2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
6 * Interactivity improvements by Mike Galbraith
9 * Various enhancements by Dmitry Adamushko.
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
16 * Scaled math optimizations by Thomas Gleixner
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
33 #include <trace/events/sched.h>
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 static unsigned int sched_nr_latency = 8;
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
96 * The exponential sliding window over which load is averaged for shares
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 #ifdef CONFIG_CFS_BANDWIDTH
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
111 * default: 5 msec, units: microseconds
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
141 * This idea comes from the SD scheduler of Con Kolivas:
143 static int get_update_sysctl_factor(void)
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
152 case SCHED_TUNABLESCALING_LINEAR:
155 case SCHED_TUNABLESCALING_LOG:
157 factor = 1 + ilog2(cpus);
164 static void update_sysctl(void)
166 unsigned int factor = get_update_sysctl_factor();
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
176 void sched_init_granularity(void)
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
184 # define WMULT_CONST (1UL << 32)
187 #define WMULT_SHIFT 32
190 * Shift right and round:
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
195 * delta *= weight / lw
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
211 tmp = (u64)delta_exec;
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
221 lw->inv_weight = WMULT_CONST / w;
225 * Check whether we'd overflow the 64-bit multiplication:
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
237 const struct sched_class fair_sched_class;
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
243 #ifdef CONFIG_FAIR_GROUP_SCHED
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
254 static inline struct task_struct *task_of(struct sched_entity *se)
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
259 return container_of(se, struct task_struct, se);
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288 if (!cfs_rq->on_list) {
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
322 /* Do the two (enqueued) entities belong to the same group ? */
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
326 if (se->cfs_rq == pse->cfs_rq)
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
342 for_each_sched_entity(se)
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
351 int se_depth, pse_depth;
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
364 while (se_depth > pse_depth) {
366 *se = parent_entity(*se);
369 while (pse_depth > se_depth) {
371 *pse = parent_entity(*pse);
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
382 static inline struct task_struct *task_of(struct sched_entity *se)
384 return container_of(se, struct task_struct, se);
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
389 return container_of(cfs_rq, struct rq, cfs);
392 #define entity_is_task(se) 1
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
399 return &task_rq(p)->cfs;
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
454 s64 delta = (s64)(vruntime - max_vruntime);
456 max_vruntime = vruntime;
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
463 s64 delta = (s64)(vruntime - min_vruntime);
465 min_vruntime = vruntime;
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
473 return (s64)(a->vruntime - b->vruntime) < 0;
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
478 u64 vruntime = cfs_rq->min_vruntime;
481 vruntime = cfs_rq->curr->vruntime;
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
489 vruntime = se->vruntime;
491 vruntime = min_vruntime(vruntime, se->vruntime);
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
503 * Enqueue an entity into the rb-tree:
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
513 * Find the right place in the rbtree:
517 entry = rb_entry(parent, struct sched_entity, run_node);
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
525 link = &parent->rb_right;
531 * Maintain a cache of leftmost tree entries (it is frequently
535 cfs_rq->rb_leftmost = &se->run_node;
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
555 struct rb_node *left = cfs_rq->rb_leftmost;
560 return rb_entry(left, struct sched_entity, run_node);
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
565 struct rb_node *next = rb_next(&se->run_node);
570 return rb_entry(next, struct sched_entity, run_node);
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
581 return rb_entry(last, struct sched_entity, run_node);
584 /**************************************************************
585 * Scheduling class statistics methods:
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
625 * The idea is to set a period in which each task runs once.
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
630 * p = (nr <= nl) ? l : l*nr/nl
632 static u64 __sched_period(unsigned long nr_running)
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
662 if (unlikely(!se->on_rq)) {
665 update_load_add(&lw, se->load.weight);
668 slice = calc_delta_mine(slice, se->load.weight, load);
674 * We calculate the vruntime slice of a to-be-inserted task.
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
684 static unsigned long task_h_load(struct task_struct *p);
686 static inline void __update_task_entity_contrib(struct sched_entity *se);
688 /* Give new task start runnable values to heavy its load in infant time */
689 void init_task_runnable_average(struct task_struct *p)
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
700 void init_task_runnable_average(struct task_struct *p)
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
710 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
713 unsigned long delta_exec_weighted;
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
722 curr->vruntime += delta_exec_weighted;
723 update_min_vruntime(cfs_rq);
726 static void update_curr(struct cfs_rq *cfs_rq)
728 struct sched_entity *curr = cfs_rq->curr;
729 u64 now = rq_clock_task(rq_of(cfs_rq));
730 unsigned long delta_exec;
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
740 delta_exec = (unsigned long)(now - curr->exec_start);
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
751 cpuacct_charge(curtask, delta_exec);
752 account_group_exec_runtime(curtask, delta_exec);
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
759 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
765 * Task is being enqueued - update stats:
767 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
773 if (se != cfs_rq->curr)
774 update_stats_wait_start(cfs_rq, se);
778 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
785 #ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
791 schedstat_set(se->statistics.wait_start, 0);
795 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
798 * Mark the end of the wait period if dequeueing a
801 if (se != cfs_rq->curr)
802 update_stats_wait_end(cfs_rq, se);
806 * We are picking a new current task - update its stats:
809 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
812 * We are starting a new run period:
814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
817 /**************************************************
818 * Scheduling class queueing methods:
821 #ifdef CONFIG_NUMA_BALANCING
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
827 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829 unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
831 /* Portion of address space to scan in MB */
832 unsigned int sysctl_numa_balancing_scan_size = 256;
834 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835 unsigned int sysctl_numa_balancing_scan_delay = 1000;
837 static unsigned int task_nr_scan_windows(struct task_struct *p)
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
856 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857 #define MAX_SCAN_WINDOW 2560
859 static unsigned int task_scan_min(struct task_struct *p)
861 unsigned int scan, floor;
862 unsigned int windows = 1;
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
872 static unsigned int task_scan_max(struct task_struct *p)
874 unsigned int smin = task_scan_min(p);
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
889 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
891 static inline int task_faults_idx(int nid, int priv)
893 return 2 * nid + priv;
896 static inline unsigned long task_faults(struct task_struct *p, int nid)
901 return p->numa_faults[task_faults_idx(nid, 0)] +
902 p->numa_faults[task_faults_idx(nid, 1)];
905 static unsigned long weighted_cpuload(const int cpu);
906 static unsigned long source_load(int cpu, int type);
907 static unsigned long target_load(int cpu, int type);
908 static unsigned long power_of(int cpu);
909 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
911 /* Cached statistics for all CPUs within a node */
913 unsigned long nr_running;
916 /* Total compute capacity of CPUs on a node */
919 /* Approximate capacity in terms of runnable tasks on a node */
920 unsigned long capacity;
925 * XXX borrowed from update_sg_lb_stats
927 static void update_numa_stats(struct numa_stats *ns, int nid)
931 memset(ns, 0, sizeof(*ns));
932 for_each_cpu(cpu, cpumask_of_node(nid)) {
933 struct rq *rq = cpu_rq(cpu);
935 ns->nr_running += rq->nr_running;
936 ns->load += weighted_cpuload(cpu);
937 ns->power += power_of(cpu);
940 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
941 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
942 ns->has_capacity = (ns->nr_running < ns->capacity);
945 struct task_numa_env {
946 struct task_struct *p;
948 int src_cpu, src_nid;
949 int dst_cpu, dst_nid;
951 struct numa_stats src_stats, dst_stats;
953 int imbalance_pct, idx;
955 struct task_struct *best_task;
960 static void task_numa_assign(struct task_numa_env *env,
961 struct task_struct *p, long imp)
964 put_task_struct(env->best_task);
970 env->best_cpu = env->dst_cpu;
974 * This checks if the overall compute and NUMA accesses of the system would
975 * be improved if the source tasks was migrated to the target dst_cpu taking
976 * into account that it might be best if task running on the dst_cpu should
977 * be exchanged with the source task
979 static void task_numa_compare(struct task_numa_env *env, long imp)
981 struct rq *src_rq = cpu_rq(env->src_cpu);
982 struct rq *dst_rq = cpu_rq(env->dst_cpu);
983 struct task_struct *cur;
984 long dst_load, src_load;
988 cur = ACCESS_ONCE(dst_rq->curr);
989 if (cur->pid == 0) /* idle */
993 * "imp" is the fault differential for the source task between the
994 * source and destination node. Calculate the total differential for
995 * the source task and potential destination task. The more negative
996 * the value is, the more rmeote accesses that would be expected to
997 * be incurred if the tasks were swapped.
1000 /* Skip this swap candidate if cannot move to the source cpu */
1001 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1004 imp += task_faults(cur, env->src_nid) -
1005 task_faults(cur, env->dst_nid);
1008 if (imp < env->best_imp)
1012 /* Is there capacity at our destination? */
1013 if (env->src_stats.has_capacity &&
1014 !env->dst_stats.has_capacity)
1020 /* Balance doesn't matter much if we're running a task per cpu */
1021 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1025 * In the overloaded case, try and keep the load balanced.
1028 dst_load = env->dst_stats.load;
1029 src_load = env->src_stats.load;
1031 /* XXX missing power terms */
1032 load = task_h_load(env->p);
1037 load = task_h_load(cur);
1042 /* make src_load the smaller */
1043 if (dst_load < src_load)
1044 swap(dst_load, src_load);
1046 if (src_load * env->imbalance_pct < dst_load * 100)
1050 task_numa_assign(env, cur, imp);
1055 static int task_numa_migrate(struct task_struct *p)
1057 struct task_numa_env env = {
1060 .src_cpu = task_cpu(p),
1061 .src_nid = cpu_to_node(task_cpu(p)),
1063 .imbalance_pct = 112,
1069 struct sched_domain *sd;
1070 unsigned long faults;
1074 * Pick the lowest SD_NUMA domain, as that would have the smallest
1075 * imbalance and would be the first to start moving tasks about.
1077 * And we want to avoid any moving of tasks about, as that would create
1078 * random movement of tasks -- counter the numa conditions we're trying
1082 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1083 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1086 faults = task_faults(p, env.src_nid);
1087 update_numa_stats(&env.src_stats, env.src_nid);
1089 /* Find an alternative node with relatively better statistics */
1090 for_each_online_node(nid) {
1093 if (nid == env.src_nid)
1096 /* Only consider nodes that recorded more faults */
1097 imp = task_faults(p, nid) - faults;
1102 update_numa_stats(&env.dst_stats, env.dst_nid);
1103 for_each_cpu(cpu, cpumask_of_node(nid)) {
1104 /* Skip this CPU if the source task cannot migrate */
1105 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1109 task_numa_compare(&env, imp);
1113 /* No better CPU than the current one was found. */
1114 if (env.best_cpu == -1)
1117 if (env.best_task == NULL) {
1118 int ret = migrate_task_to(p, env.best_cpu);
1122 ret = migrate_swap(p, env.best_task);
1123 put_task_struct(env.best_task);
1127 /* Attempt to migrate a task to a CPU on the preferred node. */
1128 static void numa_migrate_preferred(struct task_struct *p)
1130 /* Success if task is already running on preferred CPU */
1131 p->numa_migrate_retry = 0;
1132 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1134 * If migration is temporarily disabled due to a task migration
1135 * then re-enable it now as the task is running on its
1136 * preferred node and memory should migrate locally
1138 if (!p->numa_migrate_seq)
1139 p->numa_migrate_seq++;
1143 /* This task has no NUMA fault statistics yet */
1144 if (unlikely(p->numa_preferred_nid == -1))
1147 /* Otherwise, try migrate to a CPU on the preferred node */
1148 if (task_numa_migrate(p) != 0)
1149 p->numa_migrate_retry = jiffies + HZ*5;
1152 static void task_numa_placement(struct task_struct *p)
1154 int seq, nid, max_nid = -1;
1155 unsigned long max_faults = 0;
1157 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1158 if (p->numa_scan_seq == seq)
1160 p->numa_scan_seq = seq;
1161 p->numa_migrate_seq++;
1162 p->numa_scan_period_max = task_scan_max(p);
1164 /* Find the node with the highest number of faults */
1165 for_each_online_node(nid) {
1166 unsigned long faults = 0;
1169 for (priv = 0; priv < 2; priv++) {
1170 i = task_faults_idx(nid, priv);
1172 /* Decay existing window, copy faults since last scan */
1173 p->numa_faults[i] >>= 1;
1174 p->numa_faults[i] += p->numa_faults_buffer[i];
1175 p->numa_faults_buffer[i] = 0;
1177 faults += p->numa_faults[i];
1180 if (faults > max_faults) {
1181 max_faults = faults;
1186 /* Preferred node as the node with the most faults */
1187 if (max_faults && max_nid != p->numa_preferred_nid) {
1188 /* Update the preferred nid and migrate task if possible */
1189 p->numa_preferred_nid = max_nid;
1190 p->numa_migrate_seq = 1;
1191 numa_migrate_preferred(p);
1196 * Got a PROT_NONE fault for a page on @node.
1198 void task_numa_fault(int last_nidpid, int node, int pages, bool migrated)
1200 struct task_struct *p = current;
1203 if (!numabalancing_enabled)
1206 /* for example, ksmd faulting in a user's mm */
1211 * First accesses are treated as private, otherwise consider accesses
1212 * to be private if the accessing pid has not changed
1214 if (!nidpid_pid_unset(last_nidpid))
1215 priv = ((p->pid & LAST__PID_MASK) == nidpid_to_pid(last_nidpid));
1219 /* Allocate buffer to track faults on a per-node basis */
1220 if (unlikely(!p->numa_faults)) {
1221 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1223 /* numa_faults and numa_faults_buffer share the allocation */
1224 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1225 if (!p->numa_faults)
1228 BUG_ON(p->numa_faults_buffer);
1229 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1233 * If pages are properly placed (did not migrate) then scan slower.
1234 * This is reset periodically in case of phase changes
1237 /* Initialise if necessary */
1238 if (!p->numa_scan_period_max)
1239 p->numa_scan_period_max = task_scan_max(p);
1241 p->numa_scan_period = min(p->numa_scan_period_max,
1242 p->numa_scan_period + 10);
1245 task_numa_placement(p);
1247 /* Retry task to preferred node migration if it previously failed */
1248 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1249 numa_migrate_preferred(p);
1251 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1254 static void reset_ptenuma_scan(struct task_struct *p)
1256 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1257 p->mm->numa_scan_offset = 0;
1261 * The expensive part of numa migration is done from task_work context.
1262 * Triggered from task_tick_numa().
1264 void task_numa_work(struct callback_head *work)
1266 unsigned long migrate, next_scan, now = jiffies;
1267 struct task_struct *p = current;
1268 struct mm_struct *mm = p->mm;
1269 struct vm_area_struct *vma;
1270 unsigned long start, end;
1271 unsigned long nr_pte_updates = 0;
1274 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1276 work->next = work; /* protect against double add */
1278 * Who cares about NUMA placement when they're dying.
1280 * NOTE: make sure not to dereference p->mm before this check,
1281 * exit_task_work() happens _after_ exit_mm() so we could be called
1282 * without p->mm even though we still had it when we enqueued this
1285 if (p->flags & PF_EXITING)
1288 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1289 mm->numa_next_scan = now +
1290 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1291 mm->numa_next_reset = now +
1292 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1296 * Reset the scan period if enough time has gone by. Objective is that
1297 * scanning will be reduced if pages are properly placed. As tasks
1298 * can enter different phases this needs to be re-examined. Lacking
1299 * proper tracking of reference behaviour, this blunt hammer is used.
1301 migrate = mm->numa_next_reset;
1302 if (time_after(now, migrate)) {
1303 p->numa_scan_period = task_scan_min(p);
1304 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1305 xchg(&mm->numa_next_reset, next_scan);
1309 * Enforce maximal scan/migration frequency..
1311 migrate = mm->numa_next_scan;
1312 if (time_before(now, migrate))
1315 if (p->numa_scan_period == 0) {
1316 p->numa_scan_period_max = task_scan_max(p);
1317 p->numa_scan_period = task_scan_min(p);
1320 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1321 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1325 * Delay this task enough that another task of this mm will likely win
1326 * the next time around.
1328 p->node_stamp += 2 * TICK_NSEC;
1330 start = mm->numa_scan_offset;
1331 pages = sysctl_numa_balancing_scan_size;
1332 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1336 down_read(&mm->mmap_sem);
1337 vma = find_vma(mm, start);
1339 reset_ptenuma_scan(p);
1343 for (; vma; vma = vma->vm_next) {
1344 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1348 * Shared library pages mapped by multiple processes are not
1349 * migrated as it is expected they are cache replicated. Avoid
1350 * hinting faults in read-only file-backed mappings or the vdso
1351 * as migrating the pages will be of marginal benefit.
1354 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1358 start = max(start, vma->vm_start);
1359 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1360 end = min(end, vma->vm_end);
1361 nr_pte_updates += change_prot_numa(vma, start, end);
1364 * Scan sysctl_numa_balancing_scan_size but ensure that
1365 * at least one PTE is updated so that unused virtual
1366 * address space is quickly skipped.
1369 pages -= (end - start) >> PAGE_SHIFT;
1374 } while (end != vma->vm_end);
1379 * If the whole process was scanned without updates then no NUMA
1380 * hinting faults are being recorded and scan rate should be lower.
1382 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1383 p->numa_scan_period = min(p->numa_scan_period_max,
1384 p->numa_scan_period << 1);
1386 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1387 mm->numa_next_scan = next_scan;
1391 * It is possible to reach the end of the VMA list but the last few
1392 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1393 * would find the !migratable VMA on the next scan but not reset the
1394 * scanner to the start so check it now.
1397 mm->numa_scan_offset = start;
1399 reset_ptenuma_scan(p);
1400 up_read(&mm->mmap_sem);
1404 * Drive the periodic memory faults..
1406 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1408 struct callback_head *work = &curr->numa_work;
1412 * We don't care about NUMA placement if we don't have memory.
1414 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1418 * Using runtime rather than walltime has the dual advantage that
1419 * we (mostly) drive the selection from busy threads and that the
1420 * task needs to have done some actual work before we bother with
1423 now = curr->se.sum_exec_runtime;
1424 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1426 if (now - curr->node_stamp > period) {
1427 if (!curr->node_stamp)
1428 curr->numa_scan_period = task_scan_min(curr);
1429 curr->node_stamp += period;
1431 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1432 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1433 task_work_add(curr, work, true);
1438 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1441 #endif /* CONFIG_NUMA_BALANCING */
1444 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1446 update_load_add(&cfs_rq->load, se->load.weight);
1447 if (!parent_entity(se))
1448 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1450 if (entity_is_task(se))
1451 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1453 cfs_rq->nr_running++;
1457 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1459 update_load_sub(&cfs_rq->load, se->load.weight);
1460 if (!parent_entity(se))
1461 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1462 if (entity_is_task(se))
1463 list_del_init(&se->group_node);
1464 cfs_rq->nr_running--;
1467 #ifdef CONFIG_FAIR_GROUP_SCHED
1469 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1474 * Use this CPU's actual weight instead of the last load_contribution
1475 * to gain a more accurate current total weight. See
1476 * update_cfs_rq_load_contribution().
1478 tg_weight = atomic_long_read(&tg->load_avg);
1479 tg_weight -= cfs_rq->tg_load_contrib;
1480 tg_weight += cfs_rq->load.weight;
1485 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1487 long tg_weight, load, shares;
1489 tg_weight = calc_tg_weight(tg, cfs_rq);
1490 load = cfs_rq->load.weight;
1492 shares = (tg->shares * load);
1494 shares /= tg_weight;
1496 if (shares < MIN_SHARES)
1497 shares = MIN_SHARES;
1498 if (shares > tg->shares)
1499 shares = tg->shares;
1503 # else /* CONFIG_SMP */
1504 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1508 # endif /* CONFIG_SMP */
1509 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1510 unsigned long weight)
1513 /* commit outstanding execution time */
1514 if (cfs_rq->curr == se)
1515 update_curr(cfs_rq);
1516 account_entity_dequeue(cfs_rq, se);
1519 update_load_set(&se->load, weight);
1522 account_entity_enqueue(cfs_rq, se);
1525 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1527 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1529 struct task_group *tg;
1530 struct sched_entity *se;
1534 se = tg->se[cpu_of(rq_of(cfs_rq))];
1535 if (!se || throttled_hierarchy(cfs_rq))
1538 if (likely(se->load.weight == tg->shares))
1541 shares = calc_cfs_shares(cfs_rq, tg);
1543 reweight_entity(cfs_rq_of(se), se, shares);
1545 #else /* CONFIG_FAIR_GROUP_SCHED */
1546 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1549 #endif /* CONFIG_FAIR_GROUP_SCHED */
1553 * We choose a half-life close to 1 scheduling period.
1554 * Note: The tables below are dependent on this value.
1556 #define LOAD_AVG_PERIOD 32
1557 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1558 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1560 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1561 static const u32 runnable_avg_yN_inv[] = {
1562 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1563 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1564 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1565 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1566 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1567 0x85aac367, 0x82cd8698,
1571 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1572 * over-estimates when re-combining.
1574 static const u32 runnable_avg_yN_sum[] = {
1575 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1576 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1577 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1582 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1584 static __always_inline u64 decay_load(u64 val, u64 n)
1586 unsigned int local_n;
1590 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1593 /* after bounds checking we can collapse to 32-bit */
1597 * As y^PERIOD = 1/2, we can combine
1598 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1599 * With a look-up table which covers k^n (n<PERIOD)
1601 * To achieve constant time decay_load.
1603 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1604 val >>= local_n / LOAD_AVG_PERIOD;
1605 local_n %= LOAD_AVG_PERIOD;
1608 val *= runnable_avg_yN_inv[local_n];
1609 /* We don't use SRR here since we always want to round down. */
1614 * For updates fully spanning n periods, the contribution to runnable
1615 * average will be: \Sum 1024*y^n
1617 * We can compute this reasonably efficiently by combining:
1618 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1620 static u32 __compute_runnable_contrib(u64 n)
1624 if (likely(n <= LOAD_AVG_PERIOD))
1625 return runnable_avg_yN_sum[n];
1626 else if (unlikely(n >= LOAD_AVG_MAX_N))
1627 return LOAD_AVG_MAX;
1629 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1631 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1632 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1634 n -= LOAD_AVG_PERIOD;
1635 } while (n > LOAD_AVG_PERIOD);
1637 contrib = decay_load(contrib, n);
1638 return contrib + runnable_avg_yN_sum[n];
1642 * We can represent the historical contribution to runnable average as the
1643 * coefficients of a geometric series. To do this we sub-divide our runnable
1644 * history into segments of approximately 1ms (1024us); label the segment that
1645 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1647 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1649 * (now) (~1ms ago) (~2ms ago)
1651 * Let u_i denote the fraction of p_i that the entity was runnable.
1653 * We then designate the fractions u_i as our co-efficients, yielding the
1654 * following representation of historical load:
1655 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1657 * We choose y based on the with of a reasonably scheduling period, fixing:
1660 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1661 * approximately half as much as the contribution to load within the last ms
1664 * When a period "rolls over" and we have new u_0`, multiplying the previous
1665 * sum again by y is sufficient to update:
1666 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1667 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1669 static __always_inline int __update_entity_runnable_avg(u64 now,
1670 struct sched_avg *sa,
1674 u32 runnable_contrib;
1675 int delta_w, decayed = 0;
1677 delta = now - sa->last_runnable_update;
1679 * This should only happen when time goes backwards, which it
1680 * unfortunately does during sched clock init when we swap over to TSC.
1682 if ((s64)delta < 0) {
1683 sa->last_runnable_update = now;
1688 * Use 1024ns as the unit of measurement since it's a reasonable
1689 * approximation of 1us and fast to compute.
1694 sa->last_runnable_update = now;
1696 /* delta_w is the amount already accumulated against our next period */
1697 delta_w = sa->runnable_avg_period % 1024;
1698 if (delta + delta_w >= 1024) {
1699 /* period roll-over */
1703 * Now that we know we're crossing a period boundary, figure
1704 * out how much from delta we need to complete the current
1705 * period and accrue it.
1707 delta_w = 1024 - delta_w;
1709 sa->runnable_avg_sum += delta_w;
1710 sa->runnable_avg_period += delta_w;
1714 /* Figure out how many additional periods this update spans */
1715 periods = delta / 1024;
1718 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1720 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1723 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1724 runnable_contrib = __compute_runnable_contrib(periods);
1726 sa->runnable_avg_sum += runnable_contrib;
1727 sa->runnable_avg_period += runnable_contrib;
1730 /* Remainder of delta accrued against u_0` */
1732 sa->runnable_avg_sum += delta;
1733 sa->runnable_avg_period += delta;
1738 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1739 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1741 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1742 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1744 decays -= se->avg.decay_count;
1748 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1749 se->avg.decay_count = 0;
1754 #ifdef CONFIG_FAIR_GROUP_SCHED
1755 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1758 struct task_group *tg = cfs_rq->tg;
1761 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1762 tg_contrib -= cfs_rq->tg_load_contrib;
1764 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1765 atomic_long_add(tg_contrib, &tg->load_avg);
1766 cfs_rq->tg_load_contrib += tg_contrib;
1771 * Aggregate cfs_rq runnable averages into an equivalent task_group
1772 * representation for computing load contributions.
1774 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1775 struct cfs_rq *cfs_rq)
1777 struct task_group *tg = cfs_rq->tg;
1780 /* The fraction of a cpu used by this cfs_rq */
1781 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1782 sa->runnable_avg_period + 1);
1783 contrib -= cfs_rq->tg_runnable_contrib;
1785 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1786 atomic_add(contrib, &tg->runnable_avg);
1787 cfs_rq->tg_runnable_contrib += contrib;
1791 static inline void __update_group_entity_contrib(struct sched_entity *se)
1793 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1794 struct task_group *tg = cfs_rq->tg;
1799 contrib = cfs_rq->tg_load_contrib * tg->shares;
1800 se->avg.load_avg_contrib = div_u64(contrib,
1801 atomic_long_read(&tg->load_avg) + 1);
1804 * For group entities we need to compute a correction term in the case
1805 * that they are consuming <1 cpu so that we would contribute the same
1806 * load as a task of equal weight.
1808 * Explicitly co-ordinating this measurement would be expensive, but
1809 * fortunately the sum of each cpus contribution forms a usable
1810 * lower-bound on the true value.
1812 * Consider the aggregate of 2 contributions. Either they are disjoint
1813 * (and the sum represents true value) or they are disjoint and we are
1814 * understating by the aggregate of their overlap.
1816 * Extending this to N cpus, for a given overlap, the maximum amount we
1817 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1818 * cpus that overlap for this interval and w_i is the interval width.
1820 * On a small machine; the first term is well-bounded which bounds the
1821 * total error since w_i is a subset of the period. Whereas on a
1822 * larger machine, while this first term can be larger, if w_i is the
1823 * of consequential size guaranteed to see n_i*w_i quickly converge to
1824 * our upper bound of 1-cpu.
1826 runnable_avg = atomic_read(&tg->runnable_avg);
1827 if (runnable_avg < NICE_0_LOAD) {
1828 se->avg.load_avg_contrib *= runnable_avg;
1829 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1833 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1834 int force_update) {}
1835 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1836 struct cfs_rq *cfs_rq) {}
1837 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1840 static inline void __update_task_entity_contrib(struct sched_entity *se)
1844 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1845 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1846 contrib /= (se->avg.runnable_avg_period + 1);
1847 se->avg.load_avg_contrib = scale_load(contrib);
1850 /* Compute the current contribution to load_avg by se, return any delta */
1851 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1853 long old_contrib = se->avg.load_avg_contrib;
1855 if (entity_is_task(se)) {
1856 __update_task_entity_contrib(se);
1858 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1859 __update_group_entity_contrib(se);
1862 return se->avg.load_avg_contrib - old_contrib;
1865 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1868 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1869 cfs_rq->blocked_load_avg -= load_contrib;
1871 cfs_rq->blocked_load_avg = 0;
1874 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1876 /* Update a sched_entity's runnable average */
1877 static inline void update_entity_load_avg(struct sched_entity *se,
1880 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1885 * For a group entity we need to use their owned cfs_rq_clock_task() in
1886 * case they are the parent of a throttled hierarchy.
1888 if (entity_is_task(se))
1889 now = cfs_rq_clock_task(cfs_rq);
1891 now = cfs_rq_clock_task(group_cfs_rq(se));
1893 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1896 contrib_delta = __update_entity_load_avg_contrib(se);
1902 cfs_rq->runnable_load_avg += contrib_delta;
1904 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1908 * Decay the load contributed by all blocked children and account this so that
1909 * their contribution may appropriately discounted when they wake up.
1911 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1913 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1916 decays = now - cfs_rq->last_decay;
1917 if (!decays && !force_update)
1920 if (atomic_long_read(&cfs_rq->removed_load)) {
1921 unsigned long removed_load;
1922 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
1923 subtract_blocked_load_contrib(cfs_rq, removed_load);
1927 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1929 atomic64_add(decays, &cfs_rq->decay_counter);
1930 cfs_rq->last_decay = now;
1933 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1936 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1938 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1939 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1942 /* Add the load generated by se into cfs_rq's child load-average */
1943 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1944 struct sched_entity *se,
1948 * We track migrations using entity decay_count <= 0, on a wake-up
1949 * migration we use a negative decay count to track the remote decays
1950 * accumulated while sleeping.
1952 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1953 * are seen by enqueue_entity_load_avg() as a migration with an already
1954 * constructed load_avg_contrib.
1956 if (unlikely(se->avg.decay_count <= 0)) {
1957 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1958 if (se->avg.decay_count) {
1960 * In a wake-up migration we have to approximate the
1961 * time sleeping. This is because we can't synchronize
1962 * clock_task between the two cpus, and it is not
1963 * guaranteed to be read-safe. Instead, we can
1964 * approximate this using our carried decays, which are
1965 * explicitly atomically readable.
1967 se->avg.last_runnable_update -= (-se->avg.decay_count)
1969 update_entity_load_avg(se, 0);
1970 /* Indicate that we're now synchronized and on-rq */
1971 se->avg.decay_count = 0;
1976 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1977 * would have made count negative); we must be careful to avoid
1978 * double-accounting blocked time after synchronizing decays.
1980 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1984 /* migrated tasks did not contribute to our blocked load */
1986 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1987 update_entity_load_avg(se, 0);
1990 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1991 /* we force update consideration on load-balancer moves */
1992 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1996 * Remove se's load from this cfs_rq child load-average, if the entity is
1997 * transitioning to a blocked state we track its projected decay using
2000 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2001 struct sched_entity *se,
2004 update_entity_load_avg(se, 1);
2005 /* we force update consideration on load-balancer moves */
2006 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2008 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2010 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2011 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2012 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2016 * Update the rq's load with the elapsed running time before entering
2017 * idle. if the last scheduled task is not a CFS task, idle_enter will
2018 * be the only way to update the runnable statistic.
2020 void idle_enter_fair(struct rq *this_rq)
2022 update_rq_runnable_avg(this_rq, 1);
2026 * Update the rq's load with the elapsed idle time before a task is
2027 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2028 * be the only way to update the runnable statistic.
2030 void idle_exit_fair(struct rq *this_rq)
2032 update_rq_runnable_avg(this_rq, 0);
2036 static inline void update_entity_load_avg(struct sched_entity *se,
2037 int update_cfs_rq) {}
2038 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2039 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2040 struct sched_entity *se,
2042 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2043 struct sched_entity *se,
2045 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2046 int force_update) {}
2049 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2051 #ifdef CONFIG_SCHEDSTATS
2052 struct task_struct *tsk = NULL;
2054 if (entity_is_task(se))
2057 if (se->statistics.sleep_start) {
2058 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2063 if (unlikely(delta > se->statistics.sleep_max))
2064 se->statistics.sleep_max = delta;
2066 se->statistics.sleep_start = 0;
2067 se->statistics.sum_sleep_runtime += delta;
2070 account_scheduler_latency(tsk, delta >> 10, 1);
2071 trace_sched_stat_sleep(tsk, delta);
2074 if (se->statistics.block_start) {
2075 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2080 if (unlikely(delta > se->statistics.block_max))
2081 se->statistics.block_max = delta;
2083 se->statistics.block_start = 0;
2084 se->statistics.sum_sleep_runtime += delta;
2087 if (tsk->in_iowait) {
2088 se->statistics.iowait_sum += delta;
2089 se->statistics.iowait_count++;
2090 trace_sched_stat_iowait(tsk, delta);
2093 trace_sched_stat_blocked(tsk, delta);
2096 * Blocking time is in units of nanosecs, so shift by
2097 * 20 to get a milliseconds-range estimation of the
2098 * amount of time that the task spent sleeping:
2100 if (unlikely(prof_on == SLEEP_PROFILING)) {
2101 profile_hits(SLEEP_PROFILING,
2102 (void *)get_wchan(tsk),
2105 account_scheduler_latency(tsk, delta >> 10, 0);
2111 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2113 #ifdef CONFIG_SCHED_DEBUG
2114 s64 d = se->vruntime - cfs_rq->min_vruntime;
2119 if (d > 3*sysctl_sched_latency)
2120 schedstat_inc(cfs_rq, nr_spread_over);
2125 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2127 u64 vruntime = cfs_rq->min_vruntime;
2130 * The 'current' period is already promised to the current tasks,
2131 * however the extra weight of the new task will slow them down a
2132 * little, place the new task so that it fits in the slot that
2133 * stays open at the end.
2135 if (initial && sched_feat(START_DEBIT))
2136 vruntime += sched_vslice(cfs_rq, se);
2138 /* sleeps up to a single latency don't count. */
2140 unsigned long thresh = sysctl_sched_latency;
2143 * Halve their sleep time's effect, to allow
2144 * for a gentler effect of sleepers:
2146 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2152 /* ensure we never gain time by being placed backwards. */
2153 se->vruntime = max_vruntime(se->vruntime, vruntime);
2156 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2159 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2162 * Update the normalized vruntime before updating min_vruntime
2163 * through calling update_curr().
2165 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2166 se->vruntime += cfs_rq->min_vruntime;
2169 * Update run-time statistics of the 'current'.
2171 update_curr(cfs_rq);
2172 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2173 account_entity_enqueue(cfs_rq, se);
2174 update_cfs_shares(cfs_rq);
2176 if (flags & ENQUEUE_WAKEUP) {
2177 place_entity(cfs_rq, se, 0);
2178 enqueue_sleeper(cfs_rq, se);
2181 update_stats_enqueue(cfs_rq, se);
2182 check_spread(cfs_rq, se);
2183 if (se != cfs_rq->curr)
2184 __enqueue_entity(cfs_rq, se);
2187 if (cfs_rq->nr_running == 1) {
2188 list_add_leaf_cfs_rq(cfs_rq);
2189 check_enqueue_throttle(cfs_rq);
2193 static void __clear_buddies_last(struct sched_entity *se)
2195 for_each_sched_entity(se) {
2196 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2197 if (cfs_rq->last == se)
2198 cfs_rq->last = NULL;
2204 static void __clear_buddies_next(struct sched_entity *se)
2206 for_each_sched_entity(se) {
2207 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2208 if (cfs_rq->next == se)
2209 cfs_rq->next = NULL;
2215 static void __clear_buddies_skip(struct sched_entity *se)
2217 for_each_sched_entity(se) {
2218 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2219 if (cfs_rq->skip == se)
2220 cfs_rq->skip = NULL;
2226 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2228 if (cfs_rq->last == se)
2229 __clear_buddies_last(se);
2231 if (cfs_rq->next == se)
2232 __clear_buddies_next(se);
2234 if (cfs_rq->skip == se)
2235 __clear_buddies_skip(se);
2238 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2241 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2244 * Update run-time statistics of the 'current'.
2246 update_curr(cfs_rq);
2247 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2249 update_stats_dequeue(cfs_rq, se);
2250 if (flags & DEQUEUE_SLEEP) {
2251 #ifdef CONFIG_SCHEDSTATS
2252 if (entity_is_task(se)) {
2253 struct task_struct *tsk = task_of(se);
2255 if (tsk->state & TASK_INTERRUPTIBLE)
2256 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2257 if (tsk->state & TASK_UNINTERRUPTIBLE)
2258 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2263 clear_buddies(cfs_rq, se);
2265 if (se != cfs_rq->curr)
2266 __dequeue_entity(cfs_rq, se);
2268 account_entity_dequeue(cfs_rq, se);
2271 * Normalize the entity after updating the min_vruntime because the
2272 * update can refer to the ->curr item and we need to reflect this
2273 * movement in our normalized position.
2275 if (!(flags & DEQUEUE_SLEEP))
2276 se->vruntime -= cfs_rq->min_vruntime;
2278 /* return excess runtime on last dequeue */
2279 return_cfs_rq_runtime(cfs_rq);
2281 update_min_vruntime(cfs_rq);
2282 update_cfs_shares(cfs_rq);
2286 * Preempt the current task with a newly woken task if needed:
2289 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2291 unsigned long ideal_runtime, delta_exec;
2292 struct sched_entity *se;
2295 ideal_runtime = sched_slice(cfs_rq, curr);
2296 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2297 if (delta_exec > ideal_runtime) {
2298 resched_task(rq_of(cfs_rq)->curr);
2300 * The current task ran long enough, ensure it doesn't get
2301 * re-elected due to buddy favours.
2303 clear_buddies(cfs_rq, curr);
2308 * Ensure that a task that missed wakeup preemption by a
2309 * narrow margin doesn't have to wait for a full slice.
2310 * This also mitigates buddy induced latencies under load.
2312 if (delta_exec < sysctl_sched_min_granularity)
2315 se = __pick_first_entity(cfs_rq);
2316 delta = curr->vruntime - se->vruntime;
2321 if (delta > ideal_runtime)
2322 resched_task(rq_of(cfs_rq)->curr);
2326 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2328 /* 'current' is not kept within the tree. */
2331 * Any task has to be enqueued before it get to execute on
2332 * a CPU. So account for the time it spent waiting on the
2335 update_stats_wait_end(cfs_rq, se);
2336 __dequeue_entity(cfs_rq, se);
2339 update_stats_curr_start(cfs_rq, se);
2341 #ifdef CONFIG_SCHEDSTATS
2343 * Track our maximum slice length, if the CPU's load is at
2344 * least twice that of our own weight (i.e. dont track it
2345 * when there are only lesser-weight tasks around):
2347 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2348 se->statistics.slice_max = max(se->statistics.slice_max,
2349 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2352 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2356 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2359 * Pick the next process, keeping these things in mind, in this order:
2360 * 1) keep things fair between processes/task groups
2361 * 2) pick the "next" process, since someone really wants that to run
2362 * 3) pick the "last" process, for cache locality
2363 * 4) do not run the "skip" process, if something else is available
2365 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2367 struct sched_entity *se = __pick_first_entity(cfs_rq);
2368 struct sched_entity *left = se;
2371 * Avoid running the skip buddy, if running something else can
2372 * be done without getting too unfair.
2374 if (cfs_rq->skip == se) {
2375 struct sched_entity *second = __pick_next_entity(se);
2376 if (second && wakeup_preempt_entity(second, left) < 1)
2381 * Prefer last buddy, try to return the CPU to a preempted task.
2383 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2387 * Someone really wants this to run. If it's not unfair, run it.
2389 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2392 clear_buddies(cfs_rq, se);
2397 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2399 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2402 * If still on the runqueue then deactivate_task()
2403 * was not called and update_curr() has to be done:
2406 update_curr(cfs_rq);
2408 /* throttle cfs_rqs exceeding runtime */
2409 check_cfs_rq_runtime(cfs_rq);
2411 check_spread(cfs_rq, prev);
2413 update_stats_wait_start(cfs_rq, prev);
2414 /* Put 'current' back into the tree. */
2415 __enqueue_entity(cfs_rq, prev);
2416 /* in !on_rq case, update occurred at dequeue */
2417 update_entity_load_avg(prev, 1);
2419 cfs_rq->curr = NULL;
2423 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2426 * Update run-time statistics of the 'current'.
2428 update_curr(cfs_rq);
2431 * Ensure that runnable average is periodically updated.
2433 update_entity_load_avg(curr, 1);
2434 update_cfs_rq_blocked_load(cfs_rq, 1);
2435 update_cfs_shares(cfs_rq);
2437 #ifdef CONFIG_SCHED_HRTICK
2439 * queued ticks are scheduled to match the slice, so don't bother
2440 * validating it and just reschedule.
2443 resched_task(rq_of(cfs_rq)->curr);
2447 * don't let the period tick interfere with the hrtick preemption
2449 if (!sched_feat(DOUBLE_TICK) &&
2450 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2454 if (cfs_rq->nr_running > 1)
2455 check_preempt_tick(cfs_rq, curr);
2459 /**************************************************
2460 * CFS bandwidth control machinery
2463 #ifdef CONFIG_CFS_BANDWIDTH
2465 #ifdef HAVE_JUMP_LABEL
2466 static struct static_key __cfs_bandwidth_used;
2468 static inline bool cfs_bandwidth_used(void)
2470 return static_key_false(&__cfs_bandwidth_used);
2473 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2475 /* only need to count groups transitioning between enabled/!enabled */
2476 if (enabled && !was_enabled)
2477 static_key_slow_inc(&__cfs_bandwidth_used);
2478 else if (!enabled && was_enabled)
2479 static_key_slow_dec(&__cfs_bandwidth_used);
2481 #else /* HAVE_JUMP_LABEL */
2482 static bool cfs_bandwidth_used(void)
2487 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2488 #endif /* HAVE_JUMP_LABEL */
2491 * default period for cfs group bandwidth.
2492 * default: 0.1s, units: nanoseconds
2494 static inline u64 default_cfs_period(void)
2496 return 100000000ULL;
2499 static inline u64 sched_cfs_bandwidth_slice(void)
2501 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2505 * Replenish runtime according to assigned quota and update expiration time.
2506 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2507 * additional synchronization around rq->lock.
2509 * requires cfs_b->lock
2511 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2515 if (cfs_b->quota == RUNTIME_INF)
2518 now = sched_clock_cpu(smp_processor_id());
2519 cfs_b->runtime = cfs_b->quota;
2520 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2523 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2525 return &tg->cfs_bandwidth;
2528 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2529 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2531 if (unlikely(cfs_rq->throttle_count))
2532 return cfs_rq->throttled_clock_task;
2534 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2537 /* returns 0 on failure to allocate runtime */
2538 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2540 struct task_group *tg = cfs_rq->tg;
2541 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2542 u64 amount = 0, min_amount, expires;
2544 /* note: this is a positive sum as runtime_remaining <= 0 */
2545 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2547 raw_spin_lock(&cfs_b->lock);
2548 if (cfs_b->quota == RUNTIME_INF)
2549 amount = min_amount;
2552 * If the bandwidth pool has become inactive, then at least one
2553 * period must have elapsed since the last consumption.
2554 * Refresh the global state and ensure bandwidth timer becomes
2557 if (!cfs_b->timer_active) {
2558 __refill_cfs_bandwidth_runtime(cfs_b);
2559 __start_cfs_bandwidth(cfs_b);
2562 if (cfs_b->runtime > 0) {
2563 amount = min(cfs_b->runtime, min_amount);
2564 cfs_b->runtime -= amount;
2568 expires = cfs_b->runtime_expires;
2569 raw_spin_unlock(&cfs_b->lock);
2571 cfs_rq->runtime_remaining += amount;
2573 * we may have advanced our local expiration to account for allowed
2574 * spread between our sched_clock and the one on which runtime was
2577 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2578 cfs_rq->runtime_expires = expires;
2580 return cfs_rq->runtime_remaining > 0;
2584 * Note: This depends on the synchronization provided by sched_clock and the
2585 * fact that rq->clock snapshots this value.
2587 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2589 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2591 /* if the deadline is ahead of our clock, nothing to do */
2592 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2595 if (cfs_rq->runtime_remaining < 0)
2599 * If the local deadline has passed we have to consider the
2600 * possibility that our sched_clock is 'fast' and the global deadline
2601 * has not truly expired.
2603 * Fortunately we can check determine whether this the case by checking
2604 * whether the global deadline has advanced.
2607 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2608 /* extend local deadline, drift is bounded above by 2 ticks */
2609 cfs_rq->runtime_expires += TICK_NSEC;
2611 /* global deadline is ahead, expiration has passed */
2612 cfs_rq->runtime_remaining = 0;
2616 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2617 unsigned long delta_exec)
2619 /* dock delta_exec before expiring quota (as it could span periods) */
2620 cfs_rq->runtime_remaining -= delta_exec;
2621 expire_cfs_rq_runtime(cfs_rq);
2623 if (likely(cfs_rq->runtime_remaining > 0))
2627 * if we're unable to extend our runtime we resched so that the active
2628 * hierarchy can be throttled
2630 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2631 resched_task(rq_of(cfs_rq)->curr);
2634 static __always_inline
2635 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2637 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2640 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2643 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2645 return cfs_bandwidth_used() && cfs_rq->throttled;
2648 /* check whether cfs_rq, or any parent, is throttled */
2649 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2651 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2655 * Ensure that neither of the group entities corresponding to src_cpu or
2656 * dest_cpu are members of a throttled hierarchy when performing group
2657 * load-balance operations.
2659 static inline int throttled_lb_pair(struct task_group *tg,
2660 int src_cpu, int dest_cpu)
2662 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2664 src_cfs_rq = tg->cfs_rq[src_cpu];
2665 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2667 return throttled_hierarchy(src_cfs_rq) ||
2668 throttled_hierarchy(dest_cfs_rq);
2671 /* updated child weight may affect parent so we have to do this bottom up */
2672 static int tg_unthrottle_up(struct task_group *tg, void *data)
2674 struct rq *rq = data;
2675 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2677 cfs_rq->throttle_count--;
2679 if (!cfs_rq->throttle_count) {
2680 /* adjust cfs_rq_clock_task() */
2681 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2682 cfs_rq->throttled_clock_task;
2689 static int tg_throttle_down(struct task_group *tg, void *data)
2691 struct rq *rq = data;
2692 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2694 /* group is entering throttled state, stop time */
2695 if (!cfs_rq->throttle_count)
2696 cfs_rq->throttled_clock_task = rq_clock_task(rq);
2697 cfs_rq->throttle_count++;
2702 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2704 struct rq *rq = rq_of(cfs_rq);
2705 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2706 struct sched_entity *se;
2707 long task_delta, dequeue = 1;
2709 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2711 /* freeze hierarchy runnable averages while throttled */
2713 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2716 task_delta = cfs_rq->h_nr_running;
2717 for_each_sched_entity(se) {
2718 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2719 /* throttled entity or throttle-on-deactivate */
2724 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2725 qcfs_rq->h_nr_running -= task_delta;
2727 if (qcfs_rq->load.weight)
2732 rq->nr_running -= task_delta;
2734 cfs_rq->throttled = 1;
2735 cfs_rq->throttled_clock = rq_clock(rq);
2736 raw_spin_lock(&cfs_b->lock);
2737 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2738 raw_spin_unlock(&cfs_b->lock);
2741 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2743 struct rq *rq = rq_of(cfs_rq);
2744 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2745 struct sched_entity *se;
2749 se = cfs_rq->tg->se[cpu_of(rq)];
2751 cfs_rq->throttled = 0;
2753 update_rq_clock(rq);
2755 raw_spin_lock(&cfs_b->lock);
2756 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2757 list_del_rcu(&cfs_rq->throttled_list);
2758 raw_spin_unlock(&cfs_b->lock);
2760 /* update hierarchical throttle state */
2761 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2763 if (!cfs_rq->load.weight)
2766 task_delta = cfs_rq->h_nr_running;
2767 for_each_sched_entity(se) {
2771 cfs_rq = cfs_rq_of(se);
2773 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2774 cfs_rq->h_nr_running += task_delta;
2776 if (cfs_rq_throttled(cfs_rq))
2781 rq->nr_running += task_delta;
2783 /* determine whether we need to wake up potentially idle cpu */
2784 if (rq->curr == rq->idle && rq->cfs.nr_running)
2785 resched_task(rq->curr);
2788 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2789 u64 remaining, u64 expires)
2791 struct cfs_rq *cfs_rq;
2792 u64 runtime = remaining;
2795 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2797 struct rq *rq = rq_of(cfs_rq);
2799 raw_spin_lock(&rq->lock);
2800 if (!cfs_rq_throttled(cfs_rq))
2803 runtime = -cfs_rq->runtime_remaining + 1;
2804 if (runtime > remaining)
2805 runtime = remaining;
2806 remaining -= runtime;
2808 cfs_rq->runtime_remaining += runtime;
2809 cfs_rq->runtime_expires = expires;
2811 /* we check whether we're throttled above */
2812 if (cfs_rq->runtime_remaining > 0)
2813 unthrottle_cfs_rq(cfs_rq);
2816 raw_spin_unlock(&rq->lock);
2827 * Responsible for refilling a task_group's bandwidth and unthrottling its
2828 * cfs_rqs as appropriate. If there has been no activity within the last
2829 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2830 * used to track this state.
2832 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2834 u64 runtime, runtime_expires;
2835 int idle = 1, throttled;
2837 raw_spin_lock(&cfs_b->lock);
2838 /* no need to continue the timer with no bandwidth constraint */
2839 if (cfs_b->quota == RUNTIME_INF)
2842 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2843 /* idle depends on !throttled (for the case of a large deficit) */
2844 idle = cfs_b->idle && !throttled;
2845 cfs_b->nr_periods += overrun;
2847 /* if we're going inactive then everything else can be deferred */
2851 __refill_cfs_bandwidth_runtime(cfs_b);
2854 /* mark as potentially idle for the upcoming period */
2859 /* account preceding periods in which throttling occurred */
2860 cfs_b->nr_throttled += overrun;
2863 * There are throttled entities so we must first use the new bandwidth
2864 * to unthrottle them before making it generally available. This
2865 * ensures that all existing debts will be paid before a new cfs_rq is
2868 runtime = cfs_b->runtime;
2869 runtime_expires = cfs_b->runtime_expires;
2873 * This check is repeated as we are holding onto the new bandwidth
2874 * while we unthrottle. This can potentially race with an unthrottled
2875 * group trying to acquire new bandwidth from the global pool.
2877 while (throttled && runtime > 0) {
2878 raw_spin_unlock(&cfs_b->lock);
2879 /* we can't nest cfs_b->lock while distributing bandwidth */
2880 runtime = distribute_cfs_runtime(cfs_b, runtime,
2882 raw_spin_lock(&cfs_b->lock);
2884 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2887 /* return (any) remaining runtime */
2888 cfs_b->runtime = runtime;
2890 * While we are ensured activity in the period following an
2891 * unthrottle, this also covers the case in which the new bandwidth is
2892 * insufficient to cover the existing bandwidth deficit. (Forcing the
2893 * timer to remain active while there are any throttled entities.)
2898 cfs_b->timer_active = 0;
2899 raw_spin_unlock(&cfs_b->lock);
2904 /* a cfs_rq won't donate quota below this amount */
2905 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2906 /* minimum remaining period time to redistribute slack quota */
2907 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2908 /* how long we wait to gather additional slack before distributing */
2909 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2911 /* are we near the end of the current quota period? */
2912 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2914 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2917 /* if the call-back is running a quota refresh is already occurring */
2918 if (hrtimer_callback_running(refresh_timer))
2921 /* is a quota refresh about to occur? */
2922 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2923 if (remaining < min_expire)
2929 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2931 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2933 /* if there's a quota refresh soon don't bother with slack */
2934 if (runtime_refresh_within(cfs_b, min_left))
2937 start_bandwidth_timer(&cfs_b->slack_timer,
2938 ns_to_ktime(cfs_bandwidth_slack_period));
2941 /* we know any runtime found here is valid as update_curr() precedes return */
2942 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2944 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2945 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2947 if (slack_runtime <= 0)
2950 raw_spin_lock(&cfs_b->lock);
2951 if (cfs_b->quota != RUNTIME_INF &&
2952 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2953 cfs_b->runtime += slack_runtime;
2955 /* we are under rq->lock, defer unthrottling using a timer */
2956 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2957 !list_empty(&cfs_b->throttled_cfs_rq))
2958 start_cfs_slack_bandwidth(cfs_b);
2960 raw_spin_unlock(&cfs_b->lock);
2962 /* even if it's not valid for return we don't want to try again */
2963 cfs_rq->runtime_remaining -= slack_runtime;
2966 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2968 if (!cfs_bandwidth_used())
2971 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2974 __return_cfs_rq_runtime(cfs_rq);
2978 * This is done with a timer (instead of inline with bandwidth return) since
2979 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2981 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2983 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2986 /* confirm we're still not at a refresh boundary */
2987 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2990 raw_spin_lock(&cfs_b->lock);
2991 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2992 runtime = cfs_b->runtime;
2995 expires = cfs_b->runtime_expires;
2996 raw_spin_unlock(&cfs_b->lock);
3001 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3003 raw_spin_lock(&cfs_b->lock);
3004 if (expires == cfs_b->runtime_expires)
3005 cfs_b->runtime = runtime;
3006 raw_spin_unlock(&cfs_b->lock);
3010 * When a group wakes up we want to make sure that its quota is not already
3011 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3012 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3014 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3016 if (!cfs_bandwidth_used())
3019 /* an active group must be handled by the update_curr()->put() path */
3020 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3023 /* ensure the group is not already throttled */
3024 if (cfs_rq_throttled(cfs_rq))
3027 /* update runtime allocation */
3028 account_cfs_rq_runtime(cfs_rq, 0);
3029 if (cfs_rq->runtime_remaining <= 0)
3030 throttle_cfs_rq(cfs_rq);
3033 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3034 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3036 if (!cfs_bandwidth_used())
3039 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3043 * it's possible for a throttled entity to be forced into a running
3044 * state (e.g. set_curr_task), in this case we're finished.
3046 if (cfs_rq_throttled(cfs_rq))
3049 throttle_cfs_rq(cfs_rq);
3052 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3054 struct cfs_bandwidth *cfs_b =
3055 container_of(timer, struct cfs_bandwidth, slack_timer);
3056 do_sched_cfs_slack_timer(cfs_b);
3058 return HRTIMER_NORESTART;
3061 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3063 struct cfs_bandwidth *cfs_b =
3064 container_of(timer, struct cfs_bandwidth, period_timer);
3070 now = hrtimer_cb_get_time(timer);
3071 overrun = hrtimer_forward(timer, now, cfs_b->period);
3076 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3079 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3082 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3084 raw_spin_lock_init(&cfs_b->lock);
3086 cfs_b->quota = RUNTIME_INF;
3087 cfs_b->period = ns_to_ktime(default_cfs_period());
3089 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3090 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3091 cfs_b->period_timer.function = sched_cfs_period_timer;
3092 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3093 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3096 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3098 cfs_rq->runtime_enabled = 0;
3099 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3102 /* requires cfs_b->lock, may release to reprogram timer */
3103 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3106 * The timer may be active because we're trying to set a new bandwidth
3107 * period or because we're racing with the tear-down path
3108 * (timer_active==0 becomes visible before the hrtimer call-back
3109 * terminates). In either case we ensure that it's re-programmed
3111 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3112 raw_spin_unlock(&cfs_b->lock);
3113 /* ensure cfs_b->lock is available while we wait */
3114 hrtimer_cancel(&cfs_b->period_timer);
3116 raw_spin_lock(&cfs_b->lock);
3117 /* if someone else restarted the timer then we're done */
3118 if (cfs_b->timer_active)
3122 cfs_b->timer_active = 1;
3123 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3126 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3128 hrtimer_cancel(&cfs_b->period_timer);
3129 hrtimer_cancel(&cfs_b->slack_timer);
3132 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3134 struct cfs_rq *cfs_rq;
3136 for_each_leaf_cfs_rq(rq, cfs_rq) {
3137 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3139 if (!cfs_rq->runtime_enabled)
3143 * clock_task is not advancing so we just need to make sure
3144 * there's some valid quota amount
3146 cfs_rq->runtime_remaining = cfs_b->quota;
3147 if (cfs_rq_throttled(cfs_rq))
3148 unthrottle_cfs_rq(cfs_rq);
3152 #else /* CONFIG_CFS_BANDWIDTH */
3153 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3155 return rq_clock_task(rq_of(cfs_rq));
3158 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3159 unsigned long delta_exec) {}
3160 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3161 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3162 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3164 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3169 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3174 static inline int throttled_lb_pair(struct task_group *tg,
3175 int src_cpu, int dest_cpu)
3180 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3182 #ifdef CONFIG_FAIR_GROUP_SCHED
3183 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3186 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3190 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3191 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3193 #endif /* CONFIG_CFS_BANDWIDTH */
3195 /**************************************************
3196 * CFS operations on tasks:
3199 #ifdef CONFIG_SCHED_HRTICK
3200 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3202 struct sched_entity *se = &p->se;
3203 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3205 WARN_ON(task_rq(p) != rq);
3207 if (cfs_rq->nr_running > 1) {
3208 u64 slice = sched_slice(cfs_rq, se);
3209 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3210 s64 delta = slice - ran;
3219 * Don't schedule slices shorter than 10000ns, that just
3220 * doesn't make sense. Rely on vruntime for fairness.
3223 delta = max_t(s64, 10000LL, delta);
3225 hrtick_start(rq, delta);
3230 * called from enqueue/dequeue and updates the hrtick when the
3231 * current task is from our class and nr_running is low enough
3234 static void hrtick_update(struct rq *rq)
3236 struct task_struct *curr = rq->curr;
3238 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3241 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3242 hrtick_start_fair(rq, curr);
3244 #else /* !CONFIG_SCHED_HRTICK */
3246 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3250 static inline void hrtick_update(struct rq *rq)
3256 * The enqueue_task method is called before nr_running is
3257 * increased. Here we update the fair scheduling stats and
3258 * then put the task into the rbtree:
3261 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3263 struct cfs_rq *cfs_rq;
3264 struct sched_entity *se = &p->se;
3266 for_each_sched_entity(se) {
3269 cfs_rq = cfs_rq_of(se);
3270 enqueue_entity(cfs_rq, se, flags);
3273 * end evaluation on encountering a throttled cfs_rq
3275 * note: in the case of encountering a throttled cfs_rq we will
3276 * post the final h_nr_running increment below.
3278 if (cfs_rq_throttled(cfs_rq))
3280 cfs_rq->h_nr_running++;
3282 flags = ENQUEUE_WAKEUP;
3285 for_each_sched_entity(se) {
3286 cfs_rq = cfs_rq_of(se);
3287 cfs_rq->h_nr_running++;
3289 if (cfs_rq_throttled(cfs_rq))
3292 update_cfs_shares(cfs_rq);
3293 update_entity_load_avg(se, 1);
3297 update_rq_runnable_avg(rq, rq->nr_running);
3303 static void set_next_buddy(struct sched_entity *se);
3306 * The dequeue_task method is called before nr_running is
3307 * decreased. We remove the task from the rbtree and
3308 * update the fair scheduling stats:
3310 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3312 struct cfs_rq *cfs_rq;
3313 struct sched_entity *se = &p->se;
3314 int task_sleep = flags & DEQUEUE_SLEEP;
3316 for_each_sched_entity(se) {
3317 cfs_rq = cfs_rq_of(se);
3318 dequeue_entity(cfs_rq, se, flags);
3321 * end evaluation on encountering a throttled cfs_rq
3323 * note: in the case of encountering a throttled cfs_rq we will
3324 * post the final h_nr_running decrement below.
3326 if (cfs_rq_throttled(cfs_rq))
3328 cfs_rq->h_nr_running--;
3330 /* Don't dequeue parent if it has other entities besides us */
3331 if (cfs_rq->load.weight) {
3333 * Bias pick_next to pick a task from this cfs_rq, as
3334 * p is sleeping when it is within its sched_slice.
3336 if (task_sleep && parent_entity(se))
3337 set_next_buddy(parent_entity(se));
3339 /* avoid re-evaluating load for this entity */
3340 se = parent_entity(se);
3343 flags |= DEQUEUE_SLEEP;
3346 for_each_sched_entity(se) {
3347 cfs_rq = cfs_rq_of(se);
3348 cfs_rq->h_nr_running--;
3350 if (cfs_rq_throttled(cfs_rq))
3353 update_cfs_shares(cfs_rq);
3354 update_entity_load_avg(se, 1);
3359 update_rq_runnable_avg(rq, 1);
3365 /* Used instead of source_load when we know the type == 0 */
3366 static unsigned long weighted_cpuload(const int cpu)
3368 return cpu_rq(cpu)->cfs.runnable_load_avg;
3372 * Return a low guess at the load of a migration-source cpu weighted
3373 * according to the scheduling class and "nice" value.
3375 * We want to under-estimate the load of migration sources, to
3376 * balance conservatively.
3378 static unsigned long source_load(int cpu, int type)
3380 struct rq *rq = cpu_rq(cpu);
3381 unsigned long total = weighted_cpuload(cpu);
3383 if (type == 0 || !sched_feat(LB_BIAS))
3386 return min(rq->cpu_load[type-1], total);
3390 * Return a high guess at the load of a migration-target cpu weighted
3391 * according to the scheduling class and "nice" value.
3393 static unsigned long target_load(int cpu, int type)
3395 struct rq *rq = cpu_rq(cpu);
3396 unsigned long total = weighted_cpuload(cpu);
3398 if (type == 0 || !sched_feat(LB_BIAS))
3401 return max(rq->cpu_load[type-1], total);
3404 static unsigned long power_of(int cpu)
3406 return cpu_rq(cpu)->cpu_power;
3409 static unsigned long cpu_avg_load_per_task(int cpu)
3411 struct rq *rq = cpu_rq(cpu);
3412 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3413 unsigned long load_avg = rq->cfs.runnable_load_avg;
3416 return load_avg / nr_running;
3421 static void record_wakee(struct task_struct *p)
3424 * Rough decay (wiping) for cost saving, don't worry
3425 * about the boundary, really active task won't care
3428 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3429 current->wakee_flips = 0;
3430 current->wakee_flip_decay_ts = jiffies;
3433 if (current->last_wakee != p) {
3434 current->last_wakee = p;
3435 current->wakee_flips++;
3439 static void task_waking_fair(struct task_struct *p)
3441 struct sched_entity *se = &p->se;
3442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3445 #ifndef CONFIG_64BIT
3446 u64 min_vruntime_copy;
3449 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3451 min_vruntime = cfs_rq->min_vruntime;
3452 } while (min_vruntime != min_vruntime_copy);
3454 min_vruntime = cfs_rq->min_vruntime;
3457 se->vruntime -= min_vruntime;
3461 #ifdef CONFIG_FAIR_GROUP_SCHED
3463 * effective_load() calculates the load change as seen from the root_task_group
3465 * Adding load to a group doesn't make a group heavier, but can cause movement
3466 * of group shares between cpus. Assuming the shares were perfectly aligned one
3467 * can calculate the shift in shares.
3469 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3470 * on this @cpu and results in a total addition (subtraction) of @wg to the
3471 * total group weight.
3473 * Given a runqueue weight distribution (rw_i) we can compute a shares
3474 * distribution (s_i) using:
3476 * s_i = rw_i / \Sum rw_j (1)
3478 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3479 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3480 * shares distribution (s_i):
3482 * rw_i = { 2, 4, 1, 0 }
3483 * s_i = { 2/7, 4/7, 1/7, 0 }
3485 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3486 * task used to run on and the CPU the waker is running on), we need to
3487 * compute the effect of waking a task on either CPU and, in case of a sync
3488 * wakeup, compute the effect of the current task going to sleep.
3490 * So for a change of @wl to the local @cpu with an overall group weight change
3491 * of @wl we can compute the new shares distribution (s'_i) using:
3493 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3495 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3496 * differences in waking a task to CPU 0. The additional task changes the
3497 * weight and shares distributions like:
3499 * rw'_i = { 3, 4, 1, 0 }
3500 * s'_i = { 3/8, 4/8, 1/8, 0 }
3502 * We can then compute the difference in effective weight by using:
3504 * dw_i = S * (s'_i - s_i) (3)
3506 * Where 'S' is the group weight as seen by its parent.
3508 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3509 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3510 * 4/7) times the weight of the group.
3512 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3514 struct sched_entity *se = tg->se[cpu];
3516 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3519 for_each_sched_entity(se) {
3525 * W = @wg + \Sum rw_j
3527 W = wg + calc_tg_weight(tg, se->my_q);
3532 w = se->my_q->load.weight + wl;
3535 * wl = S * s'_i; see (2)
3538 wl = (w * tg->shares) / W;
3543 * Per the above, wl is the new se->load.weight value; since
3544 * those are clipped to [MIN_SHARES, ...) do so now. See
3545 * calc_cfs_shares().
3547 if (wl < MIN_SHARES)
3551 * wl = dw_i = S * (s'_i - s_i); see (3)
3553 wl -= se->load.weight;
3556 * Recursively apply this logic to all parent groups to compute
3557 * the final effective load change on the root group. Since
3558 * only the @tg group gets extra weight, all parent groups can
3559 * only redistribute existing shares. @wl is the shift in shares
3560 * resulting from this level per the above.
3569 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3576 static int wake_wide(struct task_struct *p)
3578 int factor = this_cpu_read(sd_llc_size);
3581 * Yeah, it's the switching-frequency, could means many wakee or
3582 * rapidly switch, use factor here will just help to automatically
3583 * adjust the loose-degree, so bigger node will lead to more pull.
3585 if (p->wakee_flips > factor) {
3587 * wakee is somewhat hot, it needs certain amount of cpu
3588 * resource, so if waker is far more hot, prefer to leave
3591 if (current->wakee_flips > (factor * p->wakee_flips))
3598 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3600 s64 this_load, load;
3601 int idx, this_cpu, prev_cpu;
3602 unsigned long tl_per_task;
3603 struct task_group *tg;
3604 unsigned long weight;
3608 * If we wake multiple tasks be careful to not bounce
3609 * ourselves around too much.
3615 this_cpu = smp_processor_id();
3616 prev_cpu = task_cpu(p);
3617 load = source_load(prev_cpu, idx);
3618 this_load = target_load(this_cpu, idx);
3621 * If sync wakeup then subtract the (maximum possible)
3622 * effect of the currently running task from the load
3623 * of the current CPU:
3626 tg = task_group(current);
3627 weight = current->se.load.weight;
3629 this_load += effective_load(tg, this_cpu, -weight, -weight);
3630 load += effective_load(tg, prev_cpu, 0, -weight);
3634 weight = p->se.load.weight;
3637 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3638 * due to the sync cause above having dropped this_load to 0, we'll
3639 * always have an imbalance, but there's really nothing you can do
3640 * about that, so that's good too.
3642 * Otherwise check if either cpus are near enough in load to allow this
3643 * task to be woken on this_cpu.
3645 if (this_load > 0) {
3646 s64 this_eff_load, prev_eff_load;
3648 this_eff_load = 100;
3649 this_eff_load *= power_of(prev_cpu);
3650 this_eff_load *= this_load +
3651 effective_load(tg, this_cpu, weight, weight);
3653 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3654 prev_eff_load *= power_of(this_cpu);
3655 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3657 balanced = this_eff_load <= prev_eff_load;
3662 * If the currently running task will sleep within
3663 * a reasonable amount of time then attract this newly
3666 if (sync && balanced)
3669 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3670 tl_per_task = cpu_avg_load_per_task(this_cpu);
3673 (this_load <= load &&
3674 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3676 * This domain has SD_WAKE_AFFINE and
3677 * p is cache cold in this domain, and
3678 * there is no bad imbalance.
3680 schedstat_inc(sd, ttwu_move_affine);
3681 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3689 * find_idlest_group finds and returns the least busy CPU group within the
3692 static struct sched_group *
3693 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3694 int this_cpu, int load_idx)
3696 struct sched_group *idlest = NULL, *group = sd->groups;
3697 unsigned long min_load = ULONG_MAX, this_load = 0;
3698 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3701 unsigned long load, avg_load;
3705 /* Skip over this group if it has no CPUs allowed */
3706 if (!cpumask_intersects(sched_group_cpus(group),
3707 tsk_cpus_allowed(p)))
3710 local_group = cpumask_test_cpu(this_cpu,
3711 sched_group_cpus(group));
3713 /* Tally up the load of all CPUs in the group */
3716 for_each_cpu(i, sched_group_cpus(group)) {
3717 /* Bias balancing toward cpus of our domain */
3719 load = source_load(i, load_idx);
3721 load = target_load(i, load_idx);
3726 /* Adjust by relative CPU power of the group */
3727 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3730 this_load = avg_load;
3731 } else if (avg_load < min_load) {
3732 min_load = avg_load;
3735 } while (group = group->next, group != sd->groups);
3737 if (!idlest || 100*this_load < imbalance*min_load)
3743 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3746 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3748 unsigned long load, min_load = ULONG_MAX;
3752 /* Traverse only the allowed CPUs */
3753 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3754 load = weighted_cpuload(i);
3756 if (load < min_load || (load == min_load && i == this_cpu)) {
3766 * Try and locate an idle CPU in the sched_domain.
3768 static int select_idle_sibling(struct task_struct *p, int target)
3770 struct sched_domain *sd;
3771 struct sched_group *sg;
3772 int i = task_cpu(p);
3774 if (idle_cpu(target))
3778 * If the prevous cpu is cache affine and idle, don't be stupid.
3780 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3784 * Otherwise, iterate the domains and find an elegible idle cpu.
3786 sd = rcu_dereference(per_cpu(sd_llc, target));
3787 for_each_lower_domain(sd) {
3790 if (!cpumask_intersects(sched_group_cpus(sg),
3791 tsk_cpus_allowed(p)))
3794 for_each_cpu(i, sched_group_cpus(sg)) {
3795 if (i == target || !idle_cpu(i))
3799 target = cpumask_first_and(sched_group_cpus(sg),
3800 tsk_cpus_allowed(p));
3804 } while (sg != sd->groups);
3811 * sched_balance_self: balance the current task (running on cpu) in domains
3812 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3815 * Balance, ie. select the least loaded group.
3817 * Returns the target CPU number, or the same CPU if no balancing is needed.
3819 * preempt must be disabled.
3822 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
3824 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3825 int cpu = smp_processor_id();
3827 int want_affine = 0;
3828 int sync = wake_flags & WF_SYNC;
3830 if (p->nr_cpus_allowed == 1)
3833 if (sd_flag & SD_BALANCE_WAKE) {
3834 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3840 for_each_domain(cpu, tmp) {
3841 if (!(tmp->flags & SD_LOAD_BALANCE))
3845 * If both cpu and prev_cpu are part of this domain,
3846 * cpu is a valid SD_WAKE_AFFINE target.
3848 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3849 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3854 if (tmp->flags & sd_flag)
3859 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3862 new_cpu = select_idle_sibling(p, prev_cpu);
3867 int load_idx = sd->forkexec_idx;
3868 struct sched_group *group;
3871 if (!(sd->flags & sd_flag)) {
3876 if (sd_flag & SD_BALANCE_WAKE)
3877 load_idx = sd->wake_idx;
3879 group = find_idlest_group(sd, p, cpu, load_idx);
3885 new_cpu = find_idlest_cpu(group, p, cpu);
3886 if (new_cpu == -1 || new_cpu == cpu) {
3887 /* Now try balancing at a lower domain level of cpu */
3892 /* Now try balancing at a lower domain level of new_cpu */
3894 weight = sd->span_weight;
3896 for_each_domain(cpu, tmp) {
3897 if (weight <= tmp->span_weight)
3899 if (tmp->flags & sd_flag)
3902 /* while loop will break here if sd == NULL */
3911 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3912 * cfs_rq_of(p) references at time of call are still valid and identify the
3913 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3914 * other assumptions, including the state of rq->lock, should be made.
3917 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3919 struct sched_entity *se = &p->se;
3920 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3923 * Load tracking: accumulate removed load so that it can be processed
3924 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3925 * to blocked load iff they have a positive decay-count. It can never
3926 * be negative here since on-rq tasks have decay-count == 0.
3928 if (se->avg.decay_count) {
3929 se->avg.decay_count = -__synchronize_entity_decay(se);
3930 atomic_long_add(se->avg.load_avg_contrib,
3931 &cfs_rq->removed_load);
3934 #endif /* CONFIG_SMP */
3936 static unsigned long
3937 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3939 unsigned long gran = sysctl_sched_wakeup_granularity;
3942 * Since its curr running now, convert the gran from real-time
3943 * to virtual-time in his units.
3945 * By using 'se' instead of 'curr' we penalize light tasks, so
3946 * they get preempted easier. That is, if 'se' < 'curr' then
3947 * the resulting gran will be larger, therefore penalizing the
3948 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3949 * be smaller, again penalizing the lighter task.
3951 * This is especially important for buddies when the leftmost
3952 * task is higher priority than the buddy.
3954 return calc_delta_fair(gran, se);
3958 * Should 'se' preempt 'curr'.
3972 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3974 s64 gran, vdiff = curr->vruntime - se->vruntime;
3979 gran = wakeup_gran(curr, se);
3986 static void set_last_buddy(struct sched_entity *se)
3988 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3991 for_each_sched_entity(se)
3992 cfs_rq_of(se)->last = se;
3995 static void set_next_buddy(struct sched_entity *se)
3997 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4000 for_each_sched_entity(se)
4001 cfs_rq_of(se)->next = se;
4004 static void set_skip_buddy(struct sched_entity *se)
4006 for_each_sched_entity(se)
4007 cfs_rq_of(se)->skip = se;
4011 * Preempt the current task with a newly woken task if needed:
4013 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4015 struct task_struct *curr = rq->curr;
4016 struct sched_entity *se = &curr->se, *pse = &p->se;
4017 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4018 int scale = cfs_rq->nr_running >= sched_nr_latency;
4019 int next_buddy_marked = 0;
4021 if (unlikely(se == pse))
4025 * This is possible from callers such as move_task(), in which we
4026 * unconditionally check_prempt_curr() after an enqueue (which may have
4027 * lead to a throttle). This both saves work and prevents false
4028 * next-buddy nomination below.
4030 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4033 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4034 set_next_buddy(pse);
4035 next_buddy_marked = 1;
4039 * We can come here with TIF_NEED_RESCHED already set from new task
4042 * Note: this also catches the edge-case of curr being in a throttled
4043 * group (e.g. via set_curr_task), since update_curr() (in the
4044 * enqueue of curr) will have resulted in resched being set. This
4045 * prevents us from potentially nominating it as a false LAST_BUDDY
4048 if (test_tsk_need_resched(curr))
4051 /* Idle tasks are by definition preempted by non-idle tasks. */
4052 if (unlikely(curr->policy == SCHED_IDLE) &&
4053 likely(p->policy != SCHED_IDLE))
4057 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4058 * is driven by the tick):
4060 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4063 find_matching_se(&se, &pse);
4064 update_curr(cfs_rq_of(se));
4066 if (wakeup_preempt_entity(se, pse) == 1) {
4068 * Bias pick_next to pick the sched entity that is
4069 * triggering this preemption.
4071 if (!next_buddy_marked)
4072 set_next_buddy(pse);
4081 * Only set the backward buddy when the current task is still
4082 * on the rq. This can happen when a wakeup gets interleaved
4083 * with schedule on the ->pre_schedule() or idle_balance()
4084 * point, either of which can * drop the rq lock.
4086 * Also, during early boot the idle thread is in the fair class,
4087 * for obvious reasons its a bad idea to schedule back to it.
4089 if (unlikely(!se->on_rq || curr == rq->idle))
4092 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4096 static struct task_struct *pick_next_task_fair(struct rq *rq)
4098 struct task_struct *p;
4099 struct cfs_rq *cfs_rq = &rq->cfs;
4100 struct sched_entity *se;
4102 if (!cfs_rq->nr_running)
4106 se = pick_next_entity(cfs_rq);
4107 set_next_entity(cfs_rq, se);
4108 cfs_rq = group_cfs_rq(se);
4112 if (hrtick_enabled(rq))
4113 hrtick_start_fair(rq, p);
4119 * Account for a descheduled task:
4121 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4123 struct sched_entity *se = &prev->se;
4124 struct cfs_rq *cfs_rq;
4126 for_each_sched_entity(se) {
4127 cfs_rq = cfs_rq_of(se);
4128 put_prev_entity(cfs_rq, se);
4133 * sched_yield() is very simple
4135 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4137 static void yield_task_fair(struct rq *rq)
4139 struct task_struct *curr = rq->curr;
4140 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4141 struct sched_entity *se = &curr->se;
4144 * Are we the only task in the tree?
4146 if (unlikely(rq->nr_running == 1))
4149 clear_buddies(cfs_rq, se);
4151 if (curr->policy != SCHED_BATCH) {
4152 update_rq_clock(rq);
4154 * Update run-time statistics of the 'current'.
4156 update_curr(cfs_rq);
4158 * Tell update_rq_clock() that we've just updated,
4159 * so we don't do microscopic update in schedule()
4160 * and double the fastpath cost.
4162 rq->skip_clock_update = 1;
4168 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4170 struct sched_entity *se = &p->se;
4172 /* throttled hierarchies are not runnable */
4173 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4176 /* Tell the scheduler that we'd really like pse to run next. */
4179 yield_task_fair(rq);
4185 /**************************************************
4186 * Fair scheduling class load-balancing methods.
4190 * The purpose of load-balancing is to achieve the same basic fairness the
4191 * per-cpu scheduler provides, namely provide a proportional amount of compute
4192 * time to each task. This is expressed in the following equation:
4194 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4196 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4197 * W_i,0 is defined as:
4199 * W_i,0 = \Sum_j w_i,j (2)
4201 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4202 * is derived from the nice value as per prio_to_weight[].
4204 * The weight average is an exponential decay average of the instantaneous
4207 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4209 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4210 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4211 * can also include other factors [XXX].
4213 * To achieve this balance we define a measure of imbalance which follows
4214 * directly from (1):
4216 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4218 * We them move tasks around to minimize the imbalance. In the continuous
4219 * function space it is obvious this converges, in the discrete case we get
4220 * a few fun cases generally called infeasible weight scenarios.
4223 * - infeasible weights;
4224 * - local vs global optima in the discrete case. ]
4229 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4230 * for all i,j solution, we create a tree of cpus that follows the hardware
4231 * topology where each level pairs two lower groups (or better). This results
4232 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4233 * tree to only the first of the previous level and we decrease the frequency
4234 * of load-balance at each level inv. proportional to the number of cpus in
4240 * \Sum { --- * --- * 2^i } = O(n) (5)
4242 * `- size of each group
4243 * | | `- number of cpus doing load-balance
4245 * `- sum over all levels
4247 * Coupled with a limit on how many tasks we can migrate every balance pass,
4248 * this makes (5) the runtime complexity of the balancer.
4250 * An important property here is that each CPU is still (indirectly) connected
4251 * to every other cpu in at most O(log n) steps:
4253 * The adjacency matrix of the resulting graph is given by:
4256 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4259 * And you'll find that:
4261 * A^(log_2 n)_i,j != 0 for all i,j (7)
4263 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4264 * The task movement gives a factor of O(m), giving a convergence complexity
4267 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4272 * In order to avoid CPUs going idle while there's still work to do, new idle
4273 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4274 * tree itself instead of relying on other CPUs to bring it work.
4276 * This adds some complexity to both (5) and (8) but it reduces the total idle
4284 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4287 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4292 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4294 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4296 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4299 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4300 * rewrite all of this once again.]
4303 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4305 #define LBF_ALL_PINNED 0x01
4306 #define LBF_NEED_BREAK 0x02
4307 #define LBF_DST_PINNED 0x04
4308 #define LBF_SOME_PINNED 0x08
4311 struct sched_domain *sd;
4319 struct cpumask *dst_grpmask;
4321 enum cpu_idle_type idle;
4323 /* The set of CPUs under consideration for load-balancing */
4324 struct cpumask *cpus;
4329 unsigned int loop_break;
4330 unsigned int loop_max;
4334 * move_task - move a task from one runqueue to another runqueue.
4335 * Both runqueues must be locked.
4337 static void move_task(struct task_struct *p, struct lb_env *env)
4339 deactivate_task(env->src_rq, p, 0);
4340 set_task_cpu(p, env->dst_cpu);
4341 activate_task(env->dst_rq, p, 0);
4342 check_preempt_curr(env->dst_rq, p, 0);
4343 #ifdef CONFIG_NUMA_BALANCING
4344 if (p->numa_preferred_nid != -1) {
4345 int src_nid = cpu_to_node(env->src_cpu);
4346 int dst_nid = cpu_to_node(env->dst_cpu);
4349 * If the load balancer has moved the task then limit
4350 * migrations from taking place in the short term in
4351 * case this is a short-lived migration.
4353 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4354 p->numa_migrate_seq = 0;
4360 * Is this task likely cache-hot:
4363 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4367 if (p->sched_class != &fair_sched_class)
4370 if (unlikely(p->policy == SCHED_IDLE))
4374 * Buddy candidates are cache hot:
4376 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4377 (&p->se == cfs_rq_of(&p->se)->next ||
4378 &p->se == cfs_rq_of(&p->se)->last))
4381 if (sysctl_sched_migration_cost == -1)
4383 if (sysctl_sched_migration_cost == 0)
4386 delta = now - p->se.exec_start;
4388 return delta < (s64)sysctl_sched_migration_cost;
4391 #ifdef CONFIG_NUMA_BALANCING
4392 /* Returns true if the destination node has incurred more faults */
4393 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4395 int src_nid, dst_nid;
4397 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4398 !(env->sd->flags & SD_NUMA)) {
4402 src_nid = cpu_to_node(env->src_cpu);
4403 dst_nid = cpu_to_node(env->dst_cpu);
4405 if (src_nid == dst_nid ||
4406 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4409 if (dst_nid == p->numa_preferred_nid ||
4410 task_faults(p, dst_nid) > task_faults(p, src_nid))
4417 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4419 int src_nid, dst_nid;
4421 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4424 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4427 src_nid = cpu_to_node(env->src_cpu);
4428 dst_nid = cpu_to_node(env->dst_cpu);
4430 if (src_nid == dst_nid ||
4431 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4434 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
4441 static inline bool migrate_improves_locality(struct task_struct *p,
4447 static inline bool migrate_degrades_locality(struct task_struct *p,
4455 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4458 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4460 int tsk_cache_hot = 0;
4462 * We do not migrate tasks that are:
4463 * 1) throttled_lb_pair, or
4464 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4465 * 3) running (obviously), or
4466 * 4) are cache-hot on their current CPU.
4468 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4471 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4474 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4476 env->flags |= LBF_SOME_PINNED;
4479 * Remember if this task can be migrated to any other cpu in
4480 * our sched_group. We may want to revisit it if we couldn't
4481 * meet load balance goals by pulling other tasks on src_cpu.
4483 * Also avoid computing new_dst_cpu if we have already computed
4484 * one in current iteration.
4486 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4489 /* Prevent to re-select dst_cpu via env's cpus */
4490 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4491 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4492 env->flags |= LBF_DST_PINNED;
4493 env->new_dst_cpu = cpu;
4501 /* Record that we found atleast one task that could run on dst_cpu */
4502 env->flags &= ~LBF_ALL_PINNED;
4504 if (task_running(env->src_rq, p)) {
4505 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4510 * Aggressive migration if:
4511 * 1) destination numa is preferred
4512 * 2) task is cache cold, or
4513 * 3) too many balance attempts have failed.
4515 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4517 tsk_cache_hot = migrate_degrades_locality(p, env);
4519 if (migrate_improves_locality(p, env)) {
4520 #ifdef CONFIG_SCHEDSTATS
4521 if (tsk_cache_hot) {
4522 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4523 schedstat_inc(p, se.statistics.nr_forced_migrations);
4529 if (!tsk_cache_hot ||
4530 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4532 if (tsk_cache_hot) {
4533 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4534 schedstat_inc(p, se.statistics.nr_forced_migrations);
4540 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4545 * move_one_task tries to move exactly one task from busiest to this_rq, as
4546 * part of active balancing operations within "domain".
4547 * Returns 1 if successful and 0 otherwise.
4549 * Called with both runqueues locked.
4551 static int move_one_task(struct lb_env *env)
4553 struct task_struct *p, *n;
4555 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4556 if (!can_migrate_task(p, env))
4561 * Right now, this is only the second place move_task()
4562 * is called, so we can safely collect move_task()
4563 * stats here rather than inside move_task().
4565 schedstat_inc(env->sd, lb_gained[env->idle]);
4571 static const unsigned int sched_nr_migrate_break = 32;
4574 * move_tasks tries to move up to imbalance weighted load from busiest to
4575 * this_rq, as part of a balancing operation within domain "sd".
4576 * Returns 1 if successful and 0 otherwise.
4578 * Called with both runqueues locked.
4580 static int move_tasks(struct lb_env *env)
4582 struct list_head *tasks = &env->src_rq->cfs_tasks;
4583 struct task_struct *p;
4587 if (env->imbalance <= 0)
4590 while (!list_empty(tasks)) {
4591 p = list_first_entry(tasks, struct task_struct, se.group_node);
4594 /* We've more or less seen every task there is, call it quits */
4595 if (env->loop > env->loop_max)
4598 /* take a breather every nr_migrate tasks */
4599 if (env->loop > env->loop_break) {
4600 env->loop_break += sched_nr_migrate_break;
4601 env->flags |= LBF_NEED_BREAK;
4605 if (!can_migrate_task(p, env))
4608 load = task_h_load(p);
4610 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4613 if ((load / 2) > env->imbalance)
4618 env->imbalance -= load;
4620 #ifdef CONFIG_PREEMPT
4622 * NEWIDLE balancing is a source of latency, so preemptible
4623 * kernels will stop after the first task is pulled to minimize
4624 * the critical section.
4626 if (env->idle == CPU_NEWLY_IDLE)
4631 * We only want to steal up to the prescribed amount of
4634 if (env->imbalance <= 0)
4639 list_move_tail(&p->se.group_node, tasks);
4643 * Right now, this is one of only two places move_task() is called,
4644 * so we can safely collect move_task() stats here rather than
4645 * inside move_task().
4647 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4652 #ifdef CONFIG_FAIR_GROUP_SCHED
4654 * update tg->load_weight by folding this cpu's load_avg
4656 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4658 struct sched_entity *se = tg->se[cpu];
4659 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4661 /* throttled entities do not contribute to load */
4662 if (throttled_hierarchy(cfs_rq))
4665 update_cfs_rq_blocked_load(cfs_rq, 1);
4668 update_entity_load_avg(se, 1);
4670 * We pivot on our runnable average having decayed to zero for
4671 * list removal. This generally implies that all our children
4672 * have also been removed (modulo rounding error or bandwidth
4673 * control); however, such cases are rare and we can fix these
4676 * TODO: fix up out-of-order children on enqueue.
4678 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4679 list_del_leaf_cfs_rq(cfs_rq);
4681 struct rq *rq = rq_of(cfs_rq);
4682 update_rq_runnable_avg(rq, rq->nr_running);
4686 static void update_blocked_averages(int cpu)
4688 struct rq *rq = cpu_rq(cpu);
4689 struct cfs_rq *cfs_rq;
4690 unsigned long flags;
4692 raw_spin_lock_irqsave(&rq->lock, flags);
4693 update_rq_clock(rq);
4695 * Iterates the task_group tree in a bottom up fashion, see
4696 * list_add_leaf_cfs_rq() for details.
4698 for_each_leaf_cfs_rq(rq, cfs_rq) {
4700 * Note: We may want to consider periodically releasing
4701 * rq->lock about these updates so that creating many task
4702 * groups does not result in continually extending hold time.
4704 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4707 raw_spin_unlock_irqrestore(&rq->lock, flags);
4711 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4712 * This needs to be done in a top-down fashion because the load of a child
4713 * group is a fraction of its parents load.
4715 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
4717 struct rq *rq = rq_of(cfs_rq);
4718 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
4719 unsigned long now = jiffies;
4722 if (cfs_rq->last_h_load_update == now)
4725 cfs_rq->h_load_next = NULL;
4726 for_each_sched_entity(se) {
4727 cfs_rq = cfs_rq_of(se);
4728 cfs_rq->h_load_next = se;
4729 if (cfs_rq->last_h_load_update == now)
4734 cfs_rq->h_load = cfs_rq->runnable_load_avg;
4735 cfs_rq->last_h_load_update = now;
4738 while ((se = cfs_rq->h_load_next) != NULL) {
4739 load = cfs_rq->h_load;
4740 load = div64_ul(load * se->avg.load_avg_contrib,
4741 cfs_rq->runnable_load_avg + 1);
4742 cfs_rq = group_cfs_rq(se);
4743 cfs_rq->h_load = load;
4744 cfs_rq->last_h_load_update = now;
4748 static unsigned long task_h_load(struct task_struct *p)
4750 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4752 update_cfs_rq_h_load(cfs_rq);
4753 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4754 cfs_rq->runnable_load_avg + 1);
4757 static inline void update_blocked_averages(int cpu)
4761 static unsigned long task_h_load(struct task_struct *p)
4763 return p->se.avg.load_avg_contrib;
4767 /********** Helpers for find_busiest_group ************************/
4769 * sg_lb_stats - stats of a sched_group required for load_balancing
4771 struct sg_lb_stats {
4772 unsigned long avg_load; /*Avg load across the CPUs of the group */
4773 unsigned long group_load; /* Total load over the CPUs of the group */
4774 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4775 unsigned long load_per_task;
4776 unsigned long group_power;
4777 unsigned int sum_nr_running; /* Nr tasks running in the group */
4778 unsigned int group_capacity;
4779 unsigned int idle_cpus;
4780 unsigned int group_weight;
4781 int group_imb; /* Is there an imbalance in the group ? */
4782 int group_has_capacity; /* Is there extra capacity in the group? */
4786 * sd_lb_stats - Structure to store the statistics of a sched_domain
4787 * during load balancing.
4789 struct sd_lb_stats {
4790 struct sched_group *busiest; /* Busiest group in this sd */
4791 struct sched_group *local; /* Local group in this sd */
4792 unsigned long total_load; /* Total load of all groups in sd */
4793 unsigned long total_pwr; /* Total power of all groups in sd */
4794 unsigned long avg_load; /* Average load across all groups in sd */
4796 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
4797 struct sg_lb_stats local_stat; /* Statistics of the local group */
4800 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4803 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4804 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4805 * We must however clear busiest_stat::avg_load because
4806 * update_sd_pick_busiest() reads this before assignment.
4808 *sds = (struct sd_lb_stats){
4820 * get_sd_load_idx - Obtain the load index for a given sched domain.
4821 * @sd: The sched_domain whose load_idx is to be obtained.
4822 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4824 * Return: The load index.
4826 static inline int get_sd_load_idx(struct sched_domain *sd,
4827 enum cpu_idle_type idle)
4833 load_idx = sd->busy_idx;
4836 case CPU_NEWLY_IDLE:
4837 load_idx = sd->newidle_idx;
4840 load_idx = sd->idle_idx;
4847 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4849 return SCHED_POWER_SCALE;
4852 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4854 return default_scale_freq_power(sd, cpu);
4857 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4859 unsigned long weight = sd->span_weight;
4860 unsigned long smt_gain = sd->smt_gain;
4867 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4869 return default_scale_smt_power(sd, cpu);
4872 static unsigned long scale_rt_power(int cpu)
4874 struct rq *rq = cpu_rq(cpu);
4875 u64 total, available, age_stamp, avg;
4878 * Since we're reading these variables without serialization make sure
4879 * we read them once before doing sanity checks on them.
4881 age_stamp = ACCESS_ONCE(rq->age_stamp);
4882 avg = ACCESS_ONCE(rq->rt_avg);
4884 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4886 if (unlikely(total < avg)) {
4887 /* Ensures that power won't end up being negative */
4890 available = total - avg;
4893 if (unlikely((s64)total < SCHED_POWER_SCALE))
4894 total = SCHED_POWER_SCALE;
4896 total >>= SCHED_POWER_SHIFT;
4898 return div_u64(available, total);
4901 static void update_cpu_power(struct sched_domain *sd, int cpu)
4903 unsigned long weight = sd->span_weight;
4904 unsigned long power = SCHED_POWER_SCALE;
4905 struct sched_group *sdg = sd->groups;
4907 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4908 if (sched_feat(ARCH_POWER))
4909 power *= arch_scale_smt_power(sd, cpu);
4911 power *= default_scale_smt_power(sd, cpu);
4913 power >>= SCHED_POWER_SHIFT;
4916 sdg->sgp->power_orig = power;
4918 if (sched_feat(ARCH_POWER))
4919 power *= arch_scale_freq_power(sd, cpu);
4921 power *= default_scale_freq_power(sd, cpu);
4923 power >>= SCHED_POWER_SHIFT;
4925 power *= scale_rt_power(cpu);
4926 power >>= SCHED_POWER_SHIFT;
4931 cpu_rq(cpu)->cpu_power = power;
4932 sdg->sgp->power = power;
4935 void update_group_power(struct sched_domain *sd, int cpu)
4937 struct sched_domain *child = sd->child;
4938 struct sched_group *group, *sdg = sd->groups;
4939 unsigned long power, power_orig;
4940 unsigned long interval;
4942 interval = msecs_to_jiffies(sd->balance_interval);
4943 interval = clamp(interval, 1UL, max_load_balance_interval);
4944 sdg->sgp->next_update = jiffies + interval;
4947 update_cpu_power(sd, cpu);
4951 power_orig = power = 0;
4953 if (child->flags & SD_OVERLAP) {
4955 * SD_OVERLAP domains cannot assume that child groups
4956 * span the current group.
4959 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4960 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4962 power_orig += sg->sgp->power_orig;
4963 power += sg->sgp->power;
4967 * !SD_OVERLAP domains can assume that child groups
4968 * span the current group.
4971 group = child->groups;
4973 power_orig += group->sgp->power_orig;
4974 power += group->sgp->power;
4975 group = group->next;
4976 } while (group != child->groups);
4979 sdg->sgp->power_orig = power_orig;
4980 sdg->sgp->power = power;
4984 * Try and fix up capacity for tiny siblings, this is needed when
4985 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4986 * which on its own isn't powerful enough.
4988 * See update_sd_pick_busiest() and check_asym_packing().
4991 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4994 * Only siblings can have significantly less than SCHED_POWER_SCALE
4996 if (!(sd->flags & SD_SHARE_CPUPOWER))
5000 * If ~90% of the cpu_power is still there, we're good.
5002 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5009 * Group imbalance indicates (and tries to solve) the problem where balancing
5010 * groups is inadequate due to tsk_cpus_allowed() constraints.
5012 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5013 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5016 * { 0 1 2 3 } { 4 5 6 7 }
5019 * If we were to balance group-wise we'd place two tasks in the first group and
5020 * two tasks in the second group. Clearly this is undesired as it will overload
5021 * cpu 3 and leave one of the cpus in the second group unused.
5023 * The current solution to this issue is detecting the skew in the first group
5024 * by noticing the lower domain failed to reach balance and had difficulty
5025 * moving tasks due to affinity constraints.
5027 * When this is so detected; this group becomes a candidate for busiest; see
5028 * update_sd_pick_busiest(). And calculcate_imbalance() and
5029 * find_busiest_group() avoid some of the usual balance conditions to allow it
5030 * to create an effective group imbalance.
5032 * This is a somewhat tricky proposition since the next run might not find the
5033 * group imbalance and decide the groups need to be balanced again. A most
5034 * subtle and fragile situation.
5037 static inline int sg_imbalanced(struct sched_group *group)
5039 return group->sgp->imbalance;
5043 * Compute the group capacity.
5045 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5046 * first dividing out the smt factor and computing the actual number of cores
5047 * and limit power unit capacity with that.
5049 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5051 unsigned int capacity, smt, cpus;
5052 unsigned int power, power_orig;
5054 power = group->sgp->power;
5055 power_orig = group->sgp->power_orig;
5056 cpus = group->group_weight;
5058 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5059 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5060 capacity = cpus / smt; /* cores */
5062 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5064 capacity = fix_small_capacity(env->sd, group);
5070 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5071 * @env: The load balancing environment.
5072 * @group: sched_group whose statistics are to be updated.
5073 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5074 * @local_group: Does group contain this_cpu.
5075 * @sgs: variable to hold the statistics for this group.
5077 static inline void update_sg_lb_stats(struct lb_env *env,
5078 struct sched_group *group, int load_idx,
5079 int local_group, struct sg_lb_stats *sgs)
5081 unsigned long nr_running;
5085 memset(sgs, 0, sizeof(*sgs));
5087 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5088 struct rq *rq = cpu_rq(i);
5090 nr_running = rq->nr_running;
5092 /* Bias balancing toward cpus of our domain */
5094 load = target_load(i, load_idx);
5096 load = source_load(i, load_idx);
5098 sgs->group_load += load;
5099 sgs->sum_nr_running += nr_running;
5100 sgs->sum_weighted_load += weighted_cpuload(i);
5105 /* Adjust by relative CPU power of the group */
5106 sgs->group_power = group->sgp->power;
5107 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5109 if (sgs->sum_nr_running)
5110 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5112 sgs->group_weight = group->group_weight;
5114 sgs->group_imb = sg_imbalanced(group);
5115 sgs->group_capacity = sg_capacity(env, group);
5117 if (sgs->group_capacity > sgs->sum_nr_running)
5118 sgs->group_has_capacity = 1;
5122 * update_sd_pick_busiest - return 1 on busiest group
5123 * @env: The load balancing environment.
5124 * @sds: sched_domain statistics
5125 * @sg: sched_group candidate to be checked for being the busiest
5126 * @sgs: sched_group statistics
5128 * Determine if @sg is a busier group than the previously selected
5131 * Return: %true if @sg is a busier group than the previously selected
5132 * busiest group. %false otherwise.
5134 static bool update_sd_pick_busiest(struct lb_env *env,
5135 struct sd_lb_stats *sds,
5136 struct sched_group *sg,
5137 struct sg_lb_stats *sgs)
5139 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5142 if (sgs->sum_nr_running > sgs->group_capacity)
5149 * ASYM_PACKING needs to move all the work to the lowest
5150 * numbered CPUs in the group, therefore mark all groups
5151 * higher than ourself as busy.
5153 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5154 env->dst_cpu < group_first_cpu(sg)) {
5158 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5166 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5167 * @env: The load balancing environment.
5168 * @balance: Should we balance.
5169 * @sds: variable to hold the statistics for this sched_domain.
5171 static inline void update_sd_lb_stats(struct lb_env *env,
5172 struct sd_lb_stats *sds)
5174 struct sched_domain *child = env->sd->child;
5175 struct sched_group *sg = env->sd->groups;
5176 struct sg_lb_stats tmp_sgs;
5177 int load_idx, prefer_sibling = 0;
5179 if (child && child->flags & SD_PREFER_SIBLING)
5182 load_idx = get_sd_load_idx(env->sd, env->idle);
5185 struct sg_lb_stats *sgs = &tmp_sgs;
5188 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5191 sgs = &sds->local_stat;
5193 if (env->idle != CPU_NEWLY_IDLE ||
5194 time_after_eq(jiffies, sg->sgp->next_update))
5195 update_group_power(env->sd, env->dst_cpu);
5198 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5204 * In case the child domain prefers tasks go to siblings
5205 * first, lower the sg capacity to one so that we'll try
5206 * and move all the excess tasks away. We lower the capacity
5207 * of a group only if the local group has the capacity to fit
5208 * these excess tasks, i.e. nr_running < group_capacity. The
5209 * extra check prevents the case where you always pull from the
5210 * heaviest group when it is already under-utilized (possible
5211 * with a large weight task outweighs the tasks on the system).
5213 if (prefer_sibling && sds->local &&
5214 sds->local_stat.group_has_capacity)
5215 sgs->group_capacity = min(sgs->group_capacity, 1U);
5217 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5219 sds->busiest_stat = *sgs;
5223 /* Now, start updating sd_lb_stats */
5224 sds->total_load += sgs->group_load;
5225 sds->total_pwr += sgs->group_power;
5228 } while (sg != env->sd->groups);
5232 * check_asym_packing - Check to see if the group is packed into the
5235 * This is primarily intended to used at the sibling level. Some
5236 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5237 * case of POWER7, it can move to lower SMT modes only when higher
5238 * threads are idle. When in lower SMT modes, the threads will
5239 * perform better since they share less core resources. Hence when we
5240 * have idle threads, we want them to be the higher ones.
5242 * This packing function is run on idle threads. It checks to see if
5243 * the busiest CPU in this domain (core in the P7 case) has a higher
5244 * CPU number than the packing function is being run on. Here we are
5245 * assuming lower CPU number will be equivalent to lower a SMT thread
5248 * Return: 1 when packing is required and a task should be moved to
5249 * this CPU. The amount of the imbalance is returned in *imbalance.
5251 * @env: The load balancing environment.
5252 * @sds: Statistics of the sched_domain which is to be packed
5254 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5258 if (!(env->sd->flags & SD_ASYM_PACKING))
5264 busiest_cpu = group_first_cpu(sds->busiest);
5265 if (env->dst_cpu > busiest_cpu)
5268 env->imbalance = DIV_ROUND_CLOSEST(
5269 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5276 * fix_small_imbalance - Calculate the minor imbalance that exists
5277 * amongst the groups of a sched_domain, during
5279 * @env: The load balancing environment.
5280 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5283 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5285 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5286 unsigned int imbn = 2;
5287 unsigned long scaled_busy_load_per_task;
5288 struct sg_lb_stats *local, *busiest;
5290 local = &sds->local_stat;
5291 busiest = &sds->busiest_stat;
5293 if (!local->sum_nr_running)
5294 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5295 else if (busiest->load_per_task > local->load_per_task)
5298 scaled_busy_load_per_task =
5299 (busiest->load_per_task * SCHED_POWER_SCALE) /
5300 busiest->group_power;
5302 if (busiest->avg_load + scaled_busy_load_per_task >=
5303 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5304 env->imbalance = busiest->load_per_task;
5309 * OK, we don't have enough imbalance to justify moving tasks,
5310 * however we may be able to increase total CPU power used by
5314 pwr_now += busiest->group_power *
5315 min(busiest->load_per_task, busiest->avg_load);
5316 pwr_now += local->group_power *
5317 min(local->load_per_task, local->avg_load);
5318 pwr_now /= SCHED_POWER_SCALE;
5320 /* Amount of load we'd subtract */
5321 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5322 busiest->group_power;
5323 if (busiest->avg_load > tmp) {
5324 pwr_move += busiest->group_power *
5325 min(busiest->load_per_task,
5326 busiest->avg_load - tmp);
5329 /* Amount of load we'd add */
5330 if (busiest->avg_load * busiest->group_power <
5331 busiest->load_per_task * SCHED_POWER_SCALE) {
5332 tmp = (busiest->avg_load * busiest->group_power) /
5335 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5338 pwr_move += local->group_power *
5339 min(local->load_per_task, local->avg_load + tmp);
5340 pwr_move /= SCHED_POWER_SCALE;
5342 /* Move if we gain throughput */
5343 if (pwr_move > pwr_now)
5344 env->imbalance = busiest->load_per_task;
5348 * calculate_imbalance - Calculate the amount of imbalance present within the
5349 * groups of a given sched_domain during load balance.
5350 * @env: load balance environment
5351 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5353 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5355 unsigned long max_pull, load_above_capacity = ~0UL;
5356 struct sg_lb_stats *local, *busiest;
5358 local = &sds->local_stat;
5359 busiest = &sds->busiest_stat;
5361 if (busiest->group_imb) {
5363 * In the group_imb case we cannot rely on group-wide averages
5364 * to ensure cpu-load equilibrium, look at wider averages. XXX
5366 busiest->load_per_task =
5367 min(busiest->load_per_task, sds->avg_load);
5371 * In the presence of smp nice balancing, certain scenarios can have
5372 * max load less than avg load(as we skip the groups at or below
5373 * its cpu_power, while calculating max_load..)
5375 if (busiest->avg_load <= sds->avg_load ||
5376 local->avg_load >= sds->avg_load) {
5378 return fix_small_imbalance(env, sds);
5381 if (!busiest->group_imb) {
5383 * Don't want to pull so many tasks that a group would go idle.
5384 * Except of course for the group_imb case, since then we might
5385 * have to drop below capacity to reach cpu-load equilibrium.
5387 load_above_capacity =
5388 (busiest->sum_nr_running - busiest->group_capacity);
5390 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5391 load_above_capacity /= busiest->group_power;
5395 * We're trying to get all the cpus to the average_load, so we don't
5396 * want to push ourselves above the average load, nor do we wish to
5397 * reduce the max loaded cpu below the average load. At the same time,
5398 * we also don't want to reduce the group load below the group capacity
5399 * (so that we can implement power-savings policies etc). Thus we look
5400 * for the minimum possible imbalance.
5402 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5404 /* How much load to actually move to equalise the imbalance */
5405 env->imbalance = min(
5406 max_pull * busiest->group_power,
5407 (sds->avg_load - local->avg_load) * local->group_power
5408 ) / SCHED_POWER_SCALE;
5411 * if *imbalance is less than the average load per runnable task
5412 * there is no guarantee that any tasks will be moved so we'll have
5413 * a think about bumping its value to force at least one task to be
5416 if (env->imbalance < busiest->load_per_task)
5417 return fix_small_imbalance(env, sds);
5420 /******* find_busiest_group() helpers end here *********************/
5423 * find_busiest_group - Returns the busiest group within the sched_domain
5424 * if there is an imbalance. If there isn't an imbalance, and
5425 * the user has opted for power-savings, it returns a group whose
5426 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5427 * such a group exists.
5429 * Also calculates the amount of weighted load which should be moved
5430 * to restore balance.
5432 * @env: The load balancing environment.
5434 * Return: - The busiest group if imbalance exists.
5435 * - If no imbalance and user has opted for power-savings balance,
5436 * return the least loaded group whose CPUs can be
5437 * put to idle by rebalancing its tasks onto our group.
5439 static struct sched_group *find_busiest_group(struct lb_env *env)
5441 struct sg_lb_stats *local, *busiest;
5442 struct sd_lb_stats sds;
5444 init_sd_lb_stats(&sds);
5447 * Compute the various statistics relavent for load balancing at
5450 update_sd_lb_stats(env, &sds);
5451 local = &sds.local_stat;
5452 busiest = &sds.busiest_stat;
5454 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5455 check_asym_packing(env, &sds))
5458 /* There is no busy sibling group to pull tasks from */
5459 if (!sds.busiest || busiest->sum_nr_running == 0)
5462 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5465 * If the busiest group is imbalanced the below checks don't
5466 * work because they assume all things are equal, which typically
5467 * isn't true due to cpus_allowed constraints and the like.
5469 if (busiest->group_imb)
5472 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5473 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5474 !busiest->group_has_capacity)
5478 * If the local group is more busy than the selected busiest group
5479 * don't try and pull any tasks.
5481 if (local->avg_load >= busiest->avg_load)
5485 * Don't pull any tasks if this group is already above the domain
5488 if (local->avg_load >= sds.avg_load)
5491 if (env->idle == CPU_IDLE) {
5493 * This cpu is idle. If the busiest group load doesn't
5494 * have more tasks than the number of available cpu's and
5495 * there is no imbalance between this and busiest group
5496 * wrt to idle cpu's, it is balanced.
5498 if ((local->idle_cpus < busiest->idle_cpus) &&
5499 busiest->sum_nr_running <= busiest->group_weight)
5503 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5504 * imbalance_pct to be conservative.
5506 if (100 * busiest->avg_load <=
5507 env->sd->imbalance_pct * local->avg_load)
5512 /* Looks like there is an imbalance. Compute it */
5513 calculate_imbalance(env, &sds);
5522 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5524 static struct rq *find_busiest_queue(struct lb_env *env,
5525 struct sched_group *group)
5527 struct rq *busiest = NULL, *rq;
5528 unsigned long busiest_load = 0, busiest_power = 1;
5531 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5532 unsigned long power = power_of(i);
5533 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5538 capacity = fix_small_capacity(env->sd, group);
5541 wl = weighted_cpuload(i);
5544 * When comparing with imbalance, use weighted_cpuload()
5545 * which is not scaled with the cpu power.
5547 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5551 * For the load comparisons with the other cpu's, consider
5552 * the weighted_cpuload() scaled with the cpu power, so that
5553 * the load can be moved away from the cpu that is potentially
5554 * running at a lower capacity.
5556 * Thus we're looking for max(wl_i / power_i), crosswise
5557 * multiplication to rid ourselves of the division works out
5558 * to: wl_i * power_j > wl_j * power_i; where j is our
5561 if (wl * busiest_power > busiest_load * power) {
5563 busiest_power = power;
5572 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5573 * so long as it is large enough.
5575 #define MAX_PINNED_INTERVAL 512
5577 /* Working cpumask for load_balance and load_balance_newidle. */
5578 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5580 static int need_active_balance(struct lb_env *env)
5582 struct sched_domain *sd = env->sd;
5584 if (env->idle == CPU_NEWLY_IDLE) {
5587 * ASYM_PACKING needs to force migrate tasks from busy but
5588 * higher numbered CPUs in order to pack all tasks in the
5589 * lowest numbered CPUs.
5591 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5595 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5598 static int active_load_balance_cpu_stop(void *data);
5600 static int should_we_balance(struct lb_env *env)
5602 struct sched_group *sg = env->sd->groups;
5603 struct cpumask *sg_cpus, *sg_mask;
5604 int cpu, balance_cpu = -1;
5607 * In the newly idle case, we will allow all the cpu's
5608 * to do the newly idle load balance.
5610 if (env->idle == CPU_NEWLY_IDLE)
5613 sg_cpus = sched_group_cpus(sg);
5614 sg_mask = sched_group_mask(sg);
5615 /* Try to find first idle cpu */
5616 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5617 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5624 if (balance_cpu == -1)
5625 balance_cpu = group_balance_cpu(sg);
5628 * First idle cpu or the first cpu(busiest) in this sched group
5629 * is eligible for doing load balancing at this and above domains.
5631 return balance_cpu == env->dst_cpu;
5635 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5636 * tasks if there is an imbalance.
5638 static int load_balance(int this_cpu, struct rq *this_rq,
5639 struct sched_domain *sd, enum cpu_idle_type idle,
5640 int *continue_balancing)
5642 int ld_moved, cur_ld_moved, active_balance = 0;
5643 struct sched_domain *sd_parent = sd->parent;
5644 struct sched_group *group;
5646 unsigned long flags;
5647 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5649 struct lb_env env = {
5651 .dst_cpu = this_cpu,
5653 .dst_grpmask = sched_group_cpus(sd->groups),
5655 .loop_break = sched_nr_migrate_break,
5660 * For NEWLY_IDLE load_balancing, we don't need to consider
5661 * other cpus in our group
5663 if (idle == CPU_NEWLY_IDLE)
5664 env.dst_grpmask = NULL;
5666 cpumask_copy(cpus, cpu_active_mask);
5668 schedstat_inc(sd, lb_count[idle]);
5671 if (!should_we_balance(&env)) {
5672 *continue_balancing = 0;
5676 group = find_busiest_group(&env);
5678 schedstat_inc(sd, lb_nobusyg[idle]);
5682 busiest = find_busiest_queue(&env, group);
5684 schedstat_inc(sd, lb_nobusyq[idle]);
5688 BUG_ON(busiest == env.dst_rq);
5690 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5693 if (busiest->nr_running > 1) {
5695 * Attempt to move tasks. If find_busiest_group has found
5696 * an imbalance but busiest->nr_running <= 1, the group is
5697 * still unbalanced. ld_moved simply stays zero, so it is
5698 * correctly treated as an imbalance.
5700 env.flags |= LBF_ALL_PINNED;
5701 env.src_cpu = busiest->cpu;
5702 env.src_rq = busiest;
5703 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5706 local_irq_save(flags);
5707 double_rq_lock(env.dst_rq, busiest);
5710 * cur_ld_moved - load moved in current iteration
5711 * ld_moved - cumulative load moved across iterations
5713 cur_ld_moved = move_tasks(&env);
5714 ld_moved += cur_ld_moved;
5715 double_rq_unlock(env.dst_rq, busiest);
5716 local_irq_restore(flags);
5719 * some other cpu did the load balance for us.
5721 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5722 resched_cpu(env.dst_cpu);
5724 if (env.flags & LBF_NEED_BREAK) {
5725 env.flags &= ~LBF_NEED_BREAK;
5730 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5731 * us and move them to an alternate dst_cpu in our sched_group
5732 * where they can run. The upper limit on how many times we
5733 * iterate on same src_cpu is dependent on number of cpus in our
5736 * This changes load balance semantics a bit on who can move
5737 * load to a given_cpu. In addition to the given_cpu itself
5738 * (or a ilb_cpu acting on its behalf where given_cpu is
5739 * nohz-idle), we now have balance_cpu in a position to move
5740 * load to given_cpu. In rare situations, this may cause
5741 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5742 * _independently_ and at _same_ time to move some load to
5743 * given_cpu) causing exceess load to be moved to given_cpu.
5744 * This however should not happen so much in practice and
5745 * moreover subsequent load balance cycles should correct the
5746 * excess load moved.
5748 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
5750 /* Prevent to re-select dst_cpu via env's cpus */
5751 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5753 env.dst_rq = cpu_rq(env.new_dst_cpu);
5754 env.dst_cpu = env.new_dst_cpu;
5755 env.flags &= ~LBF_DST_PINNED;
5757 env.loop_break = sched_nr_migrate_break;
5760 * Go back to "more_balance" rather than "redo" since we
5761 * need to continue with same src_cpu.
5767 * We failed to reach balance because of affinity.
5770 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5772 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5773 *group_imbalance = 1;
5774 } else if (*group_imbalance)
5775 *group_imbalance = 0;
5778 /* All tasks on this runqueue were pinned by CPU affinity */
5779 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5780 cpumask_clear_cpu(cpu_of(busiest), cpus);
5781 if (!cpumask_empty(cpus)) {
5783 env.loop_break = sched_nr_migrate_break;
5791 schedstat_inc(sd, lb_failed[idle]);
5793 * Increment the failure counter only on periodic balance.
5794 * We do not want newidle balance, which can be very
5795 * frequent, pollute the failure counter causing
5796 * excessive cache_hot migrations and active balances.
5798 if (idle != CPU_NEWLY_IDLE)
5799 sd->nr_balance_failed++;
5801 if (need_active_balance(&env)) {
5802 raw_spin_lock_irqsave(&busiest->lock, flags);
5804 /* don't kick the active_load_balance_cpu_stop,
5805 * if the curr task on busiest cpu can't be
5808 if (!cpumask_test_cpu(this_cpu,
5809 tsk_cpus_allowed(busiest->curr))) {
5810 raw_spin_unlock_irqrestore(&busiest->lock,
5812 env.flags |= LBF_ALL_PINNED;
5813 goto out_one_pinned;
5817 * ->active_balance synchronizes accesses to
5818 * ->active_balance_work. Once set, it's cleared
5819 * only after active load balance is finished.
5821 if (!busiest->active_balance) {
5822 busiest->active_balance = 1;
5823 busiest->push_cpu = this_cpu;
5826 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5828 if (active_balance) {
5829 stop_one_cpu_nowait(cpu_of(busiest),
5830 active_load_balance_cpu_stop, busiest,
5831 &busiest->active_balance_work);
5835 * We've kicked active balancing, reset the failure
5838 sd->nr_balance_failed = sd->cache_nice_tries+1;
5841 sd->nr_balance_failed = 0;
5843 if (likely(!active_balance)) {
5844 /* We were unbalanced, so reset the balancing interval */
5845 sd->balance_interval = sd->min_interval;
5848 * If we've begun active balancing, start to back off. This
5849 * case may not be covered by the all_pinned logic if there
5850 * is only 1 task on the busy runqueue (because we don't call
5853 if (sd->balance_interval < sd->max_interval)
5854 sd->balance_interval *= 2;
5860 schedstat_inc(sd, lb_balanced[idle]);
5862 sd->nr_balance_failed = 0;
5865 /* tune up the balancing interval */
5866 if (((env.flags & LBF_ALL_PINNED) &&
5867 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5868 (sd->balance_interval < sd->max_interval))
5869 sd->balance_interval *= 2;
5877 * idle_balance is called by schedule() if this_cpu is about to become
5878 * idle. Attempts to pull tasks from other CPUs.
5880 void idle_balance(int this_cpu, struct rq *this_rq)
5882 struct sched_domain *sd;
5883 int pulled_task = 0;
5884 unsigned long next_balance = jiffies + HZ;
5887 this_rq->idle_stamp = rq_clock(this_rq);
5889 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5893 * Drop the rq->lock, but keep IRQ/preempt disabled.
5895 raw_spin_unlock(&this_rq->lock);
5897 update_blocked_averages(this_cpu);
5899 for_each_domain(this_cpu, sd) {
5900 unsigned long interval;
5901 int continue_balancing = 1;
5902 u64 t0, domain_cost;
5904 if (!(sd->flags & SD_LOAD_BALANCE))
5907 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5910 if (sd->flags & SD_BALANCE_NEWIDLE) {
5911 t0 = sched_clock_cpu(this_cpu);
5913 /* If we've pulled tasks over stop searching: */
5914 pulled_task = load_balance(this_cpu, this_rq,
5916 &continue_balancing);
5918 domain_cost = sched_clock_cpu(this_cpu) - t0;
5919 if (domain_cost > sd->max_newidle_lb_cost)
5920 sd->max_newidle_lb_cost = domain_cost;
5922 curr_cost += domain_cost;
5925 interval = msecs_to_jiffies(sd->balance_interval);
5926 if (time_after(next_balance, sd->last_balance + interval))
5927 next_balance = sd->last_balance + interval;
5929 this_rq->idle_stamp = 0;
5935 raw_spin_lock(&this_rq->lock);
5937 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5939 * We are going idle. next_balance may be set based on
5940 * a busy processor. So reset next_balance.
5942 this_rq->next_balance = next_balance;
5945 if (curr_cost > this_rq->max_idle_balance_cost)
5946 this_rq->max_idle_balance_cost = curr_cost;
5950 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5951 * running tasks off the busiest CPU onto idle CPUs. It requires at
5952 * least 1 task to be running on each physical CPU where possible, and
5953 * avoids physical / logical imbalances.
5955 static int active_load_balance_cpu_stop(void *data)
5957 struct rq *busiest_rq = data;
5958 int busiest_cpu = cpu_of(busiest_rq);
5959 int target_cpu = busiest_rq->push_cpu;
5960 struct rq *target_rq = cpu_rq(target_cpu);
5961 struct sched_domain *sd;
5963 raw_spin_lock_irq(&busiest_rq->lock);
5965 /* make sure the requested cpu hasn't gone down in the meantime */
5966 if (unlikely(busiest_cpu != smp_processor_id() ||
5967 !busiest_rq->active_balance))
5970 /* Is there any task to move? */
5971 if (busiest_rq->nr_running <= 1)
5975 * This condition is "impossible", if it occurs
5976 * we need to fix it. Originally reported by
5977 * Bjorn Helgaas on a 128-cpu setup.
5979 BUG_ON(busiest_rq == target_rq);
5981 /* move a task from busiest_rq to target_rq */
5982 double_lock_balance(busiest_rq, target_rq);
5984 /* Search for an sd spanning us and the target CPU. */
5986 for_each_domain(target_cpu, sd) {
5987 if ((sd->flags & SD_LOAD_BALANCE) &&
5988 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5993 struct lb_env env = {
5995 .dst_cpu = target_cpu,
5996 .dst_rq = target_rq,
5997 .src_cpu = busiest_rq->cpu,
5998 .src_rq = busiest_rq,
6002 schedstat_inc(sd, alb_count);
6004 if (move_one_task(&env))
6005 schedstat_inc(sd, alb_pushed);
6007 schedstat_inc(sd, alb_failed);
6010 double_unlock_balance(busiest_rq, target_rq);
6012 busiest_rq->active_balance = 0;
6013 raw_spin_unlock_irq(&busiest_rq->lock);
6017 #ifdef CONFIG_NO_HZ_COMMON
6019 * idle load balancing details
6020 * - When one of the busy CPUs notice that there may be an idle rebalancing
6021 * needed, they will kick the idle load balancer, which then does idle
6022 * load balancing for all the idle CPUs.
6025 cpumask_var_t idle_cpus_mask;
6027 unsigned long next_balance; /* in jiffy units */
6028 } nohz ____cacheline_aligned;
6030 static inline int find_new_ilb(int call_cpu)
6032 int ilb = cpumask_first(nohz.idle_cpus_mask);
6034 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6041 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6042 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6043 * CPU (if there is one).
6045 static void nohz_balancer_kick(int cpu)
6049 nohz.next_balance++;
6051 ilb_cpu = find_new_ilb(cpu);
6053 if (ilb_cpu >= nr_cpu_ids)
6056 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6059 * Use smp_send_reschedule() instead of resched_cpu().
6060 * This way we generate a sched IPI on the target cpu which
6061 * is idle. And the softirq performing nohz idle load balance
6062 * will be run before returning from the IPI.
6064 smp_send_reschedule(ilb_cpu);
6068 static inline void nohz_balance_exit_idle(int cpu)
6070 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6071 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6072 atomic_dec(&nohz.nr_cpus);
6073 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6077 static inline void set_cpu_sd_state_busy(void)
6079 struct sched_domain *sd;
6082 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6084 if (!sd || !sd->nohz_idle)
6088 for (; sd; sd = sd->parent)
6089 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6094 void set_cpu_sd_state_idle(void)
6096 struct sched_domain *sd;
6099 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6101 if (!sd || sd->nohz_idle)
6105 for (; sd; sd = sd->parent)
6106 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6112 * This routine will record that the cpu is going idle with tick stopped.
6113 * This info will be used in performing idle load balancing in the future.
6115 void nohz_balance_enter_idle(int cpu)
6118 * If this cpu is going down, then nothing needs to be done.
6120 if (!cpu_active(cpu))
6123 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6126 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6127 atomic_inc(&nohz.nr_cpus);
6128 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6131 static int sched_ilb_notifier(struct notifier_block *nfb,
6132 unsigned long action, void *hcpu)
6134 switch (action & ~CPU_TASKS_FROZEN) {
6136 nohz_balance_exit_idle(smp_processor_id());
6144 static DEFINE_SPINLOCK(balancing);
6147 * Scale the max load_balance interval with the number of CPUs in the system.
6148 * This trades load-balance latency on larger machines for less cross talk.
6150 void update_max_interval(void)
6152 max_load_balance_interval = HZ*num_online_cpus()/10;
6156 * It checks each scheduling domain to see if it is due to be balanced,
6157 * and initiates a balancing operation if so.
6159 * Balancing parameters are set up in init_sched_domains.
6161 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6163 int continue_balancing = 1;
6164 struct rq *rq = cpu_rq(cpu);
6165 unsigned long interval;
6166 struct sched_domain *sd;
6167 /* Earliest time when we have to do rebalance again */
6168 unsigned long next_balance = jiffies + 60*HZ;
6169 int update_next_balance = 0;
6170 int need_serialize, need_decay = 0;
6173 update_blocked_averages(cpu);
6176 for_each_domain(cpu, sd) {
6178 * Decay the newidle max times here because this is a regular
6179 * visit to all the domains. Decay ~1% per second.
6181 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6182 sd->max_newidle_lb_cost =
6183 (sd->max_newidle_lb_cost * 253) / 256;
6184 sd->next_decay_max_lb_cost = jiffies + HZ;
6187 max_cost += sd->max_newidle_lb_cost;
6189 if (!(sd->flags & SD_LOAD_BALANCE))
6193 * Stop the load balance at this level. There is another
6194 * CPU in our sched group which is doing load balancing more
6197 if (!continue_balancing) {
6203 interval = sd->balance_interval;
6204 if (idle != CPU_IDLE)
6205 interval *= sd->busy_factor;
6207 /* scale ms to jiffies */
6208 interval = msecs_to_jiffies(interval);
6209 interval = clamp(interval, 1UL, max_load_balance_interval);
6211 need_serialize = sd->flags & SD_SERIALIZE;
6213 if (need_serialize) {
6214 if (!spin_trylock(&balancing))
6218 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6219 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6221 * The LBF_DST_PINNED logic could have changed
6222 * env->dst_cpu, so we can't know our idle
6223 * state even if we migrated tasks. Update it.
6225 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6227 sd->last_balance = jiffies;
6230 spin_unlock(&balancing);
6232 if (time_after(next_balance, sd->last_balance + interval)) {
6233 next_balance = sd->last_balance + interval;
6234 update_next_balance = 1;
6239 * Ensure the rq-wide value also decays but keep it at a
6240 * reasonable floor to avoid funnies with rq->avg_idle.
6242 rq->max_idle_balance_cost =
6243 max((u64)sysctl_sched_migration_cost, max_cost);
6248 * next_balance will be updated only when there is a need.
6249 * When the cpu is attached to null domain for ex, it will not be
6252 if (likely(update_next_balance))
6253 rq->next_balance = next_balance;
6256 #ifdef CONFIG_NO_HZ_COMMON
6258 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6259 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6261 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6263 struct rq *this_rq = cpu_rq(this_cpu);
6267 if (idle != CPU_IDLE ||
6268 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6271 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6272 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6276 * If this cpu gets work to do, stop the load balancing
6277 * work being done for other cpus. Next load
6278 * balancing owner will pick it up.
6283 rq = cpu_rq(balance_cpu);
6285 raw_spin_lock_irq(&rq->lock);
6286 update_rq_clock(rq);
6287 update_idle_cpu_load(rq);
6288 raw_spin_unlock_irq(&rq->lock);
6290 rebalance_domains(balance_cpu, CPU_IDLE);
6292 if (time_after(this_rq->next_balance, rq->next_balance))
6293 this_rq->next_balance = rq->next_balance;
6295 nohz.next_balance = this_rq->next_balance;
6297 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6301 * Current heuristic for kicking the idle load balancer in the presence
6302 * of an idle cpu is the system.
6303 * - This rq has more than one task.
6304 * - At any scheduler domain level, this cpu's scheduler group has multiple
6305 * busy cpu's exceeding the group's power.
6306 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6307 * domain span are idle.
6309 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6311 unsigned long now = jiffies;
6312 struct sched_domain *sd;
6314 if (unlikely(idle_cpu(cpu)))
6318 * We may be recently in ticked or tickless idle mode. At the first
6319 * busy tick after returning from idle, we will update the busy stats.
6321 set_cpu_sd_state_busy();
6322 nohz_balance_exit_idle(cpu);
6325 * None are in tickless mode and hence no need for NOHZ idle load
6328 if (likely(!atomic_read(&nohz.nr_cpus)))
6331 if (time_before(now, nohz.next_balance))
6334 if (rq->nr_running >= 2)
6338 for_each_domain(cpu, sd) {
6339 struct sched_group *sg = sd->groups;
6340 struct sched_group_power *sgp = sg->sgp;
6341 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
6343 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
6344 goto need_kick_unlock;
6346 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6347 && (cpumask_first_and(nohz.idle_cpus_mask,
6348 sched_domain_span(sd)) < cpu))
6349 goto need_kick_unlock;
6351 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6363 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6367 * run_rebalance_domains is triggered when needed from the scheduler tick.
6368 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6370 static void run_rebalance_domains(struct softirq_action *h)
6372 int this_cpu = smp_processor_id();
6373 struct rq *this_rq = cpu_rq(this_cpu);
6374 enum cpu_idle_type idle = this_rq->idle_balance ?
6375 CPU_IDLE : CPU_NOT_IDLE;
6377 rebalance_domains(this_cpu, idle);
6380 * If this cpu has a pending nohz_balance_kick, then do the
6381 * balancing on behalf of the other idle cpus whose ticks are
6384 nohz_idle_balance(this_cpu, idle);
6387 static inline int on_null_domain(int cpu)
6389 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6393 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6395 void trigger_load_balance(struct rq *rq, int cpu)
6397 /* Don't need to rebalance while attached to NULL domain */
6398 if (time_after_eq(jiffies, rq->next_balance) &&
6399 likely(!on_null_domain(cpu)))
6400 raise_softirq(SCHED_SOFTIRQ);
6401 #ifdef CONFIG_NO_HZ_COMMON
6402 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6403 nohz_balancer_kick(cpu);
6407 static void rq_online_fair(struct rq *rq)
6412 static void rq_offline_fair(struct rq *rq)
6416 /* Ensure any throttled groups are reachable by pick_next_task */
6417 unthrottle_offline_cfs_rqs(rq);
6420 #endif /* CONFIG_SMP */
6423 * scheduler tick hitting a task of our scheduling class:
6425 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6427 struct cfs_rq *cfs_rq;
6428 struct sched_entity *se = &curr->se;
6430 for_each_sched_entity(se) {
6431 cfs_rq = cfs_rq_of(se);
6432 entity_tick(cfs_rq, se, queued);
6435 if (numabalancing_enabled)
6436 task_tick_numa(rq, curr);
6438 update_rq_runnable_avg(rq, 1);
6442 * called on fork with the child task as argument from the parent's context
6443 * - child not yet on the tasklist
6444 * - preemption disabled
6446 static void task_fork_fair(struct task_struct *p)
6448 struct cfs_rq *cfs_rq;
6449 struct sched_entity *se = &p->se, *curr;
6450 int this_cpu = smp_processor_id();
6451 struct rq *rq = this_rq();
6452 unsigned long flags;
6454 raw_spin_lock_irqsave(&rq->lock, flags);
6456 update_rq_clock(rq);
6458 cfs_rq = task_cfs_rq(current);
6459 curr = cfs_rq->curr;
6462 * Not only the cpu but also the task_group of the parent might have
6463 * been changed after parent->se.parent,cfs_rq were copied to
6464 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6465 * of child point to valid ones.
6468 __set_task_cpu(p, this_cpu);
6471 update_curr(cfs_rq);
6474 se->vruntime = curr->vruntime;
6475 place_entity(cfs_rq, se, 1);
6477 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6479 * Upon rescheduling, sched_class::put_prev_task() will place
6480 * 'current' within the tree based on its new key value.
6482 swap(curr->vruntime, se->vruntime);
6483 resched_task(rq->curr);
6486 se->vruntime -= cfs_rq->min_vruntime;
6488 raw_spin_unlock_irqrestore(&rq->lock, flags);
6492 * Priority of the task has changed. Check to see if we preempt
6496 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6502 * Reschedule if we are currently running on this runqueue and
6503 * our priority decreased, or if we are not currently running on
6504 * this runqueue and our priority is higher than the current's
6506 if (rq->curr == p) {
6507 if (p->prio > oldprio)
6508 resched_task(rq->curr);
6510 check_preempt_curr(rq, p, 0);
6513 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6515 struct sched_entity *se = &p->se;
6516 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6519 * Ensure the task's vruntime is normalized, so that when its
6520 * switched back to the fair class the enqueue_entity(.flags=0) will
6521 * do the right thing.
6523 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6524 * have normalized the vruntime, if it was !on_rq, then only when
6525 * the task is sleeping will it still have non-normalized vruntime.
6527 if (!se->on_rq && p->state != TASK_RUNNING) {
6529 * Fix up our vruntime so that the current sleep doesn't
6530 * cause 'unlimited' sleep bonus.
6532 place_entity(cfs_rq, se, 0);
6533 se->vruntime -= cfs_rq->min_vruntime;
6538 * Remove our load from contribution when we leave sched_fair
6539 * and ensure we don't carry in an old decay_count if we
6542 if (se->avg.decay_count) {
6543 __synchronize_entity_decay(se);
6544 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6550 * We switched to the sched_fair class.
6552 static void switched_to_fair(struct rq *rq, struct task_struct *p)
6558 * We were most likely switched from sched_rt, so
6559 * kick off the schedule if running, otherwise just see
6560 * if we can still preempt the current task.
6563 resched_task(rq->curr);
6565 check_preempt_curr(rq, p, 0);
6568 /* Account for a task changing its policy or group.
6570 * This routine is mostly called to set cfs_rq->curr field when a task
6571 * migrates between groups/classes.
6573 static void set_curr_task_fair(struct rq *rq)
6575 struct sched_entity *se = &rq->curr->se;
6577 for_each_sched_entity(se) {
6578 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6580 set_next_entity(cfs_rq, se);
6581 /* ensure bandwidth has been allocated on our new cfs_rq */
6582 account_cfs_rq_runtime(cfs_rq, 0);
6586 void init_cfs_rq(struct cfs_rq *cfs_rq)
6588 cfs_rq->tasks_timeline = RB_ROOT;
6589 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6590 #ifndef CONFIG_64BIT
6591 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6594 atomic64_set(&cfs_rq->decay_counter, 1);
6595 atomic_long_set(&cfs_rq->removed_load, 0);
6599 #ifdef CONFIG_FAIR_GROUP_SCHED
6600 static void task_move_group_fair(struct task_struct *p, int on_rq)
6602 struct cfs_rq *cfs_rq;
6604 * If the task was not on the rq at the time of this cgroup movement
6605 * it must have been asleep, sleeping tasks keep their ->vruntime
6606 * absolute on their old rq until wakeup (needed for the fair sleeper
6607 * bonus in place_entity()).
6609 * If it was on the rq, we've just 'preempted' it, which does convert
6610 * ->vruntime to a relative base.
6612 * Make sure both cases convert their relative position when migrating
6613 * to another cgroup's rq. This does somewhat interfere with the
6614 * fair sleeper stuff for the first placement, but who cares.
6617 * When !on_rq, vruntime of the task has usually NOT been normalized.
6618 * But there are some cases where it has already been normalized:
6620 * - Moving a forked child which is waiting for being woken up by
6621 * wake_up_new_task().
6622 * - Moving a task which has been woken up by try_to_wake_up() and
6623 * waiting for actually being woken up by sched_ttwu_pending().
6625 * To prevent boost or penalty in the new cfs_rq caused by delta
6626 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6628 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
6632 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6633 set_task_rq(p, task_cpu(p));
6635 cfs_rq = cfs_rq_of(&p->se);
6636 p->se.vruntime += cfs_rq->min_vruntime;
6639 * migrate_task_rq_fair() will have removed our previous
6640 * contribution, but we must synchronize for ongoing future
6643 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6644 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6649 void free_fair_sched_group(struct task_group *tg)
6653 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6655 for_each_possible_cpu(i) {
6657 kfree(tg->cfs_rq[i]);
6666 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6668 struct cfs_rq *cfs_rq;
6669 struct sched_entity *se;
6672 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6675 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6679 tg->shares = NICE_0_LOAD;
6681 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6683 for_each_possible_cpu(i) {
6684 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6685 GFP_KERNEL, cpu_to_node(i));
6689 se = kzalloc_node(sizeof(struct sched_entity),
6690 GFP_KERNEL, cpu_to_node(i));
6694 init_cfs_rq(cfs_rq);
6695 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6706 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6708 struct rq *rq = cpu_rq(cpu);
6709 unsigned long flags;
6712 * Only empty task groups can be destroyed; so we can speculatively
6713 * check on_list without danger of it being re-added.
6715 if (!tg->cfs_rq[cpu]->on_list)
6718 raw_spin_lock_irqsave(&rq->lock, flags);
6719 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6720 raw_spin_unlock_irqrestore(&rq->lock, flags);
6723 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6724 struct sched_entity *se, int cpu,
6725 struct sched_entity *parent)
6727 struct rq *rq = cpu_rq(cpu);
6731 init_cfs_rq_runtime(cfs_rq);
6733 tg->cfs_rq[cpu] = cfs_rq;
6736 /* se could be NULL for root_task_group */
6741 se->cfs_rq = &rq->cfs;
6743 se->cfs_rq = parent->my_q;
6746 update_load_set(&se->load, 0);
6747 se->parent = parent;
6750 static DEFINE_MUTEX(shares_mutex);
6752 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6755 unsigned long flags;
6758 * We can't change the weight of the root cgroup.
6763 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6765 mutex_lock(&shares_mutex);
6766 if (tg->shares == shares)
6769 tg->shares = shares;
6770 for_each_possible_cpu(i) {
6771 struct rq *rq = cpu_rq(i);
6772 struct sched_entity *se;
6775 /* Propagate contribution to hierarchy */
6776 raw_spin_lock_irqsave(&rq->lock, flags);
6778 /* Possible calls to update_curr() need rq clock */
6779 update_rq_clock(rq);
6780 for_each_sched_entity(se)
6781 update_cfs_shares(group_cfs_rq(se));
6782 raw_spin_unlock_irqrestore(&rq->lock, flags);
6786 mutex_unlock(&shares_mutex);
6789 #else /* CONFIG_FAIR_GROUP_SCHED */
6791 void free_fair_sched_group(struct task_group *tg) { }
6793 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6798 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6800 #endif /* CONFIG_FAIR_GROUP_SCHED */
6803 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6805 struct sched_entity *se = &task->se;
6806 unsigned int rr_interval = 0;
6809 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6812 if (rq->cfs.load.weight)
6813 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6819 * All the scheduling class methods:
6821 const struct sched_class fair_sched_class = {
6822 .next = &idle_sched_class,
6823 .enqueue_task = enqueue_task_fair,
6824 .dequeue_task = dequeue_task_fair,
6825 .yield_task = yield_task_fair,
6826 .yield_to_task = yield_to_task_fair,
6828 .check_preempt_curr = check_preempt_wakeup,
6830 .pick_next_task = pick_next_task_fair,
6831 .put_prev_task = put_prev_task_fair,
6834 .select_task_rq = select_task_rq_fair,
6835 .migrate_task_rq = migrate_task_rq_fair,
6837 .rq_online = rq_online_fair,
6838 .rq_offline = rq_offline_fair,
6840 .task_waking = task_waking_fair,
6843 .set_curr_task = set_curr_task_fair,
6844 .task_tick = task_tick_fair,
6845 .task_fork = task_fork_fair,
6847 .prio_changed = prio_changed_fair,
6848 .switched_from = switched_from_fair,
6849 .switched_to = switched_to_fair,
6851 .get_rr_interval = get_rr_interval_fair,
6853 #ifdef CONFIG_FAIR_GROUP_SCHED
6854 .task_move_group = task_move_group_fair,
6858 #ifdef CONFIG_SCHED_DEBUG
6859 void print_cfs_stats(struct seq_file *m, int cpu)
6861 struct cfs_rq *cfs_rq;
6864 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6865 print_cfs_rq(m, cpu, cfs_rq);
6870 __init void init_sched_fair_class(void)
6873 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6875 #ifdef CONFIG_NO_HZ_COMMON
6876 nohz.next_balance = jiffies;
6877 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6878 cpu_notifier(sched_ilb_notifier, 0);