPOISON;
1941         }
1942
1943         raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1944         if (raw_hwp) {
1945                 raw_hwp->page = page;
1946                 llist_add(&raw_hwp->node, head);
1947                 /* the first error event will be counted in action_result(). */
1948                 if (ret)
1949                         num_poisoned_pages_inc(page_to_pfn(page));
1950         } else {
1951                 /*
1952                  * Failed to save raw error info.  We no longer trace all
1953                  * hwpoisoned subpages, and we need refuse to free/dissolve
1954                  * this hwpoisoned hugepage.
1955                  */
1956                 folio_set_hugetlb_raw_hwp_unreliable(folio);
1957                 /*
1958                  * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1959                  * used any more, so free it.
1960                  */
1961                 __folio_free_raw_hwp(folio, false);
1962         }
1963         return ret;
1964 }
1965
1966 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1967 {
1968         /*
1969          * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1970          * pages for tail pages are required but they don't exist.
1971          */
1972         if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1973                 return 0;
1974
1975         /*
1976          * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1977          * definition.
1978          */
1979         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1980                 return 0;
1981
1982         return __folio_free_raw_hwp(folio, move_flag);
1983 }
1984
1985 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1986 {
1987         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1988                 return;
1989         if (folio_test_hugetlb_vmemmap_optimized(folio))
1990                 return;
1991         folio_clear_hwpoison(folio);
1992         folio_free_raw_hwp(folio, true);
1993 }
1994
1995 /*
1996  * Called from hugetlb code with hugetlb_lock held.
1997  *
1998  * Return values:
1999  *   0             - free hugepage
2000  *   1             - in-use hugepage
2001  *   2             - not a hugepage
2002  *   -EBUSY        - the hugepage is busy (try to retry)
2003  *   -EHWPOISON    - the hugepage is already hwpoisoned
2004  */
2005 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2006                                  bool *migratable_cleared)
2007 {
2008         struct page *page = pfn_to_page(pfn);
2009         struct folio *folio = page_folio(page);
2010         int ret = 2;    /* fallback to normal page handling */
2011         bool count_increased = false;
2012
2013         if (!folio_test_hugetlb(folio))
2014                 goto out;
2015
2016         if (flags & MF_COUNT_INCREASED) {
2017                 ret = 1;
2018                 count_increased = true;
2019         } else if (folio_test_hugetlb_freed(folio)) {
2020                 ret = 0;
2021         } else if (folio_test_hugetlb_migratable(folio)) {
2022                 ret = folio_try_get(folio);
2023                 if (ret)
2024                         count_increased = true;
2025         } else {
2026                 ret = -EBUSY;
2027                 if (!(flags & MF_NO_RETRY))
2028                         goto out;
2029         }
2030
2031         if (folio_set_hugetlb_hwpoison(folio, page)) {
2032                 ret = -EHWPOISON;
2033                 goto out;
2034         }
2035
2036         /*
2037          * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2038          * from being migrated by memory hotremove.
2039          */
2040         if (count_increased && folio_test_hugetlb_migratable(folio)) {
2041                 folio_clear_hugetlb_migratable(folio);
2042                 *migratable_cleared = true;
2043         }
2044
2045         return ret;
2046 out:
2047         if (count_increased)
2048                 folio_put(folio);
2049         return ret;
2050 }
2051
2052 /*
2053  * Taking refcount of hugetlb pages needs extra care about race conditions
2054  * with basic operations like hugepage allocation/free/demotion.
2055  * So some of prechecks for hwpoison (pinning, and testing/setting
2056  * PageHWPoison) should be done in single hugetlb_lock range.
2057  */
2058 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2059 {
2060         int res;
2061         struct page *p = pfn_to_page(pfn);
2062         struct folio *folio;
2063         unsigned long page_flags;
2064         bool migratable_cleared = false;
2065
2066         *hugetlb = 1;
2067 retry:
2068         res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2069         if (res == 2) { /* fallback to normal page handling */
2070                 *hugetlb = 0;
2071                 return 0;
2072         } else if (res == -EHWPOISON) {
2073                 pr_err("%#lx: already hardware poisoned\n", pfn);
2074                 if (flags & MF_ACTION_REQUIRED) {
2075                         folio = page_folio(p);
2076                         res = kill_accessing_process(current, folio_pfn(folio), flags);
2077                         action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2078                 }
2079                 return res;
2080         } else if (res == -EBUSY) {
2081                 if (!(flags & MF_NO_RETRY)) {
2082                         flags |= MF_NO_RETRY;
2083                         goto retry;
2084                 }
2085                 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2086         }
2087
2088         folio = page_folio(p);
2089         folio_lock(folio);
2090
2091         if (hwpoison_filter(p)) {
2092                 folio_clear_hugetlb_hwpoison(folio);
2093                 if (migratable_cleared)
2094                         folio_set_hugetlb_migratable(folio);
2095                 folio_unlock(folio);
2096                 if (res == 1)
2097                         folio_put(folio);
2098                 return -EOPNOTSUPP;
2099         }
2100
2101         /*
2102          * Handling free hugepage.  The possible race with hugepage allocation
2103          * or demotion can be prevented by PageHWPoison flag.
2104          */
2105         if (res == 0) {
2106                 folio_unlock(folio);
2107                 if (__page_handle_poison(p) > 0) {
2108                         page_ref_inc(p);
2109                         res = MF_RECOVERED;
2110                 } else {
2111                         res = MF_FAILED;
2112                 }
2113                 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2114         }
2115
2116         page_flags = folio->flags;
2117
2118         if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2119                 folio_unlock(folio);
2120                 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2121         }
2122
2123         return identify_page_state(pfn, p, page_flags);
2124 }
2125
2126 #else
2127 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2128 {
2129         return 0;
2130 }
2131
2132 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2133 {
2134         return 0;
2135 }
2136 #endif  /* CONFIG_HUGETLB_PAGE */
2137
2138 /* Drop the extra refcount in case we come from madvise() */
2139 static void put_ref_page(unsigned long pfn, int flags)
2140 {
2141         if (!(flags & MF_COUNT_INCREASED))
2142                 return;
2143
2144         put_page(pfn_to_page(pfn));
2145 }
2146
2147 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2148                 struct dev_pagemap *pgmap)
2149 {
2150         int rc = -ENXIO;
2151
2152         /* device metadata space is not recoverable */
2153         if (!pgmap_pfn_valid(pgmap, pfn))
2154                 goto out;
2155
2156         /*
2157          * Call driver's implementation to handle the memory failure, otherwise
2158          * fall back to generic handler.
2159          */
2160         if (pgmap_has_memory_failure(pgmap)) {
2161                 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2162                 /*
2163                  * Fall back to generic handler too if operation is not
2164                  * supported inside the driver/device/filesystem.
2165                  */
2166                 if (rc != -EOPNOTSUPP)
2167                         goto out;
2168         }
2169
2170         rc = mf_generic_kill_procs(pfn, flags, pgmap);
2171 out:
2172         /* drop pgmap ref acquired in caller */
2173         put_dev_pagemap(pgmap);
2174         if (rc != -EOPNOTSUPP)
2175                 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2176         return rc;
2177 }
2178
2179 /*
2180  * The calling condition is as such: thp split failed, page might have
2181  * been RDMA pinned, not much can be done for recovery.
2182  * But a SIGBUS should be delivered with vaddr provided so that the user
2183  * application has a chance to recover. Also, application processes'
2184  * election for MCE early killed will be honored.
2185  */
2186 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2187                                 struct folio *folio)
2188 {
2189         LIST_HEAD(tokill);
2190
2191         collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2192         kill_procs(&tokill, true, pfn, flags);
2193 }
2194
2195 /**
2196  * memory_failure - Handle memory failure of a page.
2197  * @pfn: Page Number of the corrupted page
2198  * @flags: fine tune action taken
2199  *
2200  * This function is called by the low level machine check code
2201  * of an architecture when it detects hardware memory corruption
2202  * of a page. It tries its best to recover, which includes
2203  * dropping pages, killing processes etc.
2204  *
2205  * The function is primarily of use for corruptions that
2206  * happen outside the current execution context (e.g. when
2207  * detected by a background scrubber)
2208  *
2209  * Must run in process context (e.g. a work queue) with interrupts
2210  * enabled and no spinlocks held.
2211  *
2212  * Return: 0 for successfully handled the memory error,
2213  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2214  *         < 0(except -EOPNOTSUPP) on failure.
2215  */
2216 int memory_failure(unsigned long pfn, int flags)
2217 {
2218         struct page *p;
2219         struct folio *folio;
2220         struct dev_pagemap *pgmap;
2221         int res = 0;
2222         unsigned long page_flags;
2223         bool retry = true;
2224         int hugetlb = 0;
2225
2226         if (!sysctl_memory_failure_recovery)
2227                 panic("Memory failure on page %lx", pfn);
2228
2229         mutex_lock(&mf_mutex);
2230
2231         if (!(flags & MF_SW_SIMULATED))
2232                 hw_memory_failure = true;
2233
2234         p = pfn_to_online_page(pfn);
2235         if (!p) {
2236                 res = arch_memory_failure(pfn, flags);
2237                 if (res == 0)
2238                         goto unlock_mutex;
2239
2240                 if (pfn_valid(pfn)) {
2241                         pgmap = get_dev_pagemap(pfn, NULL);
2242                         put_ref_page(pfn, flags);
2243                         if (pgmap) {
2244                                 res = memory_failure_dev_pagemap(pfn, flags,
2245                                                                  pgmap);
2246                                 goto unlock_mutex;
2247                         }
2248                 }
2249                 pr_err("%#lx: memory outside kernel control\n", pfn);
2250                 res = -ENXIO;
2251                 goto unlock_mutex;
2252         }
2253
2254 try_again:
2255         res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2256         if (hugetlb)
2257                 goto unlock_mutex;
2258
2259         if (TestSetPageHWPoison(p)) {
2260                 pr_err("%#lx: already hardware poisoned\n", pfn);
2261                 res = -EHWPOISON;
2262                 if (flags & MF_ACTION_REQUIRED)
2263                         res = kill_accessing_process(current, pfn, flags);
2264                 if (flags & MF_COUNT_INCREASED)
2265                         put_page(p);
2266                 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2267                 goto unlock_mutex;
2268         }
2269
2270         /*
2271          * We need/can do nothing about count=0 pages.
2272          * 1) it's a free page, and therefore in safe hand:
2273          *    check_new_page() will be the gate keeper.
2274          * 2) it's part of a non-compound high order page.
2275          *    Implies some kernel user: cannot stop them from
2276          *    R/W the page; let's pray that the page has been
2277          *    used and will be freed some time later.
2278          * In fact it's dangerous to directly bump up page count from 0,
2279          * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2280          */
2281         if (!(flags & MF_COUNT_INCREASED)) {
2282                 res = get_hwpoison_page(p, flags);
2283                 if (!res) {
2284                         if (is_free_buddy_page(p)) {
2285                                 if (take_page_off_buddy(p)) {
2286                                         page_ref_inc(p);
2287                                         res = MF_RECOVERED;
2288                                 } else {
2289                                         /* We lost the race, try again */
2290                                         if (retry) {
2291                                                 ClearPageHWPoison(p);
2292                                                 retry = false;
2293                                                 goto try_again;
2294                                         }
2295                                         res = MF_FAILED;
2296                                 }
2297                                 res = action_result(pfn, MF_MSG_BUDDY, res);
2298                         } else {
2299                                 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2300                         }
2301                         goto unlock_mutex;
2302                 } else if (res < 0) {
2303                         res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2304                         goto unlock_mutex;
2305                 }
2306         }
2307
2308         folio = page_folio(p);
2309
2310         /* filter pages that are protected from hwpoison test by users */
2311         folio_lock(folio);
2312         if (hwpoison_filter(p)) {
2313                 ClearPageHWPoison(p);
2314                 folio_unlock(folio);
2315                 folio_put(folio);
2316                 res = -EOPNOTSUPP;
2317                 goto unlock_mutex;
2318         }
2319         folio_unlock(folio);
2320
2321         if (folio_test_large(folio)) {
2322                 /*
2323                  * The flag must be set after the refcount is bumped
2324                  * otherwise it may race with THP split.
2325                  * And the flag can't be set in get_hwpoison_page() since
2326                  * it is called by soft offline too and it is just called
2327                  * for !MF_COUNT_INCREASED.  So here seems to be the best
2328                  * place.
2329                  *
2330                  * Don't need care about the above error handling paths for
2331                  * get_hwpoison_page() since they handle either free page
2332                  * or unhandlable page.  The refcount is bumped iff the
2333                  * page is a valid handlable page.
2334                  */
2335                 folio_set_has_hwpoisoned(folio);
2336                 if (try_to_split_thp_page(p, false) < 0) {
2337                         res = -EHWPOISON;
2338                         kill_procs_now(p, pfn, flags, folio);
2339                         put_page(p);
2340                         action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2341                         goto unlock_mutex;
2342                 }
2343                 VM_BUG_ON_PAGE(!page_count(p), p);
2344                 folio = page_folio(p);
2345         }
2346
2347         /*
2348          * We ignore non-LRU pages for good reasons.
2349          * - PG_locked is only well defined for LRU pages and a few others
2350          * - to avoid races with __SetPageLocked()
2351          * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2352          * The check (unnecessarily) ignores LRU pages being isolated and
2353          * walked by the page reclaim code, however that's not a big loss.
2354          */
2355         shake_folio(folio);
2356
2357         folio_lock(folio);
2358
2359         /*
2360          * We're only intended to deal with the non-Compound page here.
2361          * The page cannot become compound pages again as folio has been
2362          * splited and extra refcnt is held.
2363          */
2364         WARN_ON(folio_test_large(folio));
2365
2366         /*
2367          * We use page flags to determine what action should be taken, but
2368          * the flags can be modified by the error containment action.  One
2369          * example is an mlocked page, where PG_mlocked is cleared by
2370          * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2371          * status correctly, we save a copy of the page flags at this time.
2372          */
2373         page_flags = folio->flags;
2374
2375         /*
2376          * __munlock_folio() may clear a writeback folio's LRU flag without
2377          * the folio lock. We need to wait for writeback completion for this
2378          * folio or it may trigger a vfs BUG while evicting inode.
2379          */
2380         if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2381                 goto identify_page_state;
2382
2383         /*
2384          * It's very difficult to mess with pages currently under IO
2385          * and in many cases impossible, so we just avoid it here.
2386          */
2387         folio_wait_writeback(folio);
2388
2389         /*
2390          * Now take care of user space mappings.
2391          * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2392          */
2393         if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2394                 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2395                 goto unlock_page;
2396         }
2397
2398         /*
2399          * Torn down by someone else?
2400          */
2401         if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2402             folio->mapping == NULL) {
2403                 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2404                 goto unlock_page;
2405         }
2406
2407 identify_page_state:
2408         res = identify_page_state(pfn, p, page_flags);
2409         mutex_unlock(&mf_mutex);
2410         return res;
2411 unlock_page:
2412         folio_unlock(folio);
2413 unlock_mutex:
2414         mutex_unlock(&mf_mutex);
2415         return res;
2416 }
2417 EXPORT_SYMBOL_GPL(memory_failure);
2418
2419 #define MEMORY_FAILURE_FIFO_ORDER       4
2420 #define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
2421
2422 struct memory_failure_entry {
2423         unsigned long pfn;
2424         int flags;
2425 };
2426
2427 struct memory_failure_cpu {
2428         DECLARE_KFIFO(fifo, struct memory_failure_entry,
2429                       MEMORY_FAILURE_FIFO_SIZE);
2430         raw_spinlock_t lock;
2431         struct work_struct work;
2432 };
2433
2434 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2435
2436 /**
2437  * memory_failure_queue - Schedule handling memory failure of a page.
2438  * @pfn: Page Number of the corrupted page
2439  * @flags: Flags for memory failure handling
2440  *
2441  * This function is called by the low level hardware error handler
2442  * when it detects hardware memory corruption of a page. It schedules
2443  * the recovering of error page, including dropping pages, killing
2444  * processes etc.
2445  *
2446  * The function is primarily of use for corruptions that
2447  * happen outside the current execution context (e.g. when
2448  * detected by a background scrubber)
2449  *
2450  * Can run in IRQ context.
2451  */
2452 void memory_failure_queue(unsigned long pfn, int flags)
2453 {
2454         struct memory_failure_cpu *mf_cpu;
2455         unsigned long proc_flags;
2456         bool buffer_overflow;
2457         struct memory_failure_entry entry = {
2458                 .pfn =          pfn,
2459                 .flags =        flags,
2460         };
2461
2462         mf_cpu = &get_cpu_var(memory_failure_cpu);
2463         raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2464         buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2465         if (!buffer_overflow)
2466                 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2467         raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2468         put_cpu_var(memory_failure_cpu);
2469         if (buffer_overflow)
2470                 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2471                        pfn);
2472 }
2473 EXPORT_SYMBOL_GPL(memory_failure_queue);
2474
2475 static void memory_failure_work_func(struct work_struct *work)
2476 {
2477         struct memory_failure_cpu *mf_cpu;
2478         struct memory_failure_entry entry = { 0, };
2479         unsigned long proc_flags;
2480         int gotten;
2481
2482         mf_cpu = container_of(work, struct memory_failure_cpu, work);
2483         for (;;) {
2484                 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2485                 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2486                 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2487                 if (!gotten)
2488                         break;
2489                 if (entry.flags & MF_SOFT_OFFLINE)
2490                         soft_offline_page(entry.pfn, entry.flags);
2491                 else
2492                         memory_failure(entry.pfn, entry.flags);
2493         }
2494 }
2495
2496 /*
2497  * Process memory_failure work queued on the specified CPU.
2498  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2499  */
2500 void memory_failure_queue_kick(int cpu)
2501 {
2502         struct memory_failure_cpu *mf_cpu;
2503
2504         mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2505         cancel_work_sync(&mf_cpu->work);
2506         memory_failure_work_func(&mf_cpu->work);
2507 }
2508
2509 static int __init memory_failure_init(void)
2510 {
2511         struct memory_failure_cpu *mf_cpu;
2512         int cpu;
2513
2514         for_each_possible_cpu(cpu) {
2515                 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2516                 raw_spin_lock_init(&mf_cpu->lock);
2517                 INIT_KFIFO(mf_cpu->fifo);
2518                 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2519         }
2520
2521         register_sysctl_init("vm", memory_failure_table);
2522
2523         return 0;
2524 }
2525 core_initcall(memory_failure_init);
2526
2527 #undef pr_fmt
2528 #define pr_fmt(fmt)     "Unpoison: " fmt
2529 #define unpoison_pr_info(fmt, pfn, rs)                  \
2530 ({                                                      \
2531         if (__ratelimit(rs))                            \
2532                 pr_info(fmt, pfn);                      \
2533 })
2534
2535 /**
2536  * unpoison_memory - Unpoison a previously poisoned page
2537  * @pfn: Page number of the to be unpoisoned page
2538  *
2539  * Software-unpoison a page that has been poisoned by
2540  * memory_failure() earlier.
2541  *
2542  * This is only done on the software-level, so it only works
2543  * for linux injected failures, not real hardware failures
2544  *
2545  * Returns 0 for success, otherwise -errno.
2546  */
2547 int unpoison_memory(unsigned long pfn)
2548 {
2549         struct folio *folio;
2550         struct page *p;
2551         int ret = -EBUSY, ghp;
2552         unsigned long count;
2553         bool huge = false;
2554         static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2555                                         DEFAULT_RATELIMIT_BURST);
2556
2557         if (!pfn_valid(pfn))
2558                 return -ENXIO;
2559
2560         p = pfn_to_page(pfn);
2561         folio = page_folio(p);
2562
2563         mutex_lock(&mf_mutex);
2564
2565         if (hw_memory_failure) {
2566                 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2567                                  pfn, &unpoison_rs);
2568                 ret = -EOPNOTSUPP;
2569                 goto unlock_mutex;
2570         }
2571
2572         if (is_huge_zero_folio(folio)) {
2573                 unpoison_pr_info("%#lx: huge zero page is not supported\n",
2574                                  pfn, &unpoison_rs);
2575                 ret = -EOPNOTSUPP;
2576                 goto unlock_mutex;
2577         }
2578
2579         if (!PageHWPoison(p)) {
2580                 unpoison_pr_info("%#lx: page was already unpoisoned\n",
2581                                  pfn, &unpoison_rs);
2582                 goto unlock_mutex;
2583         }
2584
2585         if (folio_ref_count(folio) > 1) {
2586                 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2587                                  pfn, &unpoison_rs);
2588                 goto unlock_mutex;
2589         }
2590
2591         if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2592             folio_test_reserved(folio) || folio_test_offline(folio))
2593                 goto unlock_mutex;
2594
2595         if (folio_mapped(folio)) {
2596                 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2597                                  pfn, &unpoison_rs);
2598                 goto unlock_mutex;
2599         }
2600
2601         if (folio_mapping(folio)) {
2602                 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2603                                  pfn, &unpoison_rs);
2604                 goto unlock_mutex;
2605         }
2606
2607         ghp = get_hwpoison_page(p, MF_UNPOISON);
2608         if (!ghp) {
2609                 if (folio_test_hugetlb(folio)) {
2610                         huge = true;
2611                         count = folio_free_raw_hwp(folio, false);
2612                         if (count == 0)
2613                                 goto unlock_mutex;
2614                 }
2615                 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2616         } else if (ghp < 0) {
2617                 if (ghp == -EHWPOISON) {
2618                         ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2619                 } else {
2620                         ret = ghp;
2621                         unpoison_pr_info("%#lx: failed to grab page\n",
2622                                          pfn, &unpoison_rs);
2623                 }
2624         } else {
2625                 if (folio_test_hugetlb(folio)) {
2626                         huge = true;
2627                         count = folio_free_raw_hwp(folio, false);
2628                         if (count == 0) {
2629                                 folio_put(folio);
2630                                 goto unlock_mutex;
2631                         }
2632                 }
2633
2634                 folio_put(folio);
2635                 if (TestClearPageHWPoison(p)) {
2636                         folio_put(folio);
2637                         ret = 0;
2638                 }
2639         }
2640
2641 unlock_mutex:
2642         mutex_unlock(&mf_mutex);
2643         if (!ret) {
2644                 if (!huge)
2645                         num_poisoned_pages_sub(pfn, 1);
2646                 unpoison_pr_info("%#lx: software-unpoisoned page\n",
2647                                  page_to_pfn(p), &unpoison_rs);
2648         }
2649         return ret;
2650 }
2651 EXPORT_SYMBOL(unpoison_memory);
2652
2653 #undef pr_fmt
2654 #define pr_fmt(fmt) "Soft offline: " fmt
2655
2656 /*
2657  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2658  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2659  * If the page is mapped, it migrates the contents over.
2660  */
2661 static int soft_offline_in_use_page(struct page *page)
2662 {
2663         long ret = 0;
2664         unsigned long pfn = page_to_pfn(page);
2665         struct folio *folio = page_folio(page);
2666         char const *msg_page[] = {"page", "hugepage"};
2667         bool huge = folio_test_hugetlb(folio);
2668         bool isolated;
2669         LIST_HEAD(pagelist);
2670         struct migration_target_control mtc = {
2671                 .nid = NUMA_NO_NODE,
2672                 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2673                 .reason = MR_MEMORY_FAILURE,
2674         };
2675
2676         if (!huge && folio_test_large(folio)) {
2677                 if (try_to_split_thp_page(page, true)) {
2678                         pr_info("%#lx: thp split failed\n", pfn);
2679                         return -EBUSY;
2680                 }
2681                 folio = page_folio(page);
2682         }
2683
2684         folio_lock(folio);
2685         if (!huge)
2686                 folio_wait_writeback(folio);
2687         if (PageHWPoison(page)) {
2688                 folio_unlock(folio);
2689                 folio_put(folio);
2690                 pr_info("%#lx: page already poisoned\n", pfn);
2691                 return 0;
2692         }
2693
2694         if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2695                 /*
2696                  * Try to invalidate first. This should work for
2697                  * non dirty unmapped page cache pages.
2698                  */
2699                 ret = mapping_evict_folio(folio_mapping(folio), folio);
2700         folio_unlock(folio);
2701
2702         if (ret) {
2703                 pr_info("%#lx: invalidated\n", pfn);
2704                 page_handle_poison(page, false, true);
2705                 return 0;
2706         }
2707
2708         isolated = isolate_folio_to_list(folio, &pagelist);
2709
2710         /*
2711          * If we succeed to isolate the folio, we grabbed another refcount on
2712          * the folio, so we can safely drop the one we got from get_any_page().
2713          * If we failed to isolate the folio, it means that we cannot go further
2714          * and we will return an error, so drop the reference we got from
2715          * get_any_page() as well.
2716          */
2717         folio_put(folio);
2718
2719         if (isolated) {
2720                 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2721                         (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2722                 if (!ret) {
2723                         bool release = !huge;
2724
2725                         if (!page_handle_poison(page, huge, release))
2726                                 ret = -EBUSY;
2727                 } else {
2728                         if (!list_empty(&pagelist))
2729                                 putback_movable_pages(&pagelist);
2730
2731                         pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2732                                 pfn, msg_page[huge], ret, &page->flags);
2733                         if (ret > 0)
2734                                 ret = -EBUSY;
2735                 }
2736         } else {
2737                 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2738                         pfn, msg_page[huge], page_count(page), &page->flags);
2739                 ret = -EBUSY;
2740         }
2741         return ret;
2742 }
2743
2744 /**
2745  * soft_offline_page - Soft offline a page.
2746  * @pfn: pfn to soft-offline
2747  * @flags: flags. Same as memory_failure().
2748  *
2749  * Returns 0 on success,
2750  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2751  *         disabled by /proc/sys/vm/enable_soft_offline,
2752  *         < 0 otherwise negated errno.
2753  *
2754  * Soft offline a page, by migration or invalidation,
2755  * without killing anything. This is for the case when
2756  * a page is not corrupted yet (so it's still valid to access),
2757  * but has had a number of corrected errors and is better taken
2758  * out.
2759  *
2760  * The actual policy on when to do that is maintained by
2761  * user space.
2762  *
2763  * This should never impact any application or cause data loss,
2764  * however it might take some time.
2765  *
2766  * This is not a 100% solution for all memory, but tries to be
2767  * ``good enough'' for the majority of memory.
2768  */
2769 int soft_offline_page(unsigned long pfn, int flags)
2770 {
2771         int ret;
2772         bool try_again = true;
2773         struct page *page;
2774
2775         if (!pfn_valid(pfn)) {
2776                 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2777                 return -ENXIO;
2778         }
2779
2780         /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2781         page = pfn_to_online_page(pfn);
2782         if (!page) {
2783                 put_ref_page(pfn, flags);
2784                 return -EIO;
2785         }
2786
2787         if (!sysctl_enable_soft_offline) {
2788                 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2789                 put_ref_page(pfn, flags);
2790                 return -EOPNOTSUPP;
2791         }
2792
2793         mutex_lock(&mf_mutex);
2794
2795         if (PageHWPoison(page)) {
2796                 pr_info("%#lx: page already poisoned\n", pfn);
2797                 put_ref_page(pfn, flags);
2798                 mutex_unlock(&mf_mutex);
2799                 return 0;
2800         }
2801
2802 retry:
2803         get_online_mems();
2804         ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2805         put_online_mems();
2806
2807         if (hwpoison_filter(page)) {
2808                 if (ret > 0)
2809                         put_page(page);
2810
2811                 mutex_unlock(&mf_mutex);
2812                 return -EOPNOTSUPP;
2813         }
2814
2815         if (ret > 0) {
2816                 ret = soft_offline_in_use_page(page);
2817         } else if (ret == 0) {
2818                 if (!page_handle_poison(page, true, false)) {
2819                         if (try_again) {
2820                                 try_again = false;
2821                                 flags &= ~MF_COUNT_INCREASED;
2822                                 goto retry;
2823                         }
2824                         ret = -EBUSY;
2825                 }
2826         }
2827
2828         mutex_unlock(&mf_mutex);
2829
2830         return ret;
2831 }
This page took 0.185075 seconds and 4 git commands to generate.