2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
121 #include <asm/uaccess.h>
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
135 #include <linux/filter.h>
137 #include <trace/events/sock.h>
143 #include <net/busy_poll.h>
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
158 bool sk_ns_capable(const struct sock *sk,
159 struct user_namespace *user_ns, int cap)
161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 ns_capable(user_ns, cap);
164 EXPORT_SYMBOL(sk_ns_capable);
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capability to use
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
175 bool sk_capable(const struct sock *sk, int cap)
177 return sk_ns_capable(sk, &init_user_ns, cap);
179 EXPORT_SYMBOL(sk_capable);
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
186 * Test to see if the opener of the socket had when the socket was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
190 bool sk_net_capable(const struct sock *sk, int cap)
192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194 EXPORT_SYMBOL(sk_net_capable);
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
203 mutex_lock(&proto_list_mutex);
204 list_for_each_entry(proto, &proto_list, node) {
205 if (proto->init_cgroup) {
206 ret = proto->init_cgroup(memcg, ss);
212 mutex_unlock(&proto_list_mutex);
215 list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 if (proto->destroy_cgroup)
217 proto->destroy_cgroup(memcg);
218 mutex_unlock(&proto_list_mutex);
222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
226 mutex_lock(&proto_list_mutex);
227 list_for_each_entry_reverse(proto, &proto_list, node)
228 if (proto->destroy_cgroup)
229 proto->destroy_cgroup(memcg);
230 mutex_unlock(&proto_list_mutex);
235 * Each address family might have different locking rules, so we have
236 * one slock key per address family:
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
247 * Make lock validator output more readable. (we pre-construct these
248 * strings build-time, so that runtime initialization of socket
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
253 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
254 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
255 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
256 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
257 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
258 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
259 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
260 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
261 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
262 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
263 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
264 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
265 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
269 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
270 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
271 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
272 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
273 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
274 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
275 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
276 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
277 "slock-27" , "slock-28" , "slock-AF_CAN" ,
278 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
279 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
280 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
281 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
285 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
286 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
287 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
288 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
289 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
290 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
291 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
292 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
293 "clock-27" , "clock-28" , "clock-AF_CAN" ,
294 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
295 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
296 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
297 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
301 * sk_callback_lock locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
304 static struct lock_class_key af_callback_keys[AF_MAX];
306 /* Take into consideration the size of the struct sk_buff overhead in the
307 * determination of these values, since that is non-constant across
308 * platforms. This makes socket queueing behavior and performance
309 * not depend upon such differences.
311 #define _SK_MEM_PACKETS 256
312 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
328 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
329 EXPORT_SYMBOL_GPL(memalloc_socks);
332 * sk_set_memalloc - sets %SOCK_MEMALLOC
333 * @sk: socket to set it on
335 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
336 * It's the responsibility of the admin to adjust min_free_kbytes
337 * to meet the requirements
339 void sk_set_memalloc(struct sock *sk)
341 sock_set_flag(sk, SOCK_MEMALLOC);
342 sk->sk_allocation |= __GFP_MEMALLOC;
343 static_key_slow_inc(&memalloc_socks);
345 EXPORT_SYMBOL_GPL(sk_set_memalloc);
347 void sk_clear_memalloc(struct sock *sk)
349 sock_reset_flag(sk, SOCK_MEMALLOC);
350 sk->sk_allocation &= ~__GFP_MEMALLOC;
351 static_key_slow_dec(&memalloc_socks);
354 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
355 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
356 * it has rmem allocations there is a risk that the user of the
357 * socket cannot make forward progress due to exceeding the rmem
358 * limits. By rights, sk_clear_memalloc() should only be called
359 * on sockets being torn down but warn and reset the accounting if
360 * that assumption breaks.
362 if (WARN_ON(sk->sk_forward_alloc))
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
370 unsigned long pflags = current->flags;
372 /* these should have been dropped before queueing */
373 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
375 current->flags |= PF_MEMALLOC;
376 ret = sk->sk_backlog_rcv(sk, skb);
377 tsk_restore_flags(current, pflags, PF_MEMALLOC);
381 EXPORT_SYMBOL(__sk_backlog_rcv);
383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
387 if (optlen < sizeof(tv))
389 if (copy_from_user(&tv, optval, sizeof(tv)))
391 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 static int warned __read_mostly;
398 if (warned < 10 && net_ratelimit()) {
400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 __func__, current->comm, task_pid_nr(current));
405 *timeo_p = MAX_SCHEDULE_TIMEOUT;
406 if (tv.tv_sec == 0 && tv.tv_usec == 0)
408 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
413 static void sock_warn_obsolete_bsdism(const char *name)
416 static char warncomm[TASK_COMM_LEN];
417 if (strcmp(warncomm, current->comm) && warned < 5) {
418 strcpy(warncomm, current->comm);
419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
425 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
429 if (sk->sk_flags & flags) {
430 sk->sk_flags &= ~flags;
431 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
432 net_disable_timestamp();
437 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
441 struct sk_buff_head *list = &sk->sk_receive_queue;
443 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 atomic_inc(&sk->sk_drops);
445 trace_sock_rcvqueue_full(sk, skb);
449 err = sk_filter(sk, skb);
453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454 atomic_inc(&sk->sk_drops);
459 skb_set_owner_r(skb, sk);
461 /* we escape from rcu protected region, make sure we dont leak
466 spin_lock_irqsave(&list->lock, flags);
467 skb->dropcount = atomic_read(&sk->sk_drops);
468 __skb_queue_tail(list, skb);
469 spin_unlock_irqrestore(&list->lock, flags);
471 if (!sock_flag(sk, SOCK_DEAD))
472 sk->sk_data_ready(sk);
475 EXPORT_SYMBOL(sock_queue_rcv_skb);
477 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
479 int rc = NET_RX_SUCCESS;
481 if (sk_filter(sk, skb))
482 goto discard_and_relse;
486 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
487 atomic_inc(&sk->sk_drops);
488 goto discard_and_relse;
491 bh_lock_sock_nested(sk);
494 if (!sock_owned_by_user(sk)) {
496 * trylock + unlock semantics:
498 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
500 rc = sk_backlog_rcv(sk, skb);
502 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
503 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
505 atomic_inc(&sk->sk_drops);
506 goto discard_and_relse;
517 EXPORT_SYMBOL(sk_receive_skb);
519 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
521 struct dst_entry *dst = __sk_dst_get(sk);
523 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
524 sk_tx_queue_clear(sk);
525 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
532 EXPORT_SYMBOL(__sk_dst_check);
534 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
536 struct dst_entry *dst = sk_dst_get(sk);
538 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
546 EXPORT_SYMBOL(sk_dst_check);
548 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
551 int ret = -ENOPROTOOPT;
552 #ifdef CONFIG_NETDEVICES
553 struct net *net = sock_net(sk);
554 char devname[IFNAMSIZ];
559 if (!ns_capable(net->user_ns, CAP_NET_RAW))
566 /* Bind this socket to a particular device like "eth0",
567 * as specified in the passed interface name. If the
568 * name is "" or the option length is zero the socket
571 if (optlen > IFNAMSIZ - 1)
572 optlen = IFNAMSIZ - 1;
573 memset(devname, 0, sizeof(devname));
576 if (copy_from_user(devname, optval, optlen))
580 if (devname[0] != '\0') {
581 struct net_device *dev;
584 dev = dev_get_by_name_rcu(net, devname);
586 index = dev->ifindex;
594 sk->sk_bound_dev_if = index;
606 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
607 int __user *optlen, int len)
609 int ret = -ENOPROTOOPT;
610 #ifdef CONFIG_NETDEVICES
611 struct net *net = sock_net(sk);
612 char devname[IFNAMSIZ];
614 if (sk->sk_bound_dev_if == 0) {
623 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
627 len = strlen(devname) + 1;
630 if (copy_to_user(optval, devname, len))
635 if (put_user(len, optlen))
646 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
649 sock_set_flag(sk, bit);
651 sock_reset_flag(sk, bit);
655 * This is meant for all protocols to use and covers goings on
656 * at the socket level. Everything here is generic.
659 int sock_setsockopt(struct socket *sock, int level, int optname,
660 char __user *optval, unsigned int optlen)
662 struct sock *sk = sock->sk;
669 * Options without arguments
672 if (optname == SO_BINDTODEVICE)
673 return sock_setbindtodevice(sk, optval, optlen);
675 if (optlen < sizeof(int))
678 if (get_user(val, (int __user *)optval))
681 valbool = val ? 1 : 0;
687 if (val && !capable(CAP_NET_ADMIN))
690 sock_valbool_flag(sk, SOCK_DBG, valbool);
693 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
696 sk->sk_reuseport = valbool;
705 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
708 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
711 /* Don't error on this BSD doesn't and if you think
712 * about it this is right. Otherwise apps have to
713 * play 'guess the biggest size' games. RCVBUF/SNDBUF
714 * are treated in BSD as hints
716 val = min_t(u32, val, sysctl_wmem_max);
718 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
719 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
720 /* Wake up sending tasks if we upped the value. */
721 sk->sk_write_space(sk);
725 if (!capable(CAP_NET_ADMIN)) {
732 /* Don't error on this BSD doesn't and if you think
733 * about it this is right. Otherwise apps have to
734 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 * are treated in BSD as hints
737 val = min_t(u32, val, sysctl_rmem_max);
739 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
741 * We double it on the way in to account for
742 * "struct sk_buff" etc. overhead. Applications
743 * assume that the SO_RCVBUF setting they make will
744 * allow that much actual data to be received on that
747 * Applications are unaware that "struct sk_buff" and
748 * other overheads allocate from the receive buffer
749 * during socket buffer allocation.
751 * And after considering the possible alternatives,
752 * returning the value we actually used in getsockopt
753 * is the most desirable behavior.
755 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
759 if (!capable(CAP_NET_ADMIN)) {
767 if (sk->sk_protocol == IPPROTO_TCP &&
768 sk->sk_type == SOCK_STREAM)
769 tcp_set_keepalive(sk, valbool);
771 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
775 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
779 sk->sk_no_check_tx = valbool;
783 if ((val >= 0 && val <= 6) ||
784 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
785 sk->sk_priority = val;
791 if (optlen < sizeof(ling)) {
792 ret = -EINVAL; /* 1003.1g */
795 if (copy_from_user(&ling, optval, sizeof(ling))) {
800 sock_reset_flag(sk, SOCK_LINGER);
802 #if (BITS_PER_LONG == 32)
803 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
804 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
807 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
808 sock_set_flag(sk, SOCK_LINGER);
813 sock_warn_obsolete_bsdism("setsockopt");
818 set_bit(SOCK_PASSCRED, &sock->flags);
820 clear_bit(SOCK_PASSCRED, &sock->flags);
826 if (optname == SO_TIMESTAMP)
827 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
829 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
830 sock_set_flag(sk, SOCK_RCVTSTAMP);
831 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
833 sock_reset_flag(sk, SOCK_RCVTSTAMP);
834 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
838 case SO_TIMESTAMPING:
839 if (val & ~SOF_TIMESTAMPING_MASK) {
843 if (val & SOF_TIMESTAMPING_OPT_ID &&
844 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
845 if (sk->sk_protocol == IPPROTO_TCP) {
846 if (sk->sk_state != TCP_ESTABLISHED) {
850 sk->sk_tskey = tcp_sk(sk)->snd_una;
855 sk->sk_tsflags = val;
856 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
857 sock_enable_timestamp(sk,
858 SOCK_TIMESTAMPING_RX_SOFTWARE);
860 sock_disable_timestamp(sk,
861 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
867 sk->sk_rcvlowat = val ? : 1;
871 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
875 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
878 case SO_ATTACH_FILTER:
880 if (optlen == sizeof(struct sock_fprog)) {
881 struct sock_fprog fprog;
884 if (copy_from_user(&fprog, optval, sizeof(fprog)))
887 ret = sk_attach_filter(&fprog, sk);
891 case SO_DETACH_FILTER:
892 ret = sk_detach_filter(sk);
896 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
899 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
904 set_bit(SOCK_PASSSEC, &sock->flags);
906 clear_bit(SOCK_PASSSEC, &sock->flags);
909 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
915 /* We implement the SO_SNDLOWAT etc to
916 not be settable (1003.1g 5.3) */
918 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
922 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
926 if (sock->ops->set_peek_off)
927 ret = sock->ops->set_peek_off(sk, val);
933 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
936 case SO_SELECT_ERR_QUEUE:
937 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
940 #ifdef CONFIG_NET_RX_BUSY_POLL
942 /* allow unprivileged users to decrease the value */
943 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
949 sk->sk_ll_usec = val;
954 case SO_MAX_PACING_RATE:
955 sk->sk_max_pacing_rate = val;
956 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
957 sk->sk_max_pacing_rate);
967 EXPORT_SYMBOL(sock_setsockopt);
970 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
973 ucred->pid = pid_vnr(pid);
974 ucred->uid = ucred->gid = -1;
976 struct user_namespace *current_ns = current_user_ns();
978 ucred->uid = from_kuid_munged(current_ns, cred->euid);
979 ucred->gid = from_kgid_munged(current_ns, cred->egid);
983 int sock_getsockopt(struct socket *sock, int level, int optname,
984 char __user *optval, int __user *optlen)
986 struct sock *sk = sock->sk;
994 int lv = sizeof(int);
997 if (get_user(len, optlen))
1002 memset(&v, 0, sizeof(v));
1006 v.val = sock_flag(sk, SOCK_DBG);
1010 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1014 v.val = sock_flag(sk, SOCK_BROADCAST);
1018 v.val = sk->sk_sndbuf;
1022 v.val = sk->sk_rcvbuf;
1026 v.val = sk->sk_reuse;
1030 v.val = sk->sk_reuseport;
1034 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1038 v.val = sk->sk_type;
1042 v.val = sk->sk_protocol;
1046 v.val = sk->sk_family;
1050 v.val = -sock_error(sk);
1052 v.val = xchg(&sk->sk_err_soft, 0);
1056 v.val = sock_flag(sk, SOCK_URGINLINE);
1060 v.val = sk->sk_no_check_tx;
1064 v.val = sk->sk_priority;
1068 lv = sizeof(v.ling);
1069 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1070 v.ling.l_linger = sk->sk_lingertime / HZ;
1074 sock_warn_obsolete_bsdism("getsockopt");
1078 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1079 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1082 case SO_TIMESTAMPNS:
1083 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1086 case SO_TIMESTAMPING:
1087 v.val = sk->sk_tsflags;
1091 lv = sizeof(struct timeval);
1092 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1096 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1097 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1102 lv = sizeof(struct timeval);
1103 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1107 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1108 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1113 v.val = sk->sk_rcvlowat;
1121 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1126 struct ucred peercred;
1127 if (len > sizeof(peercred))
1128 len = sizeof(peercred);
1129 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1130 if (copy_to_user(optval, &peercred, len))
1139 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1143 if (copy_to_user(optval, address, len))
1148 /* Dubious BSD thing... Probably nobody even uses it, but
1149 * the UNIX standard wants it for whatever reason... -DaveM
1152 v.val = sk->sk_state == TCP_LISTEN;
1156 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1160 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1163 v.val = sk->sk_mark;
1167 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1170 case SO_WIFI_STATUS:
1171 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1175 if (!sock->ops->set_peek_off)
1178 v.val = sk->sk_peek_off;
1181 v.val = sock_flag(sk, SOCK_NOFCS);
1184 case SO_BINDTODEVICE:
1185 return sock_getbindtodevice(sk, optval, optlen, len);
1188 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1194 case SO_LOCK_FILTER:
1195 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1198 case SO_BPF_EXTENSIONS:
1199 v.val = bpf_tell_extensions();
1202 case SO_SELECT_ERR_QUEUE:
1203 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1206 #ifdef CONFIG_NET_RX_BUSY_POLL
1208 v.val = sk->sk_ll_usec;
1212 case SO_MAX_PACING_RATE:
1213 v.val = sk->sk_max_pacing_rate;
1217 return -ENOPROTOOPT;
1222 if (copy_to_user(optval, &v, len))
1225 if (put_user(len, optlen))
1231 * Initialize an sk_lock.
1233 * (We also register the sk_lock with the lock validator.)
1235 static inline void sock_lock_init(struct sock *sk)
1237 sock_lock_init_class_and_name(sk,
1238 af_family_slock_key_strings[sk->sk_family],
1239 af_family_slock_keys + sk->sk_family,
1240 af_family_key_strings[sk->sk_family],
1241 af_family_keys + sk->sk_family);
1245 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1246 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1247 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1249 static void sock_copy(struct sock *nsk, const struct sock *osk)
1251 #ifdef CONFIG_SECURITY_NETWORK
1252 void *sptr = nsk->sk_security;
1254 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1256 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1257 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1259 #ifdef CONFIG_SECURITY_NETWORK
1260 nsk->sk_security = sptr;
1261 security_sk_clone(osk, nsk);
1265 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1267 unsigned long nulls1, nulls2;
1269 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1270 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1271 if (nulls1 > nulls2)
1272 swap(nulls1, nulls2);
1275 memset((char *)sk, 0, nulls1);
1276 memset((char *)sk + nulls1 + sizeof(void *), 0,
1277 nulls2 - nulls1 - sizeof(void *));
1278 memset((char *)sk + nulls2 + sizeof(void *), 0,
1279 size - nulls2 - sizeof(void *));
1281 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1283 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1287 struct kmem_cache *slab;
1291 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1294 if (priority & __GFP_ZERO) {
1296 prot->clear_sk(sk, prot->obj_size);
1298 sk_prot_clear_nulls(sk, prot->obj_size);
1301 sk = kmalloc(prot->obj_size, priority);
1304 kmemcheck_annotate_bitfield(sk, flags);
1306 if (security_sk_alloc(sk, family, priority))
1309 if (!try_module_get(prot->owner))
1311 sk_tx_queue_clear(sk);
1317 security_sk_free(sk);
1320 kmem_cache_free(slab, sk);
1326 static void sk_prot_free(struct proto *prot, struct sock *sk)
1328 struct kmem_cache *slab;
1329 struct module *owner;
1331 owner = prot->owner;
1334 security_sk_free(sk);
1336 kmem_cache_free(slab, sk);
1342 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1343 void sock_update_netprioidx(struct sock *sk)
1348 sk->sk_cgrp_prioidx = task_netprioidx(current);
1350 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1354 * sk_alloc - All socket objects are allocated here
1355 * @net: the applicable net namespace
1356 * @family: protocol family
1357 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1358 * @prot: struct proto associated with this new sock instance
1360 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1365 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1367 sk->sk_family = family;
1369 * See comment in struct sock definition to understand
1370 * why we need sk_prot_creator -acme
1372 sk->sk_prot = sk->sk_prot_creator = prot;
1374 sock_net_set(sk, get_net(net));
1375 atomic_set(&sk->sk_wmem_alloc, 1);
1377 sock_update_classid(sk);
1378 sock_update_netprioidx(sk);
1383 EXPORT_SYMBOL(sk_alloc);
1385 static void __sk_free(struct sock *sk)
1387 struct sk_filter *filter;
1389 if (sk->sk_destruct)
1390 sk->sk_destruct(sk);
1392 filter = rcu_dereference_check(sk->sk_filter,
1393 atomic_read(&sk->sk_wmem_alloc) == 0);
1395 sk_filter_uncharge(sk, filter);
1396 RCU_INIT_POINTER(sk->sk_filter, NULL);
1399 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1401 if (atomic_read(&sk->sk_omem_alloc))
1402 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1403 __func__, atomic_read(&sk->sk_omem_alloc));
1405 if (sk->sk_peer_cred)
1406 put_cred(sk->sk_peer_cred);
1407 put_pid(sk->sk_peer_pid);
1408 put_net(sock_net(sk));
1409 sk_prot_free(sk->sk_prot_creator, sk);
1412 void sk_free(struct sock *sk)
1415 * We subtract one from sk_wmem_alloc and can know if
1416 * some packets are still in some tx queue.
1417 * If not null, sock_wfree() will call __sk_free(sk) later
1419 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1422 EXPORT_SYMBOL(sk_free);
1425 * Last sock_put should drop reference to sk->sk_net. It has already
1426 * been dropped in sk_change_net. Taking reference to stopping namespace
1428 * Take reference to a socket to remove it from hash _alive_ and after that
1429 * destroy it in the context of init_net.
1431 void sk_release_kernel(struct sock *sk)
1433 if (sk == NULL || sk->sk_socket == NULL)
1437 sock_release(sk->sk_socket);
1438 release_net(sock_net(sk));
1439 sock_net_set(sk, get_net(&init_net));
1442 EXPORT_SYMBOL(sk_release_kernel);
1444 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1446 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1447 sock_update_memcg(newsk);
1451 * sk_clone_lock - clone a socket, and lock its clone
1452 * @sk: the socket to clone
1453 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1455 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1457 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1460 bool is_charged = true;
1462 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1463 if (newsk != NULL) {
1464 struct sk_filter *filter;
1466 sock_copy(newsk, sk);
1469 get_net(sock_net(newsk));
1470 sk_node_init(&newsk->sk_node);
1471 sock_lock_init(newsk);
1472 bh_lock_sock(newsk);
1473 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1474 newsk->sk_backlog.len = 0;
1476 atomic_set(&newsk->sk_rmem_alloc, 0);
1478 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1480 atomic_set(&newsk->sk_wmem_alloc, 1);
1481 atomic_set(&newsk->sk_omem_alloc, 0);
1482 skb_queue_head_init(&newsk->sk_receive_queue);
1483 skb_queue_head_init(&newsk->sk_write_queue);
1485 spin_lock_init(&newsk->sk_dst_lock);
1486 rwlock_init(&newsk->sk_callback_lock);
1487 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1488 af_callback_keys + newsk->sk_family,
1489 af_family_clock_key_strings[newsk->sk_family]);
1491 newsk->sk_dst_cache = NULL;
1492 newsk->sk_wmem_queued = 0;
1493 newsk->sk_forward_alloc = 0;
1494 newsk->sk_send_head = NULL;
1495 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1497 sock_reset_flag(newsk, SOCK_DONE);
1498 skb_queue_head_init(&newsk->sk_error_queue);
1500 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1502 /* though it's an empty new sock, the charging may fail
1503 * if sysctl_optmem_max was changed between creation of
1504 * original socket and cloning
1506 is_charged = sk_filter_charge(newsk, filter);
1508 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1509 /* It is still raw copy of parent, so invalidate
1510 * destructor and make plain sk_free() */
1511 newsk->sk_destruct = NULL;
1512 bh_unlock_sock(newsk);
1519 newsk->sk_priority = 0;
1521 * Before updating sk_refcnt, we must commit prior changes to memory
1522 * (Documentation/RCU/rculist_nulls.txt for details)
1525 atomic_set(&newsk->sk_refcnt, 2);
1528 * Increment the counter in the same struct proto as the master
1529 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1530 * is the same as sk->sk_prot->socks, as this field was copied
1533 * This _changes_ the previous behaviour, where
1534 * tcp_create_openreq_child always was incrementing the
1535 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1536 * to be taken into account in all callers. -acme
1538 sk_refcnt_debug_inc(newsk);
1539 sk_set_socket(newsk, NULL);
1540 newsk->sk_wq = NULL;
1542 sk_update_clone(sk, newsk);
1544 if (newsk->sk_prot->sockets_allocated)
1545 sk_sockets_allocated_inc(newsk);
1547 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1548 net_enable_timestamp();
1553 EXPORT_SYMBOL_GPL(sk_clone_lock);
1555 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1557 __sk_dst_set(sk, dst);
1558 sk->sk_route_caps = dst->dev->features;
1559 if (sk->sk_route_caps & NETIF_F_GSO)
1560 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1561 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1562 if (sk_can_gso(sk)) {
1563 if (dst->header_len) {
1564 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1566 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1567 sk->sk_gso_max_size = dst->dev->gso_max_size;
1568 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1572 EXPORT_SYMBOL_GPL(sk_setup_caps);
1575 * Simple resource managers for sockets.
1580 * Write buffer destructor automatically called from kfree_skb.
1582 void sock_wfree(struct sk_buff *skb)
1584 struct sock *sk = skb->sk;
1585 unsigned int len = skb->truesize;
1587 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1589 * Keep a reference on sk_wmem_alloc, this will be released
1590 * after sk_write_space() call
1592 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1593 sk->sk_write_space(sk);
1597 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1598 * could not do because of in-flight packets
1600 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1603 EXPORT_SYMBOL(sock_wfree);
1605 void skb_orphan_partial(struct sk_buff *skb)
1607 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1608 * so we do not completely orphan skb, but transfert all
1609 * accounted bytes but one, to avoid unexpected reorders.
1611 if (skb->destructor == sock_wfree
1613 || skb->destructor == tcp_wfree
1616 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1622 EXPORT_SYMBOL(skb_orphan_partial);
1625 * Read buffer destructor automatically called from kfree_skb.
1627 void sock_rfree(struct sk_buff *skb)
1629 struct sock *sk = skb->sk;
1630 unsigned int len = skb->truesize;
1632 atomic_sub(len, &sk->sk_rmem_alloc);
1633 sk_mem_uncharge(sk, len);
1635 EXPORT_SYMBOL(sock_rfree);
1637 void sock_efree(struct sk_buff *skb)
1641 EXPORT_SYMBOL(sock_efree);
1644 void sock_edemux(struct sk_buff *skb)
1646 struct sock *sk = skb->sk;
1648 if (sk->sk_state == TCP_TIME_WAIT)
1649 inet_twsk_put(inet_twsk(sk));
1653 EXPORT_SYMBOL(sock_edemux);
1656 kuid_t sock_i_uid(struct sock *sk)
1660 read_lock_bh(&sk->sk_callback_lock);
1661 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1662 read_unlock_bh(&sk->sk_callback_lock);
1665 EXPORT_SYMBOL(sock_i_uid);
1667 unsigned long sock_i_ino(struct sock *sk)
1671 read_lock_bh(&sk->sk_callback_lock);
1672 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1673 read_unlock_bh(&sk->sk_callback_lock);
1676 EXPORT_SYMBOL(sock_i_ino);
1679 * Allocate a skb from the socket's send buffer.
1681 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1684 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1685 struct sk_buff *skb = alloc_skb(size, priority);
1687 skb_set_owner_w(skb, sk);
1693 EXPORT_SYMBOL(sock_wmalloc);
1696 * Allocate a memory block from the socket's option memory buffer.
1698 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1700 if ((unsigned int)size <= sysctl_optmem_max &&
1701 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1703 /* First do the add, to avoid the race if kmalloc
1706 atomic_add(size, &sk->sk_omem_alloc);
1707 mem = kmalloc(size, priority);
1710 atomic_sub(size, &sk->sk_omem_alloc);
1714 EXPORT_SYMBOL(sock_kmalloc);
1717 * Free an option memory block.
1719 void sock_kfree_s(struct sock *sk, void *mem, int size)
1721 if (WARN_ON_ONCE(!mem))
1724 atomic_sub(size, &sk->sk_omem_alloc);
1726 EXPORT_SYMBOL(sock_kfree_s);
1728 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1729 I think, these locks should be removed for datagram sockets.
1731 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1735 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1739 if (signal_pending(current))
1741 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1742 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1743 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1745 if (sk->sk_shutdown & SEND_SHUTDOWN)
1749 timeo = schedule_timeout(timeo);
1751 finish_wait(sk_sleep(sk), &wait);
1757 * Generic send/receive buffer handlers
1760 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1761 unsigned long data_len, int noblock,
1762 int *errcode, int max_page_order)
1764 struct sk_buff *skb;
1768 timeo = sock_sndtimeo(sk, noblock);
1770 err = sock_error(sk);
1775 if (sk->sk_shutdown & SEND_SHUTDOWN)
1778 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1781 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1782 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1786 if (signal_pending(current))
1788 timeo = sock_wait_for_wmem(sk, timeo);
1790 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1791 errcode, sk->sk_allocation);
1793 skb_set_owner_w(skb, sk);
1797 err = sock_intr_errno(timeo);
1802 EXPORT_SYMBOL(sock_alloc_send_pskb);
1804 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1805 int noblock, int *errcode)
1807 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1809 EXPORT_SYMBOL(sock_alloc_send_skb);
1811 /* On 32bit arches, an skb frag is limited to 2^15 */
1812 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1815 * skb_page_frag_refill - check that a page_frag contains enough room
1816 * @sz: minimum size of the fragment we want to get
1817 * @pfrag: pointer to page_frag
1818 * @gfp: priority for memory allocation
1820 * Note: While this allocator tries to use high order pages, there is
1821 * no guarantee that allocations succeed. Therefore, @sz MUST be
1822 * less or equal than PAGE_SIZE.
1824 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1827 if (atomic_read(&pfrag->page->_count) == 1) {
1831 if (pfrag->offset + sz <= pfrag->size)
1833 put_page(pfrag->page);
1837 if (SKB_FRAG_PAGE_ORDER) {
1838 pfrag->page = alloc_pages(gfp | __GFP_COMP |
1839 __GFP_NOWARN | __GFP_NORETRY,
1840 SKB_FRAG_PAGE_ORDER);
1841 if (likely(pfrag->page)) {
1842 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1846 pfrag->page = alloc_page(gfp);
1847 if (likely(pfrag->page)) {
1848 pfrag->size = PAGE_SIZE;
1853 EXPORT_SYMBOL(skb_page_frag_refill);
1855 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1857 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1860 sk_enter_memory_pressure(sk);
1861 sk_stream_moderate_sndbuf(sk);
1864 EXPORT_SYMBOL(sk_page_frag_refill);
1866 static void __lock_sock(struct sock *sk)
1867 __releases(&sk->sk_lock.slock)
1868 __acquires(&sk->sk_lock.slock)
1873 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1874 TASK_UNINTERRUPTIBLE);
1875 spin_unlock_bh(&sk->sk_lock.slock);
1877 spin_lock_bh(&sk->sk_lock.slock);
1878 if (!sock_owned_by_user(sk))
1881 finish_wait(&sk->sk_lock.wq, &wait);
1884 static void __release_sock(struct sock *sk)
1885 __releases(&sk->sk_lock.slock)
1886 __acquires(&sk->sk_lock.slock)
1888 struct sk_buff *skb = sk->sk_backlog.head;
1891 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1895 struct sk_buff *next = skb->next;
1898 WARN_ON_ONCE(skb_dst_is_noref(skb));
1900 sk_backlog_rcv(sk, skb);
1903 * We are in process context here with softirqs
1904 * disabled, use cond_resched_softirq() to preempt.
1905 * This is safe to do because we've taken the backlog
1908 cond_resched_softirq();
1911 } while (skb != NULL);
1914 } while ((skb = sk->sk_backlog.head) != NULL);
1917 * Doing the zeroing here guarantee we can not loop forever
1918 * while a wild producer attempts to flood us.
1920 sk->sk_backlog.len = 0;
1924 * sk_wait_data - wait for data to arrive at sk_receive_queue
1925 * @sk: sock to wait on
1926 * @timeo: for how long
1928 * Now socket state including sk->sk_err is changed only under lock,
1929 * hence we may omit checks after joining wait queue.
1930 * We check receive queue before schedule() only as optimization;
1931 * it is very likely that release_sock() added new data.
1933 int sk_wait_data(struct sock *sk, long *timeo)
1938 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1939 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1940 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1941 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1942 finish_wait(sk_sleep(sk), &wait);
1945 EXPORT_SYMBOL(sk_wait_data);
1948 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1950 * @size: memory size to allocate
1951 * @kind: allocation type
1953 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1954 * rmem allocation. This function assumes that protocols which have
1955 * memory_pressure use sk_wmem_queued as write buffer accounting.
1957 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1959 struct proto *prot = sk->sk_prot;
1960 int amt = sk_mem_pages(size);
1962 int parent_status = UNDER_LIMIT;
1964 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1966 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1969 if (parent_status == UNDER_LIMIT &&
1970 allocated <= sk_prot_mem_limits(sk, 0)) {
1971 sk_leave_memory_pressure(sk);
1975 /* Under pressure. (we or our parents) */
1976 if ((parent_status > SOFT_LIMIT) ||
1977 allocated > sk_prot_mem_limits(sk, 1))
1978 sk_enter_memory_pressure(sk);
1980 /* Over hard limit (we or our parents) */
1981 if ((parent_status == OVER_LIMIT) ||
1982 (allocated > sk_prot_mem_limits(sk, 2)))
1983 goto suppress_allocation;
1985 /* guarantee minimum buffer size under pressure */
1986 if (kind == SK_MEM_RECV) {
1987 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1990 } else { /* SK_MEM_SEND */
1991 if (sk->sk_type == SOCK_STREAM) {
1992 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1994 } else if (atomic_read(&sk->sk_wmem_alloc) <
1995 prot->sysctl_wmem[0])
1999 if (sk_has_memory_pressure(sk)) {
2002 if (!sk_under_memory_pressure(sk))
2004 alloc = sk_sockets_allocated_read_positive(sk);
2005 if (sk_prot_mem_limits(sk, 2) > alloc *
2006 sk_mem_pages(sk->sk_wmem_queued +
2007 atomic_read(&sk->sk_rmem_alloc) +
2008 sk->sk_forward_alloc))
2012 suppress_allocation:
2014 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2015 sk_stream_moderate_sndbuf(sk);
2017 /* Fail only if socket is _under_ its sndbuf.
2018 * In this case we cannot block, so that we have to fail.
2020 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2024 trace_sock_exceed_buf_limit(sk, prot, allocated);
2026 /* Alas. Undo changes. */
2027 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2029 sk_memory_allocated_sub(sk, amt);
2033 EXPORT_SYMBOL(__sk_mem_schedule);
2036 * __sk_reclaim - reclaim memory_allocated
2039 void __sk_mem_reclaim(struct sock *sk)
2041 sk_memory_allocated_sub(sk,
2042 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2043 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2045 if (sk_under_memory_pressure(sk) &&
2046 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2047 sk_leave_memory_pressure(sk);
2049 EXPORT_SYMBOL(__sk_mem_reclaim);
2053 * Set of default routines for initialising struct proto_ops when
2054 * the protocol does not support a particular function. In certain
2055 * cases where it makes no sense for a protocol to have a "do nothing"
2056 * function, some default processing is provided.
2059 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2063 EXPORT_SYMBOL(sock_no_bind);
2065 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2070 EXPORT_SYMBOL(sock_no_connect);
2072 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2076 EXPORT_SYMBOL(sock_no_socketpair);
2078 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2082 EXPORT_SYMBOL(sock_no_accept);
2084 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2089 EXPORT_SYMBOL(sock_no_getname);
2091 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2095 EXPORT_SYMBOL(sock_no_poll);
2097 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2101 EXPORT_SYMBOL(sock_no_ioctl);
2103 int sock_no_listen(struct socket *sock, int backlog)
2107 EXPORT_SYMBOL(sock_no_listen);
2109 int sock_no_shutdown(struct socket *sock, int how)
2113 EXPORT_SYMBOL(sock_no_shutdown);
2115 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2116 char __user *optval, unsigned int optlen)
2120 EXPORT_SYMBOL(sock_no_setsockopt);
2122 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2123 char __user *optval, int __user *optlen)
2127 EXPORT_SYMBOL(sock_no_getsockopt);
2129 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2134 EXPORT_SYMBOL(sock_no_sendmsg);
2136 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2137 size_t len, int flags)
2141 EXPORT_SYMBOL(sock_no_recvmsg);
2143 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2145 /* Mirror missing mmap method error code */
2148 EXPORT_SYMBOL(sock_no_mmap);
2150 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2153 struct msghdr msg = {.msg_flags = flags};
2155 char *kaddr = kmap(page);
2156 iov.iov_base = kaddr + offset;
2158 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2162 EXPORT_SYMBOL(sock_no_sendpage);
2165 * Default Socket Callbacks
2168 static void sock_def_wakeup(struct sock *sk)
2170 struct socket_wq *wq;
2173 wq = rcu_dereference(sk->sk_wq);
2174 if (wq_has_sleeper(wq))
2175 wake_up_interruptible_all(&wq->wait);
2179 static void sock_def_error_report(struct sock *sk)
2181 struct socket_wq *wq;
2184 wq = rcu_dereference(sk->sk_wq);
2185 if (wq_has_sleeper(wq))
2186 wake_up_interruptible_poll(&wq->wait, POLLERR);
2187 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2191 static void sock_def_readable(struct sock *sk)
2193 struct socket_wq *wq;
2196 wq = rcu_dereference(sk->sk_wq);
2197 if (wq_has_sleeper(wq))
2198 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2199 POLLRDNORM | POLLRDBAND);
2200 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2204 static void sock_def_write_space(struct sock *sk)
2206 struct socket_wq *wq;
2210 /* Do not wake up a writer until he can make "significant"
2213 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2214 wq = rcu_dereference(sk->sk_wq);
2215 if (wq_has_sleeper(wq))
2216 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2217 POLLWRNORM | POLLWRBAND);
2219 /* Should agree with poll, otherwise some programs break */
2220 if (sock_writeable(sk))
2221 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2227 static void sock_def_destruct(struct sock *sk)
2229 kfree(sk->sk_protinfo);
2232 void sk_send_sigurg(struct sock *sk)
2234 if (sk->sk_socket && sk->sk_socket->file)
2235 if (send_sigurg(&sk->sk_socket->file->f_owner))
2236 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2238 EXPORT_SYMBOL(sk_send_sigurg);
2240 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2241 unsigned long expires)
2243 if (!mod_timer(timer, expires))
2246 EXPORT_SYMBOL(sk_reset_timer);
2248 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2250 if (del_timer(timer))
2253 EXPORT_SYMBOL(sk_stop_timer);
2255 void sock_init_data(struct socket *sock, struct sock *sk)
2257 skb_queue_head_init(&sk->sk_receive_queue);
2258 skb_queue_head_init(&sk->sk_write_queue);
2259 skb_queue_head_init(&sk->sk_error_queue);
2261 sk->sk_send_head = NULL;
2263 init_timer(&sk->sk_timer);
2265 sk->sk_allocation = GFP_KERNEL;
2266 sk->sk_rcvbuf = sysctl_rmem_default;
2267 sk->sk_sndbuf = sysctl_wmem_default;
2268 sk->sk_state = TCP_CLOSE;
2269 sk_set_socket(sk, sock);
2271 sock_set_flag(sk, SOCK_ZAPPED);
2274 sk->sk_type = sock->type;
2275 sk->sk_wq = sock->wq;
2280 spin_lock_init(&sk->sk_dst_lock);
2281 rwlock_init(&sk->sk_callback_lock);
2282 lockdep_set_class_and_name(&sk->sk_callback_lock,
2283 af_callback_keys + sk->sk_family,
2284 af_family_clock_key_strings[sk->sk_family]);
2286 sk->sk_state_change = sock_def_wakeup;
2287 sk->sk_data_ready = sock_def_readable;
2288 sk->sk_write_space = sock_def_write_space;
2289 sk->sk_error_report = sock_def_error_report;
2290 sk->sk_destruct = sock_def_destruct;
2292 sk->sk_frag.page = NULL;
2293 sk->sk_frag.offset = 0;
2294 sk->sk_peek_off = -1;
2296 sk->sk_peer_pid = NULL;
2297 sk->sk_peer_cred = NULL;
2298 sk->sk_write_pending = 0;
2299 sk->sk_rcvlowat = 1;
2300 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2301 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2303 sk->sk_stamp = ktime_set(-1L, 0);
2305 #ifdef CONFIG_NET_RX_BUSY_POLL
2307 sk->sk_ll_usec = sysctl_net_busy_read;
2310 sk->sk_max_pacing_rate = ~0U;
2311 sk->sk_pacing_rate = ~0U;
2313 * Before updating sk_refcnt, we must commit prior changes to memory
2314 * (Documentation/RCU/rculist_nulls.txt for details)
2317 atomic_set(&sk->sk_refcnt, 1);
2318 atomic_set(&sk->sk_drops, 0);
2320 EXPORT_SYMBOL(sock_init_data);
2322 void lock_sock_nested(struct sock *sk, int subclass)
2325 spin_lock_bh(&sk->sk_lock.slock);
2326 if (sk->sk_lock.owned)
2328 sk->sk_lock.owned = 1;
2329 spin_unlock(&sk->sk_lock.slock);
2331 * The sk_lock has mutex_lock() semantics here:
2333 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2336 EXPORT_SYMBOL(lock_sock_nested);
2338 void release_sock(struct sock *sk)
2341 * The sk_lock has mutex_unlock() semantics:
2343 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2345 spin_lock_bh(&sk->sk_lock.slock);
2346 if (sk->sk_backlog.tail)
2349 /* Warning : release_cb() might need to release sk ownership,
2350 * ie call sock_release_ownership(sk) before us.
2352 if (sk->sk_prot->release_cb)
2353 sk->sk_prot->release_cb(sk);
2355 sock_release_ownership(sk);
2356 if (waitqueue_active(&sk->sk_lock.wq))
2357 wake_up(&sk->sk_lock.wq);
2358 spin_unlock_bh(&sk->sk_lock.slock);
2360 EXPORT_SYMBOL(release_sock);
2363 * lock_sock_fast - fast version of lock_sock
2366 * This version should be used for very small section, where process wont block
2367 * return false if fast path is taken
2368 * sk_lock.slock locked, owned = 0, BH disabled
2369 * return true if slow path is taken
2370 * sk_lock.slock unlocked, owned = 1, BH enabled
2372 bool lock_sock_fast(struct sock *sk)
2375 spin_lock_bh(&sk->sk_lock.slock);
2377 if (!sk->sk_lock.owned)
2379 * Note : We must disable BH
2384 sk->sk_lock.owned = 1;
2385 spin_unlock(&sk->sk_lock.slock);
2387 * The sk_lock has mutex_lock() semantics here:
2389 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2393 EXPORT_SYMBOL(lock_sock_fast);
2395 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2398 if (!sock_flag(sk, SOCK_TIMESTAMP))
2399 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2400 tv = ktime_to_timeval(sk->sk_stamp);
2401 if (tv.tv_sec == -1)
2403 if (tv.tv_sec == 0) {
2404 sk->sk_stamp = ktime_get_real();
2405 tv = ktime_to_timeval(sk->sk_stamp);
2407 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2409 EXPORT_SYMBOL(sock_get_timestamp);
2411 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2414 if (!sock_flag(sk, SOCK_TIMESTAMP))
2415 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2416 ts = ktime_to_timespec(sk->sk_stamp);
2417 if (ts.tv_sec == -1)
2419 if (ts.tv_sec == 0) {
2420 sk->sk_stamp = ktime_get_real();
2421 ts = ktime_to_timespec(sk->sk_stamp);
2423 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2425 EXPORT_SYMBOL(sock_get_timestampns);
2427 void sock_enable_timestamp(struct sock *sk, int flag)
2429 if (!sock_flag(sk, flag)) {
2430 unsigned long previous_flags = sk->sk_flags;
2432 sock_set_flag(sk, flag);
2434 * we just set one of the two flags which require net
2435 * time stamping, but time stamping might have been on
2436 * already because of the other one
2438 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2439 net_enable_timestamp();
2443 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2444 int level, int type)
2446 struct sock_exterr_skb *serr;
2447 struct sk_buff *skb;
2451 skb = sock_dequeue_err_skb(sk);
2457 msg->msg_flags |= MSG_TRUNC;
2460 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2464 sock_recv_timestamp(msg, sk, skb);
2466 serr = SKB_EXT_ERR(skb);
2467 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2469 msg->msg_flags |= MSG_ERRQUEUE;
2477 EXPORT_SYMBOL(sock_recv_errqueue);
2480 * Get a socket option on an socket.
2482 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2483 * asynchronous errors should be reported by getsockopt. We assume
2484 * this means if you specify SO_ERROR (otherwise whats the point of it).
2486 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2487 char __user *optval, int __user *optlen)
2489 struct sock *sk = sock->sk;
2491 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2493 EXPORT_SYMBOL(sock_common_getsockopt);
2495 #ifdef CONFIG_COMPAT
2496 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2497 char __user *optval, int __user *optlen)
2499 struct sock *sk = sock->sk;
2501 if (sk->sk_prot->compat_getsockopt != NULL)
2502 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2504 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2506 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2509 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2510 struct msghdr *msg, size_t size, int flags)
2512 struct sock *sk = sock->sk;
2516 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2517 flags & ~MSG_DONTWAIT, &addr_len);
2519 msg->msg_namelen = addr_len;
2522 EXPORT_SYMBOL(sock_common_recvmsg);
2525 * Set socket options on an inet socket.
2527 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2528 char __user *optval, unsigned int optlen)
2530 struct sock *sk = sock->sk;
2532 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2534 EXPORT_SYMBOL(sock_common_setsockopt);
2536 #ifdef CONFIG_COMPAT
2537 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2538 char __user *optval, unsigned int optlen)
2540 struct sock *sk = sock->sk;
2542 if (sk->sk_prot->compat_setsockopt != NULL)
2543 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2545 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2547 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2550 void sk_common_release(struct sock *sk)
2552 if (sk->sk_prot->destroy)
2553 sk->sk_prot->destroy(sk);
2556 * Observation: when sock_common_release is called, processes have
2557 * no access to socket. But net still has.
2558 * Step one, detach it from networking:
2560 * A. Remove from hash tables.
2563 sk->sk_prot->unhash(sk);
2566 * In this point socket cannot receive new packets, but it is possible
2567 * that some packets are in flight because some CPU runs receiver and
2568 * did hash table lookup before we unhashed socket. They will achieve
2569 * receive queue and will be purged by socket destructor.
2571 * Also we still have packets pending on receive queue and probably,
2572 * our own packets waiting in device queues. sock_destroy will drain
2573 * receive queue, but transmitted packets will delay socket destruction
2574 * until the last reference will be released.
2579 xfrm_sk_free_policy(sk);
2581 sk_refcnt_debug_release(sk);
2583 if (sk->sk_frag.page) {
2584 put_page(sk->sk_frag.page);
2585 sk->sk_frag.page = NULL;
2590 EXPORT_SYMBOL(sk_common_release);
2592 #ifdef CONFIG_PROC_FS
2593 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2595 int val[PROTO_INUSE_NR];
2598 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2600 #ifdef CONFIG_NET_NS
2601 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2603 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2605 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2607 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2609 int cpu, idx = prot->inuse_idx;
2612 for_each_possible_cpu(cpu)
2613 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2615 return res >= 0 ? res : 0;
2617 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2619 static int __net_init sock_inuse_init_net(struct net *net)
2621 net->core.inuse = alloc_percpu(struct prot_inuse);
2622 return net->core.inuse ? 0 : -ENOMEM;
2625 static void __net_exit sock_inuse_exit_net(struct net *net)
2627 free_percpu(net->core.inuse);
2630 static struct pernet_operations net_inuse_ops = {
2631 .init = sock_inuse_init_net,
2632 .exit = sock_inuse_exit_net,
2635 static __init int net_inuse_init(void)
2637 if (register_pernet_subsys(&net_inuse_ops))
2638 panic("Cannot initialize net inuse counters");
2643 core_initcall(net_inuse_init);
2645 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2647 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2649 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2651 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2653 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2655 int cpu, idx = prot->inuse_idx;
2658 for_each_possible_cpu(cpu)
2659 res += per_cpu(prot_inuse, cpu).val[idx];
2661 return res >= 0 ? res : 0;
2663 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2666 static void assign_proto_idx(struct proto *prot)
2668 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2670 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2671 pr_err("PROTO_INUSE_NR exhausted\n");
2675 set_bit(prot->inuse_idx, proto_inuse_idx);
2678 static void release_proto_idx(struct proto *prot)
2680 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2681 clear_bit(prot->inuse_idx, proto_inuse_idx);
2684 static inline void assign_proto_idx(struct proto *prot)
2688 static inline void release_proto_idx(struct proto *prot)
2693 int proto_register(struct proto *prot, int alloc_slab)
2696 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2697 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2700 if (prot->slab == NULL) {
2701 pr_crit("%s: Can't create sock SLAB cache!\n",
2706 if (prot->rsk_prot != NULL) {
2707 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2708 if (prot->rsk_prot->slab_name == NULL)
2709 goto out_free_sock_slab;
2711 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2712 prot->rsk_prot->obj_size, 0,
2713 SLAB_HWCACHE_ALIGN, NULL);
2715 if (prot->rsk_prot->slab == NULL) {
2716 pr_crit("%s: Can't create request sock SLAB cache!\n",
2718 goto out_free_request_sock_slab_name;
2722 if (prot->twsk_prot != NULL) {
2723 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2725 if (prot->twsk_prot->twsk_slab_name == NULL)
2726 goto out_free_request_sock_slab;
2728 prot->twsk_prot->twsk_slab =
2729 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2730 prot->twsk_prot->twsk_obj_size,
2732 SLAB_HWCACHE_ALIGN |
2735 if (prot->twsk_prot->twsk_slab == NULL)
2736 goto out_free_timewait_sock_slab_name;
2740 mutex_lock(&proto_list_mutex);
2741 list_add(&prot->node, &proto_list);
2742 assign_proto_idx(prot);
2743 mutex_unlock(&proto_list_mutex);
2746 out_free_timewait_sock_slab_name:
2747 kfree(prot->twsk_prot->twsk_slab_name);
2748 out_free_request_sock_slab:
2749 if (prot->rsk_prot && prot->rsk_prot->slab) {
2750 kmem_cache_destroy(prot->rsk_prot->slab);
2751 prot->rsk_prot->slab = NULL;
2753 out_free_request_sock_slab_name:
2755 kfree(prot->rsk_prot->slab_name);
2757 kmem_cache_destroy(prot->slab);
2762 EXPORT_SYMBOL(proto_register);
2764 void proto_unregister(struct proto *prot)
2766 mutex_lock(&proto_list_mutex);
2767 release_proto_idx(prot);
2768 list_del(&prot->node);
2769 mutex_unlock(&proto_list_mutex);
2771 if (prot->slab != NULL) {
2772 kmem_cache_destroy(prot->slab);
2776 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2777 kmem_cache_destroy(prot->rsk_prot->slab);
2778 kfree(prot->rsk_prot->slab_name);
2779 prot->rsk_prot->slab = NULL;
2782 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2783 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2784 kfree(prot->twsk_prot->twsk_slab_name);
2785 prot->twsk_prot->twsk_slab = NULL;
2788 EXPORT_SYMBOL(proto_unregister);
2790 #ifdef CONFIG_PROC_FS
2791 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2792 __acquires(proto_list_mutex)
2794 mutex_lock(&proto_list_mutex);
2795 return seq_list_start_head(&proto_list, *pos);
2798 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2800 return seq_list_next(v, &proto_list, pos);
2803 static void proto_seq_stop(struct seq_file *seq, void *v)
2804 __releases(proto_list_mutex)
2806 mutex_unlock(&proto_list_mutex);
2809 static char proto_method_implemented(const void *method)
2811 return method == NULL ? 'n' : 'y';
2813 static long sock_prot_memory_allocated(struct proto *proto)
2815 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2818 static char *sock_prot_memory_pressure(struct proto *proto)
2820 return proto->memory_pressure != NULL ?
2821 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2824 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2827 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2828 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2831 sock_prot_inuse_get(seq_file_net(seq), proto),
2832 sock_prot_memory_allocated(proto),
2833 sock_prot_memory_pressure(proto),
2835 proto->slab == NULL ? "no" : "yes",
2836 module_name(proto->owner),
2837 proto_method_implemented(proto->close),
2838 proto_method_implemented(proto->connect),
2839 proto_method_implemented(proto->disconnect),
2840 proto_method_implemented(proto->accept),
2841 proto_method_implemented(proto->ioctl),
2842 proto_method_implemented(proto->init),
2843 proto_method_implemented(proto->destroy),
2844 proto_method_implemented(proto->shutdown),
2845 proto_method_implemented(proto->setsockopt),
2846 proto_method_implemented(proto->getsockopt),
2847 proto_method_implemented(proto->sendmsg),
2848 proto_method_implemented(proto->recvmsg),
2849 proto_method_implemented(proto->sendpage),
2850 proto_method_implemented(proto->bind),
2851 proto_method_implemented(proto->backlog_rcv),
2852 proto_method_implemented(proto->hash),
2853 proto_method_implemented(proto->unhash),
2854 proto_method_implemented(proto->get_port),
2855 proto_method_implemented(proto->enter_memory_pressure));
2858 static int proto_seq_show(struct seq_file *seq, void *v)
2860 if (v == &proto_list)
2861 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2870 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2872 proto_seq_printf(seq, list_entry(v, struct proto, node));
2876 static const struct seq_operations proto_seq_ops = {
2877 .start = proto_seq_start,
2878 .next = proto_seq_next,
2879 .stop = proto_seq_stop,
2880 .show = proto_seq_show,
2883 static int proto_seq_open(struct inode *inode, struct file *file)
2885 return seq_open_net(inode, file, &proto_seq_ops,
2886 sizeof(struct seq_net_private));
2889 static const struct file_operations proto_seq_fops = {
2890 .owner = THIS_MODULE,
2891 .open = proto_seq_open,
2893 .llseek = seq_lseek,
2894 .release = seq_release_net,
2897 static __net_init int proto_init_net(struct net *net)
2899 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2905 static __net_exit void proto_exit_net(struct net *net)
2907 remove_proc_entry("protocols", net->proc_net);
2911 static __net_initdata struct pernet_operations proto_net_ops = {
2912 .init = proto_init_net,
2913 .exit = proto_exit_net,
2916 static int __init proto_init(void)
2918 return register_pernet_subsys(&proto_net_ops);
2921 subsys_initcall(proto_init);
2923 #endif /* PROC_FS */