2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
41 #include <asm/processor.h>
44 #include <asm/uaccess.h>
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
53 static cpumask_t cpus_hardware_enabled;
55 struct kvm_arch_ops *kvm_arch_ops;
57 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
59 static struct kvm_stats_debugfs_item {
62 struct dentry *dentry;
63 } debugfs_entries[] = {
64 { "pf_fixed", STAT_OFFSET(pf_fixed) },
65 { "pf_guest", STAT_OFFSET(pf_guest) },
66 { "tlb_flush", STAT_OFFSET(tlb_flush) },
67 { "invlpg", STAT_OFFSET(invlpg) },
68 { "exits", STAT_OFFSET(exits) },
69 { "io_exits", STAT_OFFSET(io_exits) },
70 { "mmio_exits", STAT_OFFSET(mmio_exits) },
71 { "signal_exits", STAT_OFFSET(signal_exits) },
72 { "irq_window", STAT_OFFSET(irq_window_exits) },
73 { "halt_exits", STAT_OFFSET(halt_exits) },
74 { "request_irq", STAT_OFFSET(request_irq_exits) },
75 { "irq_exits", STAT_OFFSET(irq_exits) },
76 { "light_exits", STAT_OFFSET(light_exits) },
77 { "efer_reload", STAT_OFFSET(efer_reload) },
81 static struct dentry *debugfs_dir;
83 #define MAX_IO_MSRS 256
85 #define CR0_RESERVED_BITS \
86 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
87 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
88 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
89 #define CR4_RESERVED_BITS \
90 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
91 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
92 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
93 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
95 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
96 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
99 // LDT or TSS descriptor in the GDT. 16 bytes.
100 struct segment_descriptor_64 {
101 struct segment_descriptor s;
108 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
111 unsigned long segment_base(u16 selector)
113 struct descriptor_table gdt;
114 struct segment_descriptor *d;
115 unsigned long table_base;
116 typedef unsigned long ul;
122 asm ("sgdt %0" : "=m"(gdt));
123 table_base = gdt.base;
125 if (selector & 4) { /* from ldt */
128 asm ("sldt %0" : "=g"(ldt_selector));
129 table_base = segment_base(ldt_selector);
131 d = (struct segment_descriptor *)(table_base + (selector & ~7));
132 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
135 && (d->type == 2 || d->type == 9 || d->type == 11))
136 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
140 EXPORT_SYMBOL_GPL(segment_base);
142 static inline int valid_vcpu(int n)
144 return likely(n >= 0 && n < KVM_MAX_VCPUS);
147 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
150 unsigned char *host_buf = dest;
151 unsigned long req_size = size;
159 paddr = gva_to_hpa(vcpu, addr);
161 if (is_error_hpa(paddr))
164 guest_buf = (hva_t)kmap_atomic(
165 pfn_to_page(paddr >> PAGE_SHIFT),
167 offset = addr & ~PAGE_MASK;
169 now = min(size, PAGE_SIZE - offset);
170 memcpy(host_buf, (void*)guest_buf, now);
174 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
176 return req_size - size;
178 EXPORT_SYMBOL_GPL(kvm_read_guest);
180 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
183 unsigned char *host_buf = data;
184 unsigned long req_size = size;
193 paddr = gva_to_hpa(vcpu, addr);
195 if (is_error_hpa(paddr))
198 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
199 mark_page_dirty(vcpu->kvm, gfn);
200 guest_buf = (hva_t)kmap_atomic(
201 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
202 offset = addr & ~PAGE_MASK;
204 now = min(size, PAGE_SIZE - offset);
205 memcpy((void*)guest_buf, host_buf, now);
209 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
211 return req_size - size;
213 EXPORT_SYMBOL_GPL(kvm_write_guest);
215 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
217 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
220 vcpu->guest_fpu_loaded = 1;
221 fx_save(vcpu->host_fx_image);
222 fx_restore(vcpu->guest_fx_image);
224 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
226 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
228 if (!vcpu->guest_fpu_loaded)
231 vcpu->guest_fpu_loaded = 0;
232 fx_save(vcpu->guest_fx_image);
233 fx_restore(vcpu->host_fx_image);
235 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
238 * Switches to specified vcpu, until a matching vcpu_put()
240 static void vcpu_load(struct kvm_vcpu *vcpu)
242 mutex_lock(&vcpu->mutex);
243 kvm_arch_ops->vcpu_load(vcpu);
246 static void vcpu_put(struct kvm_vcpu *vcpu)
248 kvm_arch_ops->vcpu_put(vcpu);
249 mutex_unlock(&vcpu->mutex);
252 static void ack_flush(void *_completed)
254 atomic_t *completed = _completed;
256 atomic_inc(completed);
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
263 struct kvm_vcpu *vcpu;
266 atomic_set(&completed, 0);
269 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
270 vcpu = kvm->vcpus[i];
273 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
276 if (cpu != -1 && cpu != raw_smp_processor_id())
277 if (!cpu_isset(cpu, cpus)) {
284 * We really want smp_call_function_mask() here. But that's not
285 * available, so ipi all cpus in parallel and wait for them
288 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
289 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
290 while (atomic_read(&completed) != needed) {
296 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
301 mutex_init(&vcpu->mutex);
303 vcpu->mmu.root_hpa = INVALID_PAGE;
307 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
312 vcpu->run = page_address(page);
314 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
319 vcpu->pio_data = page_address(page);
321 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
323 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
325 r = kvm_mmu_create(vcpu);
327 goto fail_free_pio_data;
332 free_page((unsigned long)vcpu->pio_data);
334 free_page((unsigned long)vcpu->run);
338 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
340 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
342 kvm_mmu_destroy(vcpu);
343 free_page((unsigned long)vcpu->pio_data);
344 free_page((unsigned long)vcpu->run);
346 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
348 static struct kvm *kvm_create_vm(void)
350 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
353 return ERR_PTR(-ENOMEM);
355 kvm_io_bus_init(&kvm->pio_bus);
356 spin_lock_init(&kvm->lock);
357 INIT_LIST_HEAD(&kvm->active_mmu_pages);
358 kvm_io_bus_init(&kvm->mmio_bus);
359 spin_lock(&kvm_lock);
360 list_add(&kvm->vm_list, &vm_list);
361 spin_unlock(&kvm_lock);
365 static int kvm_dev_open(struct inode *inode, struct file *filp)
371 * Free any memory in @free but not in @dont.
373 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
374 struct kvm_memory_slot *dont)
378 if (!dont || free->phys_mem != dont->phys_mem)
379 if (free->phys_mem) {
380 for (i = 0; i < free->npages; ++i)
381 if (free->phys_mem[i])
382 __free_page(free->phys_mem[i]);
383 vfree(free->phys_mem);
386 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
387 vfree(free->dirty_bitmap);
389 free->phys_mem = NULL;
391 free->dirty_bitmap = NULL;
394 static void kvm_free_physmem(struct kvm *kvm)
398 for (i = 0; i < kvm->nmemslots; ++i)
399 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
402 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
406 for (i = 0; i < 2; ++i)
407 if (vcpu->pio.guest_pages[i]) {
408 __free_page(vcpu->pio.guest_pages[i]);
409 vcpu->pio.guest_pages[i] = NULL;
413 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
416 kvm_mmu_unload(vcpu);
420 static void kvm_free_vcpus(struct kvm *kvm)
425 * Unpin any mmu pages first.
427 for (i = 0; i < KVM_MAX_VCPUS; ++i)
429 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
430 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
432 kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
433 kvm->vcpus[i] = NULL;
439 static int kvm_dev_release(struct inode *inode, struct file *filp)
444 static void kvm_destroy_vm(struct kvm *kvm)
446 spin_lock(&kvm_lock);
447 list_del(&kvm->vm_list);
448 spin_unlock(&kvm_lock);
449 kvm_io_bus_destroy(&kvm->pio_bus);
450 kvm_io_bus_destroy(&kvm->mmio_bus);
452 kvm_free_physmem(kvm);
456 static int kvm_vm_release(struct inode *inode, struct file *filp)
458 struct kvm *kvm = filp->private_data;
464 static void inject_gp(struct kvm_vcpu *vcpu)
466 kvm_arch_ops->inject_gp(vcpu, 0);
470 * Load the pae pdptrs. Return true is they are all valid.
472 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
474 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
475 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
480 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
482 spin_lock(&vcpu->kvm->lock);
483 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
489 pdpt = kmap_atomic(page, KM_USER0);
490 memcpy(pdpte, pdpt+offset, sizeof(pdpte));
491 kunmap_atomic(pdpt, KM_USER0);
493 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
494 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
501 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
503 spin_unlock(&vcpu->kvm->lock);
508 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
510 if (cr0 & CR0_RESERVED_BITS) {
511 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
517 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
518 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
523 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
524 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
525 "and a clear PE flag\n");
530 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
532 if ((vcpu->shadow_efer & EFER_LME)) {
536 printk(KERN_DEBUG "set_cr0: #GP, start paging "
537 "in long mode while PAE is disabled\n");
541 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
543 printk(KERN_DEBUG "set_cr0: #GP, start paging "
544 "in long mode while CS.L == 1\n");
551 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
552 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
560 kvm_arch_ops->set_cr0(vcpu, cr0);
563 spin_lock(&vcpu->kvm->lock);
564 kvm_mmu_reset_context(vcpu);
565 spin_unlock(&vcpu->kvm->lock);
568 EXPORT_SYMBOL_GPL(set_cr0);
570 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
572 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
574 EXPORT_SYMBOL_GPL(lmsw);
576 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
578 if (cr4 & CR4_RESERVED_BITS) {
579 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
584 if (is_long_mode(vcpu)) {
585 if (!(cr4 & X86_CR4_PAE)) {
586 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
591 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
592 && !load_pdptrs(vcpu, vcpu->cr3)) {
593 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
598 if (cr4 & X86_CR4_VMXE) {
599 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
603 kvm_arch_ops->set_cr4(vcpu, cr4);
604 spin_lock(&vcpu->kvm->lock);
605 kvm_mmu_reset_context(vcpu);
606 spin_unlock(&vcpu->kvm->lock);
608 EXPORT_SYMBOL_GPL(set_cr4);
610 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
612 if (is_long_mode(vcpu)) {
613 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
614 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
620 if (cr3 & CR3_PAE_RESERVED_BITS) {
622 "set_cr3: #GP, reserved bits\n");
626 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
627 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
633 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
635 "set_cr3: #GP, reserved bits\n");
643 spin_lock(&vcpu->kvm->lock);
645 * Does the new cr3 value map to physical memory? (Note, we
646 * catch an invalid cr3 even in real-mode, because it would
647 * cause trouble later on when we turn on paging anyway.)
649 * A real CPU would silently accept an invalid cr3 and would
650 * attempt to use it - with largely undefined (and often hard
651 * to debug) behavior on the guest side.
653 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
656 vcpu->mmu.new_cr3(vcpu);
657 spin_unlock(&vcpu->kvm->lock);
659 EXPORT_SYMBOL_GPL(set_cr3);
661 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
663 if (cr8 & CR8_RESERVED_BITS) {
664 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
670 EXPORT_SYMBOL_GPL(set_cr8);
672 void fx_init(struct kvm_vcpu *vcpu)
674 struct __attribute__ ((__packed__)) fx_image_s {
680 u64 operand;// fpu dp
686 fx_save(vcpu->host_fx_image);
688 fx_save(vcpu->guest_fx_image);
689 fx_restore(vcpu->host_fx_image);
691 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
692 fx_image->mxcsr = 0x1f80;
693 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
694 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
696 EXPORT_SYMBOL_GPL(fx_init);
699 * Allocate some memory and give it an address in the guest physical address
702 * Discontiguous memory is allowed, mostly for framebuffers.
704 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
705 struct kvm_memory_region *mem)
709 unsigned long npages;
711 struct kvm_memory_slot *memslot;
712 struct kvm_memory_slot old, new;
713 int memory_config_version;
716 /* General sanity checks */
717 if (mem->memory_size & (PAGE_SIZE - 1))
719 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
721 if (mem->slot >= KVM_MEMORY_SLOTS)
723 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
726 memslot = &kvm->memslots[mem->slot];
727 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
728 npages = mem->memory_size >> PAGE_SHIFT;
731 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
734 spin_lock(&kvm->lock);
736 memory_config_version = kvm->memory_config_version;
737 new = old = *memslot;
739 new.base_gfn = base_gfn;
741 new.flags = mem->flags;
743 /* Disallow changing a memory slot's size. */
745 if (npages && old.npages && npages != old.npages)
748 /* Check for overlaps */
750 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
751 struct kvm_memory_slot *s = &kvm->memslots[i];
755 if (!((base_gfn + npages <= s->base_gfn) ||
756 (base_gfn >= s->base_gfn + s->npages)))
760 * Do memory allocations outside lock. memory_config_version will
763 spin_unlock(&kvm->lock);
765 /* Deallocate if slot is being removed */
769 /* Free page dirty bitmap if unneeded */
770 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
771 new.dirty_bitmap = NULL;
775 /* Allocate if a slot is being created */
776 if (npages && !new.phys_mem) {
777 new.phys_mem = vmalloc(npages * sizeof(struct page *));
782 memset(new.phys_mem, 0, npages * sizeof(struct page *));
783 for (i = 0; i < npages; ++i) {
784 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
786 if (!new.phys_mem[i])
788 set_page_private(new.phys_mem[i],0);
792 /* Allocate page dirty bitmap if needed */
793 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
794 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
796 new.dirty_bitmap = vmalloc(dirty_bytes);
797 if (!new.dirty_bitmap)
799 memset(new.dirty_bitmap, 0, dirty_bytes);
802 spin_lock(&kvm->lock);
804 if (memory_config_version != kvm->memory_config_version) {
805 spin_unlock(&kvm->lock);
806 kvm_free_physmem_slot(&new, &old);
814 if (mem->slot >= kvm->nmemslots)
815 kvm->nmemslots = mem->slot + 1;
818 ++kvm->memory_config_version;
820 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
821 kvm_flush_remote_tlbs(kvm);
823 spin_unlock(&kvm->lock);
825 kvm_free_physmem_slot(&old, &new);
829 spin_unlock(&kvm->lock);
831 kvm_free_physmem_slot(&new, &old);
837 * Get (and clear) the dirty memory log for a memory slot.
839 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
840 struct kvm_dirty_log *log)
842 struct kvm_memory_slot *memslot;
845 unsigned long any = 0;
847 spin_lock(&kvm->lock);
850 * Prevent changes to guest memory configuration even while the lock
854 spin_unlock(&kvm->lock);
856 if (log->slot >= KVM_MEMORY_SLOTS)
859 memslot = &kvm->memslots[log->slot];
861 if (!memslot->dirty_bitmap)
864 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
866 for (i = 0; !any && i < n/sizeof(long); ++i)
867 any = memslot->dirty_bitmap[i];
870 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
873 spin_lock(&kvm->lock);
874 kvm_mmu_slot_remove_write_access(kvm, log->slot);
875 kvm_flush_remote_tlbs(kvm);
876 memset(memslot->dirty_bitmap, 0, n);
877 spin_unlock(&kvm->lock);
882 spin_lock(&kvm->lock);
884 spin_unlock(&kvm->lock);
889 * Set a new alias region. Aliases map a portion of physical memory into
890 * another portion. This is useful for memory windows, for example the PC
893 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
894 struct kvm_memory_alias *alias)
897 struct kvm_mem_alias *p;
900 /* General sanity checks */
901 if (alias->memory_size & (PAGE_SIZE - 1))
903 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
905 if (alias->slot >= KVM_ALIAS_SLOTS)
907 if (alias->guest_phys_addr + alias->memory_size
908 < alias->guest_phys_addr)
910 if (alias->target_phys_addr + alias->memory_size
911 < alias->target_phys_addr)
914 spin_lock(&kvm->lock);
916 p = &kvm->aliases[alias->slot];
917 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
918 p->npages = alias->memory_size >> PAGE_SHIFT;
919 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
921 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
922 if (kvm->aliases[n - 1].npages)
926 kvm_mmu_zap_all(kvm);
928 spin_unlock(&kvm->lock);
936 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
939 struct kvm_mem_alias *alias;
941 for (i = 0; i < kvm->naliases; ++i) {
942 alias = &kvm->aliases[i];
943 if (gfn >= alias->base_gfn
944 && gfn < alias->base_gfn + alias->npages)
945 return alias->target_gfn + gfn - alias->base_gfn;
950 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
954 for (i = 0; i < kvm->nmemslots; ++i) {
955 struct kvm_memory_slot *memslot = &kvm->memslots[i];
957 if (gfn >= memslot->base_gfn
958 && gfn < memslot->base_gfn + memslot->npages)
964 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
966 gfn = unalias_gfn(kvm, gfn);
967 return __gfn_to_memslot(kvm, gfn);
970 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
972 struct kvm_memory_slot *slot;
974 gfn = unalias_gfn(kvm, gfn);
975 slot = __gfn_to_memslot(kvm, gfn);
978 return slot->phys_mem[gfn - slot->base_gfn];
980 EXPORT_SYMBOL_GPL(gfn_to_page);
982 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
985 struct kvm_memory_slot *memslot;
986 unsigned long rel_gfn;
988 for (i = 0; i < kvm->nmemslots; ++i) {
989 memslot = &kvm->memslots[i];
991 if (gfn >= memslot->base_gfn
992 && gfn < memslot->base_gfn + memslot->npages) {
994 if (!memslot->dirty_bitmap)
997 rel_gfn = gfn - memslot->base_gfn;
1000 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1001 set_bit(rel_gfn, memslot->dirty_bitmap);
1007 static int emulator_read_std(unsigned long addr,
1010 struct x86_emulate_ctxt *ctxt)
1012 struct kvm_vcpu *vcpu = ctxt->vcpu;
1016 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1017 unsigned offset = addr & (PAGE_SIZE-1);
1018 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1023 if (gpa == UNMAPPED_GVA)
1024 return X86EMUL_PROPAGATE_FAULT;
1025 pfn = gpa >> PAGE_SHIFT;
1026 page = gfn_to_page(vcpu->kvm, pfn);
1028 return X86EMUL_UNHANDLEABLE;
1029 page_virt = kmap_atomic(page, KM_USER0);
1031 memcpy(data, page_virt + offset, tocopy);
1033 kunmap_atomic(page_virt, KM_USER0);
1040 return X86EMUL_CONTINUE;
1043 static int emulator_write_std(unsigned long addr,
1046 struct x86_emulate_ctxt *ctxt)
1048 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1050 return X86EMUL_UNHANDLEABLE;
1053 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1057 * Note that its important to have this wrapper function because
1058 * in the very near future we will be checking for MMIOs against
1059 * the LAPIC as well as the general MMIO bus
1061 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1064 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1067 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1070 static int emulator_read_emulated(unsigned long addr,
1073 struct x86_emulate_ctxt *ctxt)
1075 struct kvm_vcpu *vcpu = ctxt->vcpu;
1076 struct kvm_io_device *mmio_dev;
1079 if (vcpu->mmio_read_completed) {
1080 memcpy(val, vcpu->mmio_data, bytes);
1081 vcpu->mmio_read_completed = 0;
1082 return X86EMUL_CONTINUE;
1083 } else if (emulator_read_std(addr, val, bytes, ctxt)
1084 == X86EMUL_CONTINUE)
1085 return X86EMUL_CONTINUE;
1087 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1088 if (gpa == UNMAPPED_GVA)
1089 return X86EMUL_PROPAGATE_FAULT;
1092 * Is this MMIO handled locally?
1094 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1096 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1097 return X86EMUL_CONTINUE;
1100 vcpu->mmio_needed = 1;
1101 vcpu->mmio_phys_addr = gpa;
1102 vcpu->mmio_size = bytes;
1103 vcpu->mmio_is_write = 0;
1105 return X86EMUL_UNHANDLEABLE;
1108 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1109 const void *val, int bytes)
1114 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1116 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1119 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1120 virt = kmap_atomic(page, KM_USER0);
1121 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1122 memcpy(virt + offset_in_page(gpa), val, bytes);
1123 kunmap_atomic(virt, KM_USER0);
1127 static int emulator_write_emulated_onepage(unsigned long addr,
1130 struct x86_emulate_ctxt *ctxt)
1132 struct kvm_vcpu *vcpu = ctxt->vcpu;
1133 struct kvm_io_device *mmio_dev;
1134 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1136 if (gpa == UNMAPPED_GVA) {
1137 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1138 return X86EMUL_PROPAGATE_FAULT;
1141 if (emulator_write_phys(vcpu, gpa, val, bytes))
1142 return X86EMUL_CONTINUE;
1145 * Is this MMIO handled locally?
1147 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1149 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1150 return X86EMUL_CONTINUE;
1153 vcpu->mmio_needed = 1;
1154 vcpu->mmio_phys_addr = gpa;
1155 vcpu->mmio_size = bytes;
1156 vcpu->mmio_is_write = 1;
1157 memcpy(vcpu->mmio_data, val, bytes);
1159 return X86EMUL_CONTINUE;
1162 static int emulator_write_emulated(unsigned long addr,
1165 struct x86_emulate_ctxt *ctxt)
1167 /* Crossing a page boundary? */
1168 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1171 now = -addr & ~PAGE_MASK;
1172 rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
1173 if (rc != X86EMUL_CONTINUE)
1179 return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
1182 static int emulator_cmpxchg_emulated(unsigned long addr,
1186 struct x86_emulate_ctxt *ctxt)
1188 static int reported;
1192 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1194 return emulator_write_emulated(addr, new, bytes, ctxt);
1197 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1199 return kvm_arch_ops->get_segment_base(vcpu, seg);
1202 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1204 return X86EMUL_CONTINUE;
1207 int emulate_clts(struct kvm_vcpu *vcpu)
1211 cr0 = vcpu->cr0 & ~X86_CR0_TS;
1212 kvm_arch_ops->set_cr0(vcpu, cr0);
1213 return X86EMUL_CONTINUE;
1216 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1218 struct kvm_vcpu *vcpu = ctxt->vcpu;
1222 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1223 return X86EMUL_CONTINUE;
1225 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1227 return X86EMUL_UNHANDLEABLE;
1231 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1233 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1236 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1238 /* FIXME: better handling */
1239 return X86EMUL_UNHANDLEABLE;
1241 return X86EMUL_CONTINUE;
1244 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1246 static int reported;
1248 unsigned long rip = ctxt->vcpu->rip;
1249 unsigned long rip_linear;
1251 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1256 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1258 printk(KERN_ERR "emulation failed but !mmio_needed?"
1259 " rip %lx %02x %02x %02x %02x\n",
1260 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1264 struct x86_emulate_ops emulate_ops = {
1265 .read_std = emulator_read_std,
1266 .write_std = emulator_write_std,
1267 .read_emulated = emulator_read_emulated,
1268 .write_emulated = emulator_write_emulated,
1269 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1272 int emulate_instruction(struct kvm_vcpu *vcpu,
1273 struct kvm_run *run,
1277 struct x86_emulate_ctxt emulate_ctxt;
1281 vcpu->mmio_fault_cr2 = cr2;
1282 kvm_arch_ops->cache_regs(vcpu);
1284 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1286 emulate_ctxt.vcpu = vcpu;
1287 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1288 emulate_ctxt.cr2 = cr2;
1289 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1290 ? X86EMUL_MODE_REAL : cs_l
1291 ? X86EMUL_MODE_PROT64 : cs_db
1292 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1294 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1295 emulate_ctxt.cs_base = 0;
1296 emulate_ctxt.ds_base = 0;
1297 emulate_ctxt.es_base = 0;
1298 emulate_ctxt.ss_base = 0;
1300 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1301 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1302 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1303 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1306 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1307 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1309 vcpu->mmio_is_write = 0;
1310 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1312 if ((r || vcpu->mmio_is_write) && run) {
1313 run->exit_reason = KVM_EXIT_MMIO;
1314 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1315 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1316 run->mmio.len = vcpu->mmio_size;
1317 run->mmio.is_write = vcpu->mmio_is_write;
1321 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1322 return EMULATE_DONE;
1323 if (!vcpu->mmio_needed) {
1324 report_emulation_failure(&emulate_ctxt);
1325 return EMULATE_FAIL;
1327 return EMULATE_DO_MMIO;
1330 kvm_arch_ops->decache_regs(vcpu);
1331 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1333 if (vcpu->mmio_is_write) {
1334 vcpu->mmio_needed = 0;
1335 return EMULATE_DO_MMIO;
1338 return EMULATE_DONE;
1340 EXPORT_SYMBOL_GPL(emulate_instruction);
1342 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1344 if (vcpu->irq_summary)
1347 vcpu->run->exit_reason = KVM_EXIT_HLT;
1348 ++vcpu->stat.halt_exits;
1351 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1353 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1355 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1357 kvm_arch_ops->cache_regs(vcpu);
1359 #ifdef CONFIG_X86_64
1360 if (is_long_mode(vcpu)) {
1361 nr = vcpu->regs[VCPU_REGS_RAX];
1362 a0 = vcpu->regs[VCPU_REGS_RDI];
1363 a1 = vcpu->regs[VCPU_REGS_RSI];
1364 a2 = vcpu->regs[VCPU_REGS_RDX];
1365 a3 = vcpu->regs[VCPU_REGS_RCX];
1366 a4 = vcpu->regs[VCPU_REGS_R8];
1367 a5 = vcpu->regs[VCPU_REGS_R9];
1371 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1372 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1373 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1374 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1375 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1376 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1377 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1381 run->hypercall.args[0] = a0;
1382 run->hypercall.args[1] = a1;
1383 run->hypercall.args[2] = a2;
1384 run->hypercall.args[3] = a3;
1385 run->hypercall.args[4] = a4;
1386 run->hypercall.args[5] = a5;
1387 run->hypercall.ret = ret;
1388 run->hypercall.longmode = is_long_mode(vcpu);
1389 kvm_arch_ops->decache_regs(vcpu);
1392 vcpu->regs[VCPU_REGS_RAX] = ret;
1393 kvm_arch_ops->decache_regs(vcpu);
1396 EXPORT_SYMBOL_GPL(kvm_hypercall);
1398 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1400 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1403 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1405 struct descriptor_table dt = { limit, base };
1407 kvm_arch_ops->set_gdt(vcpu, &dt);
1410 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1412 struct descriptor_table dt = { limit, base };
1414 kvm_arch_ops->set_idt(vcpu, &dt);
1417 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1418 unsigned long *rflags)
1421 *rflags = kvm_arch_ops->get_rflags(vcpu);
1424 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1426 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1437 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1442 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1443 unsigned long *rflags)
1447 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1448 *rflags = kvm_arch_ops->get_rflags(vcpu);
1457 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1460 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1465 * Register the para guest with the host:
1467 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1469 struct kvm_vcpu_para_state *para_state;
1470 hpa_t para_state_hpa, hypercall_hpa;
1471 struct page *para_state_page;
1472 unsigned char *hypercall;
1473 gpa_t hypercall_gpa;
1475 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1476 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1479 * Needs to be page aligned:
1481 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1484 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1485 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1486 if (is_error_hpa(para_state_hpa))
1489 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1490 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1491 para_state = kmap(para_state_page);
1493 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1494 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1496 para_state->host_version = KVM_PARA_API_VERSION;
1498 * We cannot support guests that try to register themselves
1499 * with a newer API version than the host supports:
1501 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1502 para_state->ret = -KVM_EINVAL;
1503 goto err_kunmap_skip;
1506 hypercall_gpa = para_state->hypercall_gpa;
1507 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1508 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1509 if (is_error_hpa(hypercall_hpa)) {
1510 para_state->ret = -KVM_EINVAL;
1511 goto err_kunmap_skip;
1514 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1515 vcpu->para_state_page = para_state_page;
1516 vcpu->para_state_gpa = para_state_gpa;
1517 vcpu->hypercall_gpa = hypercall_gpa;
1519 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1520 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1521 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1522 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1523 kunmap_atomic(hypercall, KM_USER1);
1525 para_state->ret = 0;
1527 kunmap(para_state_page);
1533 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1538 case 0xc0010010: /* SYSCFG */
1539 case 0xc0010015: /* HWCR */
1540 case MSR_IA32_PLATFORM_ID:
1541 case MSR_IA32_P5_MC_ADDR:
1542 case MSR_IA32_P5_MC_TYPE:
1543 case MSR_IA32_MC0_CTL:
1544 case MSR_IA32_MCG_STATUS:
1545 case MSR_IA32_MCG_CAP:
1546 case MSR_IA32_MC0_MISC:
1547 case MSR_IA32_MC0_MISC+4:
1548 case MSR_IA32_MC0_MISC+8:
1549 case MSR_IA32_MC0_MISC+12:
1550 case MSR_IA32_MC0_MISC+16:
1551 case MSR_IA32_UCODE_REV:
1552 case MSR_IA32_PERF_STATUS:
1553 case MSR_IA32_EBL_CR_POWERON:
1554 /* MTRR registers */
1556 case 0x200 ... 0x2ff:
1559 case 0xcd: /* fsb frequency */
1562 case MSR_IA32_APICBASE:
1563 data = vcpu->apic_base;
1565 case MSR_IA32_MISC_ENABLE:
1566 data = vcpu->ia32_misc_enable_msr;
1568 #ifdef CONFIG_X86_64
1570 data = vcpu->shadow_efer;
1574 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1580 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1583 * Reads an msr value (of 'msr_index') into 'pdata'.
1584 * Returns 0 on success, non-0 otherwise.
1585 * Assumes vcpu_load() was already called.
1587 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1589 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1592 #ifdef CONFIG_X86_64
1594 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1596 if (efer & EFER_RESERVED_BITS) {
1597 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1604 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1605 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1610 kvm_arch_ops->set_efer(vcpu, efer);
1613 efer |= vcpu->shadow_efer & EFER_LMA;
1615 vcpu->shadow_efer = efer;
1620 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1623 #ifdef CONFIG_X86_64
1625 set_efer(vcpu, data);
1628 case MSR_IA32_MC0_STATUS:
1629 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1630 __FUNCTION__, data);
1632 case MSR_IA32_MCG_STATUS:
1633 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1634 __FUNCTION__, data);
1636 case MSR_IA32_UCODE_REV:
1637 case MSR_IA32_UCODE_WRITE:
1638 case 0x200 ... 0x2ff: /* MTRRs */
1640 case MSR_IA32_APICBASE:
1641 vcpu->apic_base = data;
1643 case MSR_IA32_MISC_ENABLE:
1644 vcpu->ia32_misc_enable_msr = data;
1647 * This is the 'probe whether the host is KVM' logic:
1649 case MSR_KVM_API_MAGIC:
1650 return vcpu_register_para(vcpu, data);
1653 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1658 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1661 * Writes msr value into into the appropriate "register".
1662 * Returns 0 on success, non-0 otherwise.
1663 * Assumes vcpu_load() was already called.
1665 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1667 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1670 void kvm_resched(struct kvm_vcpu *vcpu)
1672 if (!need_resched())
1678 EXPORT_SYMBOL_GPL(kvm_resched);
1680 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1684 struct kvm_cpuid_entry *e, *best;
1686 kvm_arch_ops->cache_regs(vcpu);
1687 function = vcpu->regs[VCPU_REGS_RAX];
1688 vcpu->regs[VCPU_REGS_RAX] = 0;
1689 vcpu->regs[VCPU_REGS_RBX] = 0;
1690 vcpu->regs[VCPU_REGS_RCX] = 0;
1691 vcpu->regs[VCPU_REGS_RDX] = 0;
1693 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1694 e = &vcpu->cpuid_entries[i];
1695 if (e->function == function) {
1700 * Both basic or both extended?
1702 if (((e->function ^ function) & 0x80000000) == 0)
1703 if (!best || e->function > best->function)
1707 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1708 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1709 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1710 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1712 kvm_arch_ops->decache_regs(vcpu);
1713 kvm_arch_ops->skip_emulated_instruction(vcpu);
1715 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1717 static int pio_copy_data(struct kvm_vcpu *vcpu)
1719 void *p = vcpu->pio_data;
1722 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1724 kvm_arch_ops->vcpu_put(vcpu);
1725 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1728 kvm_arch_ops->vcpu_load(vcpu);
1729 free_pio_guest_pages(vcpu);
1732 q += vcpu->pio.guest_page_offset;
1733 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1735 memcpy(q, p, bytes);
1737 memcpy(p, q, bytes);
1738 q -= vcpu->pio.guest_page_offset;
1740 kvm_arch_ops->vcpu_load(vcpu);
1741 free_pio_guest_pages(vcpu);
1745 static int complete_pio(struct kvm_vcpu *vcpu)
1747 struct kvm_pio_request *io = &vcpu->pio;
1751 kvm_arch_ops->cache_regs(vcpu);
1755 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1759 r = pio_copy_data(vcpu);
1761 kvm_arch_ops->cache_regs(vcpu);
1768 delta *= io->cur_count;
1770 * The size of the register should really depend on
1771 * current address size.
1773 vcpu->regs[VCPU_REGS_RCX] -= delta;
1779 vcpu->regs[VCPU_REGS_RDI] += delta;
1781 vcpu->regs[VCPU_REGS_RSI] += delta;
1784 kvm_arch_ops->decache_regs(vcpu);
1786 io->count -= io->cur_count;
1790 kvm_arch_ops->skip_emulated_instruction(vcpu);
1794 static void kernel_pio(struct kvm_io_device *pio_dev,
1795 struct kvm_vcpu *vcpu,
1798 /* TODO: String I/O for in kernel device */
1801 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1805 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1810 static void pio_string_write(struct kvm_io_device *pio_dev,
1811 struct kvm_vcpu *vcpu)
1813 struct kvm_pio_request *io = &vcpu->pio;
1814 void *pd = vcpu->pio_data;
1817 for (i = 0; i < io->cur_count; i++) {
1818 kvm_iodevice_write(pio_dev, io->port,
1825 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1826 int size, unsigned long count, int string, int down,
1827 gva_t address, int rep, unsigned port)
1829 unsigned now, in_page;
1833 struct kvm_io_device *pio_dev;
1835 vcpu->run->exit_reason = KVM_EXIT_IO;
1836 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1837 vcpu->run->io.size = size;
1838 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1839 vcpu->run->io.count = count;
1840 vcpu->run->io.port = port;
1841 vcpu->pio.count = count;
1842 vcpu->pio.cur_count = count;
1843 vcpu->pio.size = size;
1845 vcpu->pio.port = port;
1846 vcpu->pio.string = string;
1847 vcpu->pio.down = down;
1848 vcpu->pio.guest_page_offset = offset_in_page(address);
1849 vcpu->pio.rep = rep;
1851 pio_dev = vcpu_find_pio_dev(vcpu, port);
1853 kvm_arch_ops->cache_regs(vcpu);
1854 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1855 kvm_arch_ops->decache_regs(vcpu);
1857 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1865 kvm_arch_ops->skip_emulated_instruction(vcpu);
1869 now = min(count, PAGE_SIZE / size);
1872 in_page = PAGE_SIZE - offset_in_page(address);
1874 in_page = offset_in_page(address) + size;
1875 now = min(count, (unsigned long)in_page / size);
1878 * String I/O straddles page boundary. Pin two guest pages
1879 * so that we satisfy atomicity constraints. Do just one
1880 * transaction to avoid complexity.
1887 * String I/O in reverse. Yuck. Kill the guest, fix later.
1889 printk(KERN_ERR "kvm: guest string pio down\n");
1893 vcpu->run->io.count = now;
1894 vcpu->pio.cur_count = now;
1896 for (i = 0; i < nr_pages; ++i) {
1897 spin_lock(&vcpu->kvm->lock);
1898 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1901 vcpu->pio.guest_pages[i] = page;
1902 spin_unlock(&vcpu->kvm->lock);
1905 free_pio_guest_pages(vcpu);
1910 if (!vcpu->pio.in) {
1911 /* string PIO write */
1912 ret = pio_copy_data(vcpu);
1913 if (ret >= 0 && pio_dev) {
1914 pio_string_write(pio_dev, vcpu);
1916 if (vcpu->pio.count == 0)
1920 printk(KERN_ERR "no string pio read support yet, "
1921 "port %x size %d count %ld\n",
1926 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1928 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1935 if (vcpu->sigset_active)
1936 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1938 /* re-sync apic's tpr */
1939 vcpu->cr8 = kvm_run->cr8;
1941 if (vcpu->pio.cur_count) {
1942 r = complete_pio(vcpu);
1947 if (vcpu->mmio_needed) {
1948 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1949 vcpu->mmio_read_completed = 1;
1950 vcpu->mmio_needed = 0;
1951 r = emulate_instruction(vcpu, kvm_run,
1952 vcpu->mmio_fault_cr2, 0);
1953 if (r == EMULATE_DO_MMIO) {
1955 * Read-modify-write. Back to userspace.
1962 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1963 kvm_arch_ops->cache_regs(vcpu);
1964 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1965 kvm_arch_ops->decache_regs(vcpu);
1968 r = kvm_arch_ops->run(vcpu, kvm_run);
1971 if (vcpu->sigset_active)
1972 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1978 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1979 struct kvm_regs *regs)
1983 kvm_arch_ops->cache_regs(vcpu);
1985 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1986 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1987 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1988 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1989 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1990 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1991 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1992 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1993 #ifdef CONFIG_X86_64
1994 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1995 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1996 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1997 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1998 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1999 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2000 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2001 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2004 regs->rip = vcpu->rip;
2005 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
2008 * Don't leak debug flags in case they were set for guest debugging
2010 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2011 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2018 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2019 struct kvm_regs *regs)
2023 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2024 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2025 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2026 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2027 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2028 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2029 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2030 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2031 #ifdef CONFIG_X86_64
2032 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2033 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2034 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2035 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2036 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2037 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2038 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2039 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2042 vcpu->rip = regs->rip;
2043 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2045 kvm_arch_ops->decache_regs(vcpu);
2052 static void get_segment(struct kvm_vcpu *vcpu,
2053 struct kvm_segment *var, int seg)
2055 return kvm_arch_ops->get_segment(vcpu, var, seg);
2058 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2059 struct kvm_sregs *sregs)
2061 struct descriptor_table dt;
2065 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2066 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2067 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2068 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2069 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2070 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2072 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2073 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2075 kvm_arch_ops->get_idt(vcpu, &dt);
2076 sregs->idt.limit = dt.limit;
2077 sregs->idt.base = dt.base;
2078 kvm_arch_ops->get_gdt(vcpu, &dt);
2079 sregs->gdt.limit = dt.limit;
2080 sregs->gdt.base = dt.base;
2082 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2083 sregs->cr0 = vcpu->cr0;
2084 sregs->cr2 = vcpu->cr2;
2085 sregs->cr3 = vcpu->cr3;
2086 sregs->cr4 = vcpu->cr4;
2087 sregs->cr8 = vcpu->cr8;
2088 sregs->efer = vcpu->shadow_efer;
2089 sregs->apic_base = vcpu->apic_base;
2091 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2092 sizeof sregs->interrupt_bitmap);
2099 static void set_segment(struct kvm_vcpu *vcpu,
2100 struct kvm_segment *var, int seg)
2102 return kvm_arch_ops->set_segment(vcpu, var, seg);
2105 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2106 struct kvm_sregs *sregs)
2108 int mmu_reset_needed = 0;
2110 struct descriptor_table dt;
2114 dt.limit = sregs->idt.limit;
2115 dt.base = sregs->idt.base;
2116 kvm_arch_ops->set_idt(vcpu, &dt);
2117 dt.limit = sregs->gdt.limit;
2118 dt.base = sregs->gdt.base;
2119 kvm_arch_ops->set_gdt(vcpu, &dt);
2121 vcpu->cr2 = sregs->cr2;
2122 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2123 vcpu->cr3 = sregs->cr3;
2125 vcpu->cr8 = sregs->cr8;
2127 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2128 #ifdef CONFIG_X86_64
2129 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2131 vcpu->apic_base = sregs->apic_base;
2133 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2135 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2136 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2138 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2139 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2140 if (!is_long_mode(vcpu) && is_pae(vcpu))
2141 load_pdptrs(vcpu, vcpu->cr3);
2143 if (mmu_reset_needed)
2144 kvm_mmu_reset_context(vcpu);
2146 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2147 sizeof vcpu->irq_pending);
2148 vcpu->irq_summary = 0;
2149 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2150 if (vcpu->irq_pending[i])
2151 __set_bit(i, &vcpu->irq_summary);
2153 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2154 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2155 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2156 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2157 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2158 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2160 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2161 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2169 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2170 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2172 * This list is modified at module load time to reflect the
2173 * capabilities of the host cpu.
2175 static u32 msrs_to_save[] = {
2176 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2178 #ifdef CONFIG_X86_64
2179 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2181 MSR_IA32_TIME_STAMP_COUNTER,
2184 static unsigned num_msrs_to_save;
2186 static u32 emulated_msrs[] = {
2187 MSR_IA32_MISC_ENABLE,
2190 static __init void kvm_init_msr_list(void)
2195 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2196 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2199 msrs_to_save[j] = msrs_to_save[i];
2202 num_msrs_to_save = j;
2206 * Adapt set_msr() to msr_io()'s calling convention
2208 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2210 return kvm_set_msr(vcpu, index, *data);
2214 * Read or write a bunch of msrs. All parameters are kernel addresses.
2216 * @return number of msrs set successfully.
2218 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2219 struct kvm_msr_entry *entries,
2220 int (*do_msr)(struct kvm_vcpu *vcpu,
2221 unsigned index, u64 *data))
2227 for (i = 0; i < msrs->nmsrs; ++i)
2228 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2237 * Read or write a bunch of msrs. Parameters are user addresses.
2239 * @return number of msrs set successfully.
2241 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2242 int (*do_msr)(struct kvm_vcpu *vcpu,
2243 unsigned index, u64 *data),
2246 struct kvm_msrs msrs;
2247 struct kvm_msr_entry *entries;
2252 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2256 if (msrs.nmsrs >= MAX_IO_MSRS)
2260 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2261 entries = vmalloc(size);
2266 if (copy_from_user(entries, user_msrs->entries, size))
2269 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2274 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2286 * Translate a guest virtual address to a guest physical address.
2288 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2289 struct kvm_translation *tr)
2291 unsigned long vaddr = tr->linear_address;
2295 spin_lock(&vcpu->kvm->lock);
2296 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2297 tr->physical_address = gpa;
2298 tr->valid = gpa != UNMAPPED_GVA;
2301 spin_unlock(&vcpu->kvm->lock);
2307 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2308 struct kvm_interrupt *irq)
2310 if (irq->irq < 0 || irq->irq >= 256)
2314 set_bit(irq->irq, vcpu->irq_pending);
2315 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2322 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2323 struct kvm_debug_guest *dbg)
2329 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2336 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2337 unsigned long address,
2340 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2341 unsigned long pgoff;
2344 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2346 page = virt_to_page(vcpu->run);
2347 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2348 page = virt_to_page(vcpu->pio_data);
2350 return NOPAGE_SIGBUS;
2353 *type = VM_FAULT_MINOR;
2358 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2359 .nopage = kvm_vcpu_nopage,
2362 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2364 vma->vm_ops = &kvm_vcpu_vm_ops;
2368 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2370 struct kvm_vcpu *vcpu = filp->private_data;
2372 fput(vcpu->kvm->filp);
2376 static struct file_operations kvm_vcpu_fops = {
2377 .release = kvm_vcpu_release,
2378 .unlocked_ioctl = kvm_vcpu_ioctl,
2379 .compat_ioctl = kvm_vcpu_ioctl,
2380 .mmap = kvm_vcpu_mmap,
2384 * Allocates an inode for the vcpu.
2386 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2389 struct inode *inode;
2392 r = anon_inode_getfd(&fd, &inode, &file,
2393 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2396 atomic_inc(&vcpu->kvm->filp->f_count);
2401 * Creates some virtual cpus. Good luck creating more than one.
2403 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2406 struct kvm_vcpu *vcpu;
2411 vcpu = kvm_arch_ops->vcpu_create(kvm, n);
2413 return PTR_ERR(vcpu);
2416 r = kvm_mmu_setup(vcpu);
2421 spin_lock(&kvm->lock);
2422 if (kvm->vcpus[n]) {
2424 spin_unlock(&kvm->lock);
2427 kvm->vcpus[n] = vcpu;
2428 spin_unlock(&kvm->lock);
2430 /* Now it's all set up, let userspace reach it */
2431 r = create_vcpu_fd(vcpu);
2437 spin_lock(&kvm->lock);
2438 kvm->vcpus[n] = NULL;
2439 spin_unlock(&kvm->lock);
2443 kvm_mmu_unload(vcpu);
2447 kvm_arch_ops->vcpu_free(vcpu);
2451 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2455 struct kvm_cpuid_entry *e, *entry;
2457 rdmsrl(MSR_EFER, efer);
2459 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2460 e = &vcpu->cpuid_entries[i];
2461 if (e->function == 0x80000001) {
2466 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2467 entry->edx &= ~(1 << 20);
2468 printk(KERN_INFO "kvm: guest NX capability removed\n");
2472 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2473 struct kvm_cpuid *cpuid,
2474 struct kvm_cpuid_entry __user *entries)
2479 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2482 if (copy_from_user(&vcpu->cpuid_entries, entries,
2483 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2485 vcpu->cpuid_nent = cpuid->nent;
2486 cpuid_fix_nx_cap(vcpu);
2493 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2496 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2497 vcpu->sigset_active = 1;
2498 vcpu->sigset = *sigset;
2500 vcpu->sigset_active = 0;
2505 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2506 * we have asm/x86/processor.h
2517 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2518 #ifdef CONFIG_X86_64
2519 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2521 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2525 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2527 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2531 memcpy(fpu->fpr, fxsave->st_space, 128);
2532 fpu->fcw = fxsave->cwd;
2533 fpu->fsw = fxsave->swd;
2534 fpu->ftwx = fxsave->twd;
2535 fpu->last_opcode = fxsave->fop;
2536 fpu->last_ip = fxsave->rip;
2537 fpu->last_dp = fxsave->rdp;
2538 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2545 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2547 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2551 memcpy(fxsave->st_space, fpu->fpr, 128);
2552 fxsave->cwd = fpu->fcw;
2553 fxsave->swd = fpu->fsw;
2554 fxsave->twd = fpu->ftwx;
2555 fxsave->fop = fpu->last_opcode;
2556 fxsave->rip = fpu->last_ip;
2557 fxsave->rdp = fpu->last_dp;
2558 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2565 static long kvm_vcpu_ioctl(struct file *filp,
2566 unsigned int ioctl, unsigned long arg)
2568 struct kvm_vcpu *vcpu = filp->private_data;
2569 void __user *argp = (void __user *)arg;
2577 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2579 case KVM_GET_REGS: {
2580 struct kvm_regs kvm_regs;
2582 memset(&kvm_regs, 0, sizeof kvm_regs);
2583 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2587 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2592 case KVM_SET_REGS: {
2593 struct kvm_regs kvm_regs;
2596 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2598 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2604 case KVM_GET_SREGS: {
2605 struct kvm_sregs kvm_sregs;
2607 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2608 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2612 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2617 case KVM_SET_SREGS: {
2618 struct kvm_sregs kvm_sregs;
2621 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2623 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2629 case KVM_TRANSLATE: {
2630 struct kvm_translation tr;
2633 if (copy_from_user(&tr, argp, sizeof tr))
2635 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2639 if (copy_to_user(argp, &tr, sizeof tr))
2644 case KVM_INTERRUPT: {
2645 struct kvm_interrupt irq;
2648 if (copy_from_user(&irq, argp, sizeof irq))
2650 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2656 case KVM_DEBUG_GUEST: {
2657 struct kvm_debug_guest dbg;
2660 if (copy_from_user(&dbg, argp, sizeof dbg))
2662 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2669 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2672 r = msr_io(vcpu, argp, do_set_msr, 0);
2674 case KVM_SET_CPUID: {
2675 struct kvm_cpuid __user *cpuid_arg = argp;
2676 struct kvm_cpuid cpuid;
2679 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2681 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2686 case KVM_SET_SIGNAL_MASK: {
2687 struct kvm_signal_mask __user *sigmask_arg = argp;
2688 struct kvm_signal_mask kvm_sigmask;
2689 sigset_t sigset, *p;
2694 if (copy_from_user(&kvm_sigmask, argp,
2695 sizeof kvm_sigmask))
2698 if (kvm_sigmask.len != sizeof sigset)
2701 if (copy_from_user(&sigset, sigmask_arg->sigset,
2706 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2712 memset(&fpu, 0, sizeof fpu);
2713 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2717 if (copy_to_user(argp, &fpu, sizeof fpu))
2726 if (copy_from_user(&fpu, argp, sizeof fpu))
2728 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2741 static long kvm_vm_ioctl(struct file *filp,
2742 unsigned int ioctl, unsigned long arg)
2744 struct kvm *kvm = filp->private_data;
2745 void __user *argp = (void __user *)arg;
2749 case KVM_CREATE_VCPU:
2750 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2754 case KVM_SET_MEMORY_REGION: {
2755 struct kvm_memory_region kvm_mem;
2758 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2760 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2765 case KVM_GET_DIRTY_LOG: {
2766 struct kvm_dirty_log log;
2769 if (copy_from_user(&log, argp, sizeof log))
2771 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2776 case KVM_SET_MEMORY_ALIAS: {
2777 struct kvm_memory_alias alias;
2780 if (copy_from_user(&alias, argp, sizeof alias))
2782 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2794 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2795 unsigned long address,
2798 struct kvm *kvm = vma->vm_file->private_data;
2799 unsigned long pgoff;
2802 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2803 page = gfn_to_page(kvm, pgoff);
2805 return NOPAGE_SIGBUS;
2808 *type = VM_FAULT_MINOR;
2813 static struct vm_operations_struct kvm_vm_vm_ops = {
2814 .nopage = kvm_vm_nopage,
2817 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2819 vma->vm_ops = &kvm_vm_vm_ops;
2823 static struct file_operations kvm_vm_fops = {
2824 .release = kvm_vm_release,
2825 .unlocked_ioctl = kvm_vm_ioctl,
2826 .compat_ioctl = kvm_vm_ioctl,
2827 .mmap = kvm_vm_mmap,
2830 static int kvm_dev_ioctl_create_vm(void)
2833 struct inode *inode;
2837 kvm = kvm_create_vm();
2839 return PTR_ERR(kvm);
2840 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2842 kvm_destroy_vm(kvm);
2851 static long kvm_dev_ioctl(struct file *filp,
2852 unsigned int ioctl, unsigned long arg)
2854 void __user *argp = (void __user *)arg;
2858 case KVM_GET_API_VERSION:
2862 r = KVM_API_VERSION;
2868 r = kvm_dev_ioctl_create_vm();
2870 case KVM_GET_MSR_INDEX_LIST: {
2871 struct kvm_msr_list __user *user_msr_list = argp;
2872 struct kvm_msr_list msr_list;
2876 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2879 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2880 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2883 if (n < num_msrs_to_save)
2886 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2887 num_msrs_to_save * sizeof(u32)))
2889 if (copy_to_user(user_msr_list->indices
2890 + num_msrs_to_save * sizeof(u32),
2892 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2897 case KVM_CHECK_EXTENSION:
2899 * No extensions defined at present.
2903 case KVM_GET_VCPU_MMAP_SIZE:
2916 static struct file_operations kvm_chardev_ops = {
2917 .open = kvm_dev_open,
2918 .release = kvm_dev_release,
2919 .unlocked_ioctl = kvm_dev_ioctl,
2920 .compat_ioctl = kvm_dev_ioctl,
2923 static struct miscdevice kvm_dev = {
2930 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2933 static void decache_vcpus_on_cpu(int cpu)
2936 struct kvm_vcpu *vcpu;
2939 spin_lock(&kvm_lock);
2940 list_for_each_entry(vm, &vm_list, vm_list) {
2941 spin_lock(&vm->lock);
2942 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2943 vcpu = vm->vcpus[i];
2947 * If the vcpu is locked, then it is running on some
2948 * other cpu and therefore it is not cached on the
2951 * If it's not locked, check the last cpu it executed
2954 if (mutex_trylock(&vcpu->mutex)) {
2955 if (vcpu->cpu == cpu) {
2956 kvm_arch_ops->vcpu_decache(vcpu);
2959 mutex_unlock(&vcpu->mutex);
2962 spin_unlock(&vm->lock);
2964 spin_unlock(&kvm_lock);
2967 static void hardware_enable(void *junk)
2969 int cpu = raw_smp_processor_id();
2971 if (cpu_isset(cpu, cpus_hardware_enabled))
2973 cpu_set(cpu, cpus_hardware_enabled);
2974 kvm_arch_ops->hardware_enable(NULL);
2977 static void hardware_disable(void *junk)
2979 int cpu = raw_smp_processor_id();
2981 if (!cpu_isset(cpu, cpus_hardware_enabled))
2983 cpu_clear(cpu, cpus_hardware_enabled);
2984 decache_vcpus_on_cpu(cpu);
2985 kvm_arch_ops->hardware_disable(NULL);
2988 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2995 case CPU_DYING_FROZEN:
2996 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2998 hardware_disable(NULL);
3000 case CPU_UP_CANCELED:
3001 case CPU_UP_CANCELED_FROZEN:
3002 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3004 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3007 case CPU_ONLINE_FROZEN:
3008 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3010 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3016 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3019 if (val == SYS_RESTART) {
3021 * Some (well, at least mine) BIOSes hang on reboot if
3024 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3025 on_each_cpu(hardware_disable, NULL, 0, 1);
3030 static struct notifier_block kvm_reboot_notifier = {
3031 .notifier_call = kvm_reboot,
3035 void kvm_io_bus_init(struct kvm_io_bus *bus)
3037 memset(bus, 0, sizeof(*bus));
3040 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3044 for (i = 0; i < bus->dev_count; i++) {
3045 struct kvm_io_device *pos = bus->devs[i];
3047 kvm_iodevice_destructor(pos);
3051 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3055 for (i = 0; i < bus->dev_count; i++) {
3056 struct kvm_io_device *pos = bus->devs[i];
3058 if (pos->in_range(pos, addr))
3065 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3067 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3069 bus->devs[bus->dev_count++] = dev;
3072 static struct notifier_block kvm_cpu_notifier = {
3073 .notifier_call = kvm_cpu_hotplug,
3074 .priority = 20, /* must be > scheduler priority */
3077 static u64 stat_get(void *_offset)
3079 unsigned offset = (long)_offset;
3082 struct kvm_vcpu *vcpu;
3085 spin_lock(&kvm_lock);
3086 list_for_each_entry(kvm, &vm_list, vm_list)
3087 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3088 vcpu = kvm->vcpus[i];
3090 total += *(u32 *)((void *)vcpu + offset);
3092 spin_unlock(&kvm_lock);
3096 static void stat_set(void *offset, u64 val)
3100 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3102 static __init void kvm_init_debug(void)
3104 struct kvm_stats_debugfs_item *p;
3106 debugfs_dir = debugfs_create_dir("kvm", NULL);
3107 for (p = debugfs_entries; p->name; ++p)
3108 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3109 (void *)(long)p->offset,
3113 static void kvm_exit_debug(void)
3115 struct kvm_stats_debugfs_item *p;
3117 for (p = debugfs_entries; p->name; ++p)
3118 debugfs_remove(p->dentry);
3119 debugfs_remove(debugfs_dir);
3122 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3124 hardware_disable(NULL);
3128 static int kvm_resume(struct sys_device *dev)
3130 hardware_enable(NULL);
3134 static struct sysdev_class kvm_sysdev_class = {
3135 set_kset_name("kvm"),
3136 .suspend = kvm_suspend,
3137 .resume = kvm_resume,
3140 static struct sys_device kvm_sysdev = {
3142 .cls = &kvm_sysdev_class,
3145 hpa_t bad_page_address;
3147 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3152 printk(KERN_ERR "kvm: already loaded the other module\n");
3156 if (!ops->cpu_has_kvm_support()) {
3157 printk(KERN_ERR "kvm: no hardware support\n");
3160 if (ops->disabled_by_bios()) {
3161 printk(KERN_ERR "kvm: disabled by bios\n");
3167 r = kvm_arch_ops->hardware_setup();
3171 on_each_cpu(hardware_enable, NULL, 0, 1);
3172 r = register_cpu_notifier(&kvm_cpu_notifier);
3175 register_reboot_notifier(&kvm_reboot_notifier);
3177 r = sysdev_class_register(&kvm_sysdev_class);
3181 r = sysdev_register(&kvm_sysdev);
3185 kvm_chardev_ops.owner = module;
3187 r = misc_register(&kvm_dev);
3189 printk (KERN_ERR "kvm: misc device register failed\n");
3196 sysdev_unregister(&kvm_sysdev);
3198 sysdev_class_unregister(&kvm_sysdev_class);
3200 unregister_reboot_notifier(&kvm_reboot_notifier);
3201 unregister_cpu_notifier(&kvm_cpu_notifier);
3203 on_each_cpu(hardware_disable, NULL, 0, 1);
3204 kvm_arch_ops->hardware_unsetup();
3206 kvm_arch_ops = NULL;
3210 void kvm_exit_arch(void)
3212 misc_deregister(&kvm_dev);
3213 sysdev_unregister(&kvm_sysdev);
3214 sysdev_class_unregister(&kvm_sysdev_class);
3215 unregister_reboot_notifier(&kvm_reboot_notifier);
3216 unregister_cpu_notifier(&kvm_cpu_notifier);
3217 on_each_cpu(hardware_disable, NULL, 0, 1);
3218 kvm_arch_ops->hardware_unsetup();
3219 kvm_arch_ops = NULL;
3222 static __init int kvm_init(void)
3224 static struct page *bad_page;
3227 r = kvm_mmu_module_init();
3233 kvm_init_msr_list();
3235 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3240 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3241 memset(__va(bad_page_address), 0, PAGE_SIZE);
3247 kvm_mmu_module_exit();
3252 static __exit void kvm_exit(void)
3255 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3256 kvm_mmu_module_exit();
3259 module_init(kvm_init)
3260 module_exit(kvm_exit)
3262 EXPORT_SYMBOL_GPL(kvm_init_arch);
3263 EXPORT_SYMBOL_GPL(kvm_exit_arch);