2 * Copyright 2009 Jerome Glisse.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
50 #include <drm/drm_debugfs.h>
51 #include <drm/amdgpu_drm.h>
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_atomfirmware.h"
60 #include "bif/bif_4_1_d.h"
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
64 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
66 struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev,
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
72 uint64_t size_in_page)
74 return ttm_range_man_init(&adev->mman.bdev, type,
79 * amdgpu_evict_flags - Compute placement flags
81 * @bo: The buffer object to evict
82 * @placement: Possible destination(s) for evicted BO
84 * Fill in placement data when ttm_bo_evict() is called
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87 struct ttm_placement *placement)
89 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90 struct amdgpu_bo *abo;
91 static const struct ttm_place placements = {
94 .mem_type = TTM_PL_SYSTEM,
98 /* Don't handle scatter gather BOs */
99 if (bo->type == ttm_bo_type_sg) {
100 placement->num_placement = 0;
101 placement->num_busy_placement = 0;
105 /* Object isn't an AMDGPU object so ignore */
106 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107 placement->placement = &placements;
108 placement->busy_placement = &placements;
109 placement->num_placement = 1;
110 placement->num_busy_placement = 1;
114 abo = ttm_to_amdgpu_bo(bo);
115 switch (bo->mem.mem_type) {
119 placement->num_placement = 0;
120 placement->num_busy_placement = 0;
124 if (!adev->mman.buffer_funcs_enabled) {
125 /* Move to system memory */
126 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
127 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
128 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
129 amdgpu_bo_in_cpu_visible_vram(abo)) {
131 /* Try evicting to the CPU inaccessible part of VRAM
132 * first, but only set GTT as busy placement, so this
133 * BO will be evicted to GTT rather than causing other
134 * BOs to be evicted from VRAM
136 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
137 AMDGPU_GEM_DOMAIN_GTT);
138 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
139 abo->placements[0].lpfn = 0;
140 abo->placement.busy_placement = &abo->placements[1];
141 abo->placement.num_busy_placement = 1;
143 /* Move to GTT memory */
144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
149 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
152 *placement = abo->placement;
156 * amdgpu_verify_access - Verify access for a mmap call
158 * @bo: The buffer object to map
159 * @filp: The file pointer from the process performing the mmap
161 * This is called by ttm_bo_mmap() to verify whether a process
162 * has the right to mmap a BO to their process space.
164 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
166 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
169 * Don't verify access for KFD BOs. They don't have a GEM
170 * object associated with them.
175 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
177 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
182 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
184 * @bo: The bo to assign the memory to.
185 * @mm_node: Memory manager node for drm allocator.
186 * @mem: The region where the bo resides.
189 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
190 struct drm_mm_node *mm_node,
191 struct ttm_resource *mem)
195 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
196 addr = mm_node->start << PAGE_SHIFT;
197 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
204 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
205 * @offset. It also modifies the offset to be within the drm_mm_node returned
207 * @mem: The region where the bo resides.
208 * @offset: The offset that drm_mm_node is used for finding.
211 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
214 struct drm_mm_node *mm_node = mem->mm_node;
216 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
217 *offset -= (mm_node->size << PAGE_SHIFT);
224 * amdgpu_ttm_map_buffer - Map memory into the GART windows
225 * @bo: buffer object to map
226 * @mem: memory object to map
227 * @mm_node: drm_mm node object to map
228 * @num_pages: number of pages to map
229 * @offset: offset into @mm_node where to start
230 * @window: which GART window to use
231 * @ring: DMA ring to use for the copy
232 * @tmz: if we should setup a TMZ enabled mapping
233 * @addr: resulting address inside the MC address space
235 * Setup one of the GART windows to access a specific piece of memory or return
236 * the physical address for local memory.
238 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
239 struct ttm_resource *mem,
240 struct drm_mm_node *mm_node,
241 unsigned num_pages, uint64_t offset,
242 unsigned window, struct amdgpu_ring *ring,
243 bool tmz, uint64_t *addr)
245 struct amdgpu_device *adev = ring->adev;
246 struct amdgpu_job *job;
247 unsigned num_dw, num_bytes;
248 struct dma_fence *fence;
249 uint64_t src_addr, dst_addr;
255 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
256 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
258 /* Map only what can't be accessed directly */
259 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
260 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
264 *addr = adev->gmc.gart_start;
265 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
266 AMDGPU_GPU_PAGE_SIZE;
267 *addr += offset & ~PAGE_MASK;
269 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
270 num_bytes = num_pages * 8;
272 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
273 AMDGPU_IB_POOL_DELAYED, &job);
277 src_addr = num_dw * 4;
278 src_addr += job->ibs[0].gpu_addr;
280 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
281 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
282 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
283 dst_addr, num_bytes, false);
285 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
286 WARN_ON(job->ibs[0].length_dw > num_dw);
288 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
290 flags |= AMDGPU_PTE_TMZ;
292 cpu_addr = &job->ibs[0].ptr[num_dw];
294 if (mem->mem_type == TTM_PL_TT) {
295 dma_addr_t *dma_address;
297 dma_address = &bo->ttm->dma_address[offset >> PAGE_SHIFT];
298 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
303 dma_addr_t dma_address;
305 dma_address = (mm_node->start << PAGE_SHIFT) + offset;
306 dma_address += adev->vm_manager.vram_base_offset;
308 for (i = 0; i < num_pages; ++i) {
309 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
310 &dma_address, flags, cpu_addr);
314 dma_address += PAGE_SIZE;
318 r = amdgpu_job_submit(job, &adev->mman.entity,
319 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
323 dma_fence_put(fence);
328 amdgpu_job_free(job);
333 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
334 * @adev: amdgpu device
335 * @src: buffer/address where to read from
336 * @dst: buffer/address where to write to
337 * @size: number of bytes to copy
338 * @tmz: if a secure copy should be used
339 * @resv: resv object to sync to
340 * @f: Returns the last fence if multiple jobs are submitted.
342 * The function copies @size bytes from {src->mem + src->offset} to
343 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
344 * move and different for a BO to BO copy.
347 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
348 const struct amdgpu_copy_mem *src,
349 const struct amdgpu_copy_mem *dst,
350 uint64_t size, bool tmz,
351 struct dma_resv *resv,
352 struct dma_fence **f)
354 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
355 AMDGPU_GPU_PAGE_SIZE);
357 uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
358 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
359 struct drm_mm_node *src_mm, *dst_mm;
360 struct dma_fence *fence = NULL;
363 if (!adev->mman.buffer_funcs_enabled) {
364 DRM_ERROR("Trying to move memory with ring turned off.\n");
368 src_offset = src->offset;
369 if (src->mem->mm_node) {
370 src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
371 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
374 src_node_size = ULLONG_MAX;
377 dst_offset = dst->offset;
378 if (dst->mem->mm_node) {
379 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
380 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
383 dst_node_size = ULLONG_MAX;
386 mutex_lock(&adev->mman.gtt_window_lock);
389 uint32_t src_page_offset = src_offset & ~PAGE_MASK;
390 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
391 struct dma_fence *next;
395 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
396 * begins at an offset, then adjust the size accordingly
398 cur_size = max(src_page_offset, dst_page_offset);
399 cur_size = min(min3(src_node_size, dst_node_size, size),
400 (uint64_t)(GTT_MAX_BYTES - cur_size));
402 /* Map src to window 0 and dst to window 1. */
403 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
404 PFN_UP(cur_size + src_page_offset),
405 src_offset, 0, ring, tmz, &from);
409 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
410 PFN_UP(cur_size + dst_page_offset),
411 dst_offset, 1, ring, tmz, &to);
415 r = amdgpu_copy_buffer(ring, from, to, cur_size,
416 resv, &next, false, true, tmz);
420 dma_fence_put(fence);
427 src_node_size -= cur_size;
428 if (!src_node_size) {
430 src_node_size = src_mm->size << PAGE_SHIFT;
433 src_offset += cur_size;
436 dst_node_size -= cur_size;
437 if (!dst_node_size) {
439 dst_node_size = dst_mm->size << PAGE_SHIFT;
442 dst_offset += cur_size;
446 mutex_unlock(&adev->mman.gtt_window_lock);
448 *f = dma_fence_get(fence);
449 dma_fence_put(fence);
454 * amdgpu_move_blit - Copy an entire buffer to another buffer
456 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
457 * help move buffers to and from VRAM.
459 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
461 struct ttm_resource *new_mem,
462 struct ttm_resource *old_mem)
464 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
465 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
466 struct amdgpu_copy_mem src, dst;
467 struct dma_fence *fence = NULL;
477 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
478 new_mem->num_pages << PAGE_SHIFT,
479 amdgpu_bo_encrypted(abo),
480 bo->base.resv, &fence);
484 /* clear the space being freed */
485 if (old_mem->mem_type == TTM_PL_VRAM &&
486 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
487 struct dma_fence *wipe_fence = NULL;
489 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
493 } else if (wipe_fence) {
494 dma_fence_put(fence);
499 /* Always block for VM page tables before committing the new location */
500 if (bo->type == ttm_bo_type_kernel)
501 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
503 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
504 dma_fence_put(fence);
509 dma_fence_wait(fence, false);
510 dma_fence_put(fence);
515 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
517 * Called by amdgpu_bo_move()
519 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
520 struct ttm_resource *mem)
522 struct drm_mm_node *nodes = mem->mm_node;
524 if (mem->mem_type == TTM_PL_SYSTEM ||
525 mem->mem_type == TTM_PL_TT)
527 if (mem->mem_type != TTM_PL_VRAM)
530 /* ttm_resource_ioremap only supports contiguous memory */
531 if (nodes->size != mem->num_pages)
534 return ((nodes->start + nodes->size) << PAGE_SHIFT)
535 <= adev->gmc.visible_vram_size;
539 * amdgpu_bo_move - Move a buffer object to a new memory location
541 * Called by ttm_bo_handle_move_mem()
543 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
544 struct ttm_operation_ctx *ctx,
545 struct ttm_resource *new_mem,
546 struct ttm_place *hop)
548 struct amdgpu_device *adev;
549 struct amdgpu_bo *abo;
550 struct ttm_resource *old_mem = &bo->mem;
553 if (new_mem->mem_type == TTM_PL_TT) {
554 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
559 /* Can't move a pinned BO */
560 abo = ttm_to_amdgpu_bo(bo);
561 if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
564 adev = amdgpu_ttm_adev(bo->bdev);
566 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
567 ttm_bo_move_null(bo, new_mem);
570 if (old_mem->mem_type == TTM_PL_SYSTEM &&
571 new_mem->mem_type == TTM_PL_TT) {
572 ttm_bo_move_null(bo, new_mem);
575 if (old_mem->mem_type == TTM_PL_TT &&
576 new_mem->mem_type == TTM_PL_SYSTEM) {
577 r = ttm_bo_wait_ctx(bo, ctx);
581 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
582 ttm_resource_free(bo, &bo->mem);
583 ttm_bo_assign_mem(bo, new_mem);
587 if (old_mem->mem_type == AMDGPU_PL_GDS ||
588 old_mem->mem_type == AMDGPU_PL_GWS ||
589 old_mem->mem_type == AMDGPU_PL_OA ||
590 new_mem->mem_type == AMDGPU_PL_GDS ||
591 new_mem->mem_type == AMDGPU_PL_GWS ||
592 new_mem->mem_type == AMDGPU_PL_OA) {
593 /* Nothing to save here */
594 ttm_bo_move_null(bo, new_mem);
598 if (adev->mman.buffer_funcs_enabled) {
599 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
600 new_mem->mem_type == TTM_PL_VRAM) ||
601 (old_mem->mem_type == TTM_PL_VRAM &&
602 new_mem->mem_type == TTM_PL_SYSTEM))) {
605 hop->mem_type = TTM_PL_TT;
610 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
616 /* Check that all memory is CPU accessible */
617 if (!amdgpu_mem_visible(adev, old_mem) ||
618 !amdgpu_mem_visible(adev, new_mem)) {
619 pr_err("Move buffer fallback to memcpy unavailable\n");
623 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
628 if (bo->type == ttm_bo_type_device &&
629 new_mem->mem_type == TTM_PL_VRAM &&
630 old_mem->mem_type != TTM_PL_VRAM) {
631 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
632 * accesses the BO after it's moved.
634 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
638 /* update statistics */
639 atomic64_add(bo->base.size, &adev->num_bytes_moved);
640 amdgpu_bo_move_notify(bo, evict, new_mem);
645 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
647 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
649 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
651 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
652 struct drm_mm_node *mm_node = mem->mm_node;
653 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
655 switch (mem->mem_type) {
662 mem->bus.offset = mem->start << PAGE_SHIFT;
663 /* check if it's visible */
664 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
666 /* Only physically contiguous buffers apply. In a contiguous
667 * buffer, size of the first mm_node would match the number of
668 * pages in ttm_resource.
670 if (adev->mman.aper_base_kaddr &&
671 (mm_node->size == mem->num_pages))
672 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
675 mem->bus.offset += adev->gmc.aper_base;
676 mem->bus.is_iomem = true;
677 mem->bus.caching = ttm_write_combined;
685 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
686 unsigned long page_offset)
688 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
689 uint64_t offset = (page_offset << PAGE_SHIFT);
690 struct drm_mm_node *mm;
692 mm = amdgpu_find_mm_node(&bo->mem, &offset);
693 offset += adev->gmc.aper_base;
694 return mm->start + (offset >> PAGE_SHIFT);
698 * amdgpu_ttm_domain_start - Returns GPU start address
699 * @adev: amdgpu device object
700 * @type: type of the memory
703 * GPU start address of a memory domain
706 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
710 return adev->gmc.gart_start;
712 return adev->gmc.vram_start;
719 * TTM backend functions.
721 struct amdgpu_ttm_tt {
723 struct drm_gem_object *gobj;
726 struct task_struct *usertask;
729 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
730 struct hmm_range *range;
734 #ifdef CONFIG_DRM_AMDGPU_USERPTR
736 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
737 * memory and start HMM tracking CPU page table update
739 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
740 * once afterwards to stop HMM tracking
742 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
744 struct ttm_tt *ttm = bo->tbo.ttm;
745 struct amdgpu_ttm_tt *gtt = (void *)ttm;
746 unsigned long start = gtt->userptr;
747 struct vm_area_struct *vma;
748 struct hmm_range *range;
749 unsigned long timeout;
750 struct mm_struct *mm;
754 mm = bo->notifier.mm;
756 DRM_DEBUG_DRIVER("BO is not registered?\n");
760 /* Another get_user_pages is running at the same time?? */
761 if (WARN_ON(gtt->range))
764 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
767 range = kzalloc(sizeof(*range), GFP_KERNEL);
768 if (unlikely(!range)) {
772 range->notifier = &bo->notifier;
773 range->start = bo->notifier.interval_tree.start;
774 range->end = bo->notifier.interval_tree.last + 1;
775 range->default_flags = HMM_PFN_REQ_FAULT;
776 if (!amdgpu_ttm_tt_is_readonly(ttm))
777 range->default_flags |= HMM_PFN_REQ_WRITE;
779 range->hmm_pfns = kvmalloc_array(ttm->num_pages,
780 sizeof(*range->hmm_pfns), GFP_KERNEL);
781 if (unlikely(!range->hmm_pfns)) {
783 goto out_free_ranges;
787 vma = find_vma(mm, start);
788 if (unlikely(!vma || start < vma->vm_start)) {
792 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
797 mmap_read_unlock(mm);
798 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
801 range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
804 r = hmm_range_fault(range);
805 mmap_read_unlock(mm);
808 * FIXME: This timeout should encompass the retry from
809 * mmu_interval_read_retry() as well.
811 if (r == -EBUSY && !time_after(jiffies, timeout))
817 * Due to default_flags, all pages are HMM_PFN_VALID or
818 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
819 * the notifier_lock, and mmu_interval_read_retry() must be done first.
821 for (i = 0; i < ttm->num_pages; i++)
822 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
830 mmap_read_unlock(mm);
832 kvfree(range->hmm_pfns);
841 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
842 * Check if the pages backing this ttm range have been invalidated
844 * Returns: true if pages are still valid
846 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
848 struct amdgpu_ttm_tt *gtt = (void *)ttm;
851 if (!gtt || !gtt->userptr)
854 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
855 gtt->userptr, ttm->num_pages);
857 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
858 "No user pages to check\n");
862 * FIXME: Must always hold notifier_lock for this, and must
863 * not ignore the return code.
865 r = mmu_interval_read_retry(gtt->range->notifier,
866 gtt->range->notifier_seq);
867 kvfree(gtt->range->hmm_pfns);
877 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
879 * Called by amdgpu_cs_list_validate(). This creates the page list
880 * that backs user memory and will ultimately be mapped into the device
883 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
887 for (i = 0; i < ttm->num_pages; ++i)
888 ttm->pages[i] = pages ? pages[i] : NULL;
892 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
894 * Called by amdgpu_ttm_backend_bind()
896 static int amdgpu_ttm_tt_pin_userptr(struct ttm_bo_device *bdev,
899 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
900 struct amdgpu_ttm_tt *gtt = (void *)ttm;
903 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
904 enum dma_data_direction direction = write ?
905 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
907 /* Allocate an SG array and squash pages into it */
908 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
909 ttm->num_pages << PAGE_SHIFT,
914 /* Map SG to device */
915 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
919 /* convert SG to linear array of pages and dma addresses */
920 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
932 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
934 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_bo_device *bdev,
937 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
938 struct amdgpu_ttm_tt *gtt = (void *)ttm;
940 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
941 enum dma_data_direction direction = write ?
942 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
944 /* double check that we don't free the table twice */
948 /* unmap the pages mapped to the device */
949 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
950 sg_free_table(ttm->sg);
952 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
956 for (i = 0; i < ttm->num_pages; i++) {
958 hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
962 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
967 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
968 struct ttm_buffer_object *tbo,
971 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
972 struct ttm_tt *ttm = tbo->ttm;
973 struct amdgpu_ttm_tt *gtt = (void *)ttm;
976 if (amdgpu_bo_encrypted(abo))
977 flags |= AMDGPU_PTE_TMZ;
979 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
980 uint64_t page_idx = 1;
982 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
983 ttm->pages, gtt->ttm.dma_address, flags);
987 /* The memory type of the first page defaults to UC. Now
988 * modify the memory type to NC from the second page of
991 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
992 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
994 r = amdgpu_gart_bind(adev,
995 gtt->offset + (page_idx << PAGE_SHIFT),
996 ttm->num_pages - page_idx,
997 &ttm->pages[page_idx],
998 &(gtt->ttm.dma_address[page_idx]), flags);
1000 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1001 ttm->pages, gtt->ttm.dma_address, flags);
1006 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
1007 ttm->num_pages, gtt->offset);
1013 * amdgpu_ttm_backend_bind - Bind GTT memory
1015 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1016 * This handles binding GTT memory to the device address space.
1018 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
1020 struct ttm_resource *bo_mem)
1022 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1023 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1034 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
1036 DRM_ERROR("failed to pin userptr\n");
1040 if (!ttm->num_pages) {
1041 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
1042 ttm->num_pages, bo_mem, ttm);
1045 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1046 bo_mem->mem_type == AMDGPU_PL_GWS ||
1047 bo_mem->mem_type == AMDGPU_PL_OA)
1050 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1051 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1055 /* compute PTE flags relevant to this BO memory */
1056 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1058 /* bind pages into GART page tables */
1059 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1060 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1061 ttm->pages, gtt->ttm.dma_address, flags);
1064 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
1065 ttm->num_pages, gtt->offset);
1071 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
1072 * through AGP or GART aperture.
1074 * If bo is accessible through AGP aperture, then use AGP aperture
1075 * to access bo; otherwise allocate logical space in GART aperture
1076 * and map bo to GART aperture.
1078 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1080 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1081 struct ttm_operation_ctx ctx = { false, false };
1082 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1083 struct ttm_resource tmp;
1084 struct ttm_placement placement;
1085 struct ttm_place placements;
1086 uint64_t addr, flags;
1089 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1092 addr = amdgpu_gmc_agp_addr(bo);
1093 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1094 bo->mem.start = addr >> PAGE_SHIFT;
1097 /* allocate GART space */
1100 placement.num_placement = 1;
1101 placement.placement = &placements;
1102 placement.num_busy_placement = 1;
1103 placement.busy_placement = &placements;
1104 placements.fpfn = 0;
1105 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1106 placements.mem_type = TTM_PL_TT;
1107 placements.flags = bo->mem.placement;
1109 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1113 /* compute PTE flags for this buffer object */
1114 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1117 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1118 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1120 ttm_resource_free(bo, &tmp);
1124 ttm_resource_free(bo, &bo->mem);
1132 * amdgpu_ttm_recover_gart - Rebind GTT pages
1134 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1135 * rebind GTT pages during a GPU reset.
1137 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1139 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1146 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1147 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1153 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1155 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1158 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev,
1161 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1162 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1168 /* if the pages have userptr pinning then clear that first */
1170 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1172 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1175 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1176 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1178 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1179 gtt->ttm.num_pages, gtt->offset);
1183 static void amdgpu_ttm_backend_destroy(struct ttm_bo_device *bdev,
1186 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1188 amdgpu_ttm_backend_unbind(bdev, ttm);
1189 ttm_tt_destroy_common(bdev, ttm);
1191 put_task_struct(gtt->usertask);
1193 ttm_tt_fini(>t->ttm);
1198 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1200 * @bo: The buffer object to create a GTT ttm_tt object around
1201 * @page_flags: Page flags to be added to the ttm_tt object
1203 * Called by ttm_tt_create().
1205 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1206 uint32_t page_flags)
1208 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1209 struct amdgpu_ttm_tt *gtt;
1210 enum ttm_caching caching;
1212 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1216 gtt->gobj = &bo->base;
1218 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1219 caching = ttm_write_combined;
1221 caching = ttm_cached;
1223 /* allocate space for the uninitialized page entries */
1224 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1232 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1234 * Map the pages of a ttm_tt object to an address space visible
1235 * to the underlying device.
1237 static int amdgpu_ttm_tt_populate(struct ttm_bo_device *bdev,
1239 struct ttm_operation_ctx *ctx)
1241 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1242 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1244 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1245 if (gtt && gtt->userptr) {
1246 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1250 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1254 if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1256 struct dma_buf_attachment *attach;
1257 struct sg_table *sgt;
1259 attach = gtt->gobj->import_attach;
1260 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1262 return PTR_ERR(sgt);
1267 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
1272 return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1276 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1278 * Unmaps pages of a ttm_tt object from the device address space and
1279 * unpopulates the page array backing it.
1281 static void amdgpu_ttm_tt_unpopulate(struct ttm_bo_device *bdev,
1284 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1285 struct amdgpu_device *adev;
1287 if (gtt && gtt->userptr) {
1288 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1290 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1294 if (ttm->sg && gtt->gobj->import_attach) {
1295 struct dma_buf_attachment *attach;
1297 attach = gtt->gobj->import_attach;
1298 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1303 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1306 adev = amdgpu_ttm_adev(bdev);
1307 return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1311 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1314 * @bo: The ttm_buffer_object to bind this userptr to
1315 * @addr: The address in the current tasks VM space to use
1316 * @flags: Requirements of userptr object.
1318 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1321 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1322 uint64_t addr, uint32_t flags)
1324 struct amdgpu_ttm_tt *gtt;
1327 /* TODO: We want a separate TTM object type for userptrs */
1328 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1329 if (bo->ttm == NULL)
1333 gtt = (void *)bo->ttm;
1334 gtt->userptr = addr;
1335 gtt->userflags = flags;
1338 put_task_struct(gtt->usertask);
1339 gtt->usertask = current->group_leader;
1340 get_task_struct(gtt->usertask);
1346 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1348 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1350 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1355 if (gtt->usertask == NULL)
1358 return gtt->usertask->mm;
1362 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1363 * address range for the current task.
1366 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1369 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1372 if (gtt == NULL || !gtt->userptr)
1375 /* Return false if no part of the ttm_tt object lies within
1378 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1379 if (gtt->userptr > end || gtt->userptr + size <= start)
1386 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1388 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1390 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1392 if (gtt == NULL || !gtt->userptr)
1399 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1401 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1403 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1408 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1412 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1414 * @ttm: The ttm_tt object to compute the flags for
1415 * @mem: The memory registry backing this ttm_tt object
1417 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1419 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1423 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1424 flags |= AMDGPU_PTE_VALID;
1426 if (mem && mem->mem_type == TTM_PL_TT) {
1427 flags |= AMDGPU_PTE_SYSTEM;
1429 if (ttm->caching == ttm_cached)
1430 flags |= AMDGPU_PTE_SNOOPED;
1437 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1439 * @adev: amdgpu_device pointer
1440 * @ttm: The ttm_tt object to compute the flags for
1441 * @mem: The memory registry backing this ttm_tt object
1443 * Figure out the flags to use for a VM PTE (Page Table Entry).
1445 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1446 struct ttm_resource *mem)
1448 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1450 flags |= adev->gart.gart_pte_flags;
1451 flags |= AMDGPU_PTE_READABLE;
1453 if (!amdgpu_ttm_tt_is_readonly(ttm))
1454 flags |= AMDGPU_PTE_WRITEABLE;
1460 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1463 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1464 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1465 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1466 * used to clean out a memory space.
1468 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1469 const struct ttm_place *place)
1471 unsigned long num_pages = bo->mem.num_pages;
1472 struct drm_mm_node *node = bo->mem.mm_node;
1473 struct dma_resv_list *flist;
1474 struct dma_fence *f;
1477 if (bo->type == ttm_bo_type_kernel &&
1478 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1481 /* If bo is a KFD BO, check if the bo belongs to the current process.
1482 * If true, then return false as any KFD process needs all its BOs to
1483 * be resident to run successfully
1485 flist = dma_resv_get_list(bo->base.resv);
1487 for (i = 0; i < flist->shared_count; ++i) {
1488 f = rcu_dereference_protected(flist->shared[i],
1489 dma_resv_held(bo->base.resv));
1490 if (amdkfd_fence_check_mm(f, current->mm))
1495 switch (bo->mem.mem_type) {
1497 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1498 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1503 /* Check each drm MM node individually */
1505 if (place->fpfn < (node->start + node->size) &&
1506 !(place->lpfn && place->lpfn <= node->start))
1509 num_pages -= node->size;
1518 return ttm_bo_eviction_valuable(bo, place);
1522 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1524 * @bo: The buffer object to read/write
1525 * @offset: Offset into buffer object
1526 * @buf: Secondary buffer to write/read from
1527 * @len: Length in bytes of access
1528 * @write: true if writing
1530 * This is used to access VRAM that backs a buffer object via MMIO
1531 * access for debugging purposes.
1533 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1534 unsigned long offset,
1535 void *buf, int len, int write)
1537 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1538 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1539 struct drm_mm_node *nodes;
1543 unsigned long flags;
1545 if (bo->mem.mem_type != TTM_PL_VRAM)
1549 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1550 pos += (nodes->start << PAGE_SHIFT);
1552 while (len && pos < adev->gmc.mc_vram_size) {
1553 uint64_t aligned_pos = pos & ~(uint64_t)3;
1554 uint64_t bytes = 4 - (pos & 3);
1555 uint32_t shift = (pos & 3) * 8;
1556 uint32_t mask = 0xffffffff << shift;
1559 mask &= 0xffffffff >> (bytes - len) * 8;
1563 if (mask != 0xffffffff) {
1564 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1565 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1566 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1567 if (!write || mask != 0xffffffff)
1568 value = RREG32_NO_KIQ(mmMM_DATA);
1571 value |= (*(uint32_t *)buf << shift) & mask;
1572 WREG32_NO_KIQ(mmMM_DATA, value);
1574 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1576 value = (value & mask) >> shift;
1577 memcpy(buf, &value, bytes);
1580 bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1581 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1583 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1588 buf = (uint8_t *)buf + bytes;
1591 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1593 pos = (nodes->start << PAGE_SHIFT);
1601 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1603 amdgpu_bo_move_notify(bo, false, NULL);
1606 static struct ttm_bo_driver amdgpu_bo_driver = {
1607 .ttm_tt_create = &amdgpu_ttm_tt_create,
1608 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1609 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1610 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1611 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1612 .evict_flags = &amdgpu_evict_flags,
1613 .move = &amdgpu_bo_move,
1614 .verify_access = &amdgpu_verify_access,
1615 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1616 .release_notify = &amdgpu_bo_release_notify,
1617 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1618 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1619 .access_memory = &amdgpu_ttm_access_memory,
1620 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1624 * Firmware Reservation functions
1627 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1629 * @adev: amdgpu_device pointer
1631 * free fw reserved vram if it has been reserved.
1633 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1635 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1636 NULL, &adev->mman.fw_vram_usage_va);
1640 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1642 * @adev: amdgpu_device pointer
1644 * create bo vram reservation from fw.
1646 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1648 uint64_t vram_size = adev->gmc.visible_vram_size;
1650 adev->mman.fw_vram_usage_va = NULL;
1651 adev->mman.fw_vram_usage_reserved_bo = NULL;
1653 if (adev->mman.fw_vram_usage_size == 0 ||
1654 adev->mman.fw_vram_usage_size > vram_size)
1657 return amdgpu_bo_create_kernel_at(adev,
1658 adev->mman.fw_vram_usage_start_offset,
1659 adev->mman.fw_vram_usage_size,
1660 AMDGPU_GEM_DOMAIN_VRAM,
1661 &adev->mman.fw_vram_usage_reserved_bo,
1662 &adev->mman.fw_vram_usage_va);
1666 * Memoy training reservation functions
1670 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1672 * @adev: amdgpu_device pointer
1674 * free memory training reserved vram if it has been reserved.
1676 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1678 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1680 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1681 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1687 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1689 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1691 memset(ctx, 0, sizeof(*ctx));
1693 ctx->c2p_train_data_offset =
1694 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1695 ctx->p2c_train_data_offset =
1696 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1697 ctx->train_data_size =
1698 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1700 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1701 ctx->train_data_size,
1702 ctx->p2c_train_data_offset,
1703 ctx->c2p_train_data_offset);
1707 * reserve TMR memory at the top of VRAM which holds
1708 * IP Discovery data and is protected by PSP.
1710 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1713 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1714 bool mem_train_support = false;
1716 if (!amdgpu_sriov_vf(adev)) {
1717 ret = amdgpu_mem_train_support(adev);
1719 mem_train_support = true;
1723 DRM_DEBUG("memory training does not support!\n");
1727 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1728 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1730 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1731 * discovery data and G6 memory training data respectively
1733 adev->mman.discovery_tmr_size =
1734 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1735 if (!adev->mman.discovery_tmr_size)
1736 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1738 if (mem_train_support) {
1739 /* reserve vram for mem train according to TMR location */
1740 amdgpu_ttm_training_data_block_init(adev);
1741 ret = amdgpu_bo_create_kernel_at(adev,
1742 ctx->c2p_train_data_offset,
1743 ctx->train_data_size,
1744 AMDGPU_GEM_DOMAIN_VRAM,
1748 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1749 amdgpu_ttm_training_reserve_vram_fini(adev);
1752 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1755 ret = amdgpu_bo_create_kernel_at(adev,
1756 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1757 adev->mman.discovery_tmr_size,
1758 AMDGPU_GEM_DOMAIN_VRAM,
1759 &adev->mman.discovery_memory,
1762 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1763 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1771 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1772 * gtt/vram related fields.
1774 * This initializes all of the memory space pools that the TTM layer
1775 * will need such as the GTT space (system memory mapped to the device),
1776 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1777 * can be mapped per VMID.
1779 int amdgpu_ttm_init(struct amdgpu_device *adev)
1785 mutex_init(&adev->mman.gtt_window_lock);
1787 /* No others user of address space so set it to 0 */
1788 r = ttm_bo_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1789 adev_to_drm(adev)->anon_inode->i_mapping,
1790 adev_to_drm(adev)->vma_offset_manager,
1792 dma_addressing_limited(adev->dev));
1794 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1797 adev->mman.initialized = true;
1799 /* Initialize VRAM pool with all of VRAM divided into pages */
1800 r = amdgpu_vram_mgr_init(adev);
1802 DRM_ERROR("Failed initializing VRAM heap.\n");
1806 /* Reduce size of CPU-visible VRAM if requested */
1807 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1808 if (amdgpu_vis_vram_limit > 0 &&
1809 vis_vram_limit <= adev->gmc.visible_vram_size)
1810 adev->gmc.visible_vram_size = vis_vram_limit;
1812 /* Change the size here instead of the init above so only lpfn is affected */
1813 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1815 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1816 adev->gmc.visible_vram_size);
1820 *The reserved vram for firmware must be pinned to the specified
1821 *place on the VRAM, so reserve it early.
1823 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1829 * only NAVI10 and onwards ASIC support for IP discovery.
1830 * If IP discovery enabled, a block of memory should be
1831 * reserved for IP discovey.
1833 if (adev->mman.discovery_bin) {
1834 r = amdgpu_ttm_reserve_tmr(adev);
1839 /* allocate memory as required for VGA
1840 * This is used for VGA emulation and pre-OS scanout buffers to
1841 * avoid display artifacts while transitioning between pre-OS
1843 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1844 AMDGPU_GEM_DOMAIN_VRAM,
1845 &adev->mman.stolen_vga_memory,
1849 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1850 adev->mman.stolen_extended_size,
1851 AMDGPU_GEM_DOMAIN_VRAM,
1852 &adev->mman.stolen_extended_memory,
1857 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1858 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1860 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1861 * or whatever the user passed on module init */
1862 if (amdgpu_gtt_size == -1) {
1866 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1867 adev->gmc.mc_vram_size),
1868 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1871 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1873 /* Initialize GTT memory pool */
1874 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1876 DRM_ERROR("Failed initializing GTT heap.\n");
1879 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1880 (unsigned)(gtt_size / (1024 * 1024)));
1882 /* Initialize various on-chip memory pools */
1883 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1885 DRM_ERROR("Failed initializing GDS heap.\n");
1889 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1891 DRM_ERROR("Failed initializing gws heap.\n");
1895 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1897 DRM_ERROR("Failed initializing oa heap.\n");
1905 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1907 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1909 if (!adev->mman.initialized)
1912 amdgpu_ttm_training_reserve_vram_fini(adev);
1913 /* return the stolen vga memory back to VRAM */
1914 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1915 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1916 /* return the IP Discovery TMR memory back to VRAM */
1917 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1918 amdgpu_ttm_fw_reserve_vram_fini(adev);
1920 if (adev->mman.aper_base_kaddr)
1921 iounmap(adev->mman.aper_base_kaddr);
1922 adev->mman.aper_base_kaddr = NULL;
1924 amdgpu_vram_mgr_fini(adev);
1925 amdgpu_gtt_mgr_fini(adev);
1926 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1927 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1928 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1929 ttm_bo_device_release(&adev->mman.bdev);
1930 adev->mman.initialized = false;
1931 DRM_INFO("amdgpu: ttm finalized\n");
1935 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1937 * @adev: amdgpu_device pointer
1938 * @enable: true when we can use buffer functions.
1940 * Enable/disable use of buffer functions during suspend/resume. This should
1941 * only be called at bootup or when userspace isn't running.
1943 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1945 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1949 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1950 adev->mman.buffer_funcs_enabled == enable)
1954 struct amdgpu_ring *ring;
1955 struct drm_gpu_scheduler *sched;
1957 ring = adev->mman.buffer_funcs_ring;
1958 sched = &ring->sched;
1959 r = drm_sched_entity_init(&adev->mman.entity,
1960 DRM_SCHED_PRIORITY_KERNEL, &sched,
1963 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1968 drm_sched_entity_destroy(&adev->mman.entity);
1969 dma_fence_put(man->move);
1973 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1975 size = adev->gmc.real_vram_size;
1977 size = adev->gmc.visible_vram_size;
1978 man->size = size >> PAGE_SHIFT;
1979 adev->mman.buffer_funcs_enabled = enable;
1982 static vm_fault_t amdgpu_ttm_fault(struct vm_fault *vmf)
1984 struct ttm_buffer_object *bo = vmf->vma->vm_private_data;
1987 ret = ttm_bo_vm_reserve(bo, vmf);
1991 ret = amdgpu_bo_fault_reserve_notify(bo);
1995 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1996 TTM_BO_VM_NUM_PREFAULT, 1);
1997 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
2001 dma_resv_unlock(bo->base.resv);
2005 static struct vm_operations_struct amdgpu_ttm_vm_ops = {
2006 .fault = amdgpu_ttm_fault,
2007 .open = ttm_bo_vm_open,
2008 .close = ttm_bo_vm_close,
2009 .access = ttm_bo_vm_access
2012 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2014 struct drm_file *file_priv = filp->private_data;
2015 struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
2018 r = ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2019 if (unlikely(r != 0))
2022 vma->vm_ops = &amdgpu_ttm_vm_ops;
2026 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2027 uint64_t dst_offset, uint32_t byte_count,
2028 struct dma_resv *resv,
2029 struct dma_fence **fence, bool direct_submit,
2030 bool vm_needs_flush, bool tmz)
2032 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2033 AMDGPU_IB_POOL_DELAYED;
2034 struct amdgpu_device *adev = ring->adev;
2035 struct amdgpu_job *job;
2038 unsigned num_loops, num_dw;
2042 if (direct_submit && !ring->sched.ready) {
2043 DRM_ERROR("Trying to move memory with ring turned off.\n");
2047 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2048 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2049 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2051 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2055 if (vm_needs_flush) {
2056 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2057 job->vm_needs_flush = true;
2060 r = amdgpu_sync_resv(adev, &job->sync, resv,
2062 AMDGPU_FENCE_OWNER_UNDEFINED);
2064 DRM_ERROR("sync failed (%d).\n", r);
2069 for (i = 0; i < num_loops; i++) {
2070 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2072 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2073 dst_offset, cur_size_in_bytes, tmz);
2075 src_offset += cur_size_in_bytes;
2076 dst_offset += cur_size_in_bytes;
2077 byte_count -= cur_size_in_bytes;
2080 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2081 WARN_ON(job->ibs[0].length_dw > num_dw);
2083 r = amdgpu_job_submit_direct(job, ring, fence);
2085 r = amdgpu_job_submit(job, &adev->mman.entity,
2086 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2093 amdgpu_job_free(job);
2094 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2098 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2100 struct dma_resv *resv,
2101 struct dma_fence **fence)
2103 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2104 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2105 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2107 struct drm_mm_node *mm_node;
2108 unsigned long num_pages;
2109 unsigned int num_loops, num_dw;
2111 struct amdgpu_job *job;
2114 if (!adev->mman.buffer_funcs_enabled) {
2115 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2119 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2120 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2125 num_pages = bo->tbo.mem.num_pages;
2126 mm_node = bo->tbo.mem.mm_node;
2129 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2131 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2132 num_pages -= mm_node->size;
2135 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2137 /* for IB padding */
2140 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2146 r = amdgpu_sync_resv(adev, &job->sync, resv,
2148 AMDGPU_FENCE_OWNER_UNDEFINED);
2150 DRM_ERROR("sync failed (%d).\n", r);
2155 num_pages = bo->tbo.mem.num_pages;
2156 mm_node = bo->tbo.mem.mm_node;
2159 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2162 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2163 while (byte_count) {
2164 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2167 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2168 dst_addr, cur_size_in_bytes);
2170 dst_addr += cur_size_in_bytes;
2171 byte_count -= cur_size_in_bytes;
2174 num_pages -= mm_node->size;
2178 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2179 WARN_ON(job->ibs[0].length_dw > num_dw);
2180 r = amdgpu_job_submit(job, &adev->mman.entity,
2181 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2188 amdgpu_job_free(job);
2192 #if defined(CONFIG_DEBUG_FS)
2194 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2196 struct drm_info_node *node = (struct drm_info_node *)m->private;
2197 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2198 struct drm_device *dev = node->minor->dev;
2199 struct amdgpu_device *adev = drm_to_adev(dev);
2200 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl);
2201 struct drm_printer p = drm_seq_file_printer(m);
2203 man->func->debug(man, &p);
2207 static int amdgpu_ttm_pool_debugfs(struct seq_file *m, void *data)
2209 struct drm_info_node *node = (struct drm_info_node *)m->private;
2210 struct drm_device *dev = node->minor->dev;
2211 struct amdgpu_device *adev = drm_to_adev(dev);
2213 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2216 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2217 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2218 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2219 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2220 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2221 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2222 {"ttm_page_pool", amdgpu_ttm_pool_debugfs, 0, NULL},
2226 * amdgpu_ttm_vram_read - Linear read access to VRAM
2228 * Accesses VRAM via MMIO for debugging purposes.
2230 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2231 size_t size, loff_t *pos)
2233 struct amdgpu_device *adev = file_inode(f)->i_private;
2236 if (size & 0x3 || *pos & 0x3)
2239 if (*pos >= adev->gmc.mc_vram_size)
2242 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2244 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2245 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2247 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2248 if (copy_to_user(buf, value, bytes))
2261 * amdgpu_ttm_vram_write - Linear write access to VRAM
2263 * Accesses VRAM via MMIO for debugging purposes.
2265 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2266 size_t size, loff_t *pos)
2268 struct amdgpu_device *adev = file_inode(f)->i_private;
2272 if (size & 0x3 || *pos & 0x3)
2275 if (*pos >= adev->gmc.mc_vram_size)
2279 unsigned long flags;
2282 if (*pos >= adev->gmc.mc_vram_size)
2285 r = get_user(value, (uint32_t *)buf);
2289 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2290 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2291 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2292 WREG32_NO_KIQ(mmMM_DATA, value);
2293 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2304 static const struct file_operations amdgpu_ttm_vram_fops = {
2305 .owner = THIS_MODULE,
2306 .read = amdgpu_ttm_vram_read,
2307 .write = amdgpu_ttm_vram_write,
2308 .llseek = default_llseek,
2311 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2314 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2316 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2317 size_t size, loff_t *pos)
2319 struct amdgpu_device *adev = file_inode(f)->i_private;
2324 loff_t p = *pos / PAGE_SIZE;
2325 unsigned off = *pos & ~PAGE_MASK;
2326 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2330 if (p >= adev->gart.num_cpu_pages)
2333 page = adev->gart.pages[p];
2338 r = copy_to_user(buf, ptr, cur_size);
2339 kunmap(adev->gart.pages[p]);
2341 r = clear_user(buf, cur_size);
2355 static const struct file_operations amdgpu_ttm_gtt_fops = {
2356 .owner = THIS_MODULE,
2357 .read = amdgpu_ttm_gtt_read,
2358 .llseek = default_llseek
2364 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2366 * This function is used to read memory that has been mapped to the
2367 * GPU and the known addresses are not physical addresses but instead
2368 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2370 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2371 size_t size, loff_t *pos)
2373 struct amdgpu_device *adev = file_inode(f)->i_private;
2374 struct iommu_domain *dom;
2378 /* retrieve the IOMMU domain if any for this device */
2379 dom = iommu_get_domain_for_dev(adev->dev);
2382 phys_addr_t addr = *pos & PAGE_MASK;
2383 loff_t off = *pos & ~PAGE_MASK;
2384 size_t bytes = PAGE_SIZE - off;
2389 bytes = bytes < size ? bytes : size;
2391 /* Translate the bus address to a physical address. If
2392 * the domain is NULL it means there is no IOMMU active
2393 * and the address translation is the identity
2395 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2397 pfn = addr >> PAGE_SHIFT;
2398 if (!pfn_valid(pfn))
2401 p = pfn_to_page(pfn);
2402 if (p->mapping != adev->mman.bdev.dev_mapping)
2406 r = copy_to_user(buf, ptr + off, bytes);
2420 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2422 * This function is used to write memory that has been mapped to the
2423 * GPU and the known addresses are not physical addresses but instead
2424 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2426 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2427 size_t size, loff_t *pos)
2429 struct amdgpu_device *adev = file_inode(f)->i_private;
2430 struct iommu_domain *dom;
2434 dom = iommu_get_domain_for_dev(adev->dev);
2437 phys_addr_t addr = *pos & PAGE_MASK;
2438 loff_t off = *pos & ~PAGE_MASK;
2439 size_t bytes = PAGE_SIZE - off;
2444 bytes = bytes < size ? bytes : size;
2446 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2448 pfn = addr >> PAGE_SHIFT;
2449 if (!pfn_valid(pfn))
2452 p = pfn_to_page(pfn);
2453 if (p->mapping != adev->mman.bdev.dev_mapping)
2457 r = copy_from_user(ptr + off, buf, bytes);
2470 static const struct file_operations amdgpu_ttm_iomem_fops = {
2471 .owner = THIS_MODULE,
2472 .read = amdgpu_iomem_read,
2473 .write = amdgpu_iomem_write,
2474 .llseek = default_llseek
2477 static const struct {
2479 const struct file_operations *fops;
2481 } ttm_debugfs_entries[] = {
2482 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2483 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2484 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2486 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2491 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2493 #if defined(CONFIG_DEBUG_FS)
2496 struct drm_minor *minor = adev_to_drm(adev)->primary;
2497 struct dentry *ent, *root = minor->debugfs_root;
2499 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2500 ent = debugfs_create_file(
2501 ttm_debugfs_entries[count].name,
2502 S_IFREG | S_IRUGO, root,
2504 ttm_debugfs_entries[count].fops);
2506 return PTR_ERR(ent);
2507 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2508 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2509 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2510 i_size_write(ent->d_inode, adev->gmc.gart_size);
2511 adev->mman.debugfs_entries[count] = ent;
2514 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2515 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);